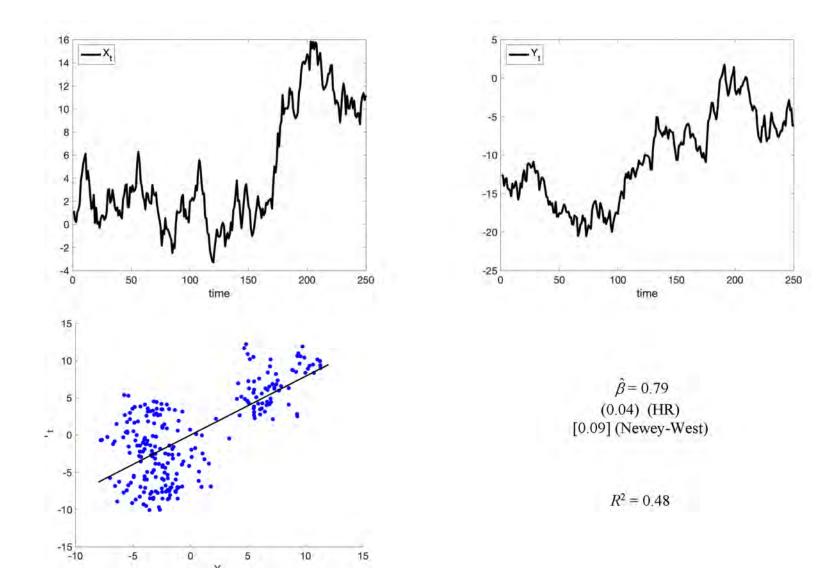
Andy Abel Celebration Conference

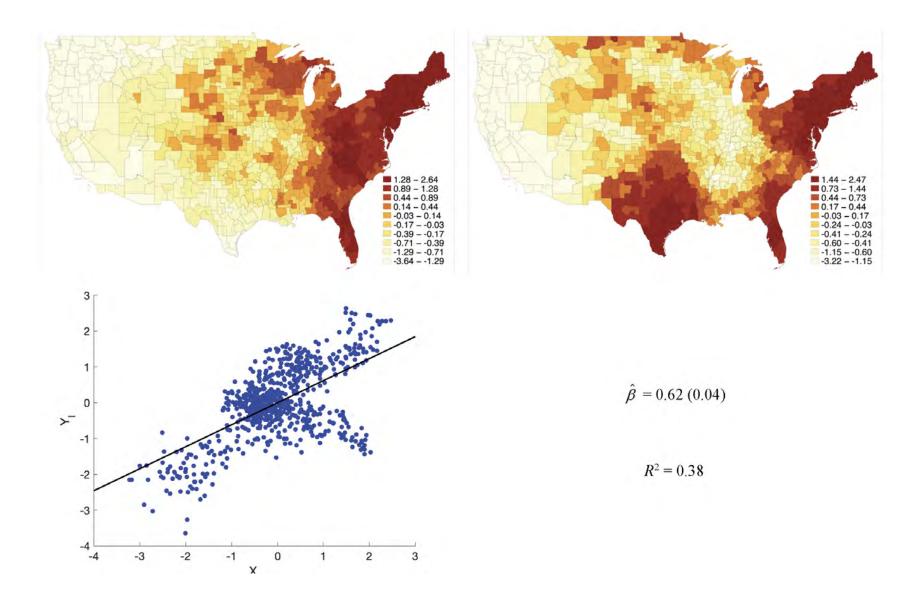
October 14, 2022

Andy teaching in 1983

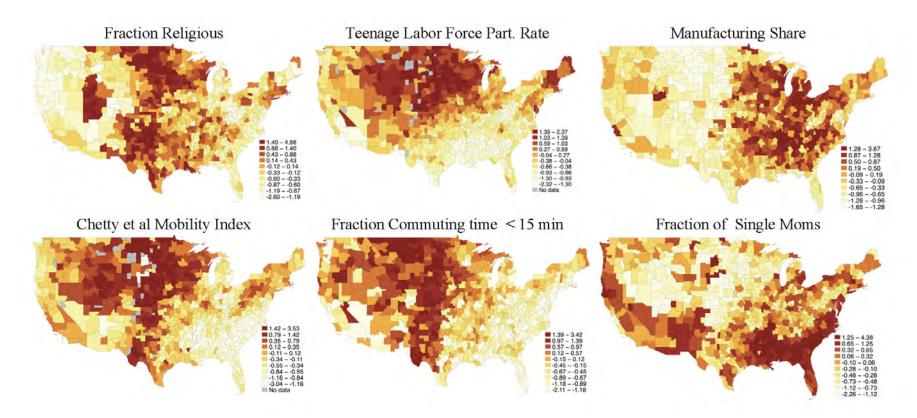
Spatial Unit Roots


Ulrich K. Müller and Mark W. Watson

Princeton University


October 14, 2022

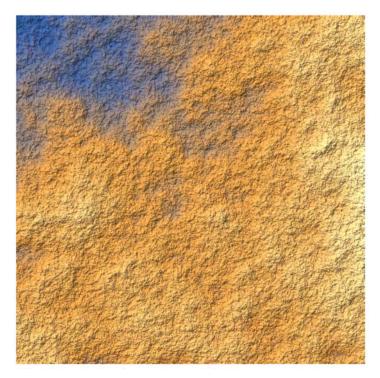
Andy Abel Celebration Conference


Time Series: Two independent random walks

US Commuting Zones: Two independent spatial 'random walks'

US Commuting Zones: Are these variables spatial random walks?

Data from Chetty, Hendren, Kline and Saez (2014), 'Land of Opportunity'


Some Questions:

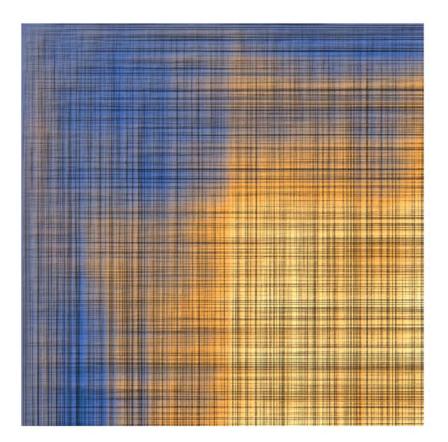
- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?

Question 1: What is a spatial random walk (Brownian motion)?

- Location $s \in \mathbb{R}^d$ (d = 1 time series, d = 2 geography)
- Levy Brownian motion, L(s)

$$-\mathbb{E}[L(s)L(r)] = \frac{1}{2}(|s| + |r| - |s - r|)$$

* var[L(s) - L(r)] = |s - r|, etc.



Realization of Levy Brownian Motion, d = 2

Notes: Rotation invariant; d = 1 Brownian motion along any lines

Question 1 (continued): What is a spatial random walk (Brownian motion)?

- Alternative: Brownian sheet
 - $-Y(s), s \ge 0, \mathbb{E}[Y(s)Y(r)] = \prod_{i=1}^{d} \min(s_i, r_i),$

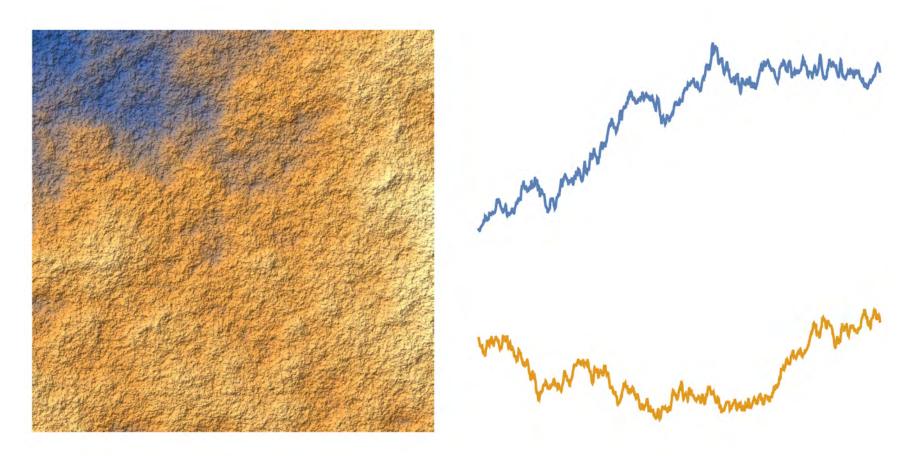
Realization of Brownian Sheet

Note: This is a Brownian motion in vertical and horizontal directions. Not otherwise.

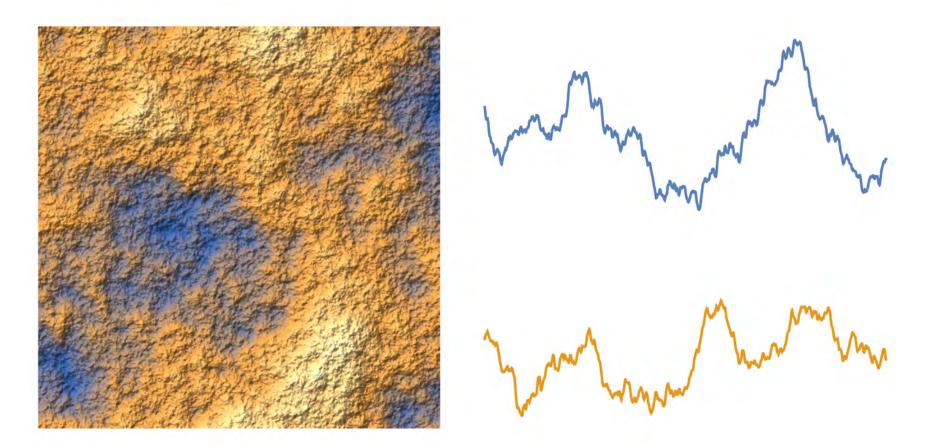
Question 1(a): What is a spatial I(1) process?

- d > 1, Spatial I(1) process:
 - Levy Browning motion:

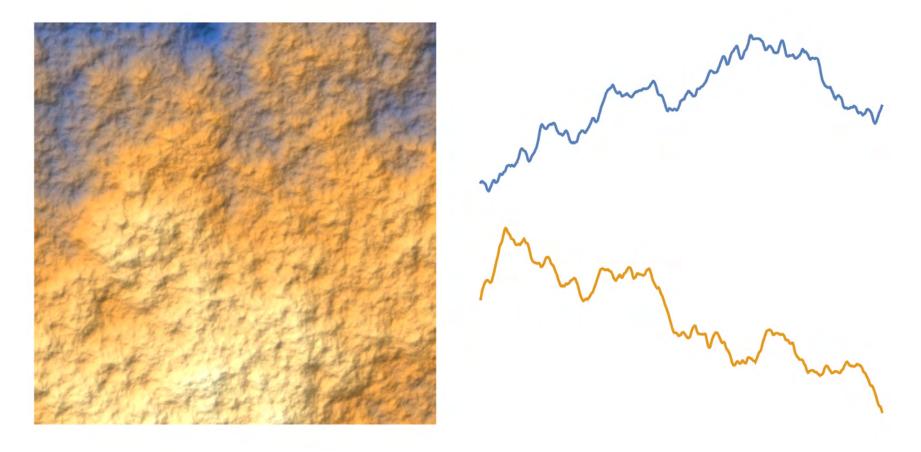
$$L(s) = \int_{\mathbb{R}^d} \theta(s, u) dW(u)$$


... (with $\theta(s, u) \propto (|s - u|^{(1-d)/2} - |u|^{(1-d)/2})$

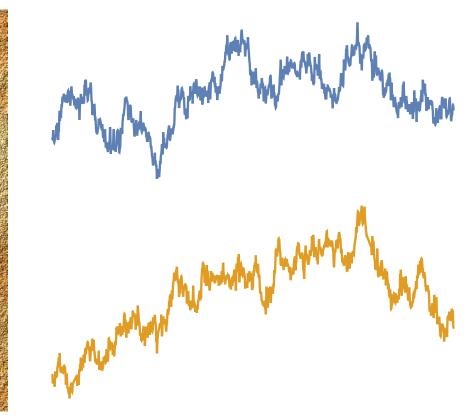
- I(1) process :


$$Y(s) = \int_{\mathbb{R}^d} \theta(s, u) \frac{B(u)}{B(u)} du$$

where B(u) is a 'weakly dependent' covariance stationary mean zero process (Condition 1 in paper).


• Examples:

Realization of Levy Brownian Motion



I(1) with $B \sim G_{exp}(c_1)$

I(1) with $B \sim G_{exp}(c_{(smaller)})$

I(1) with $B \sim ARMA(2, 1)$

Some Questions:

- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?

Question 5 : Is there a large-sample theory that helps answer these questions?

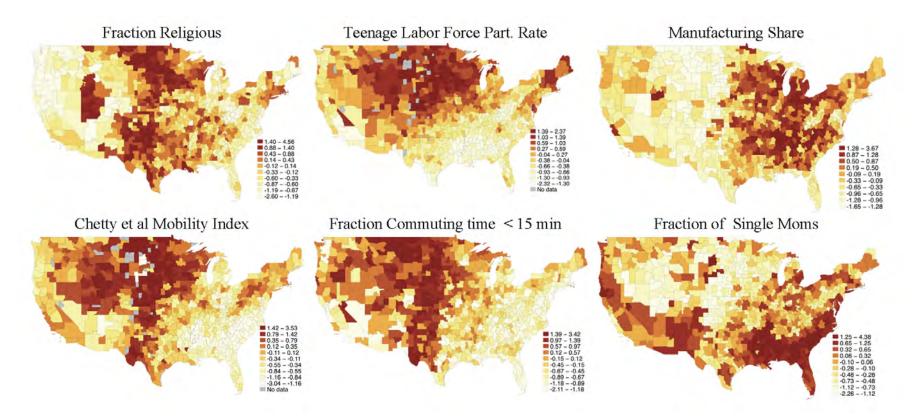
• Answer: Yes ... (FCLT) ... Thm 2 in paper

If
$$\lambda_n \to \infty$$
, then $\lambda_n^{-1/2} Y_n(\cdot) \Rightarrow \omega L(\cdot)$ where $\omega^2 = \int_{\mathbb{R}^d} \sigma_B(r) dr$

Some Questions:

- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?

Question 2 : Do Spatial I(1) processes lead to spurious regressions?


• Answer: Yes ... Thm 3 (like Phillips (1986) time series results) and Thm 4 (with HAC) in paper. Consider

$$y_l = \alpha + \mathbf{x}_l' \beta + u_l$$

$$\begin{split} &- \hat{\beta} \Rightarrow RV \\ &- R^2 \Rightarrow RV \\ &- F \to \infty \\ &- F(HAC) \to \infty \end{split}$$

Question 2 continued : Spurious Regressions

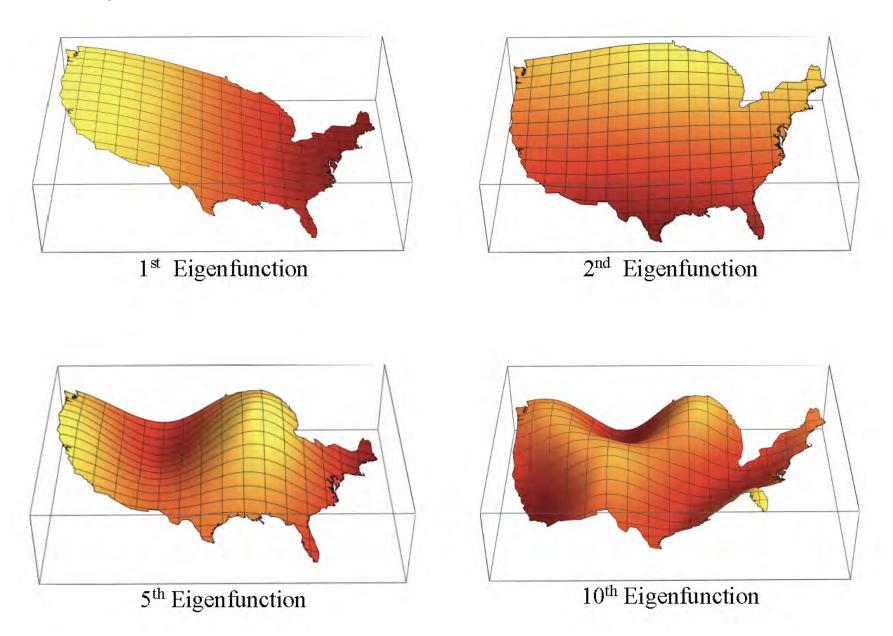
- Examples (???): Chetty et al 2014.
 - Construct a commuter-zone (CZ) level index of intergenerational mobility (AMI).
 - Regress AMI on various CZ socio-economic variables.

Question 2 continued :

Variable	Spatial Persistence Statistics			Regression of the AMI onto Variable	
	<i>p</i> -Value for Test		95% CI for $\bar{\rho}$	$\hat{\boldsymbol{\beta}}$ [95% CI]	
	T(4) NT 11	T(O) BT H	_		
Abgaluta Mability Index	1(1) Null 0.08	I(0) Null <0.01	[0 1 4 1 00]	Level [Cluster]	LBM-GLS [CSCPC]
Absolute Mobility Index		<u> </u>	[0.14; 1.00]	0.50[0.51, 0.45]	040[050.034]
Frac. Black Residents	0.02	0.01	[0.02; 0.71]	-0.58 [-0.71; -0.45]	-0.42 [-0.50; -0.34]
Racial Segregation	0.07	0.02	[0.05; 1.00]	-0.36 [-0.45; -0.27]	-0.24 [-0.28; -0.19]
Segregation of Poverty	0.13	0.04	[0.05; 1.00]	-0.41 [-0.54; -0.28]	-0.21 [-0.25; -0.16]
Frac. < 15 Mins to Work	0.69	< 0.01	[0.46; 1.00]	0.61 [0.36; 0.85]	0.37 [0.26; 0.48]
Mean Household Income	0.02	0.18	[0.01; 0.61]	0.05 [-0.09; 0.19]	-0.02 [-0.08; 0.04]
Gini	0.56	< 0.01	[0.40; 1.00]	-0.58 [-0.76; -0.40]	-0.21 [-0.29; -0.14]
Top 1 Perc. Inc. Share	0.60	0.03	[0.43; 1.00]	-0.19 [-0.33; -0.05]	-0.06 [-0.11; -0.01]
Student-Teacher Ratio	0.03	0.16	[0.04; 0.87]	-0.33 [-0.52; -0.13]	-0.18 [-0.26; -0.09]
Test Scores (Inc. adjusted)	0.40	0.07	[0.27; 1.00]	0.59 [0.42; 0.76]	0.42 [0.34; 0.51]
High School Dropout	0.63	0.02	[0.40; 1.00]	-0.57 [-0.75; -0.40]	-0.31 [-0.42; -0.20]
Social Capital Index	0.73	< 0.01	[0.38; 1.00]	0.64 [0.46; 0.82]	0.28 [0.12; 0.44]
Frac. Religious	0.11	0.03	[0.15; 1.00]	0.52 [0.35; 0.69]	0.32 [0.19; 0.45]
Violent Crime Rate	0.52	0.04	[0.38; 1.00]	-0.38 [-0.67; -0.09]	-0.14 [-0.23; -0.06]
Frac. Single Mothers	0.03	< 0.01	[0.05; 0.88]	-0.76 [-0.91; -0.62]	-0.60 [-0.69; -0.51]
Divorce Rate	< 0.01	0.21	[0.02; 0.53]	-0.49 [-0.68; -0.29]	-0.38 [-0.49; -0.27]
Frac. Married	0.09	0.07	[0.12; 1.00]	0.57 [0.45; 0.69]	0.36 [0.29; 0.43]
Local Tax Rate	0.01	0.25	[0.01; 0.59]	0.32 [0.19; 0.46]	0.07 [0.01; 0.14]
Colleges per Capita	0.57	0.10	[0.00; 1.00]	0.20 [-0.02; 0.42]	0.02 [-0.08; 0.11]
College Tuition	0.21	< 0.01	[0.15; 1.00]	-0.02 [-0.15; 0.11]	0.01 [-0.02; 0.04]
Coll. Grad. Rate (Inc. Adjusted)	0.46	0.01	[0.34; 1.00]	0.15 [0.03; 0.28]	0.08 [0.01; 0.15]
Manufacturing Share	0.04	< 0.01	[0.10; 1.00]	-0.26 [-0.44; -0.08]	0.06 [-0.03; 0.16]
Chinese Import Growth	0.02	0.07	[0.01; 0.58]	-0.17 [-0.33; -0.02]	0.03 [0.01; 0.04]
Teenage LFP Rate	0.28	< 0.01	[0.20; 1.00]	0.63 [0.46; 0.80]	0.25 [0.14; 0.36]
Migration Inflow	0.06	0.11	[0.00; 1.00]	-0.26 [-0.40; -0.11]	-0.13 [-0.18; -0.08]
Migration Outlflow	0.05	0.02	[0.07; 1.00]	-0.16 [-0.30; -0.03]	-0.09 [-0.15; -0.03]
Frac. Foreign Born	0.44	0.02	[0.35; 1.00]	-0.03 [-0.15; 0.10]	-0.12 [-0.24; -0.00]

Some Questions:

- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?


Question 3 : Can you test for spatial 'unit roots'?

- d = 1: I(1) yields unit root in AR representation for process. Dickey-Fuller or related tests.
- d > 1: No analogue of AR representation ... whoops ... 'spatial unit root' doesn't make sense (in our context).
 - Alternative approach:
 - * Use (population) principal components using eigenvectors from Levy process covariance matrix.
 - * Under I(1) model the variance of the PCs decreases sharply. Look for this pattern in data.
 - · d = 1: variance of j^{th} -PC from detrended random walk has $var(PC_j) \propto 1/j^2$.

Question 3 continued : Details:

- Let $\widetilde{\Sigma}_L$ denote $n \times n$ covariance matrix for demeaned Levy-BM evaluated at spatial locations $\{s_l\}_{l=1}^n$.
- Let \mathbf{R} denote eigenvectors corresponding to large q eigenvalues.
- \mathbf{Y}_n is $n \times 1$ vector of raw data. $\mathbf{Z}_n = \mathbf{R}'_n \mathbf{Y}_n$ are the q PCs (under Levy-BM).

Question 3 continued : Eigenvector weights for PCs, $s \sim Uniform$ over Continental US

Question 3 continued : Details:

- Let $\widetilde{\Sigma}_L$ denote $n \times n$ covariance matrix for demeaned Levy-BM evaluated at spatial locations $\{s_l\}_{l=1}^n$.
- Let \mathbf{R} denote eigenvectors corresponding to large q eigenvalues.
- \mathbf{Y}_n is $n \times 1$ vector or raw data. $\mathbf{Z}_n = \mathbf{R}'_n \mathbf{Y}_n$ are the q PCs (under Levy-BM).
- Null and Alternative:

 $\begin{array}{ll} (Y \sim I(1)) & H_0: \ \mathbf{Z}_n \sim N(0, \Omega_L) & (\text{Large-sample approximation from FCLT}) \\ (Y \sim \mathcal{G}_{exp}(c)) & H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c)) & (\text{Large-sample approximation from FCLT}) \end{array}$

- Details
 - Choice of q, c (see paper)
 - Testing problem is straightforward

Question 3 continued :

Variable	Spatial Persistence Statistics			Regression of the AMI onto Variable	
	<i>p</i> -Value for Test		95% CI for $\bar{\rho}$	$\hat{\beta}$ [95% CI]	
	<i>I</i> (1) Null	<i>I</i> (0) Null		Level [Cluster]	LBM-GLS [CSCPC]
Absolute Mobility Index	0.08	<0.01	[0.14; 1.00]		DDM-OD9 [CBCI C]
Frac. Black Residents	0.02	0.01	[0.02; 0.71]	-0.58 [-0.71; -0.45]	-0.42 [-0.50; -0.34]
Racial Segregation	0.07	0.02	[0.05; 1.00]	-0.36 [-0.45; -0.27]	-0.24 [-0.28; -0.19]
Segregation of Poverty	0.13	0.04	[0.05; 1.00]	-0.41 [-0.54; -0.28]	-0.21 [-0.25; -0.16]
Frac. < 15 Mins to Work	0.69	< 0.01	[0.46; 1.00]	0.61 [0.36; 0.85]	0.37 [0.26; 0.48]
Mean Household Income	0.02	0.18	[0.01; 0.61]	0.05 [-0.09; 0.19]	-0.02 [-0.08; 0.04]
Gini	0.56	< 0.01	[0.40; 1.00]	-0.58 [-0.76; -0.40]	-0.21 [-0.29; -0.14]
Top 1 Perc. Inc. Share	0.60	0.03	[0.43; 1.00]	-0.19 [-0.33; -0.05]	-0.06 [-0.11; -0.01]
Student-Teacher Ratio	0.03	0.16	[0.04; 0.87]	-0.33 [-0.52; -0.13]	-0.18 [-0.26; -0.09]
Test Scores (Inc. adjusted)	0.40	0.07	[0.27; 1.00]	0.59 [0.42; 0.76]	0.42 [0.34; 0.51]
High School Dropout	0.63	0.02	[0.40; 1.00]	-0.57 [-0.75; -0.40]	-0.31 [-0.42; -0.20]
Social Capital Index	0.73	< 0.01	[0.38; 1.00]	0.64 [0.46; 0.82]	0.28 [0.12; 0.44]
Frac. Religious	0.11	0.03	[0.15; 1.00]	0.52 [0.35; 0.69]	0.32 [0.19; 0.45]
Violent Crime Rate	0.52	0.04	[0.38; 1.00]	-0.38 [-0.67; -0.09]	-0.14 [-0.23; -0.06]
Frac. Single Mothers	0.03	< 0.01	[0.05; 0.88]	-0.76 [-0.91; -0.62]	-0.60 [-0.69; -0.51]
Divorce Rate	< 0.01	0.21	[0.02; 0.53]	-0.49 [-0.68; -0.29]	-0.38 [-0.49; -0.27]
Frac. Married	0.09	0.07	[0.12; 1.00]	0.57 [0.45; 0.69]	0.36 [0.29; 0.43]
Local Tax Rate	0.01	0.25	[0.01; 0.59]	0.32 [0.19; 0.46]	0.07 [0.01; 0.14]
Colleges per Capita	0.57	0.10	[0.00; 1.00]	0.20 [-0.02; 0.42]	0.02 [-0.08; 0.11]
College Tuition	0.21	< 0.01	[0.15; 1.00]	-0.02 [-0.15; 0.11]	0.01 [-0.02; 0.04]
Coll. Grad. Rate (Inc. Adjusted)	0.46	0.01	[0.34; 1.00]	0.15 [0.03; 0.28]	0.08 [0.01; 0.15]
Manufacturing Share	0.04	< 0.01	[0.10; 1.00]	-0.26 [-0.44; -0.08]	0.06 [-0.03; 0.16]
Chinese Import Growth	0.02	0.07	[0.01; 0.58]	-0.17 [-0.33; -0.02]	0.03 [0.01; 0.04]
Teenage LFP Rate	0.28	< 0.01	[0.20; 1.00]	0.63 [0.46; 0.80]	0.25 [0.14; 0.36]
Migration Inflow	0.06	0.11	[0.00; 1.00]	-0.26 [-0.40; -0.11]	-0.13 [-0.18; -0.08]
Migration Outlflow	0.05	0.02	[0.07; 1.00]	-0.16 [-0.30; -0.03]	-0.09 [-0.15; -0.03]
Frac. Foreign Born	0.44	0.02	[0.35; 1.00]	-0.03 [-0.15; 0.10]	-0.12 [-0.24; -0.00]

Question 3 continued : Testing for I(0) null and forming confidence interval for c when $Y \sim G_{exp}(c)$

• I(1) Null and Alternative:

 $(Y \sim I(1)) \qquad H_0: \ \mathbf{Z}_n \sim N(0, \Omega_L)$ $(Y \sim \mathcal{G}_{exp}(c)) \qquad H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c))$

• *I*(0) Null and Alternative:

 $(Y \sim I(0))$ $H_0: \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}))$

 $(Y \sim I(0) + I(1))$ $H_a: \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}) + g_a^2 \Omega_L)$ (Large-sample approximation from FCLT)

Question 3 continued :

Variable	Spatial Persistence Statistics			Regression of the AMI onto Variable	
	<i>p</i> -Value for Test		95% CI for $\bar{\rho}$	$\hat{\beta}$ [95% CI]	
	K(1) N11	KO N-11		L	
A la la D. C - la 11/4-2 Ta -la	<i>I</i> (1) Null	I(0) Null	[A 1 4, 1 AA]	Level [Cluster]	LBM-GLS [CSCPC]
Absolute Mobility Index	0.08	<0.01	[0.14; 1.00]		0.405.0.50.0.0.41
Frac. Black Residents	0.02	0.01	[0.02; 0.71]	-0.58 [-0.71; -0.45]	-0.42 [-0.50; -0.34]
Racial Segregation	0.07	0.02	[0.05; 1.00]	-0.36 [-0.45; -0.27]	-0.24 [-0.28; -0.19]
Segregation of Poverty	0.13	0.04	[0.05; 1.00]	-0.41 [-0.54; -0.28]	-0.21 [-0.25; -0.16]
Frac. < 15 Mins to Work	0.69	<0.01	[0.46; 1.00]	0.61 [0.36; 0.85]	0.37 [0.26; 0.48]
Mean Household Income	0.02	0.18	[0.01; 0.61]	0.05 [-0.09; 0.19]	-0.02 [-0.08; 0.04]
Gini	0.56	<0.01	[0.40; 1.00]	-0.58 [-0.76; -0.40]	-0.21 [-0.29; -0.14]
Top 1 Perc. Inc. Share	0.60	0.03	[0.43; 1.00]	-0.19 [-0.33; -0.05]	-0.06 [-0.11; -0.01]
Student-Teacher Ratio	0.03	0.16	[0.04; 0.87]	-0.33 [-0.52; -0.13]	-0.18 [-0.26; -0.09]
Test Scores (Inc. adjusted)	0.40	0.07	[0.27; 1.00]	0.59 [0.42; 0.76]	0.42 [0.34; 0.51]
High School Dropout	0.63	0.02	[0.40; 1.00]	-0.57 [-0.75; -0.40]	-0.31 [-0.42; -0.20]
Social Capital Index	0.73	<0.01	[0.38; 1.00]	0.64 [0.46; 0.82]	0.28 [0.12; 0.44]
Frac. Religious	0.11	0.03	[0.15; 1.00]	0.52 [0.35; 0.69]	0.32 [0.19; 0.45]
Violent Crime Rate	0.52	0.04	[0.38; 1.00]	-0.38 [-0.67; -0.09]	-0.14 [-0.23; -0.06]
Frac. Single Mothers	0.03	<0.01	[0.05; 0.88]	-0.76 [-0.91; -0.62]	-0.60 [-0.69; -0.51]
Divorce Rate	< 0.01	0.21	[0.02; 0.53]	-0.49 [-0.68; -0.29]	-0.38 [-0.49; -0.27]
Frac. Married	0.09	0.07	[0.12; 1.00]	0.57 [0.45; 0.69]	0.36 [0.29; 0.43]
Local Tax Rate	0.01	0.25	[0.01; 0.59]	0.32 [0.19; 0.46]	0.07 [0.01; 0.14]
Colleges per Capita	0.57	0.10	[0.00; 1.00]	0.20 [-0.02; 0.42]	0.02 [-0.08; 0.11]
College Tuition	0.21	<0.01	[0.15; 1.00]	-0.02 [-0.15; 0.11]	0.01 [-0.02; 0.04]
Coll. Grad. Rate (Inc. Adjusted)	0.46	0.01	[0.34; 1.00]	0.15 [0.03; 0.28]	0.08 [0.01; 0.15]
Manufacturing Share	0.04	< 0.01	[0.10; 1.00]	-0.26 [-0.44; -0.08]	0.06 [-0.03; 0.16]
Chinese Import Growth	0.02	0.07	[0.01; 0.58]	-0.17 [-0.33; -0.02]	0.03 [0.01; 0.04]
Teenage LFP Rate	0.28	< 0.01	[0.20; 1.00]	0.63 [0.46; 0.80]	0.25 [0.14; 0.36]
Migration Inflow	0.06	0.11	[0.00; 1.00]	-0.26 [-0.40; -0.11]	-0.13 [-0.18; -0.08]
Migration Outlflow	0.05	0.02	[0.07; 1.00]	-0.16 [-0.30; -0.03]	-0.09 [-0.15; -0.03]
Frac. Foreign Born	0.44	0.02	[0.35; 1.00]	-0.03 [-0.15; 0.10]	-0.12 [-0.24; -0.00]

• I(1) Null and Alternative:

$$(Y \sim I(1)) \qquad H_0: \ \mathbf{Z}_n \sim N(0, \Omega_L)$$
$$(Y \sim \mathcal{G}_{exp}(c)) \qquad H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c))$$

• I(0) Null and Alternative:

$$(Y \sim I(0)) \qquad H_0: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}))$$
$$(Y \sim I(0) + I(1)) \qquad H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}) + g_a^2 \Omega_L) \qquad \text{(Large-sample approximation from FCLT)}$$

- Note
 - Can use I(0) test to form confidence set for spatial 'cointegrating coefficients': $Y_l \beta X_l \sim I(0).$

• I(1) Null and Alternative:

$$(Y \sim I(1)) \qquad H_0: \ \mathbf{Z}_n \sim N(0, \Omega_L)$$
$$(Y \sim \mathcal{G}_{exp}(c)) \qquad H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c))$$

• I(0) Null and Alternative:

 $(Y \sim I(0)) \qquad H_0: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}))$ $(Y \sim I(0) + I(1)) \qquad H_a: \ \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_{large}) + g_a^2 \Omega_L) \qquad \text{(Large-sample approximation from FCLT)}$

• Note

– Can use I(0) test to form confidence set for spatial 'cointegrating coefficients': $Y_l - \beta X_l \sim I(0)$.

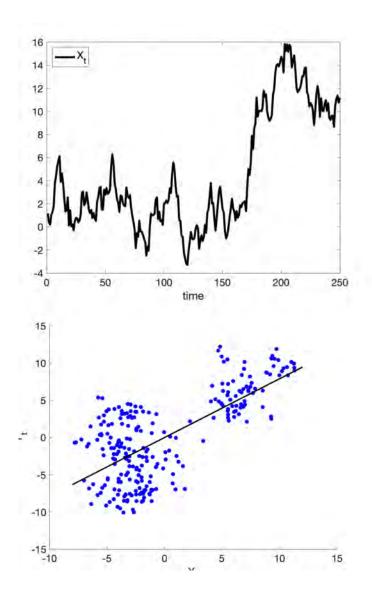
• I(c) Null and Alternative for forming confidence interval for c

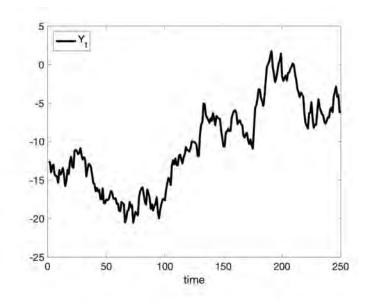
$$(Y \sim \mathcal{G}_{exp}(c_0))$$
 $H_0: \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c_0))$

 $(Y \sim \text{mixture of } \mathcal{G}_{exp}(c) \text{ processes}) \qquad H_a: \mathbf{Z}_n \sim N(0, \Omega_{\mathcal{G}}(c)) \text{ with } c \sim f$

Question 3 continued :

Variable	Spatial Persistence Statistics			Regression of the AMI onto Variable	
	<i>p</i> -Value for Test		95% CI for $\ \bar{ ho}$	$\hat{\beta}$ [95% CI]	
	I (1) NL-11				
	<i>I</i> (1) Null	<i>I</i> (0) Null	100 1 1 001	Level [Cluster]	LBM-GLS [CSCPC]
Absolute Mobility Index	0.08	< 0.01	[0.14; 1.00]		
Frac. Black Residents	0.02	0.01	[0.02; 0.71]	-0.58 [-0.71; -0.45]	-0.42 [-0.50; -0.34]
Racial Segregation	0.07	0.02	[0.05; 1.00]	-0.36 [-0.45; -0.27]	-0.24 [-0.28; -0.19]
Segregation of Poverty	0.13	0.04	[0.05; 1.00]	-0.41 [-0.54; -0.28]	-0.21 [-0.25; -0.16]
Frac. < 15 Mins to Work	0.69	< 0.01	[0.46; 1.00]	0.61 [0.36; 0.85]	0.37 [0.26; 0.48]
Mean Household Income	0.02	0.18	[0.01; 0.61]	0.05 [-0.09; 0.19]	-0.02 [-0.08; 0.04]
Gini	0.56	< 0.01	[0.40; 1.00]	-0.58 [-0.76; -0.40]	-0.21 [-0.29; -0.14]
Top 1 Perc. Inc. Share	0.60	0.03	[0.43; 1.00]	-0.19 [-0.33; -0.05]	-0.06 [-0.11; -0.01]
Student-Teacher Ratio	0.03	0.16	[0.04; 0.87]	-0.33 [-0.52; -0.13]	-0.18 [-0.26; -0.09]
Test Scores (Inc. adjusted)	0.40	0.07	[0.27; 1.00]	0.59 [0.42; 0.76]	0.42 [0.34; 0.51]
High School Dropout	0.63	0.02	[0.40; 1.00]	-0.57 [-0.75; -0.40]	-0.31 [-0.42; -0.20]
Social Capital Index	0.73	< 0.01	[0.38; 1.00]	0.64 [0.46; 0.82]	0.28 [0.12; 0.44]
Frac. Religious	0.11	0.03	[0.15; 1.00]	0.52 [0.35; 0.69]	0.32 [0.19; 0.45]
Violent Crime Rate	0.52	0.04	[0.38; 1.00]	-0.38 [-0.67; -0.09]	-0.14 [-0.23; -0.06]
Frac. Single Mothers	0.03	< 0.01	[0.05; 0.88]	-0.76 [-0.91; -0.62]	-0.60 [-0.69; -0.51]
Divorce Rate	< 0.01	0.21	[0.02; 0.53]	-0.49 [-0.68; -0.29]	-0.38 [-0.49; -0.27]
Frac. Married	0.09	0.07	[0.12; 1.00]	0.57 [0.45; 0.69]	0.36 [0.29; 0.43]
Local Tax Rate	0.01	0.25	[0.01; 0.59]	0.32 [0.19; 0.46]	0.07 [0.01; 0.14]
Colleges per Capita	0.57	0.10	[0.00; 1.00]	0.20 [-0.02; 0.42]	0.02 [-0.08; 0.11]
College Tuition	0.21	< 0.01	[0.15; 1.00]	-0.02 [-0.15; 0.11]	0.01 [-0.02; 0.04]
Coll. Grad. Rate (Inc. Adjusted)	0.46	0.01	[0.34; 1.00]	0.15 [0.03; 0.28]	0.08 [0.01; 0.15]
Manufacturing Share	0.04	< 0.01	[0.10; 1.00]	-0.26 [-0.44; -0.08]	0.06 [-0.03; 0.16]
Chinese Import Growth	0.02	0.07	[0.01; 0.58]	-0.17 [-0.33; -0.02]	0.03 [0.01; 0.04]
Teenage LFP Rate	0.28	< 0.01	[0.20; 1.00]	0.63 [0.46; 0.80]	0.25 [0.14; 0.36]
Migration Inflow	0.06	0.11	[0.00; 1.00]	-0.26 [-0.40; -0.11]	-0.13 [-0.18; -0.08]
Migration Outlflow	0.05	0.02	[0.07; 1.00]	-0.16 [-0.30; -0.03]	-0.09 [-0.15; -0.03]
Frac. Foreign Born	0.44	0.02	[0.35; 1.00]	-0.03 [-0.15; 0.10]	-0.12 [-0.24; -0.00]

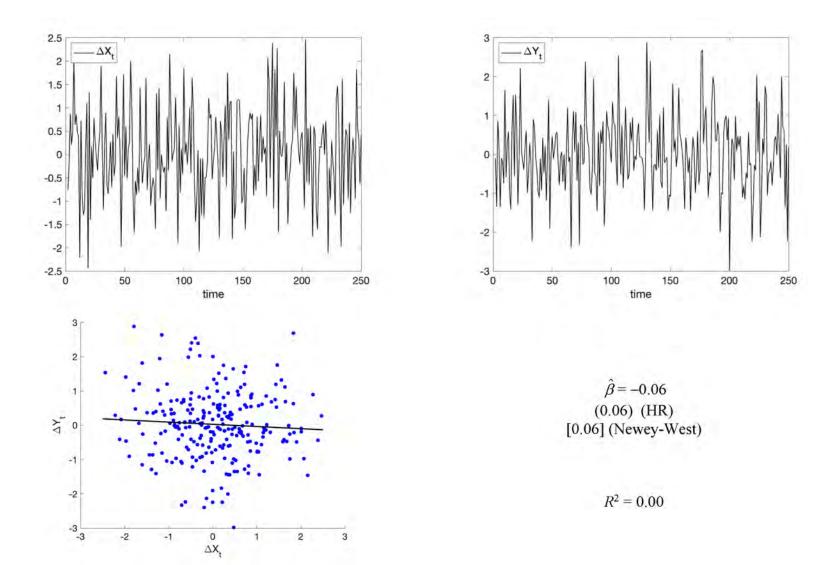

Some Questions:


- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?

Question 4 : Can you eliminate I(1) spatial persistence in regressions by 'differencing' the data? How?

$$y_l = \alpha + \mathbf{x}'_l \boldsymbol{\beta} + u_l$$

• d = 1, discrete time series, (y_t, x_t) in levels and $(\Delta y_t, \Delta x_t)$ as first differences



 $\hat{\beta} = 0.79$ (0.04) (HR) [0.09] (Newey-West)

 $R^2 = 0.48$

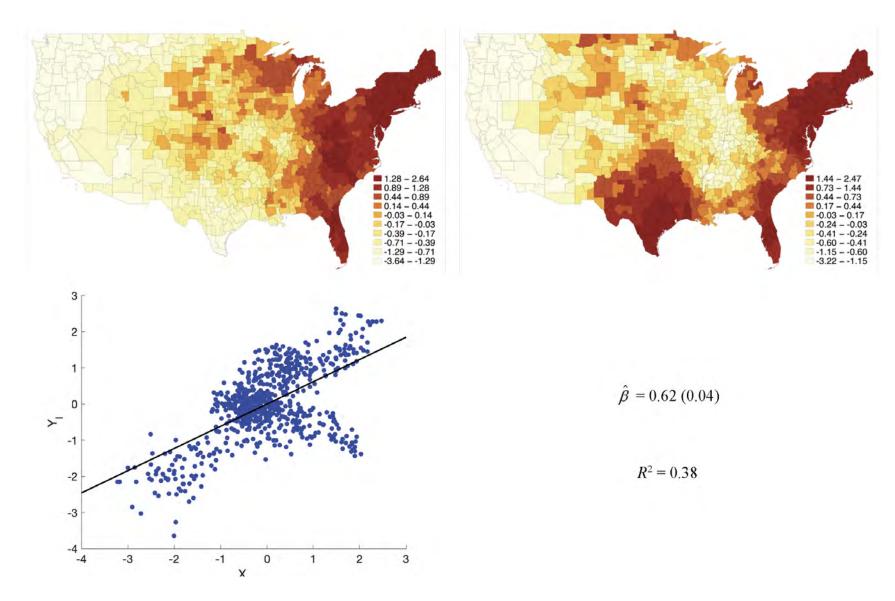
Question 4 continued :

Question 4 continued : d > 1 ... Inference methods

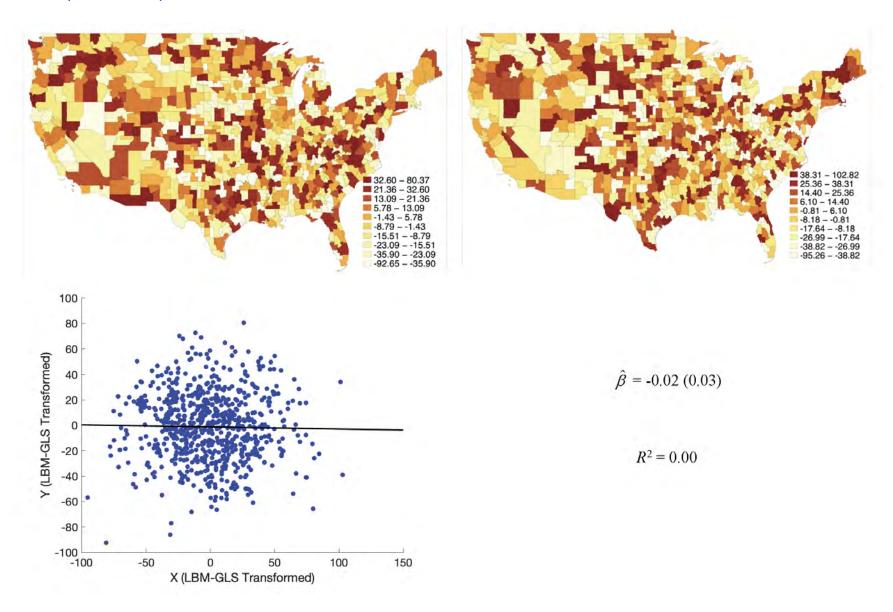
- Transformations:
- 1. Isotropic differences

$$\Delta_{Iso}y_l = y_l - \left[\sum_{\ell \neq l} w_{\ell,l}y_\ell\right]$$

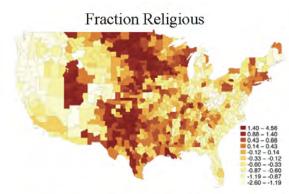
with $w_{\ell,l} = \kappa(|s_{\ell} - s_{l}|) / [\sum_{\ell \neq l} \kappa(|s_{\ell} - s_{l}|)].$


Question 4 continued :

2. Levy-BM GLS:


$$\hat{\beta} = (\widetilde{X}' \widetilde{\Sigma}_L^{-1} \widetilde{X})^{-1} (\widetilde{X}' \widetilde{\Sigma}_L^{-1} \widetilde{Y})$$

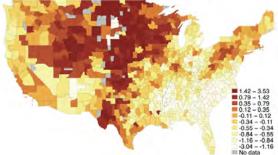
where $\tilde{}$ denotes demeaned version.

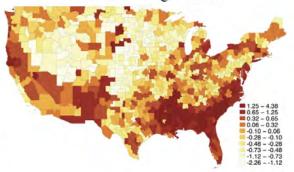

Question 4 continued : 2 spatial random walks (again)... Levels

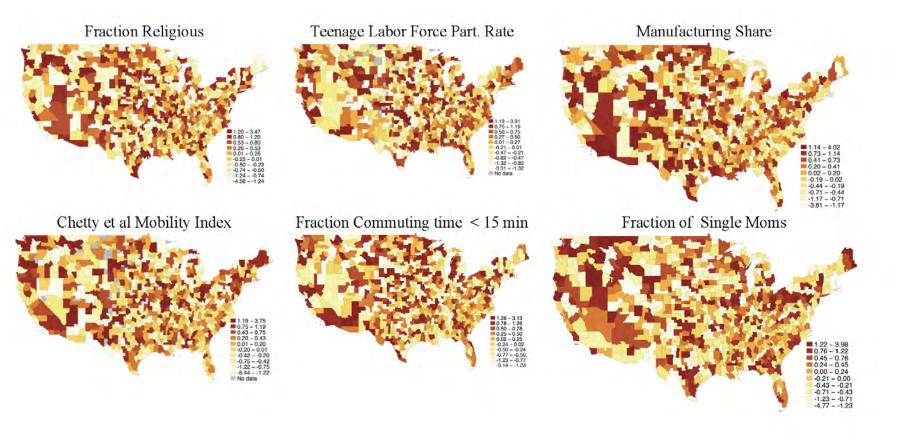
Question 4 continued : 2 spatial random walks (again)... Levy-BM GLS transformed

Question 4 continued : 6 variables (again)... Levels

Chetty et al Mobility Index


Teenage Labor Force Part. Rate


Fraction Commuting time <15 min


Fraction of Single Moms

Question 4 continued : 6 variables ... Levy-BM GLS transformed

Question 4 continued :

- 3. Weighted least squares using the largest principal components computed using the Levy-BM eigenvectors.
- 4. Spatial low-frequency regression.
- 5. Least squares after deleting the largest principal components computed using the Levy-BM eigenvectors.
- 6. Spatial high-pass regression.
- 7. Add 'local-fixed effects' to regression. (This is local demeaning)
- 8. Run regressions over many non-overlapping regions and average. (IM)

In all cases use HAC/HAR methods to account for I(0) spatial correlation.

Question 4 continued : d > 1 ... **Experiments**

- Spatial Design
 - Choose locations at random in one of 48 US States
- DGPs
 - Variety of I(1) and I(0) DGPs.

Question 4 continued : Selected Results

	DGP				
Method	<i>I</i> (1) _{c003}	J _{c0.50}			
OLS (C-SCPC)	0.35	0.20			
Isotropic difference (C-SCPC)	0.07	0.04			
Cluster fxed-effects (cluster)	0.35	0.07			
Cluster fxed-effects (C-SCPC)	0.12	0.05			
LBM-GLS	0.39	0.05			
LBM-GLS (C-SCPC)	0.07	0.03			
Low-pass Eigenvector	0.05	0.05			
High-pass Eigenvector (C-SCPC)	0.13	0.05			
Ibragimov-Müller	0.15	0.07			

Dejection Fragman of (Madian and matial designs)

Average Length (median over spatial designs) of (nominal) 95% confidence intervals

	DGP				
Method	$I(1)_{c_{0.03}}$ $J_{c_{0.50}}$				
Isotropic difference (C-SCPC)	0.73	0.52			
LBM-GLS (C-SCPC)	<mark>0.54</mark>	0.26			
Low-pass Eigenvector	1.51	0.57			

Question 4 continued :

Variable	Spatial Persistence Statistics			Regression of the AMI onto Variable		
	<i>p</i> -Value for Test		95% CI for $\ ar{ ho}$	$\hat{\beta}$ [95% CI]		
	<i>I</i> (1) Null	<i>I</i> (0) Null		Level [Cluster]	LBM-GLS [CSCPC]	
Absolute Mobility Index	0.08	< 0.01	[0.14; 1.00]			
Frac. Black Residents	0.02	0.01	[0.02; 0.71]	-0.58 [-0.71; -0.45]	-0.42 [-0.50; -0.34]	
Racial Segregation	0.07	0.02	[0.05; 1.00]	-0.36 [-0.45; -0.27]	-0.24 [-0.28; -0.19]	
Segregation of Poverty	0.13	0.04	[0.05; 1.00]	-0.41 [-0.54; -0.28]	-0.21 [-0.25; -0.16]	
Frac. < 15 Mins to Work	0.69	< 0.01	[0.46; 1.00]	0.61 [0.36; 0.85]	0.37 [0.26; 0.48]	
Mean Household Income	0.02	0.18	[0.01; 0.61]	0.05 [-0.09; 0.19]	-0.02 [-0.08; 0.04]	
Gini	0.56	< 0.01	[0.40; 1.00]	-0.58 [-0.76; -0.40]	-0.21 [-0.29; -0.14]	
Top 1 Perc. Inc. Share	0.60	0.03	[0.43; 1.00]	-0.19 [-0.33; -0.05]	-0.06 [-0.11; -0.01]	
Student-Teacher Ratio	0.03	0.16	[0.04; 0.87]	-0.33 [-0.52; -0.13]	-0.18 [-0.26; -0.09]	
Test Scores (Inc. adjusted)	0.40	0.07	[0.27; 1.00]	0.59 [0.42; 0.76]	0.42 [0.34; 0.51]	
High School Dropout	0.63	0.02	[0.40; 1.00]	-0.57 [-0.75; -0.40]	-0.31 [-0.42; -0.20]	
Social Capital Index	0.73	< 0.01	[0.38; 1.00]	0.64 [0.46; 0.82]	0.28 [0.12; 0.44]	
Frac. Religious	0.11	0.03	[0.15; 1.00]	0.52 [0.35; 0.69]	0.32 [0.19; 0.45]	
Violent Crime Rate	0.52	0.04	[0.38; 1.00]	-0.38 [-0.67; -0.09]	-0.14 [-0.23; -0.06]	
Frac. Single Mothers	0.03	< 0.01	[0.05; 0.88]	-0.76 [-0.91; -0.62]	-0.60 [-0.69; -0.51]	
Divorce Rate	< 0.01	0.21	[0.02; 0.53]	-0.49 [-0.68; -0.29]	-0.38 [-0.49; -0.27]	
Frac. Married	0.09	0.07	[0.12; 1.00]	0.57 [0.45; 0.69]	0.36 [0.29; 0.43]	
Local Tax Rate	0.01	0.25	[0.01; 0.59]	0.32 [0.19; 0.46]	0.07 [0.01; 0.14]	
Colleges per Capita	0.57	0.10	[0.00; 1.00]	0.20 [-0.02; 0.42]	0.02 [-0.08; 0.11]	
College Tuition	0.21	< 0.01	[0.15; 1.00]	-0.02 [-0.15; 0.11]	0.01 [-0.02; 0.04]	
Coll. Grad. Rate (Inc. Adjusted)	0.46	0.01	[0.34; 1.00]	0.15 [0.03; 0.28]	0.08 [0.01; 0.15]	
Manufacturing Share	0.04	< 0.01	[0.10; 1.00]	-0.26 [-0.44; -0.08]	0.06 [-0.03; 0.16]	
Chinese Import Growth	0.02	0.07	[0.01; 0.58]	-0.17 [-0.33; -0.02]	0.03 [0.01; 0.04]	
Teenage LFP Rate	0.28	< 0.01	[0.20; 1.00]	0.63 [0.46; 0.80]	0.25 [0.14; 0.36]	
Migration Inflow	0.06	0.11	[0.00; 1.00]	-0.26 [-0.40; -0.11]	-0.13 [-0.18; -0.08]	
Migration Outlflow	0.05	0.02	[0.07; 1.00]	-0.16 [-0.30; -0.03]	-0.09 [-0.15; -0.03]	
Frac. Foreign Born	0.44	0.02	[0.35; 1.00]	-0.03 [-0.15; 0.10]	-0.12 [-0.24; -0.00]	

Some Questions:

- 1. What is a spatial random walk?
 - (a) What is a spatial I(1) process?
- 2. Do spatial I(1) processes lead to spurious regressions?
- 3. Can you test for spatial 'unit roots' (i.e., I(1) processes)? How?
- 4. Can you eliminate I(1) spatial persistence by 'differencing' the data? How?
- 5. Is there a large-sample theory that helps answer these questions?