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Abstract

Investors buy non-sovereign stores of value such as gold and bitcoin despite the

absence of a yield. This paper presents an equilibrium model for studying investor

adoption and the pricing of non-sovereign stores of value. The model is used for the

quantitative analysis of historical gold prices and real interest rates. Since 1975, the

real price of gold has been negatively related to real rates on Treasuries, but only when

real rates have been low. The model is consistent with this nonlinear relation and can

match quantitative properties relating real interest rates and gold prices. The model

can also replicate some key properties of CME Comex gold futures prices.
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1 Introduction

Gold and bitcoin are assets that are not liabilities of anybody and are not backed by a

government. A key question is how these assets should be valued. Gold has some utility

as jewelry or as a conductor of electricity. Bitcoin is e¢ cient for transferring value outside

traditional �nancial systems. The present discounted values of these service �ows represent

the values of these assets to their users.

These asset are also held by investors who do not capture the utility of somebody enjoying

jewelry or making payments outside traditional �nancial systems. From an investor�s per-

spective neither gold nor bitcoin has a yield and the return is just the change in the price. To

justify an investment, such a store of value, SOV, needs to o¤er a high enough expected price

change relative to the returns on traditional assets or it needs attractive hedging properties.

During the 2000s, the emergence of gold ETFs lowered the costs for retail investors

to trade and hold gold. It has been suggested that this additional investor adoption has

contributed to a run-up in the price of gold. The recent development of enterprise-grade

custody o¤erings has preceded the adoption of bitcoin by traditional investors. For instance,

Massachusetts Mutual Life Insurance Co. recently bought $100 million of bitcoin for its

general investment account (WSJ, 2020). It is widely thought that this investor adoption

has been one of the main drivers of the increase in the price of bitcoin during 2020 Q4 and

2021 Q1.

This paper presents an equilibrium model to jointly study the pricing of SOV assets and

investor adoption. The model is based on the Lucas (1978) asset pricing framework. Relative

to the more common representative agent structure, my model features two types of agents.

There are users who derive some utility or productive use from the SOV commodity. From

their perspective, the asset has a fundamental value: the present discounted value of the

marginal utilities or marginal products. There are also investors who only value the SOV for

the chance to resell it. The model determines whether investors hold any of the SOV and

its price, which has to be consistent with both perspectives.
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The model is used to investigate the connection between real Treasury rates and the

price of gold since 1975.1 Empirically, I con�rm the negative relation between the real price

of gold and real rates but show that this is driven by periods with low rates. When rates

were high, the relation has been weak. This nonlinear relation between the price of gold and

real interest rates is a natural property of my model where investors only enter the SOV

market when real rates are low enough. In the model, the expected holding period of the

SOV determines the sensitivity of its price to interest rates and can be seen as an alternative

form of bond duration. Quantitatively, when the model is calibrated to produce real rate

movements consistent with the data, the sensitivity of the price of gold to rate changes is in

line with the empirical evidence. A more standard representative agent model can produce

gold price movements induced by interest rates that are of similar magnitudes as observed in

the data. However, the representative agent setting cannot generate the nonlinear response to

interest rates. I also consider CME Comex gold futures prices and show that model-implied

futures prices can replicate key properties of the data.

In the quantitative asset pricing literature, the paper is related to Barro and Misra (2015)

who study long-term historical gold returns from the perspective of a Lucas-tree economy.

Their favorite interpretation of the data is one where the small return to gold is mainly

compensation for the utility �ow explicit in the model. Huang and Kilic (2019) document

that the ratio of gold to platinum prices forecasts aggregate stock returns and show that

a quantitative model with recursive preferences can account for that property. Di¤erent

from these two representative agent frameworks, my model features investors and users and

explicitly models the interaction between the two. Also, I study the role of interest rate

movements. The model of Barro and Misra (2015) features constant risk-free interest rates;

Huang and Kilic (2019) do not consider the interaction between interest rates and gold prices.

Some recent empirical studies on gold prices have emphasized the link between real gold

prices and real Treasury rates, in particular Johnson (2014) and Erb, Harvey and Viskanta

11975 marks the end of restrictions on US private gold investments�in place since 1933. The o¢ cial US
gold peg was ended in 1971.
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(2020). I show that for a more extended sample period the link between real gold prices and

real rates is weaker unconditionally and that it is driven by periods with low real rates.

There is a well-developed literature on heterogenous-agent asset pricing models where

equilibrium quantities and prices are jointly solved for. This literature has focused on various

types of heterogeneity in preferences and market access. See for instance, Basak and Cuoco

(1998), Barro et al. (2020), Chabakauri (2015), Chan and Kogan (2002), Chien, Cole and

Lustig (2012), Gârleanu and Panageas (2015), and Ehling et al. 2018. A unique property of

my analysis is the focus on a setting where asset prices are a¤ected by the occasional entry

and exit of one type of agent.

A fast growing literature is developing models for pricing cryptocurrencies. A major focus

has been on valuing the transaction services provided by cryptocurrencies, for instance, Biais

et al. (2018), Cong, Li, Wang (2021), Jermann (2018), and Schilling and Uhlig (2019). My

model focuses on the interaction between users who value transaction services and investors

aiming to store their wealth.

The next section analyzes empirical properties of gold prices and real interest rates.

Section 3 presents the model and 4 its growth trend. Calibration and quantitative model

properties are in section 5 and 6, respectively. Section 7 considers gold futures. The �nal

section concludes.

2 Gold prices and real treasury rates

This section presents empirical properties of the relation between gold prices and real interest

rates. I con�rm the negative relation documented in Johnson (2014) and Erb, Harvey and

Viskanta (2020) for an extended sample. However, the negative relation is not very strong

over the longer sample periods considered here, namely 1975-2020 and 1980-2020 for 1-year

and 10-year maturities, respectively. I document a new stylized fact: the negative relation

between the price of gold and real rates is produced in the periods when rates are low. When
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rates are high, the relation is very weak.

Average monthly prices of gold for 1975.1 to 2020.12 are computed from the daily gold

�xing in the London Bullion Market. The price of gold is de�ated by the CPI-U. 1-year

and 10-year constant maturity Treasury rates are combined with in�ation forecasts from the

Survey of Professional Forecaster extended with additional data for the 10-year horizon from

Blue Chip Economic Indicators for 1979.10 to 1991.9.2 Starting with 2003.1, 10-year TIPS

rates are used for the 10-year real rates.
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Figure 1: Gold and real government yields.

Figure 1 displays the time-series of the real price of gold (scaled to 10 at 1975.1) alongside

the 1-year and 10-year real rates, including TIPS, each for their available sample periods.

Yields are in general lower after 2000 and gold prices higher. But it can be visually detected

that the negative relation is also present at higher frequencies.

2Data is from the Federal Reserve Bank of St. Louis and the Federal Reserve Bank of Philadelphia. The
sample length is limited by the availability of in�ation forecasts.
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Figure 2. Real Gold Prices against Real Yields. 1975.1-2020.12

and 1979.10-2020.12 for 1-year and 10-year yields, respectively.
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For instance, before and after 1985 there are periods of approximately three years each

where gold and yields clearly move in opposite directions. Most recently, starting around

2019, gold and yields have sharply moved in opposite directions.

Figure 2 and 3 show the scatter plots of real gold prices (scaled to 1 at 1975.1) against

1-year and 10-year rates, respectively. For the 10-year rates, TIPS are used after 2003. From

this perspective, it is clear that the negative relation between the price of gold and yields

is situated in the low yield region. Linear regression lines as well as piece-wise linear and

6th-degree polynomials models are included in the plots.

The piece-wise linear regression is

pt = b0 + b1yt + b2Iyt�y� (yt � y�) ;

with the break points chosen to maximize the adjusted R2s for each speci�cation. These are

at 0% and 2.2% for the 1-year and 10-year rates, respectively.

Table 1 shows more detailed regression results for the linear and piece-wise linear speci-

�cations with the date in natural logarithms. As suggested by the scatterplots, the R2s are

signi�cantly higher for the piece-wise linear speci�cations. Adjusted R2s for the linear re-

gressions are 0.08 and 0.12 for the one-year and ten-year rates, respectively; for the piece-wise

linear speci�cations, adjusted R2s are 0.42 and 0.55. For the piece-wise linear speci�cation,

with a slope coe¢ cient of �45 for the 10-year rate in the low rate regime, a decline in the

real yield by 1 percent corresponds to an increase in the price of gold by 45 percents (both

in log percent). With a reported regression coe¢ cient of +56 for the high rate region, the

total e¤ect of a 1 percent change of the 10-year yield is +11 = �45 + 56 percentage points.

To isolate high-frequency behavior, I run regressions of percentage changes in the gold

price against changes in yields. The regressions are run separately for low-yield periods and

high-yield periods. The cuto¤s are unchanged at 0% for 1-year rates and 2:2% for 10-year

rates. These cuto¤s assign about 40% of the dates to the low rate regimes. Table 2 shows
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Treasury maturity 1-year 10-year
yt �5:3�� �50��� �8:0��� �45���
Iyt�y� (yt � y�) +56��� +56���

R2adj 0:08 0:42 0:12 0:55
nobs 552 552 495 495

Table 1: Linear and piece-wise linear regressions of the natural logarithms of real gold prices
on the natural logarithms of gross yields. The yield cuto¤s are 0 percent for 1-year rates and
2.2 percents for 10-year rates. Signi�cance levels are given as *** (p<.01), ** (p <.05), and
* (p<.1).

Treasury maturity 1-year 10-year
monthly annual monthly annual

�yt, yt < y� �3:0� �7:7��� �11:6��� �15:2���
�yt, yt � y� �0:8� �1:2 0:7 �4:8��
R2adj :02 :006 :16 :006 :27 0 :44 :13
nobs 192 359 190 351 208 286 207 277

Table 2: Regression of log-percentage changes in real gold prices on yield changes conditional
on low or high yield levels. Results for monthly and annual changes are reported. The yield
cuto¤s are 0 percent for 1-year rates and 2.2 percents for 10-year rates. Signi�cance levels
are given as *** (p<.01), ** (p <.05), and * (p<.1).

that, consistent with the levels, changes of gold prices are negatively related to yield changes

in low-rate periods; however the coe¢ cients are smaller (in absolute value terms). In the

high-rate periods, the relation is a lot weaker. Coe¢ cients are always smaller in absolute

value terms, at a 5% level only the 10-year rate for the annual horizon is statistically di¤erent

from 0, and the adjusted R2s are also considerably smaller. The overall picture that emerges

is that in periods of low real interest rates gold prices were negatively related to real rates;

when real interest rates were high, gold prices and real rates were at best weakly related.

3 Model

The model features two types of agents, users and investors, each valuing the SOV from

their own perspective. In equilibrium, these two perspectives need to be consistent with

each other. Possibly, investors chose not to hold any of the SOV in equilibrium. The model
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is in discrete time with an in�nite horizon. Exogenous uncertainty comes from investors�

discount factors which allows the model to match empirical interest rate dynamics.

3.1 Fundamental valuation

The stock of the SOV is assumed to provide some utility to its users. They have concave

period utility functions separable in consumption and the SOV

1X
j=0

Et�
j
�
u
�
CUt+j

�
+ zt+jv(a

U
t+j)
�
:

The stock of the SOV held by users aUt is chosen in t�1; CUt is consumption of the numeraire

good. The exogenous zt can capture changes in the usefulness of the SOV, such as wider

adoption of Bitcoin as a medium of exchange.

The �ow budget constraint is

CUt + pta
U
t+1 = pt

�
aUt + at+1 � at

�
+ Y Ut ;

where Y Ut is the endowment income, at is the aggregate supply (per capita of users). New

SOVs are endowments of the users. Users and miners are aggregated together. If the user

population grows faster than the supply, users share with their o¤springs.

Intertemporal optimization requires that

pt = Et�
u0
�
CUt+1

�
u0 (CUt )

"
zt+1v

0 �aUt+1�
u0
�
CUt+1

� + pt+1

#
;

and ruling out bubbles,

pt =
1X
j=1

Et�
j
u0
�
CUt+j

�
u0 (CUt )

zt+jv
0 �aUt+j�

u0
�
CUt+j

� =

1X
j=1

Et�
j
zt+jv

0 �aUt+j�
u0 (CUt )

: (1)

As usual in Lucas-tree models, the asset price �uctuates due to changing discount rates
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and changing cash �ows, here marginal utility of the SOV de�ated by marginal utility of

consumption. It is assumed that the marginal valuation of the SOV v0 (:) is a decreasing

function with in�nite marginal value at 0. This implies that, everything else equal, the price

goes up of if the users hold less of the SOV, which could be driven by investors holding a

larger share of the supply. From here we can see that the users�pricing equation always

holds and can be used to price the SOV if we know the processes of their holdings and

consumption. These are determined in equilibrium. In a representative-agent Lucas-tree

economy these quantities would be exogenous.

3.2 Investor valuation

Investors are assumed to hold a diversi�ed portfolio of traditional assets. In equilibrium,

they are getting the total payout Y It , which includes other incomes. They can hold �but

not short �the SOV, and they do not derive any utility from holding it.

Investors have the same utility function as users except for the absence of a utility for

gold and with a time-varying discount factor. The budget constraint (omitting the holdings

of other assets) is

CIt + pta
I
t+1 = pta

I
t + Y

I
t :

Intertemporal optimality requires

u0
�
CIt
�
pt = Et�tu

0 �CIt+1� pt+1 + �t;
where �t � 0 is the multiplier on the no-short sales constraint on the SOV. The discount

factor �t is subject to exogenous shocks modelled as a Markov chain, and this drives interest

rates and gold prices. Iterating forward gives

pt = Et

 
J�1Y
j=0

�t+j

!(
u0
�
CIt+J

�
u0 (CIt )

pt+J

)
+

1

u0 (CIt )

J�1X
j=0

Et

 
j�1Y
k=0

�t+k

!
�t+j (2)
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Equation 2 implies that if investors hold the SOV all the time, its price is either 0 or the

bubble component for J !1 (that is the �rst term on the right hand side of the equation).

In particular, if the holdings are never constrained by the short sales constraint, �t+j = 0,

then the price is the bubble component for J ! 1. If the bubble component is zero, the

price of the SOV is zero. In equilibrium, a zero price is ruled out by the assumption that the

marginal utility of the SOV to users is in�nite at 0. A �nite value of the bubble component is

inconsistent with investors�transversality condition for non-zero gold holdings. This implies

that the short-sales constraint is occasionally binding and that there are times when investors

are not holding the SOV. This also implies that the investors�Euler equation cannot be used

to determine the price of the SOV alone. Still, as investors�enter the market, they a¤ect the

price of the SOV.

Rewriting investors��rst-order condition for the SOV and de�ning the one-period real

risk-free rate or yield as Y (1)t = 1=Et�t
u0(CIt+1)
u0(CIt )

,

Y
(1)
t � Et

pt+1
pt

+ covt

 
u0
�
CIt+1

�
Etu0

�
CIt+1

� ; pt+1
pt

!
: (3)

The equation highlights that the �rst-order condition holds with equality �and investors are

holding the SOV �when the real rate is relatively low and/or if the covariance is positive,

requiring the price to increase when consumption declines. Therefore, the SOV is appreciated

by investors either in times of low real rates or as a consumption hedge. The equation also

highlights that, everything else equal, a higher expected price return for the SOV makes it

more likely that investors are holding it.

3.3 Equilibrium

Market clearing for the SOV requires

at+1 = a
U
t+1 + n

IaIt+1;
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where nI is the population ratio of investors to users, which is assumed to be constant.

Goods market clearing requires

CUt + n
ICIt = Y

U
t + n

IY It ;

which is already implied by Walras law.

An implicit assumption of the model is that asset markets other than for the SOV are

segmented across investors and users. Investors are assumed to have frictionless access to

the traditional assets, including government bonds. Some frictions are assumed to limit the

exposure of users�marginal consumption valuations from the traditional asset markets to

only the indirect impact that comes through the market of the SOV asset.

Among the assets investors have access to, I explicitly consider default-free real bonds.

For numerical tractability, the maturity is represented with geometric amortization. In-

vestors determine equilibrium prices of such bonds, p�t , through

p�t = Et�t
u0
�
CIt+1

�
u0 (CIt )

�
c+ �+ (1� �) p�t+1

�
;

with � the amortization rate, (1=�) is the bond�s (average) maturity, and c represents the

coupon rate. Iterating forward, the price of the bond can be written as a function of its

implied gross yield to maturity, Y (1=�)t , given through

p�t =
c+ �

Y
(1=�)
t � 1 + �

:

4 Deterministic growth and balanced growth

The model is designed to accommodate trend growth for gold prices. To maintain numerical

tractability, a restriction is required across possible drivers of growth to guarantee a balanced

growth path. This section characterizes trend properties and shows that the balance growth
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restriction is immaterial for my quantitative analysis.

I assume three exogenously growing variables, growing at potentially di¤erent rates:

the supply of the SOV (per capita), incomes of users and investors (per capita), and the

utility/productivity of the SOV. For quantitative analysis, stationarity for some key model

variables is a useful property. Bounded domains are also needed for computation. I start

by presenting a deterministic growth path. For this to be a balanced growth path, so that

the equilibrium is stationary for appropriately de�ned variables, we will need to impose a

restriction on the exogenous income growth rates. For detrended variables, the model then

has a steady state. But this steady-state is not a mid-point for a local approximation or

necessarily close to model realizations. It anchors the detrended variables so that there are

well-de�ned ranges over which to solve the model.

From the SOV market clearing

at+1 = a
U
t+1 + n

IaIt+1;

introduce a growing supply (per capita)

Xs
t+1a0 = a

U
t+1 + n

IaIt+1;

with Xs
t+1 = 


t+1
s and Xs

0 = 1. Incomes of the users and investors Y
U
t and Y It are assumed

to have a common deterministic trend Xt growing at a constant rate, 
, so that Xt = 

t.

Similarly, utility/productivity growth of the SOV is 
z.

4.1 Deterministic growth

I conjecture a type of equilibrium growth path where variables grow at constant rates, verify

it exists and solve for the equilibrium growth rate of the price of gold. This growth path is

not necessarily balanced in the sense that the economy could be rede�ned for appropriately

scaled variables that are stationary.
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Assume CRRA consumption utility, u (Ct) = 1
1��C

1��
t , with parameter � > 0; similarly,

CRRA is assumed for the SOV utility with parameter � > 0.

The conjectured equilibrium path has users hold 100% of the SOV. This implies that

their consumption is growing at the same rate as their income, and their SOV holdings are

growing at the exogenous supply growth rate. The price of the SOV and its growth rate can

be computed analytically. For this to be an equilibrium, the investors�implied real rate has

to be high enough so that they stay out of the SOV market.

Based on these assumptions, the price that is consistent with the users��rst-order con-

ditions satis�es

pt = �

��

"
zt
z

�

sa

U
t

���
(Y Ut 
)

�� + pt+1

#
:

A constant price growth rate requires a constant price/payout ratio, and this requires the

price to grow at the same rate as the payout, that is,

pt+1
pt

=

z


��
s


��
:

The price grows with the utility/productivity of the SOV de�ated by marginal utility of

consumption and declines with the per capita supply. Finiteness requires

�
z

��
s < 1:

For this to be an equilibrium with investors holding 0 of the SOV, the investors��rst-order

condition has to hold with inequality

1 > �
u0
�
CIt+1

�
u0 (CIt )

pt+1
pt

so that
1

�
��
>
pt+1
pt
:

14



For appropriately low enough discount factor �, equivalently high enough real rate R �

1=� (
)��, this condition is satis�ed.

4.2 Balanced growth

A balanced growth path is one where we can de�ne appropriately detrended variables that are

stationary. This is useful for representing a stochastic economy that has trend growth. For

quantitative analysis it is convenient to have some stationarity, and numerical computation

also typically requires stationary state variables. The deterministic growth path we just

computed does not necessarily satisfy this property. We will impose one restriction on the

three exogenous growth rates to make this into a balanced growth path.

The deterministic growth path derived in the previous subsection implies that the share

of income users get from the SOV is not necessarily constant in their total income. Appropri-

ately restricting the income growth rate guarantees that the income from the SOV remains

a constant share of the total income.

De�ne consumption detrended by the income growth, ĈUt , implicitly through

CUt = Xt
CUt
Xt

� XtĈ
U
t ;

and equivalently the detrended SOV position

pta
U
t+1 � fX

p
tX

s
t 
sg p̂tâIt+1:

The budget constraint can then be written as

XtĈ
U
t + fX

p
tX

s
t 
sg p̂tâUt+1 = fX

p
tX

s
t g p̂t

�
âUt + (
s � 1) a0

�
+XtŶ

U
t ;

WithXt = X
p
tX

s
t , the trending terms can be eliminated and this implies the balanced growth
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restriction


 = 
p
s =

z


1��
s


��
:

Given my focus on the market of the SOV, I want to be able to select 
p and 
s to match

data for gold. The balanced growth restriction implies that 
 is not a free parameter and its

value may not be consistent with an empirical target for income growth. However, 
 only

enters the relevant (detrended) equilibrium equations jointly with the level of the discount

factor �. The calibration sets the combination of these two parameters

�
�� � 1=R

through R which determines the level of interest rates in the model. Therefore, the value

for 
 is not relevant for detrended equilibrium conditions. Typical consumption-based asset

pricing studies eliminate in a similar way the direct e¤ect of the risk aversion parameter �

on the deterministic return and level of interest rates.

With the balanced growth restriction, the detrended budget constraint can be written as

ĈUt + 
sp̂tâ
U
t+1 = p̂t

�
âUt + (
s � 1) a0

�
+ Ŷ Ut ; (4)

which now depends only on stationary variables. Similarly, we can eliminate deterministic

trends from all equilibrium equations.

Market clearing for the SOV holdings which are growing at the supply rate

Xs
t+1a0 = X

s
t+1â

U
t+1 + n

IXs
t+1â

I
t+1;

becomes

a0 = â
U
t+1 + n

I âIt+1: (5)
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Goods market clearing with stationary variables becomes

ĈUt + n
IĈIt = Ŷ

U
t + n

I Ŷ It : (6)

Intertemporal optimization of the users requires

pt = �Et

�
CUt+1

���
(CUt )

��
�
zt+1v

0 �aUt+1�+ pt+1� :
Prices and payouts are growing at 
z(
s)

��


�� per period, and the ratio of the marginal utilities

by 
��. Eliminating trends, we have

p̂t =
�
�
z


��
s

	
Et

�
ĈUt+1

���
�
ĈUt

���
264 ẑt+1v0 �âUt+1��

ĈUt+1

��� + p̂t+1

375 : (7)

Note again that the growth adjusted discount factor can also be written as

�
z

��
s = �
��


z

��
s


��
=
1

R

p;

which shows that R and 
p are what matters, and the calibration will �x these two parame-

ters. Investors�pricing when aIt+1 > 0 becomes

p̂t =
�
�
z


��
s

	
Et

�
ĈIt+1

���
�
ĈIt

��� p̂t+1: (8)

The �ow budget constraint for investors becomes

ĈIt + 
sp̂tâ
I
t+1 = p̂tâ

I
t + Ŷ

I
t : (9)

To summarize, we have 6 equations for 5 stationary variables âIt+1; â
U
t+1; Ĉ

I
t ; Ĉ

U
t ; p̂t (one of
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the budget constraints is redundant by Walras law), together with the short-sales constraint

âIt+1 � 0:

Turning o¤ uncertainty, this detrended economy admits a steady state with âI = 0,

âU = a0, p̂ =
�
z0(aU0 )

��

(Y U0 )
��

�
�
z(
s)

��

1��
z(
s)��
, and consumption equals income for users and investors.

When driven by exogenous Markov shocks to �t, the detrended economy has one endogenous

state variable

âIt 2 [0; a0] :

Solving the model numerically involves �nding a detrended price process p
�
âIt ; �t

�
and a

policy function for investors�SOV holding (or equivalently consumption). Due to the oc-

casionally binding constraint and the nonlinear model behavior a global solution method

is used. The model solution is computed by iterating over the pricing function and the in-

vestors�policy rule with an algorithm that uses elements from Judd (1992) and Judd, Kubler

and Schmedders (2002).

5 Calibration

For the quantitative analysis, the model is driven by shocks to investors�discount factors

that are calibrated so that the model closely replicates averages, standard deviations and

�rst-order serial correlation coe¢ cients of 1-year and 10-year real Treasury yields. The trend

growth rate of the price of gold plays an important role and it is set in reference to historical

evidence. The rest of the parameters are less important for gold prices and their relation to

interest rates.

The discount factor � is set so that the deterministic one-period rate R � 
��

�
equals

1:015; this determines the level of the one-period interest rate in equilibrium, which ap-

proximately matches historical data at annual frequency covering 1980-2020. Investors�
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Symbol Parameter Value
� Discount factor R � 
�=� = 1:015
a� Investor discount shock persistence :95
�� Investor discount shock innovation std :0091

p Gold price growth 1; 1:005

s Gold supply growth 1
nI Investor population relative to users 50
Y U ; Y I User and investor income level 14:4
� Risk aversion 2
� Gold utility/productivity curvature 0:5

Table 3: Model Parameters. The gold price growth 
p = 
z

��
s =


��, with 
z the growth
rate of gold�s utility �ow and 
 the income growth rate.

discount factor shocks are multiplicative, Rt � R exp
�
~�t

�
, with an AR(1) shock process

for ~�t = ��~�t�1 + ��"
�
t that is approximated by a �nite-state Markov chain. As shown in

Table 4, 1-year and 10-year real rates in the model approximately replicate averages, stan-

dard deviations and �rst-order serial correlation coe¢ cients of the 1-year and 10-year real

Treasury yields. Di¤erences between model versions are minimal because interest rates are

mostly determined by the exogenous discount factor process. Given that the objective of

the analysis is to explain gold prices as a function of interest rate movements, this approach

allows me to start from realistic interest rate behavior.

As suggested by the investors��rst-order condition, equation 3, a key quantitative tension

comes from the comparison between the trend growth rate of the price of gold and the level

of interest rates. According to Barro and Misra (2015), the annual growth of the price of

gold in US in�ation adjusted terms for 1836 to 2011 was 1.1% per year with a standard

deviation of 13.1%, so that according to their calculations a one standard deviation band

would cover [0:1� 2:1%]. Their favorite case is at the lower end of this range, as they argue

that a signi�cant portion of the return to gold (which in their view is close to the risk-free

rate) comes from its utility yield. The real price of gold based on the data for 1975-2020

has a realized geometric annualized gross growth rate of 1:0162; but this is very sensitive to

small changes in beginning and end dates. For annual average levels, the average percentage

growth rate of the real price of gold is �0:2% . Based on these facts, I consider two baseline
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Data 
p = 1 
p = 1:005 RA
Y (1) Y (10) Y (1) Y (10) Y (1) Y (10) Y (1) Y (10)

Mean 1:41 2:72 1:57 1:47 1:57 1:47 1:58 1:47
Std 2:43 1:99 2:61 1:74 2:59 1:74 2:63 1:75
AR(1) :90 :95 :94 :93 :94 :94 :94 :94

Table 4: Real interest rates in the data and the model. Data are annual averages for 1980-
2020 based on U.S. Treasury yields as described in Section 2. RA stands for representative
agent economy. 
p is the equilibrium trend gross growth rate of the price of gold.

cases, one with a 0:5% price growth rate, 
p = 1:005, and a no-growth case, 
p = 1. In

the model, conditional on the other parameter values, the trend growth of the price of gold

cannot be set much above 0:5% because otherwise the investors�no-short sales constraint

would essentially never bind.

Barro and Misra (2015) document average per capita gold supply growth in the range

0:4 � 0:9% annually for 1875-2011. They argue for some small depreciation and loss, and

they take 0% as their baseline. More recent data is in line with their long sample period.

Based on that, I set 
s = 1 and use the utility/productivity growth rate 
z to produce the

target growth rate for the price of gold.

Based on World Gold Council data, the value of the global stock of gold is 11.6 trn dollars

at the end of 2020. With world GDP at about 85trn dollars, the GDP to gold ratio is 7.3. The

model�s steady state ratio of total income to the value of gold,
�
Y U + nIY I

�
=pa, matches

this. More speci�cally, with a = 1 as a normalization and z0 normalized so that the detrended

utility �ow value of gold is z0 (â0)
�� =

�
Y U
���

= 1, nI = 50 as an arbitrary choice (sensitivity

analysis shows results robust to this parameter), the income levels Y U = Y I are determined

by this ratio for the given steady price of gold, p = (�
z

��
s ) = (1� �
z
��s ) : Risk aversion is

set to a common value of 2, the gold utility/productivity curvature to 0:5. Neither of these

two parameters matters very much for the relation between gold prices and interest rates.
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Figure 3. Price of gold versus yields. The red line is a �tted polynomial of

order 6.

6 Quantitative results

Figure 3 shows that the simulated data from the model can replicate the nonlinear response

pattern of gold prices to real interest rates documented empirically and displayed in Figure

2. In addition to the scatter plot, a polynomial regression line is included to summarize

the data. The blue markers clearly illustrate that interest rate levels are almost exclusively

determined by the realizations of the discount factor shocks represented by a Markov chain

with 12 values. Gold prices are more dispersed with high interest rates as the endogenous

state variable �the investors�gold position �plays a relatively more important role.

Table 5 reproduces linear and piece-linear regression coe¢ cients from the data together

with the model-implied counterparts. Quantitatively, for the baseline calibration, the elastic-
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Maturity 1-year 10-year
Data yt �5:3�� �49:8��� �8:0��� �44:8���

Iyt�y� (yt � y�) +56:5��� +55:9���

Model yt �2:3 �9:2 �3:3 �19:5; �7:4

p = 1 Iyt�y� (yt � y�) +9:0 +18:8; +10:7

p = 1:005 yt �6:5 �14:7 �9:5 �29:6; �16:5

Iyt�y� (yt � y�) +10:8 +23:3; +18:3

RA Model yt �13:6 �13:0 �20:4 �23:2; �21:5

p = 1 Iyt�y� (yt � y�) �0:9 +3:3; +3:0

p = 1:005 yt �14:6 �13:5 �21:9 �24; �23

Iyt�y� (yt � y�) �1:4 +2:7; +2:6

Table 5: Regression of gold prices on real yields. Linear regressions and piece-wise linear
regressions of the logarithm of the price of gold on log gross yields. The cuto¤ levels for the
piecewise linear regression are at 0 percent for the one-year rate and 0 and 2.2 percents for
the ten-year rate. 
p is the equilibrium trend gross growth rate of the price of gold. RA
stands for representative agent economy.

ity of the price of gold in the low-rate region is about one-third of its empirical counterpart

for the 1-year rate and about one-third to two-thirds of its empirical counterpart for the

10-year rate depending on the cuto¤. Consistent with the data, the slope is very di¤erent in

the high-rate region. The overall response in the high-rate region is close to zero.

Table 5 also includes regression coe¢ cients of the corresponding representative agent

economy, labelled RA. In this model, there is only one type of agents who hold the entire

stock of gold and get utility from it, and whose discount factors are subject to shocks.

As shown in Table 4, interest behavior is essentially the same in the RA and two-agent

economies. However, the RA economy cannot produce the nonlinear relation between gold

prices and interest rates. As shown in Table 5 for the piece-wise linear regressions, for the

RA economy the slope changes very moderately in the high-rate region.

Table 6 considers the high frequency relations between gold prices and yields. The change

in the log price of gold is regressed on the log yield changes, with separate regressions for the

observations in low-yield and high-yield periods. Consistent with the empirical counterparts,

the model features gold price responses that are a lot stronger in periods of low rates. The

regression coe¢ cients in the model are strikingly close their empirical counterparts without
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Maturity 1-year 10-year
Data �yt, yt < y� �7:7��� �15:2���

�yt, yt � y� �1:2 �4:8��

Model �yt, yt < y� �8:3 �14; �8:9

p = 1 �yt, yt � y� �2:4 �3:5; �1:0

p = 1:005 �yt, yt < y� �12 �20; �17

�yt, yt � y� �7 �10; �6
RA Model �yt, yt < y� �12 �22; �21

p = 1 �yt, yt � y� �14 �20; �19

p = 1:005 �yt, yt < y� �13 �23; �23

�yt, yt � y� �15 �22; �21

Table 6: Regression of log-percentage changes in real gold prices on yields conditional on
low or high yield levels. The cuto¤ levels are at 0 percent for the one-year rate and 0 and
2.2 percents for the ten-year rate. 
p is the equilibrium trend gross growth rate of the price
of gold. RA stands for representative agent economy.

this being a calibration target.

Comparing the two model versions with the di¤erent gold price trends, 
p = 1 and


p = 1:005, the regressions for changes seem to favor the model without trend growth,


p = 1, while the regressions for levels in table 5 favor the model with growth, 
p = 1:005.

For the 10-year rate, two cuto¤ levels are considered, 2.2% as in the data and 0% as for the

short rate. Given that the model-implied term structure does not have a term premium, the

0% cuto¤ is informative. Consistent with Figure 3, the regressions with the higher cuto¤

have �atter slopes as they shift the sample to the right in the �gure.

Table 7 shows additional properties of the price of gold for the di¤erent model versions,

as well as properties of the investors�gold positions. The volatility of gold prices induced

by the discount rate shocks are approximately twice the size in the economy with growing

gold prices, 
p = 1:005, compared to the case with zero growth. Consistent with our earlier

discussion, when the price of gold has a higher growth rate, investors�s gold position are

larger on average and di¤erent from zero more often. In the model with trend gold price

growth, investors have zero gold holdings 17% of the time. In the economy without growth,

investors have zero gold holdings 39% of the time. As shown in the table, for the 
p = 1:005

case, investors average gold holdings amount to 17% of the total supply with a 19% standard
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Data 
p = 1 
p = 1:005
ln(pt) ln(pt+1=pt) ln(pt) ln(pt+1=pt) aI=a ln(pt) ln(pt+1=pt) aI=a

Mean % �0:2 0 6:5 0:5 17
Std % 45:5 14:8 9:4 5:0 10 20:1 8:7 19
AR(1) :94 :86 :91
Pr(aI = 0) :39 :17

RA,
z = 1 RA,
z = 1:005
Mean % 1:16 0 1:38 0:5
Std % 35:6 12:7 38:3 13:6
AR(1) :94 :94

Table 7: Gold prices and investors�gold positions. The price of gold is p, investors�gold
position as a share of the aggregate gold supply is aI/a. RA stands for representative agent
economy, 
p is the equilibrium trend gross growth rate of the price of gold.

deviation.

6.1 Gold�s duration

This subsection documents additional model properties and introduces an alternative type

of duration to provide intuition about model mechanisms.

In bond pricing, the duration measures the sensitivity of the price of the bond with

respect to its yield to maturity. The duration is also de�ned as the value-weighted maturity

of a bond. In the model, the duration of gold can be computed from the users�perspective,

but its role for explaining price movements due to interest rate changes is unimportant. From

the investors�perspective, the duration of gold is not well-de�ned. Gold has no maturity

and no coupon payments, and its duration is e¤ectively in�nite. However, I can de�ne an

alternative type of duration �the duration of the investors�expected holding period. This

duration is closely related to the sensitivity of the price of gold to interest rates and helps

illustrate model behavior.

As a starting point, consider the price of gold from the users�perspective, equation (1),

which is also the price of gold in a representative agent economy. The duration is well-de�ned

because gold has coupon payments (the service �ows). Speci�cally, the duration (de�ned as

usual as the value-weighted maturity and the elasticity with respect to the per period rate) is
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given by 1=
�
1� 
P

Y

�
with Y the per-period gross yield.3 In the calibration with 
p = 1:005,

on the balanced growth path, the duration is 1=
�
1� 1:005

1:015

�
= 101:5. The yield computed

at equilibrium prices is signi�cantly lower at an average of 1:0069, because of convexity

raising the price with discount rate movements. Therefore, the duration is on average about

1=
�
1� 1:005

1:0069

�
= 530. The e¤ect of such a high duration on price movements depends on the

movements in very long-term yields. The model matches the empirical volatility of 10-year

real yields, but reliable information on longer maturities is elusive. Estimating real risk-free

yields from government bonds becomes more challenging as the maturity lengthens because

correcting for in�ation (if using nominal bonds) and credit risk becomes more challenging.

In the quantitative analysis of the two-agent economy, the standard duration does not

play an important role. From the users�perspective, the price of gold changes mostly because

of changing marginal utility of gold as their position changes (the cash �ow e¤ect) and less

due to discount rate e¤ects. From the investors�perspective, gold has no coupon and gold�s

duration is in�nite. Nevertheless, an alternative type of duration remains important for

understanding the connection between the price of gold and interest rates in the model.

To illustrate the idea, consider �rst a two-period zero-coupon bond. The per-period gross

yield is Y and the price of the bond at time t and t+ 1, respectively, is given by

p
(2)
t =

p
(1)
t+1

Y
and p(1)t+1 =

1

Y
:

This has a duration (the negative of it)

d ln p
(2)
t

d lnY
= �1 + d ln p

(1)
t+1

d lnY
= �2:

3Speci�cally, in equation (1), normalizing the current period coupon to 1 and assuming it grows deter-
ministically at gross rate 
p, the price of gold can be written as

pt = 1=

�
Y Ut

P

� 1
�
;

with Y Ut the yield to maturity implied by the price. The duration can be computed as � @ ln pt
@ lnY U

t
.
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Now consider gold prices if investors plan to hold gold at time t for 1 period. Based on a

deterministic version of the investors�pricing equation, equation (2),

pt =
pt+1
Y

and pt+1 >
pt+2
Y
;

and the (negative of) duration
d ln pt
d lnY

= �1:

That is, with continuity and a strict inequality, small changes in Y and pt+2 cannot make the

equation hold with equality, and so there is no e¤ect on pt+1. Ceteris paribus, if investors

plan to hold gold for 2 periods
d ln pt
d lnY

= �2; etc.

Based on this example, we can see that the duration of investors�holding period also measures

the sensitivity of the price of gold to the yield.

In the model, there is uncertainty about the duration of the holding period and the pricing

equation, equation (2), includes a covariance term. However, the link between this duration

and the price volatility induced by interest rates remains. For instance, this mechanism can

explain the di¤erent sensitivities to interest rate changes when comparing the model versions

with gold price trends of 
p = 1 and 1:005. Indeed, with a higher trend growth, average

gold holding periods of investors are longer (Table 7), and the price of gold responds more

strongly to interest rate changes (Table 5).

This type of duration can also explain the state-contingent nature of impulse responses.

Figure 4 displays impulse responses to investors�discount rates that at impact lower the real

interest rate from about 1% down to about 0.2%. The �gure shows that the strength of the

increase in the gold price depends on the initial holdings of the investors. With an initial

position at 0.2 of the total supply of gold, the price of gold increases by about 12.5%. With

an initial position close to 0, the price of gold increase only by about 9%. When investors

have a high initial gold position, the expected duration of their holding is larger than if
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they have a very small position. That is because a small position could be reduced to zero

with a one-time high interest realization. A large position would likely not go to zero soon.

From this perspective, the time-varying duration of the expected holding period drives the

sensitivity of the price of gold to interest rate movements.
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Figure 4: Impulse responses to discount rate shocks conditional on two di¤erent levels of

investor gold holdings.

7 Gold futures

There is a deep market for gold futures at the CME and there is a long sample of available

price data. In this section, I derive model-implied futures prices and compare these to the

data. The model is shown to capture empirical properties which a representative agent model

cannot.

Consider a contract to buy or sell one unit of gold at a price ft for delivery next period

t + 1. I assume that investors trade such contracts with a zero net supply. In equilibrium,

based on the investors��rst-order condition, the futures price satis�es

ft =
Et
�
u0
�
CIt+1

�
pt+1

�
Etu0

�
CIt+1

� : (10)
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Intuitively the futures price is the expected future spot weighted by investors marginal

utilities (aka the expected future spot under risk-neutral probabilities).
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Figure 5. The futures ratio is based on the 12 or 13 months Comex CME

contract relative to the contract expiring within a month, adjusted for

whether the maturity di¤erence is 11 or 12 months.

If investors are in the gold market in period t and their Euler equation for gold holds

with equality, the spot price of gold is connected to the futures price through

pt =
Et�t

�
u0
�
CIt+1

�
pt+1

�
u0 (CIt )

=
ft

Y
(1)
t

;

where Y (1)t is the one-period gross interest rate. If the Euler equation holds with inequality,

then the spot price would be relatively higher than the right-hand side of the equation.

Combining these two cases, the ratio of the futures to the spot price adjusted for interest

28



satis�es
ft

ptY
(1)
t

� 1: (11)

Intuitively, this equation represents the cash-and-carry arbitrage and the frictions in the

model. Investors can always buy gold spot with borrowed funds and hedge it with a short

futures, and this limits the futures price to be no higher than the cost of carrying gold,

ptY
(1)
t . However, when investors are not in the gold market they cannot take a short spot

position. In that case, the spot price including interest can be higher than the futures price.

Based on our previous analysis, when interest rates are low or negative, investors are likely

to be holding gold and therefore the futures ratio to spot (including interest) equals 1. With

high real rates, this ratio is more likely to be smaller than 1.

For comparison, consider the representative agent economy where agents have the user�s

preferences and investors�market access, then

ft

ptY
(1)
t

= 1�
Et

h
u0(Ct+1)
Etu0(Ct+1)

zt+1v0(at+1)
u0(Ct+1)

i
ptY

(1)
t

: (12)

The futures ratio would be lower than 1 by the expected utility yield for holding gold.

CME futures contracts are denominated in nominal dollar terms, the model so far has

been in real terms. Assuming the consumer price level is deterministic, the model�s futures

to spot ratio for a dollar-denominated contract is identical to the ratio derived for contracts

denominated in real terms, except that the interest is now the nominal interest rate. I

compute the one-year futures to spot ratio from CME Comex futures prices buy taking the

ratio of the contract with a maturity of between 12 and 13 months relative to the contract

that is expiring within a month. Instead of using the spot price from the London Bullion

Market this has the advantage of not introducing nonsynchronous prices. One-year interest

rates are nominal Treasury rates.
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Figure 6. Futures ratio in the data and in the model.

Figure 5 displays historical futures ratios alongside one-year and ten-year real rates. Since

about 2005, the futures ratio has been relatively stable at a level not far from 1. In the 15 to

20 years before 2005, the futures ratio was mostly below 1. This is qualitatively consistent

with the model-implied ratio as in equation (11) and the fact that interest rates have been

lower since 2005.

Figure 6 contains scatter plots of the futures ratio relative to either one-year or ten-year

real interest rates. The plots in the right column are produced by model-simulated data.

The model shows futures ratios consistently equal to 1 for negative and very low positive
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rates. As rates are higher, a range of futures prices is observed. The red line of the �tted

polynomial shows that futures ratios are more often at the lower end of the range. The

plots also includes the futures ratio from the corresponding representative agent economy.

These show a weakly negatively slopped line. For the data plots, starting with 1990 the

observations are displayed in a darker color to emphasize that they line up more closely with

the model. Indeed, for low interest rates, futures ratios are around one, and futures ratio

become lower at higher interest rates. Plotted against the ten-year real rate, the lower left

panel suggests a nonlinear relation as in the model. Futures prices before 1990 appear to be

less connected to real interest rates, which could indicate that gold futures market were less

integrated with bond markets at that time.

8 Conclusion

In the model presented in this paper, rational investors can invest in store of value assets

that do not have a yield despite the demand for these assets from users who enjoy some

utility or service from the asset. The model is used to study the empirical relation between

gold prices and real interest rates. In the model, real interest rates are closely related to

investors�discount factors that drive the equilibrium price of gold. As such, lower real rates

are associated with higher gold prices. The relation between investors�discount factors and

the price of gold is more subtle than in a representative agent economy because investors�

holdings of gold �uctuate. With larger gold holdings, the duration of investors�expected

holding period increases, and the sensitivity of the price of gold with respect to real interest

rates increases. The analysis in the paper shows that this mechanism can help explain the

empirical relation between gold prices and real interest rates as well as the behavior of gold

futures prices from qualitative and quantitative perspectives.
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