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Abstract

Bank liabilities include debt with long-term maturities and deposits that typically

are not withdrawn for extended periods. This subjects bank liabilities to debt dilu-

tion. Our analysis shows that this has major effects for how monetary policy shocks

are transmitted to banks and for optimal capital regulation. Interest rate cuts pro-

duce protracted increases in bank risk which are stronger in low rate regimes. Capital

regulation addresses debt dilution but is subject to a time-inconsistency problem. We

compare Ramsey and Markov-perfect optimal policies and find that regulator commit-

ment significantly impacts optimal bank capital regulation, sometimes in unexpected

ways.
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1 Introduction

Macro-finance models of banks embed the view that banks create liquidity through deposits

but that they are exposed to the risk of default or runs. A prominent view in corporate

finance is that debt dilution is a major friction that distorts debt and investment decisions.1

These two views are not connected in existing macro-finance models of banks. In this paper,

we connect these two views and present the consequences for the transmission of monetary

policy shocks and for optimal capital regulation.

In typical macro-finance banking models, deposits are modelled as one-period debt. As

such, when banks issue deposits, there is no outstanding debt that can be diluted. With

*Jermann is with the Wharton School of the University of Pennsylvania and the NBER, jer-
mann@wharton.upenn.edu. Xiang is at Guanghua School of Management, Peking University, xi-
ang@gsm.pku.edu.cn.

1The related literature is discussed in detail below.
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long-term debt, when new debt is issued, borrowers do not internalize the reduction in value

of the outstanding debt. This gives rise to debt dilution. Recent studies have shown that

dilution affects debt dynamics in major ways (Gomes, Jermann and Schmid (2016), Admati,

DeMarzo, Hellwig and Pfleiderer (2018)).

U.S. banks have some debt that is explicitly long-term, but the majority of their liabilities

are deposits. According to the FDIC, deposits account for 78% of banks’ balance sheets at

the end of 2019. Time deposits with limited maturities account for 15% of all deposits. The

remaining deposits are non-maturing: they have no explicitly maturity date and are typically

not withdrawn for extended periods. However, because these deposits can be withdrawn at

any time, their maturity depends on market conditions.

In our model, there are frictional costs that prevent deposits from being withdrawn and

repriced every period. Depositors face liquidity shocks and they withdraw only if the liquidity

value net of withdrawal costs exceeds the expected future liquidity benefit of the deposit.

This converts redeemable deposits into long-term debt with endogenous maturity, and thus

exposes deposits to debt dilution. Banks cannot credibly commit to not dilute depositors

in the future. Within this setting, we study banks’ responses to interest rate shocks and

optimal bank leverage policies from a regulator’s perspective.

We show that banks’ responses to interest rate shocks are affected in important ways

by endogenous maturity. We find that an interest rate cut generates an initial reduction in

bank default risk but is followed by an extended period of significantly higher default risk

and higher leverage. Endogenous maturity is key for this result. Following a rate reduction,

deposit withdrawals decline and lengthen the maturity which leads to stronger debt dilution

incentives, driving up leverage and default rates. A second finding is that this delayed bust

is more pronounced in a low interest environment than in a high interest environment. After

several periods of low interest rates, banks are more levered in the model, and this increases

the sensitivity of default rates to interest rate moves. Overall, our analysis suggests that

accounting for endogenous deposit dilution is important for modeling the effects of monetary

policy.

Banks’ dilution incentive creates a role for bank capital regulation. Importantly, we

show that a regulator faces a time-inconsistency problem. A regulator who can commit

to future policies can impact banks’ and depositors’ values in a more powerful way than

one without such a commitment. We derive the optimal bank leverage policies from a

regulator’s perspective, both for a Ramsey regulator who can commit to future policies and

for a Markov-perfect regulator who cannot commit. We find that the optimal amounts

of leverage and bank default risk critically depend on regulator commitment. As usual,

commitment leads to better outcomes. However, this does not necessarily imply a lower
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leverage and fewer bank defaults on average as regulators trade off between default losses

and the liquidity value of deposits. We find that endogenous maturity plays a big role in

elevating the value of regulatory commitment. With endogenous maturity, the forecasted

choices of future regulators affect today’s withdrawal decisions. This in turn affects liquidity

creation and banks’ default incentives.

A Ramsey solution includes history-dependence induced by commitment that is absent

in the Markov-perfect case. Despite that, we find that when optimally deleveraging from

a high level of debt, possibly after a crisis, a Ramsey regulator will not necessarily delever

more slowly than a Markov-perfect regulator. When considering regulators’ responses to

exogenous shocks, we find that commitment does lead to more persistent policy responses.

In particular, in response to a sudden deterioration in asset productivity, a Ramsey regulator

loosens capital requirements for a much longer time than a Markov-perfect regulator. This is

because a Ramsey regulator can use future implied promises to alleviate a temporary distress

situation, while a Markov-perfect regulator lacks this tool. Overall, explicitly accounting for

regulator commitment significantly impacts optimal bank capital regulation, sometimes in

unexpected ways even in our stripped-down setting. This suggests that properly accounting

for regulator commitment is crucial for model-based policy recommendations.

One technical challenge of our analysis is the non-stationary nature of the Ramsey alloca-

tion. We show that there exists a pseudo steady state where real variables are constant but

the Lagrange multipliers in the sequential planning problem are non-stationary. We develop

a numerical procedure that efficiently computes dynamic responses to shocks for this type

of environment.

In the rest of the paper, after reviewing the related literature, we present a parsimonious

model for non-maturing deposits, in Section 2, and we study banks’ responses to exogenous

interest rate shocks. Section 3 presents regulators’ problems and analyzes optimal policies.

1.1 Related literature

Our paper contributes to the literature on dynamically modeling banks. There are two main

novel features. First, we study bank deposits when dilution is possible and with endogenous

maturity. Second, when dilution is possible, we characterize optimal bank capital regulation

with and without regulator commitment. Our work is related to several research areas.

There is a large and growing literature on macro-finance banking models that evalu-

ate macroprudential policy rules, mostly bank capital requirements. For instance, Van den

Heuvel (2008), Angeloni and Faia (2013), Gertler and Kiyotaki (2015), Mendicino, Nikolov,

Suarez, and Supera (2018), Xiang (2018), Corbae and D’Erasmo (2019), Begenau (2020), Be-
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genau and Landvoigt (2020), Elenev, Landvoigt and Van Nieuwerburgh (2020), and Gertler,

Kiyotaki, and Prestipino (2020). Some macro-finance banking models focus on studying

monetary policy rules, for instance, Gertler and Karadi (2011), Brunnermeier and Koby

(2018), Porcellacchia (2020) and Bianchi and Bigio (2020). Different from these papers, our

analysis features long-term debt subject to dilution, and we endogenously derive optimal

macroprudential policy rules.

There are several studies that have emphasized the rich dynamics of long-term debt

with dilution, for instance, Gomes, Jermann and Schmid (2016), Crouzet (2017), Admati,

DeMarzo, Hellwig and Pfleider (2018), Demarzo and He (2020). Different from these, our

model features endogenous maturity and we derive optimal capital regulation. Xiang (2020)

shows how debt covenant violations generate endogenous maturity but does not derive op-

timal regulatory policies.

Optimal macroprudential regulation in dynamic models has been derived by Chari and

Kehoe (2016), Davydiuk (2017), Schroth (2020), Malherbe (2020), and Van der Ghote (2021).

Different from these studies, our analysis features long-term debt subject to dilution and our

analysis explicitly studies the role of regulator commitment.

The view that banks engage in maturity transformation and that they offer the option

to withdraw deposits early is central to a large literature building on Diamond and Dybvig

(1983). In this approach, a sequential service constraint can lead to bank runs. Instead, our

model features debt dilution. Dynamic models have mostly abstracted from time-varying

maturity. Exceptions are several papers interested in the valuation of non-maturing deposits

from a bank’s perspective where maturity is exogenously specified, including Hutchison and

Pennacchi (1996), Jarrow and van Deventer (1998), Nyström (2008) and Wolff (2000). Some

recent macro-finance studies also emphasize the long-term nature of bank deposits. For

instance, Bolton, Li, Wang and Yang (2020) present a model where banks have limited

control over deposit inflows, and Drechsler, Savov and Schnabl (2020) present empirical

evidence suggesting bank franchise value confers long duration to bank deposits. Different

from these, we model the dilution problem associated with long-term debt and derive optimal

regulatory policies.

The dynamic properties of our Ramsey allocation are reminiscent of characterizations

in the optimal taxation literature where convergence to steady states cannot always be

established; see for instance Chien and Wen (2017) or Straub and Werning (2020).
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2 Modeling deposits and interest rate shocks

In this section, we present a parsimonious model for non-maturing deposits and study how

banks respond to interest rate shocks. The model is presented in Section 2.1, followed by an

illustration of the key debt dilution mechanism in Section 2.2. Results about interest rate

shocks are in Section 2.3.

2.1 Setup

We start with presenting our model of deposit withdrawal, followed by bank leverage choice

and the pricing of deposits.

2.1.1 Deposit withdrawals

Time is discrete and all agents are risk neutral. The economy is populated with a contin-

uum of banks who create value by providing liquidity services to depositors. Consider an

individual bank with a continuum of depositors. The liquidity value derived by depositor

i ∈ [0, 1] with deposits bi consists of two components. First, the depositor can use the bank

account for regular transactions within the period, such as receiving wage bills, paying for

online shopping, etc. Such convenience provides a value of µbi each period, which reflects

that banking services are more valuable for individuals with a larger amount of cash.

Second, the depositor can withdraw from the account to meet a need for cash at the

period end. Specifically, depositor i encounters a liquidity shock at the end of each period. In

addition to the principal redemption, there is an extra marginal benefit ν when withdrawing

an additional dollar with cumulative probability density function F (ν) over support [ν, ν̄].

Withdrawal incurs a marginal cost of κ.2 As a result, depositor i withdraws the entire deposit

bi if the shock is large enough

(1 + ν − κ)bi ≥ qbi, (1)

where q is the price of the deposit. The endogenously determined price equals the present

value of future liquidity services adjusted for the default risk of the bank. The depositor

keeps bi in the bank if the above condition is not satisfied. Condition (1) implies that when

interest rates increase or the bank becomes riskier, both leading to a lower q, the mass

of withdrawing depositors, λ(q) = 1 − F (q + κ − 1), becomes larger and deposit maturity

shortens. The time-varying deposit maturity is the key distinction of our model relative to

2It is equivalent to assume away the withdrawal benefit by setting ν ≡ 0 and formulate κ into a menu
cost.
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typical macro-banking models which usually fix λ = 1 and thus force depositors to withdraw

and re-deposit every period.

Because the withdrawing decision of depositor i does not depend on bi, the bank’s problem

only depends on the total amount of deposits on the balance sheet, b =
∫
i
bidi, rather than

the whole distribution of bi’s. Summing the two components of liquidity and integrating over

the optimal withdrawing behavior, the liquidity value per unit of deposit, from the banks

perspective, can be written as

l (q) = µ+

∫ ν̄

q+κ−1

(ν − κ)dF (ν).

2.1.2 Bank problem

A bank makes its leverage decision each period conditional on total outstanding deposits b

and the withdrawing rule of depositors. The assets of the bank generate a per-period profit of

R+ z, where R is constant for the analysis in this section and z is a zero-mean bank-specific

i.i.d. profit shock with c.d.f. (p.d.f.) Φ(z) (φ(z)) over support [−z̄, z̄]. Government interest

rate policy determines the discount rate for banks and depositors since treasury bills serve

as the outside option for both groups. That is, the discount rate in this economy is given by

1/r where interest rate r follows an exogenous process Γ(r′|r).
Bank equity value and deposit policy is given by:

z + ve(r, b) = z + max
b′

{
R− λ(q)b+ q{b′ − [1− λ(q)]b} (2)

+
1

r
Er′|r

[∫ z̄

−ve(r′,b′)

[ve(r′, b′) + z′]dΦ(z′)

]}
.

As shown in (2), bank equity value consists of two parts. First is the current period net cash

flow, which includes profits R+ z, repayment to withdrawing depositors λ(q)b, and proceeds

from new deposits q{b′ − [1− λ(q′)]b}. Second is the continuation value, which incorporates

the bank’s default option tomorrow. After the realization of two shocks r′ and z′, the bank

defaults if the equity value goes below zero, i.e. z′ + ve(r′, b′) < 0.

When typical models assume λ = 1, a bank reissues all deposits every period and thus

fully internalizes the impact of its choice of b′. In contrast, with the presence of future

liquidity services and the withdrawal cost, our model features deposits that can be potentially

long-term. A dilution problem arises when the bank does not need to compensate non-

withdrawing depositors [1− λ(q′)]b for how its choice of b′ changes the risk of default.
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2.1.3 Deposit pricing

The deposit price q(r, b′) is pinned down by the zero profit condition of depositors. For a non-

defaulting bank, the payoff to depositors in the current period consists of the liquidity value

l(q)b, principal repayment to withdrawing depositors λ(q)b, and the value of non-withdrawing

deposits q[1− λ(q)]b. That is, depositors’ value is given by:

vb(r, b) =
{
l(q) + λ(q) + q[1− λ(q)]

}
b,

which does not depend on z because its realizations do not affect equilibrium choice for b′,

as suggested by (2).

Our formulation of default follows Gomes, Jermann, and Schmid (2016). Upon default,

depositors take over the bank and initiate a restructuring. They first collect current profits

R + z and then sell off the equity portion to new owners while continuing to hold their de-

posits. After going through the restructuring, individual depositors again decide on whether

to withdraw their money or not. This means that depositors have a claim over the total

bank franchise value z + ve(r, b) + vb(r, b) in default states. However, restructuring incurs a

dead-weight loss for depositors that is increasing in the amount of deposits, ξb, reflecting a

larger difficulty to restructure a more levered bank. Under this formulation, we do not need

to keep track of the distribution of b’s when considering the aggregate economy.

To sum up, the deposit price is given by

qb′ =
1

r
Er′|r

[ ∫ z̄

−ve(r′,b′)

vb(r′, b′)dΦ(z′)

+

∫ −ve(r′,b′)

−z̄
[z′ + ve(r′, b′) + vb(r′, b′)− ξb′]dΦ(z′)

]
, (3)

where ve(r′, b′) and vb(r′, b′) are affected by banks’ future choices, b′′ and q′′, because deposits

have effectively a maturity that is longer than one period. This implies that future deposit

dilution is priced in at the issuance stage.

Definition 1 A Markov Perfect Equilibrium is given by (i) banks’ deposit policy b′(r, b) with

associated equity value function ve(r, b) and default; (ii) a deposit pricing function q(r, b′) and

associated depositors’ value function vb(r, b); (iii) depositors’ withdrawal policy such that (i)

given q(r, b′) and withdrawal policy, banks’ deposit policy and default decisions are optimized;

(ii) given banks’ decisions and withdrawal policy, q(r, b′) and vb(r, b) satisfy depositors’ zero

profit condition in (3); (iii) given q(r, b′), withdrawal policy for depositor i, ∀i ∈ [0, 1], is

given by (1).
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2.2 Long-term deposits and dilution

The key feature of our model, relative to previous work on macro-banking, is that non-

maturing deposits are plausibly long-term because depositors do not withdraw and reprice

deposits period by period due to future liquidity services and withdrawal cost. As a result,

banks make leverage decisions with the presence of non-withdrawing deposits [1 − λ(q′)]b.

In this section, we illustrate how this leads to a dilution problem—that is, banks have a

tendency to over-borrow and incur an excessive default risk.

First, for simplicity, we shut down the withdrawal feature and consider a fixed-maturity

defaultable debt model—that is, only a fixed fraction of depositors withdraw each period,

i.e. λ(.) ≡ λ̂ ∈ [0, 1], who get a net benefit of ν − κ ≡ 0. In this setting, l(.) ≡ µ > 0. To

further simplify notations, we assume default recovery is zero, and then some straightforward

algebra gives the following first-order condition for b′:

1

r
µEr′|r[1− Φ(−ve(r′, b′))] = −[b′ − (1− λ̂)b]

∂q(r, b′)

∂b′
, (4)

where the price impact on the right hand side (RHS) is given by:

∂q(r, b′)

∂b′
=

1

r
Er′|r

[
[µ+ λ̂+ (1− λ̂)q′(r′, b′′)]φ(−ve(r′, b′))∂v

e(r′, b′)

∂b′
(5)

+ [1− Φ(−ve(r′, b′))](1− λ̂)
∂q′(r′, b′′)

∂b′′
∂b′′

∂b′

]
.

Equation (4) describes the trade-off behind absorbing an additional unit of deposit. On

the left hand side (LHS) is the marginal benefit—additional liquidity value µ in non-default

states. On the RHS is the marginal cost. As can be verified numerically, pushing up b′

reduces the debt price q(r, b′). This is not surprising as it reduces ve(r′, b′) and therefore

leads to a higher default probability tomorrow, captured by the first term in (5).

Deposit dilution arises because banks only internalize the negative price impact on new

deposits. Non-withdrawing deposits, (1−λ̂)b, also have to bear a larger default risk associated

with a higher b′ but are not correctly repriced. As a result, banks would like to keep absorbing

new deposits even when default risk has become excessively large. By doing so, they keep

capturing the additional liquidity value but do not have to pay fully for the incremental

default risk. As (1− λ̂)b increases, banks would choose a larger b′ and dilution becomes more

severe.

At the time of issuance, depositors will price in the banks’ future incentive to over-

borrow. Depositing an additional dollar into the bank today amplifies the conflict of interests

tomorrow. This is recognized by ∂b′′/∂b′ in the second term in (5). That first-order condition
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contains the derivative of the policy function reflecting the fact that dilution is a time

inconsistency problem in nature—banks would be better off if they could commit to not

over-borrow in the future.

When deposits are short-term, i.e. λ̂ = 1, the debt dilution problem disappears. Banks

have no incentive to over-borrow unless some other exogenous frictions are built in.

In addition, deposit maturity in our model is not fixed because of the withdrawal op-

tions of the depositors. This reshapes the banking dynamics relative to the fixed-maturity

long-term debt model. First, the dependence of λ(q(r, b′)) on r means that interest rate

shocks alter the amount of non-withdrawing deposits that banks can dilute, which in turn

changes the marginal calculation in Equation (4). Banking dynamics going forward change

accordingly. We will show in this section that such an effect is quantitatively important.

Second, λ(q(r, b′)) also depends on b′. When λ(q(r, b′)) increases in b′, meaning a higher

leverage choice persuades more depositors to withdraw right away, and dilution is effectively

disciplined. We will show in Section 3 the implications of this feature for capital regulation.

2.3 Interest rate shocks and boom-bust dynamics

In this section, we show how banks respond to interest rate shocks. We assume the interest

rate r follows an AR(1) process and set Γ(r′|r) accordingly—that is, r = r∗ + exp(x) − 1

where r∗ is the long-run interest rate level and x′ = ρxx+ σxε̃, ε̃ ∼ N (0, 1).

2.3.1 I.i.d. shocks

We first consider i.i.d. interest rate shocks to cleanly show the workings of endogenous deposit

maturity. The parametrization aims to approximately match obvious empirical counterparts.

A period is a year. For interest rate process, we set r∗ = 1/0.95, ρx = 0 and σx = 0.015.

Average profitability of bank assets is R = 0.02. Default loss is ξ = 0.2. For the zero-mean

i.i.d. shocks to profitability, we set φ(z) = ι0− ι1z2. By imposing φ(z̄) = 0 and Φ(z̄) = 1, we

can use z̄ to pin down ι0 and ι1. We set z̄ = 0.26, which leads to a steady-state bank default

probability of 75 basis points. Regarding liquidity parameters, we set µ = 0.0423 and assume

ν follows an exponential distribution, i.e. f(ν) = a exp(−aν), with a = 20. Withdrawal cost

is κ = 0.1. In steady state, bank equity ratio 1− bss/(vess + vbss) = 0.1783 and deposit rate is

1/qss−1 = 0.0266.3 We are not aware of an obvious empirical counterpart for the withdrawal

frequency. Wolff (2000) argues that as a rule-of-thumb 20% of deposits are highly volatile.

The parameterization implies a steady state withdrawal mass of λss = 0.2272.

3We use subscript ss to denote values in steady state throughout the paper.
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Figure 1: Banks’ responses to i.i.d. interest rate shocks in laissez-faire economy. Notes:

r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.0423, R = 0.02, z̄ = 0.26, ρx = 0, σx = 0.015. For fixed-maturity

models, we adjust µ = 0.045, z̄ = 0.2 for the λ̂ = 0.22718 case and µ = 0.051, z̄ = 0.4 for the λ̂ = 1 case for

comparability.

The blue solid lines in Figure 1 describe how banks in steady state respond to a one-time

interest rate cut. At t = 10, the interest rate is reduced and thus the discount rate becomes

high, the present value of future liquidity services becomes larger. Fewer depositors choose to

withdraw. Relative to the steady state, with the presence of more non-withdrawing deposits

to dilute at t = 10, banks choose a larger b11. A higher b11 in turn leads to a b12 that is still

noticeably higher than bss.

The default probability exhibits a boom-bust feature. At t = 10, bank default probability

shrinks in response to the contemporaneous rate cut. Similar to the reason behind depositors’

increasing willingness to stay, the equity value of banks becomes larger due to a higher

discount rate. However, going forward, as interest rate returns to normal but b11 and b12

remain to be high, the default probability becomes higher than its steady state value. In
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other words, an interest rate cut makes banks safer in the short run but more fragile in the

long run.

Crucial for our results is the endogenous withdrawal feature. Figure 1 compares our

results against those coming out of fixed-maturity models, as characterized before by Equa-

tions (4) and (5). The red dashed lines show banks’ responses to an identical rate cut in

a fixed-maturity long-term deposit model. We fix withdrawal mass λ̂ = 0.22718, which is

equal to the λss in our baseline model. We re-set µ = 0.045 and z̄ = 0.2 so that thte steady

state default rate is roughly the same as that in the baseline. The black dotted lines show

the responses under short-term deposits, i.e. λ̂ = 1, where we re-set µ = 0.051 and z̄ = 0.4.

In both cases with fixed maturity, i.i.d. interest rate shocks produce no impact on leverage

dynamics. As is clear from the first-order conditions (4) and (5), under i.i.d. shocks, r’s on

the LHS and RHS cancel out. In other words, a one-time interest rate cut does not change

the marginal trade-off for b′. In contrast, in our model, λ(q(r, b′)) and thus the marginal cost

on the RHS change with r.

2.3.2 Persistent shocks

Now we consider persistent shocks to interest rates. We set ρx = 0.8, σx = 0.005 and adjust

µ = 0.0435 while keeping all the other parameter values to be same as those in the i.i.d.-shock

case. Steady state moments are comparable to the i.i.d.-shock ones. The blue solid lines in

Figure 2 describe how banks in the steady state respond to persistently low interest rates.

Again, we consider two alternative models with fixed maturities: long-term deposits where

λ̂ = 0.2146, µ = 0.045, z̄ = 0.2 and short-term deposits where λ̂ = 1, µ = 0.052, z̄ = 0.4.

When the interest rate cut becomes persistent, banks’ deposit choice starts to respond

to the rate cut even if deposit maturity is fixed. Again, by inspecting (4) and (5), one can

see that 1/r cancels out but the conditional expectation Er′|r[.] does not. When expecting

rates to be low in the future, banks start to absorb more deposits.

Under short-term deposits, default probability does not exhibit boom-bust dynamics even

though debt remains persistently high after t = 10. Banks do not have a dilution incentive.

They increase deposits simply because of a smaller marginal cost—that is, with an increase

in discount rates, default risk becomes less sensitive to deposit absorption. As the interest

rate returns to normal, banks adjust leverage downward rather quickly, and the equilibrium

default risk remains moderate.

Under fixed-maturity long-term deposits, default probability becomes high for several

periods after the rate cut. Compared to the short-term deposit case, debt dilution kicks

in. With a large amount of deposits accumulated right after the shock, when interest rate

reverts back, banks do not adjust leverage and default risk downward as quickly because the
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Figure 2: Banks’ responses to persistent interest rate shocks in laissez-faire economy. Notes:

r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.0435, R = 0.02 , z̄ = 0.26, ρx = 0.8, σx = 0.005. For fixed-

maturity models, we adjust µ = 0.045, z̄ = 0.2 for the λ = 0.2146 case and µ = 0.052, z̄ = 0.4 for the λ = 1

case for comparability.

default loss borne by outstanding deposits is not internalized. Nonetheless, the role played

by the endogenous maturity is important. The increase in non-withdrawing deposits after

the rate cut greatly exacerbate the dilution problem. By comparing the blue solid and red

dash lines, one can see that the surge in bank default probability arrives earlier and is much

stronger in the model with endogenous maturity.

2.4 State-dependency in responses

In this section, we show that the impact of an interest rate cut is different if rates have been

low for a while. Specifically, the subsequent surge in default risk following a rate cut is much

stronger in a low-rate environment.
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Formally, we consider a regime-switching model of interest rates. In either the high- or

low-rate regime, i.e. s ∈ {H,L}, x follows an AR(1) process:

x′ = (1− ρx)x̄(s) + ρxx+ σxε̃

where x̄(H) > x̄(L). State s shifts with probability p. In the period where the shift takes

place, x is drawn from the stationary distribution of the new regime.

2.4.1 I.i.d. shocks

We first consider a case where shocks to interest rates are i.i.d. in any given regime. More

specifically, we set ρx = 0, σx = 0.007, x̄(H) = −x̄(L) = 0.015, p = 0.4. All bank- and

depositor-related parameters are set to be same as those in the i.i.d.-shock case of Section

2.3.1 without regime switches.

Figure 3 compares how banks’ responses to an identical interest rate cut differ across

regimes. Distances between ticks on the left and right axes are identical, meaning that

magnitudes of responses are comparable. On average, in the low-rate regime (red dashed

lines and right y-axes), bank leverage is high and fewer depositors withdraw their money each

period due to a higher discount rate. However, a larger amount of non-withdrawing deposits

worsens banks’ dilution problem. Combining these two offsetting effects, average default

probability turns out to be higher, which is largely consistent with our previous finding that

default probability increases following interest rate cuts when deposits are endogenously

long-term.

Responding to the rate cut, in the low-rate regime, banks increase leverage more ag-

gressively and the subsequent surge in default risk is also stronger. As we have highlighted

the unappealing consequence of interest rate cuts in the previous section, this result calls

for central banks’ exercising additional caution when the economy has been in a low-rate

environment for a while and banks have a larger amount of deposits on their balance sheets.

This is despite the weaker reduction in the withdrawal amounts in the low rate regime, which

is driven by the stronger surge in default risk.

2.4.2 Persistent shocks

Considering persistent shocks, we set ρx = 0.8, σx = 0.005 and adjust µ = 0.0435 while

keeping all the other parameter values to be same as those in the i.i.d.-shock case with

regime switches. Figure 4 shows that the results we find in the i.i.d.-shock case are largely

preserved. Again, an interest rate cut creates a stronger surge in bank leverage and default

risk in the low-rate environment.
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Figure 3: State dependency of banks’ responses to i.i.d. interest rate shocks. Notes: r∗ =

1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.0423, R = 0.02, z̄ = 0.26, ρx = 0, σx = 0.007, x̄(H) = 0.015, x̄(L) =

−0.015, p = 0.4.

In the last two panels of Figure 4, we show the state dependency for a short-term deposit

model, λ = 1, with persistent shocks. We adjust µ = 0.052 and z̄ = 0.4 for comparability.

We consider the same shock as in our baseline model. According to Section 2.3.1, bank

leverage does not move upon i.i.d. interest rate shocks with short-term deposits, and thus

there is naturally no state dependency in responses of aggregate quantities in that case.

Figure 4 shows that even with persistent shocks, state dependency in b is trivial. Different

from our baseline model, the average default probability of banks is lower in the low-rate

regime. Also, because default probabilities are bounded by 0, default probabilities respond

by less in the low-rate regime.
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Figure 4: State dependency of banks’ responses to persistent interest rate shocks. Notes:

r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.0435, R = 0.02, z̄ = 0.26, ρx = 0.8, σx = 0.005, x̄(H) =

0.015, x̄(L) = −0.015, p = 0.4. For the fixed-maturity model with λ̂ = 1, we adjust µ = 0.052 and z̄ = 0.4

for comparability.

3 Optimal bank capital regulation

Banks’ dilution incentive creates a role for bank capital regulation. In this section, we inves-

tigate how capital regulation addresses the inefficiency from dilution by allowing regulators

to directly choose the amount of deposits banks can absorb. In analyzing this problem, we

also shed light on the time inconsistency problem faced by regulators.

In this section, we fix the interest rate, r = r∗, and instead consider shocks to aggre-

gate productivity R. Specifically, R′ = (1 − ρR)R∗ + ρRR + σRũ where R∗ is the long-run

productivity level and ũ ∼ N (0, 1).

The notation of the laissez-faire economy presented in the previous section mostly carries

through. As we consider aggregates, we shift to capital letters B,Q,L, V e and V b. Relative

to the laissez-faire economy, we assume that µ(B) decreases in B quickly enough so that the
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regulator cannot create an infinitely large liquidity value by raising B and thus eliminate

bank defaults. Such a restriction is a typical feature of deposit-in-the-utility models (e.g.

Van den Heuvel, 2008)—that is, the marginal utility that households derive from holding

liquidity decreases in its amount.4

Section 3.1 lays out the planning problem of a Ramsey regulator. Section 3.2 describes

the corresponding problem of a Markov-perfect regulator without commitment, and then

illustrates how capital requirements address dilution but suffer from regulator’s limited com-

mitment. Section 3.3 presents our results.

3.1 Ramsey regulator

A Ramsey regulator chooses allocations {V e
t , Qt, Bt+1}∞t=0 at t = 0 to maximize the present

value of total resources generated by this economy, taking as given banks’ default rule, depos-

itors’ withdrawal rule, depositors’ zero profit condition and initial condition B0. Aggregate

resources each period consist of three parts. First, bank assets provide profits Rt (i.i.d. z

shocks average out). Second, bank deposits provide a liquidity value LtBt. Third, a cer-

tain fraction of banks default, which produces a total restructuring loss of ξBtΦ(−V e
t ). The

Ramsey regulator’s objective function is thus given by

E0

∞∑
t=0

1

(r∗)t

[
Rt + LtBt − ξBtΦ(−V e

t )

]
,

where the total liquidity value is given by Lt = µ(Bt) +
∫ ν̄
Qt+κ−1

(ν−κ)dF (ν), for t = 0, 1, ....

For t = 0, 1, ..., banks’ equity value and deposit price are given by

V e
t = Rt − λ(Qt)Bt +Qt{Bt+1 − [1− λ(Qt)]Bt}+

1

r∗
Et

[∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
,

and

QtBt+1 =
1

r∗
Et

[ ∫ z̄

−V e
t+1

V b
t+1dΦ(z) +

∫ −V e
t+1

z

(z + V e
t+1 + V b

t+1 − ξBt+1)dΦ(z)

]
,

where the withdrawal mass is λ(Qt) = 1− F (Qt + κ− 1) and depositors’ value is

V b
t = {Lt + λ(Qt) + [1− λ(Qt)]Qt}Bt.

4Individual banks in the laissez-faire economy take the evolution of µ(B) as given when deciding over b′.
To keep our interest rate analyses in the previous section transparent, we chose a constant µ. In this section,
whenever we compute moments of the laissez-faire economy, we take into account the (b, B) problem.
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Finally, there are no-Ponzi conditions: lim
t→∞

E0
Bt

(r∗)t
= 0 and lim

t→∞
E0

V e
t

(r∗)t
= 0.

3.2 Markov-perfect regulator without commitment

We first present the problem of a Markov-perfect regulator and illustrate how capital re-

quirements address dilution of long-term deposits by comparing it to the problem of laissez-

faire banks. We then describe regulators’ commitment problem by comparing Ramsey and

Markov-perfect regulators. Importantly, the time inconsistency for capital requirements is

also rooted in the long-term nature of deposits.

3.2.1 Time-consistent capital requirements and dilution

By rewriting the Ramsey regulator’s objective recursively and assuming that the regulator

optimizesB′ period by period, we get the Markov-perfect regulator’s problem. State variables

are aggregate profit R and total deposits B. Total bank franchise value is given by:

H(R,B) = max
B′

{
R+L (B,Q (R,B′))B−ξBΦ (−V e (R,B,B′))+

1

r∗
ER′|RH(R′, B′)

}
, (6)

where the liquidity value is L(B,Q) = µ(B) +
∫ ν̄
Q+κ−1

(ν − κ)dF (ν).

Bank equity value, given current states and regulator’s choice for B′, is given by:

V e(R,B,B′) = R− λ(Q(R,B′))B +Q(R,B′){B′ − [1− λ(Q(R,B′))]B}

+
1

r∗
ER′|R

[∫ z̄

−V e(R,B′,B′′)

[z + V e(R,B′, B′′)]dΦ(z)

]
, (7)

where B′′(R′, B′) is the optimal policy of the future regulator, which the current regulator

take as given. The deposit pricing function is given by:

Q(R,B′)B′ =
1

r∗
ER′|R

[ ∫ z̄

−V e(R′,B′,B′′)

V b(R′, B′, B′′)dΦ(z)

+

∫ −V e(R′,B′,B′′)

z̄

[z + V e (R′, B′, B′′) + V b (R′, B′, B′′)− ξB′]dΦ(z)

]
, (8)

with withdrawal mass λ(Q) = 1− F (Q+ κ− 1) and depositors’ value is:

V b(R,B,B′) = {L(B,Q(R,B′)) + λ(Q(R,B′)) +Q(R,B′)[1− λ(Q(R,B′))]}B. (9)

Now we are ready to show how capital regulation addresses deposit dilution by comparing

the Markov-perfect regulator’s choice for B′ and what banks in the laissez-faire economy
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choose. Using conjecture-and-verify approach, we can straightforwardly show that:5

H(R,B) = max
B′

V e (R,B,B′) + V b(R,B,B′)− ξBΦ (−V e (R,B,B′)) . (10)

In contrast, laissez-faire banks only maximizes V e(R,B,B′) or equivalently its monotone

transformation V e (R,B,B′)− ξBΦ (−V e (R,B,B′)) while ignoring the term V b(R,B,B′).

First, for simplicity, we consider a fixed-maturity deposit model with a flat µ(B), i.e.

L(.) = µ and λ(.) = λ̂ and thus V b(R,B,B′) = [µ + λ̂ + Q(R,B′)(1 − λ̂)]B. If deposits

are modeled short-term, i.e. λ̂ = 1, the choice for B′ does not affect V b(R,B,B′). Markov-

perfect regulator’s optimal choice is then identical to that of laissez-faire banks. This is

consistent with what has been shown in Section 2.2—with short-term deposits, banks do not

suffer a commitment problem in deposit absorption, and thus capital requirements cannot

improve efficiency. When λ̂ > 1, there exists a positive wedge between first-order conditions

for banks and Markov-perfect regulator: (1− λ̂)B ∂Q(R,B′)
∂B′

.

Furthermore, as we have mentioned in Section 2.2, endogenous withdrawals affect di-

lution. In our baseline model, the wedge between first-order conditions for banks and the

Markov-perfect regulator is [1−λ(Q(R,B′))]B ∂Q(R,B′)
∂B′

. When the deposit amount B is large

already, increasing it on the margin, i.e. B′ > B, triggers more withdrawals and thus re-

duces non-withdrawing deposits [1−λ(Q(R′, B′′))]B′, in contrast to the fixed-maturity case.

As the wedge shrinks, dilution becomes less severe. In other words, depositors’ option to

withdraw disciplines banks’ deposit dilution. As banks ratchet up their deposits, deposit

maturity gets shortened and thus dilution severity does not grow as quickly.6

3.2.2 Long-term deposits and regulator’s commitment

To illustrate the time inconsistency problem of the regulator, we start with the fixed-maturity

long-term deposit model. The Markov-perfect regulator fully eliminates deposit dilution,

the Ramsey regulator chooses not to do so. The reasons are as follows. There are two

possible actions that laissez-faire banks can take to destroy value. First, they can dilute

non-withdrawing depositors when choosing deposits b′. Second, they can choose not to

repay depositors and default. Default, when the equity value turns negative, is optimal ex

5In detail, by adding up V e(R,B,B′) and V b(R,B,B′) in (7) and (9), we get:

R+ L(R,B,B′)B +
1

r∗
ER′|R

[
V e (R′, B′, B′′) + V b (R′, B′, B′′)− ξB′Φ (−V e (R′, B′, B′′))

]
.

Conjecture H(R,B) = maxB′ V e(R,B,B′) + V b(R,B,B′) − ξBΦ (−V e (R,B,B′)), and we then get back
(6).

6Our numerical solutions confirm that the policy function B′(R,B) for laissez-faire banks becomes much
flatter after incorporating withdrawals.
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post but not ex ante. With the presence of the default friction, eliminating the dilution

friction is no longer optimal. Instead, promising to banks some dilution opportunities in the

future might be helpful in persuading them to default less today. However, a Markov-perfect

regulator without commitment cannot do so because it is no longer optimal to allow dilution

tomorrow after banks have decided to not default today.

Importantly, that dilution in the future is helpful in preventing default today results

from the long-term nature of deposits. For simplicity, we fix R and consider a regulator with

partial commitment who chooses B1 and B2 at time t = 0 but then follows Markov-perfect

regulator’s optimal policy for t > 2. The problem, for given B0, is

max
B1,B2

R + µB0 − Φ(−V̂ e
0 )ξB0 +

1

r∗

[
V e(B1, B2) + V b(B1, B2)− ξB1Φ(−V e(B1, B2))

]
, (11)

where the equity value at time 0 is given by:

V̂ e
0 = R− λ̂B0 + [B1 − (1− λ̂)B0]Q̂1 +

1

r∗

[ ∫ z̄

−V e(B1,B2)

[z + V e(B1, B2)]dΦ(z)

]
,

and the deposit price is:

Q̂1B1 =
1

r∗

[ ∫ z̄

−V e(B1,B2)

V b(B1, B2)dΦ(z)

+

∫ −V e(B1,B2)

−z̄
[z + V b(B1, B2) + V e(B1, B2)− ξB1]dΦ(z)

]
.

We know from (10) that the Markov-perfect regulator picks B2 at t = 1 to maximize the

last term in (11) given pre-determined B1. However, with partial commitment to B2, the

regulator internalizes how bank default loss Φ(−V̂ e
0 )ξB0 today would be affected. It is easy

to show that:

V̂ e
0 = R− λ̂B0 − (1− λ̂)B0Q̂1 +

1

r∗

[
V e(B1, B2) + V B(B1, B2)− ξB1Φ(−V e(B1, B2))

]
.

(12)

Without non-withdrawing deposits, i.e. (1 − λ̂)B0 = 0, Markov-perfect regulator’s policy

that maximizes the last term in (11) also maximizes V̂ e
0 today. In that case, default loss is

minimized and thus his policy for B2 is also optimal from today’s perspective. However, long-

term deposits create a potential conflict between the optimal regulation tomorrow and what

is optimal from today’s perspectives—that is, committing to not fully eliminating dilution

might decrease debt burden of banks (1 − λ̂)B0Q̂1 and thus result in fewer bank defaults

19



today.

Endogenous withdrawals complicate the analysis. Importantly, the regulator’s optimal

deposit choice tomorrow might not be optimal today because of not only the default options

possessed by banks but also the withdrawal options possessed by depositors. In this case,

regulator with partial commitment will take into account that B2 influences the withdrawal

choice of depositors at t = 0, which in turn changes both V̂ e
0 in (12) and liquidity value at

t = 0 in (11).

3.3 Laissez-faire, Ramsey and Markov-perfect regulators

To summarize our previous discussions, when deposits are modeled to be short-term and

dilution is absent, laissez-faire banks and regulators (Markov-perfect and Ramsey) adopt

the same deposit policy. Capital regulation and regulator commitment are not relevant.

When deposits are long-term, even with a fixed maturity, capital regulation creates value by

reducing dilution and regulators face a commitment problem. In this section, we numerically

solve these three models for fixed and endogenous maturities, and we compare the optimal

policies.

Two issues are worth noting at this point. First, for the laissez-faire case, since we have

assumed in this section that µ(B) is no longer constant in B, we take into account the

(b, B) problem. For instance, when choosing b′, banks forecast B and its evolution. On the

equilibrium path, b and B are consistent with each other.

Second, for the Ramsey problem, we show the existence of a pseudo steady state, in

some aggregate quantities. Specifically, Bt, Qt and V e
t , are constant. However, Lagrange

multipliers keep growing at a speed under which the no-Ponzi conditions are satisfied. Such

non-stationarity precludes the use of standard numerical approaches based on dynamic pro-

gramming or first-order conditions. To study the responses to shocks, we reformulate the

Ramsey regulator’s problem recursively with the “promised equity value” to banks as an

additional state variable. Details are given in the appendix.

3.3.1 Steady-state comparisons

Table 1 shows deterministic steady states for the three economies. Since capital regulation

becomes more relevant when bank default risk is nontrivial, for example around financial

crises, we consider in this section a parameter combination that produces a higher default risk

relative to that used in Section 2.7 For baseline models with endogenous withdrawals, we set

7Our results largely carry through under parameters close to those in Section 2, although quantitative
magnitudes are a bit smaller since default risk is smaller.
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r∗ = 1/0.9 and µ(B) = 0.1245−0.012×B, representing a crisis where safe liquidity becomes

more valuable but banks are riskier. We set all bank- and depositor-related parameters not

mentioned to be the same as those in Section 2.3.1. For fixed-maturity models, we choose

λ̂ = 0.3 and re-adjust upward µ(B) = 0.13− 0.012×B so that laissez-faire economies under

fixed- and endogenous-maturity have similar steady-state deposits and withdrawal masses.

Endogenous-maturity Fixed-maturity
Moments Laissez-faire Ramsey MP Laissez-faire Ramsey MP
Bss 0.5594 1.1269 0.8104 0.5610 1.1045 1.1026
V e
ss 0.1608 0.2112 0.2206 0.1929 0.2324 0.2337

1−Bss/Hss 0.2652 0.2337 0.2958 0.3108 0.2494 0.2505
Qss 0.9594 1.0055 1.0328 0.9900 1.0096 1.0100
Φ(−V e

ss) 0.0952 0.0248 0.0163 0.0457 0.0081 0.0074
λss 0.3048 0.1213 0.0703 0.3 0.3 0.3
Lss 0.1207 0.1177 0.1206 0.1233 0.1167 0.1168
Hss 0.7613 1.4706 1.1508 0.8140 1.4715 1.4711

Table 1: Steady states of laissez-faire and regulated economies. Notes: r∗ = 1/0.9, ξ = 0.2, κ =

0.1, a = 20, µ = 0.1245− 0.012×B,R∗ = 0.02, ρR = 0, σR = 0, z̄ = 0.26. For the fixed-maturity model with

λ̂ = 0.3, we adjust µ = 0.13− 0.012×B for comparability between laissez-faire economies.

The table presents two main findings. The first is that in regulated economies default

rates are a lot lower but the amounts of deposits are a lot higher. By addressing dilution,

capital regulation actually increases the steady-state amount of deposits Bss that banks

absorb. Without capital requirements, banks’ incentive to dilute ex post is punished heavily

by a large deposit spread at the issuance stage, implying that depositors find dilution too

destructive and are unwilling to put their money into banks. Capital regulation serves

as a commitment device and assures depositors that their money is safe to some extent.

Even though steady states of regulated economies admit more deposits, default probabilities

Φ(−V e
ss) are much smaller. A larger liquidity value LssBss that banks capture each period

translates into a larger equity V e
ss, which in turn reduces bank defaults.

That the amount of deposits in the laissez-faire is smaller than in the regulated economies

does not imply capital requirements are not binding. For instance, in the steady states of two

Markov-perfect regulated economies, we have verified that the bank equity value function

V e(R,B,B′) is locally increasing in B′ when we evaluate at the point (B,B′) = (Bss, Bss).

This means that banks themselves, if having a one-shot opportunity, would like to absorb

more deposits than the Bss chosen by Markov-perfect regulator.

The second finding is that the differences between Markov-perfect and Ramsey regulators

are significant, but only with endogenous withdrawal, not with fixed maturity. In particular,
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the differences are large for steady state levels of debt, Bss, and the equity over asset ratios,

(Hss −Bss) /Hss = 1−Bs/Hss. With endogenous withdrawal, the choices of future regulators

affect today’s withdrawal decisions, which directly affect depositors’ liquidity value today. In

addition, withdrawal decisions affect banks’ equity values and default incentives. Therefore,

endogenous maturity creates a powerful channel for commitment to matter which is absent

in the fixed-maturity case.

3.3.2 Delevering an indebted economy

After the steady state properties, we consider here transition dynamics to the steady state.

We are interested in how banks and regulators delever a highly indebted economy. In each

model, we start with a B0 such that B0−Bss > 0 are identical across models. For the Ramsey

case, we assume that the regulator is not bound by past commitments when inheriting B0.

This is a reasonable starting point for thinking about setting up a new regulatory regime,

for instance after the occurrence of a crisis.

Figure 5 plots the absolute deviations from steady state in the deleveraging process, i.e.

Bt−Bss and Φ(−V e
t )−Φ(−V e

ss). It demonstrates that, when deposit maturity is endogenous,

differences are small between regulated and non-regulated economies, as well as between the

two regulated economies.

Endogenous withdrawals make a big difference for how laissez-faire banks delever. This

is due to the fact that depositors’ withdrawals discipline dilution. When deposit maturity

is fixed, the dilution problem is severe and banks act slowly in terms of buying back debt.

In contrast, banks in our baseline model end up delevering much more quickly because,

otherwise, depositors would pull money out of their accounts.

Somewhat surprisingly, there is little difference between Ramsey and Markov-perfect

regulators, whether withdrawals are endogenous or deposit maturity is fixed. By definition,

a Ramsey solution includes history-dependence induced by commitment that is absent in

the Markov-perfect case. Despite that, this does not translate into additional persistence

in deleveraging. In particular, the Ramsey regulator does not delever more slowly than the

Markov-perfect regulator in Figure 5.

3.3.3 Regulatory responses to shocks

This section shows the dynamics of regulated economies in response to shocks to asset pro-

ductivity R in our endogenous-maturity model.8 Different from the deleveraging experiment

8Dynamics within fixed-maturity models are similar, even though quantitative magnitudes are different.
They are not reported here to save space.
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Figure 5: Delever an indebted economy. Notes: Parameters are identical to those in Table 1.

conducted in the previous section, the Ramsey regulator’s behavior here is governed by the

commitments made in the past. In other words, we are studying here the optimal capi-

tal requirements in an established policy regime. This experiment is informative about the

optimal setting of a countercylical capital buffer (CCyB) as introduced in Basel III.

Figure 6 reports the impulse responses to a large i.i.d. R shock at t = 10, which represents

a recession caused by, for example, a housing crisis or a pandemic that lasts for one year.

Upon the shock, bank equity values fall and therefore bank defaults become more likely. By

allowing more deposits, both regulators inflate the equity value and incentivize banks to not

default.

Importantly, there is a clear difference in terms of policy persistence between the two

regulators. The Markov-perfect regulator increases deposits sharply right upon the shock

but then quickly delevers as R reverts to its long-run level. In contrast, the Ramsey regulator

commits to allow increased bank deposits for extended periods even though it is value de-
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Figure 6: Regulator’s commitment and IRFs to i.i.d. R shocks. Notes: ρR = 0, σR = 0.1, and

the other parameters are identical to those in Table 1.

stroying ex post. By doing so,the Ramsey regulator is able to better reduce rollover pressures

and thus prevent bank defaults today. The lower panel displays the equity ratios 1 − B/H
in the two regulated economies and the difference between them. Relative to the Markov-

perfect regulator, the Ramsey regulator reduces the equity ratio at t = 11 by less. After

that, the Ramsey regulator keeps the equity ratio lower for several periods.

Figure 7 considers a typical business cycle shock, i.e. a small but persistent drop in

R, specifically with ρR = 0.9 and σR = 0.01. In this case, aggregate bank deposits shrink

drastically due to the long-lasting increase in default risk. So does the asset value of banks.

Combining both, changes in capital requirements turn out to be not as drastic. As regulators

expect the low-productivity scenario to be long-lasting, they optimally tighten the capital

requirements to alleviate future default losses. The impact of commitment is comparable

to that in the i.i.d. shock case. The Ramsey regulator imposes a lower equity ratio for

quite a long time, relative to the Markov-perfect regulator. This again reflects the fact that
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the former can better alleviate the impact of the shock at impact by committing to allow a

higher bank leverage in the future

Figure 7: Regulator’s commitment and IRFs to persistent R shocks. Notes: ρR = 0.9, σR = 0.01,

and the other parameters are identical to those in Table 1.

4 Conclusions

The macro-finance literature has found it convenient to model bank liabilities as short-term

debt. However, bank deposits are non-maturing, and this effectively converts deposits into

long-term debt subject to dilution. In this paper, we have demonstrated that explicitly

modeling the non-maturing nature of deposits significantly changes the dynamic responses

of banks to interest rate shocks and therefore the impact of monetary policy shocks on the

banking sector. The macro-finance literature has also found it convenient to model regula-

tory policies with adhoc policy rules. With deposits subject to dilution, optimal banking

regulation becomes subject to a time-inconsistency problem. The results of this paper show
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that explicitly accounting for regulator commitment has first-order consequences for optimal

macroprudential policies.
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5 Appendix

5.1 Ramsey pseudo steady states

In this section we show that there is a pseudo steady state for the Ramsey regulator’s allo-

cation. Specifically, real variables Bt, Qt and V e
t can be at a stationary point while Lagrange

multipliers are not. This property is present in both cases, with or without endogenous ma-

turity. We check convergence from arbitrary initial states numerically with a finite horizon

version of the model by increasing the number of periods.

To save space, we present only the endogenous-maturity case. The Lagrangian is given

by:

max
{V e

t ,Qt,Bt+1,γt,ζt}∞t=0

E0

∞∑
t=0

1

(r∗)t

{
Rt + L(Bt, Qt)Bt − ξBtΦ(−V e

t )

+ γt

[
Rt − λ(Qt)Bt +Qt[Bt+1 − (1− λ(Qt))Bt] +

1

r∗
Et

[∫ z̄

−V e
t+1

(z + V e
t+1)dΦ(z)

]
− V e

t

]

+ ζt

[
1

r∗
Et

[
[L(Bt+1, Qt+1) + λ(Qt+1) + (1− λ(Qt+1))Qt+1]Bt+1

+

∫ −V e
t+1

z

(z + V e
t+1 − ξBt+1)dΦ(z)

]
−QtBt+1

]}
,

where L(Bt, Qt) = µ(Bt) +
∫ ν̄
Qt+κ−1

(ν − κ)dF (ν) and λ(Qt) = 1 − F (Qt + κ − 1); γt and ζt

are two Lagrange multipliers; B0 is predetermined.

Three first-order conditions together with two constraints determine the allocation. After

imposing time invariance in all real variables but not the multipliers, we get the following

five steady-state equations:

1

r∗
[Lss +BssL

B
ss − ξΦ(−V e

ss)] +
1

r∗
γt+1[−λss −Qss(1− λss)] + γtQss,

+ ζt

[
1

r∗
[λss + Lss +BssL

B
ss + (1− λss)Qss − ξΦ(−V e

ss)]−Qss

]
= 0, (13)

ξBssφ(−V e
ss)− γt + γt−1[1− Φ(−V e

ss)] + ζt−1[Φ(−V e
ss) + ξBssφ(−V e

ss)] = 0, (14)

LQss + γt(−λQss + λss +Qssλ
Q
ss)− ζt + ζt−1(λQss + LQss + 1− λss − λQssQss) = 0, (15)

R∗ − λssBss +Qss[Bss − (1− λss)Bss] +
1

r∗

∫ z̄

−V e
ss

(z + V e
ss)dΦ(z)− V e

ss = 0,

1

r∗

[
[λss + Lss + (1− λss)Qss]Bss +

∫ −V e
ss

z

(V e
ss + z − ξBss)dΦ(z)

]
−QssBss = 0,
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where LB and LQ represent derivatives of L(Bt, Qt) with respect to Bt and Qt respectively;

λQ represents the derivative of λ(Qt) with respect to Qt.

Define γ∗t = γt + 1 and ζ∗t = ζt + 1. Equations (13), (14) and (15) evolve into:

γ∗t+1 = A0γ∗t + A1ζ∗t , (16)

γ∗t = B0γ∗t−1 +B1ζ∗t−1, (17)

ζ∗t = ΩssB
0γ∗t−1 + [ΩssB

1 + (1 + LQss − Ωss)]ζ
∗
t−1, (18)

where Ωss = λss + (Qss − 1)λQss and

A0 =
r∗Qss

λss + (1− λss)Qss

,

A1 =
λss + Lss +BssL

B
ss + (1− λss)Qss − ξΦ(−V e

ss)− r∗Qss

λss + (1− λss)Qss

,

B0 = 1− Φ(−V e
ss),

B1 = Φ(−V e
ss) + ξφ(−V e

ss)Bss.

Some manipulations yield:

ζ∗t =

[
[ΩssB

1 + (1 + LQss − Ωss)]− ΩssB
0A

1 −B1

A0 −B0

]
ζ∗t−1.

We know that (A0 −B0)γ∗t + (A1 −B1)ζ∗t = 0, which means[
[ΩssB

1 + (1 + LQss − Ωss)](A
1 −B1)− ΩssB

0 (A1 −B1)2

A0 −B0
+ A1(A0 −B0)− A0(A1 −B1)

]
ζ∗t−1 = 0.

Setting the term in the bracket to zero gives us the restriction we need to solve for Bss, Qss

and V e
ss. We verify numerically that 1 < [ΩssB

1 + (1 +LQss−Ωss)]−ΩssB
0A1−B1

A0−B0 < r∗—that

is, multipliers are growing without violating the no-Ponzi game conditions.

5.2 Formulating Ramsey regulator with promised equity values

Since the Lagrange multipliers are non-stationary but not the real quantities, we resort to a

version of the ”promised-utility” approach to solve for impulse responses of Ramsey regulator

to shocks. We have verified numerically that the steady state of this recursive problem and

that of the sequential problem outlined previously are indeed identical.

Denote the equity value promised by Ramsey regulator to banks, net of the i.i.d. z shocks,

as v. The state space evolves into {R,B, v} and Ramsey regulator chooses tomorrow’s
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deposits B′ and a contingent plan for promised utilities v′(R′) in each state.

Again, to lighten the notations here, we lay out only our formulation under endogenous

maturity. It is given by:

H(R,B, v) = max
B′,v′(R′)

R + L(B,Q(B′, v′(R′);R))B − ξBΦ(−v) +
1

r∗
ER′|RH(R′, B′, v′(R′)),

subject to promise keeping:

v = R− λ(Q(B′, v′(R′);R))B +Q(B′, v′(R′);R){B′−[1− λ(Q(B′, v′(R′);R))]B}

+
1

r∗
ER′|R

[∫ z̄

−v′(R′)
[v′(R′) + z]dΦ(z)

]
,

and a pricing constraint:

Q(B′, v′(R′);R)B′

=
1

r∗
ER′|R

[
{λ(Q(B′′, v′′(R′′);R′)) + L(B,Q(B′′, v′′(R′′);R′))

+ [1− λ(Q(B′′, v′′(R′′);R′))]Q(B′′, v′′(R′′);R′)}B′

+

∫ −v′(R′)
−z̄

[v′(R′) + z − ξB′]dΦ(z)

]
.

It is well-acknowledged that computing models with long-term debt is non-trivial. The

contingent promised equity values v′(R′) represent an additional challenge which precludes

the use of dynamic programming. The model is solved by combining the system of first-order

conditions with the steady-state solution.
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