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Abstract

This paper analyzes the role of liquidity regulation and its interaction with capital

requirements. We first introduce costly capital in a bank run model with endogenous bank

portfolio choice and run probability, and show that capital regulation is the only way to

restore the effi cient allocation. We then enrich the model to include fire sales, and show

that capital and liquidity regulation are complements. The key implications of our analysis

are that the optimal regulatory mix should be designed considering both sides of banks’

balance sheet, and that its effectiveness depend on the costs of both capital and liquidity.
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1 Introduction

The 2007-2009 financial crisis was a milestone for financial regulation, leading to significant

reforms to the existing capital regulation and the introduction of a new set of liquidity require-

ments. In particular, banks have been required to hold higher capital buffers to reduce their

exposure to solvency-driven crises and, at the same time, to increase their liquidity holdings to

reduce liquidity mismatch and the consequent risk of liquidity-driven crises. The introduction

of a new set of liquidity requirements, namely the Liquidity Coverage Ratio (LCR) and the

Net Stable Funding Ratio (NSFR), as complements to the existing and improved capital-based

regulation, has led to a debate in the academic and policy arena on the effective need of all

these regulatory tools, their interaction, as well as their potential contrasting effects for financial

stability and welfare.

Bank (il)liquidity and (in)solvency are closely intertwined concepts and often diffi cult to

tell apart when a crisis manifests (see e.g., Goodhart, 1999). On the one hand, liquidity-driven

crises can spur solvency issues; on the other hand, fears about bank solvency may precipitate

liquidity problems. Furthermore, when a crisis is underway and a bank faces a large outflow

of funds, it becomes very diffi cult to assess the ultimate source of these withdrawals, which, in

turn, may limit policymakers’ability to intervene effectively.

It is precisely this close link between solvency and liquidity crises that motivates the dis-

cussion about the joint effects that capital and liquidity regulation have on financial stability,

and ultimately, welfare. In particular, what are the effects of changes in the level of bank capi-

talization and portfolio liquidity on bank stability? How do capital and liquidity requirements

interact in affecting the probability of bank failure? Are capital and liquidity requirements

equally effective in curbing fragility and/or fostering productive investments?

To tackle these questions, we start by building a simple model, where we introduce capital

in a two-period global games model with endogenous portfolio choice. This allows us to derive

a simple working framework, where the run probability is endogenous to banks’balance sheet

choices and capital is costly so that there is scope for capital regulation. The model has one
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bank issuing short term debt and equity, and investing in a risky portfolio consisting of liquid

and illiquid assets, whose final return increases with the fundamentals of the economy. The

portfolio composition determines the trade-off between intermediate and final date portfolio

returns, whereby a higher proportion of liquid assets leads to a higher (safe) return at the

interim date, but to a lower (risky) return at the final date.

The portfolio liquidity and the capital structure affect debt holders’decision to roll over

their debt and, consequently, the likelihood of a bank failure. In this setting, the bank fails as a

consequence of a massive withdrawal of funds by debt holders at the interim date (i.e., a run).

A debt holder’s withdrawal decision is based on an imperfect signal regarding the date 2 bank

portfolio return that each debt holder receives at date 1, as the signal provides information

about the fundamental of the economy and the actions of the other debt holders.

As standard in the global games literature (see e.g., Morris and Shin, 1998, 2003; Rochet

and Vives, 2004; Goldstein and Pauzner, 2005), the equilibrium outcome is that a run occurs

when the fundamentals of the economy are below a unique threshold. Within the range of

fundamentals where they occur, crises can be classified into either solvency- or liquidity-driven

crises. The former happen at the lower part of the crisis region where the signal on the funda-

mentals is so low that not rolling over the debt claim at the interim date is a dominant strategy

for debt holders. The latter occur for an intermediate region of fundamentals and are due to

the presence of strategic complementarity among debt holders, in that each of them does not

roll over out the self-fulfilling belief that others will do the same.

We show the crisis threshold crucially depends on the level of bank capitalization and its

portfolio liquidity. In particular, higher capitalization or increased portfolio liquidity increase

the crisis probability for a bank with very little capital and/or very illiquid portfolios, while

decreasing it for a bank with intermediate levels of capital or liquidity. Finally, for a bank with

high initial levels of capital or liquidity, higher capitalization is beneficial for stability, while

more portfolio liquidity is detrimental. These results hinge on the fact that capital and liquidity

affect debt holders’payoff at both date 1 and date 2, and debt holders value the payoffs at
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either date differently based on the initial bank balance sheet structure.

This comparative statics exercise delivers some initial implications for the design of reg-

ulation. In particular, it hints to the fact that capital and liquidity requirements should be

designed considering both sides of banks’balance sheets. In this respect, our analysis supports

regulatory instruments like the risk-weighted capital ratio, the liquidity coverage ratio and the

net stable funding ratio that essentially specify a ratio between banks’assets and liabilities,

in line also with Cecchetti and Kashyap (2018). Furthermore, small changes in the level of

capitalization and/or portfolio liquidity may have undesirable consequences for some banks,

especially for those who would need to strengthen their stability the most, thus highlighting

the importance to calibrate the size of the regulatory intervention to the bank’s specific balance

sheet conditions and risk exposures.

Building on the comparative statics exercise, we then analyze the bank’s choice of capital

structure, portfolio liquidity and debt holders’repayment in the unregulated equilibrium and

show that the allocation is ineffi cient. The bank chooses a level of capitalization that is too low,

thus exposing itself excessively to runs and ultimately foregoing the return of too many good

investment projects. This ineffi ciency hinges on the existence of a wedge between the private

and the social cost of capital, which prevents the bank from choosing the level of capital that

would eliminate ineffi cient crises.

This ineffi ciency leaves scope for regulation. We show that capital requirements are the only

effective tool in restoring the effi cient allocation, where ineffi cient crises can be eliminated and

the optimal portfolio allocation between liquid and illiquid assets is achieved. Once capital is

determined by regulation, the bank chooses the socially optimal level of liquidity as there is no

wedge between the private and the social cost of liquidity.

In sum, our baseline framework pictures an economy whose ineffi ciency hinges on the bank’s

preference for debt financing over equity, and it is consistent with the pre-crisis view of the

central role of capital requirements in the regulatory framework. Thus, our baseline framework

offers an ideal framework where to embed additional frictions justifying the need of liquidity
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regulation and it allows us to study the interaction between liquidity and capital requirements.

We next enrich the model to include the possibility of fire sales. Specifically, we consider the

presence of multiple symmetric banks sharing the same fundamentals. The key difference rela-

tive to the baseline model is that banks sell shares of their portfolios to meet early withdrawals

in a secondary asset market to outside investors. Outside investors are endowed with limited

resources and may be less able than banks in managing the portfolios they acquire. As a result,

the (per unit) amount that a bank can raise from the market does no longer correspond only to

their portfolio liquidity choice, but it also depends on aggregate market conditions. Transfer-

ring assets outside the banking sector then may entail a loss of resources, which increases with

the size and illiquidity of the pool of assets on sale in the market.

This specification modifies the analysis in two important dimensions. First, it affects debt

holders’ rollover decision by introducing another source of strategic complementarity. This

implies that banks are strategically connected and their failures may spur from contagion:

Banks fail because their debt holders are concerned about the health of other banks in the

system. Second, the extended framework features an additional ineffi ciency in banks’decisions

since banks do not internalize the effect that their individual choices have on the secondary

asset market and consequently on the other banks.

We first show that in the economy with multiple banks, crises are more likely and also more

costly in that good projects are liquidated more often and their premature liquidation entails a

larger cost than in the baseline model. We then show that in this scenario, both liquidity and

capital requirements are needed, since the economy now features a wedge between the private

and the social cost of liquidity in addition to the one for capital. As a result, liquidity and

capital requirements are now complements: The former are used to prevent the occurrence of

fire sales; the latter are needed to prevent the premature liquidation of profitable investment

projects. As in the baseline model, the regulatory allocation depends on the cost of capital and

liquidity. Specifically, the equilibrium features ineffi cient crises and/or fire sales when the cost of

capital and/or liquidity is high, while both ineffi ciencies are eliminated through an appropriate
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combination of capital and liquidity requirements otherwise.

A number of recent papers have looked at the role and implications of the newly introduced

liquidity regulation, also in connection with capital requirements (see, e.g., Walther, 2015;

Calomiris, Heider and Hoerova, 2015; Diamond and Kashyap, 2016; Macedo and Vicente, 2017).

Closer to us are other papers using the global-games methodology to study the implications

of capital and liquidity on the probability of banking crises: Vives (2014), König (2015), and

Schilling (2016). However, differently from these papers, we endogenize bank capital structure,

portfolio liquidity and debt holders’ returns. This allows us to highlight the ineffi ciencies of

the market equilibrium and study the optimal regulation. The only other paper that attempts

to do this, as far as we know, is Kashyap, Tsomocos and Vardoulakis (2019). However, our

framework differs from theirs in terms of sources of ineffi ciencies and uncertainty driving debt

holders’ withdrawal decisions. Concerning the former, Kashyap et al. (2019) focus on the

interaction between run and credit risk, while our paper looks at the interaction between run

risk, liability structure and fire sales externalities. Concerning the latter, in their framework,

the uncertainty is on the liquidation value of bank loans, while in ours, it pertains to the

bank long-term project return. Overall, these differences lead to different debt holders’payoff

structure and a different interaction between capital and liquidity regulation. Most importantly,

our framework is much simpler than theirs and lends itself more easily to analytical solutions.

We think this is an advantage for the future development of the literature and the ability to

embed such models in actual policymaking.

The key aspect of our study is the ability to endogenously derive the probability of a banking

crisis and study how it is affected by changes in bank capitalization and portfolio liquidity. To

do this, we rely on the global game techniques as developed in the literature originating with

Carlsson and van Damme (1993) (see Morris and Shin, 2003 for a survey on the theory and

applications of global games). Our paper is close to three contributions in this literature. First,

it shares the idea of rollover game with Eisenbach (2017), although in a framework where

banks also raise equity and choose the liquidity-return trade-off of their portfolio. Second, it

6



faces the same technical challenge of characterizing the existence of a unique equilibrium in the

absence of global strategic complementarities as in Goldstein and Pauzner (2005). Finally, the

extended framework deals with the characterization of a unique crisis threshold in the presence

of two types of strategic complementarities- within and between banks- and multiple banks,

thus extending the analysis of Goldstein (2005).

The paper proceeds as follows. Section 2 presents the baseline model. Section 3 characterizes

the equilibrium with one bank, while Section 4 that with multiple banks. In both sections, we

first derive debt holders’rollover decision. Then, we characterize banks’choices and identify the

ineffi ciencies of the unregulated equilibrium. Finally, we analyze the effectiveness of regulation

in addressing them. Section 5 contains concluding remarks. All proofs are contained in the

Online Appendix.

2 The baseline model with one bank

We start by considering a simple three date (t = 0, 1, 2) economy, with a representative bank

and a continuum [0, 1] of risk neutral investors, each endowed with one unit of resources at

date 0 and nothing thereafter. At date 0 the bank raises one unit of funds from investors and

invests in a risky portfolio. Below we specify both the funding and the assets of the bank. We

then discuss the key assumptions of the baseline model.

2.1 The framework

At date 0, the bank determines the composition of its portfolio between liquid and illiquid

assets. In particular, it chooses the level of portfolio liquidity ` ∈ [0, 1]. For each unit invested

at date 0, the portfolio yields a per unit return ` at date 1 and R (θ) (1− α`) at date 2, with

α > 0, θ ∼ U [0, 1] representing the aggregate state of the economy, R′ (θ) > 0, R (0) = 0 and

Eθ[R(θ) (1− α`)] > 1. The specification entails a standard liquidity-return trade-off: A more

liquid portfolio (i.e., with a higher `) yields a higher date 1 return, but a lower expected return

at date 2, so that through ` the bank chooses a point on a liquidity-return frontier. In other
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words, the parameter α captures the cost of holding a liquid portfolio in terms of lower date 2

return.

On the funding side, the bank raises a fraction k of funds as equity and the remaining

fraction 1−k as short-term debt. Equity finance entails a cost ρ > 1 for the bank, representing

the opportunity cost of funds for equity holders. By contrast, the debt contract specifies a

promised (gross) interest rate r1 = 1 to debt holders withdrawing (or, equivalently, not rolling

over) at date 1 and r2 ≥ r1 date 2. The debt market is perfectly competitive so the bank will

always set r2 at the level required for debt holders to recover their opportunity cost of funds,

which we normalize to 1, and thus be willing to participate.

The aggregate state of the economy θ is realized at the beginning of date 1, but is not

publicly observed until date 2. After θ is realized, at date 1 each debt holder receives a private

signal si of the form

si = θ + εi, (1)

where εi are small error terms, which are independently and uniformly distributed over [−ε,+ε].

Based on this signal, debt holders decide whether to withdraw at date 1 or roll over the debt

until date 2.

The bank satisfies early withdrawals by liquidating a share of its portfolio. The bank fails at

either date when it does not have enough resources to repay the promised due debt repayments.

When this occurs, debt holders receive a share of the bank’s available resources while equity

holders obtain nothing.

The timing of the model is as follows. At date 0 the bank chooses the capital structure

{k, 1− k}, the debt repayment r2 and the level of portfolio liquidity ` so to maximize its

expected profit. At date 1, after receiving the private signal about the state of the fundamentals

θ, each debt holder decides whether to roll the debt over. At date 2, the bank portfolio return

realizes and all claims are paid, if the bank is solvent. The model is solved backwards.
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2.2 Discussion of the assumptions

Portfolio specification. Our portfolio specification can be seen as a reduced form of a more

standard approach whereby the bank chooses to allocate a fraction x in liquid assets returning

0 < T ≤ 1 at either date and 1 − x in illiquid and risky assets yielding λ < T at date 1 and

R (θ) at date 2. Thus, we can specify the return of the portfolio at t = 1 as

` = xT + (1− x)λ, (2)

and that at t = 2 as xT + (1− x)R (θ). These portfolio returns are equivalent to those in our

framework with α being equal to

α (θ, `) =

[
1− T

R (θ)

]
`− λ

` (T − λ)
.

This particular value of α equates the date 2 portfolio returns in the two frameworks, i.e.,

xT +R (θ) (1− x) ≡ R (θ) (1− α`) , (3)

once we substitute the expression for x = `−λ
T−λ from (2) into (3).

Specifying a value for α, which depends on θ and `, enriches the framework without affecting

our qualitative results regarding the existence of potentially non-monotone effects of capital and

liquidity on the run thresholds. Yet, our reduced form with a generic α is more convenient in

terms of tractability and allows us to focus on portfolio early liquidation rather than on single

assets.

Short term debt. Our framework takes the optimality of short-term debt as given. This has

been justified in the literature in the presence of asymmetric information problems in credit

markets (see, e.g., Flannery, 1986; and Diamond, 1991), conflicts between banks’managers and

shareholders (see e.g., Calomiris and Kahn, 1991; Diamond and Rajan, 2001; and Eisenbach,

2017) and idiosyncratic liquidity shocks to bank depositors (e.g., Diamond and Dybvig, 1983).
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The latter explanation could be easily adopted in the context of our model. By assuming risk

averse debt holders with early liquidity needs, the result r1 > 1 would emerge optimally as in

Goldstein and Pauzner (2005). However, this would complicate the analysis without bringing

any new insights in terms of the role of bank capital and liquidity for run risk and investors’

coordination problem. Thus, for tractability, we simply assume risk neutral agents and abstract

from investors’liquidity needs. As a consequence, we take r1 to be given, and for simplicity, to

be equal to 1.

Cost of funding : The assumption ρ > 1 implies that bank capital is a more expensive

form of financing than debt. This assumption, which is standard in the literature (see e.g.,

Hellmann, Murdock and Stiglitz, 2000; Repullo, 2004; Allen, Carletti and Marquez, 2011), has

been recently endogenized on the basis of market segmentation (see, e.g., Allen, Carletti and

Marquez, 2015; and Carletti, Marquez and Petriconi, 2019), the presence of implicit or explicit

government guarantees to bank debt (see, e.g., Admati and Hellwig, 2013) or the existence

of costs associated with the issuance of outside equity (see Harris, Opp and Opp, 2017) and

empirically validated based on a different tax treatment between equity and debt (see e.g.,

Schepens, 2016).1 Following Allen et al. (2015), we could endogenize ρ as the unit price of

capital in a market with a fixed supply of capital K from investors and a demand as coming

from the bank’s optimal capital structure. As long as K is not too large, ρ > 1 would emerge

in equilibrium with the precise value of ρ being an increasing function of the bank’s capital k.

This would imply the same trade-off in the bank’s capital structure decision between higher

cost of funding and run risk as in our baseline model, with the difference that the bank would

have an extra incentive to economize on capital in order to reduce its cost. Assuming ρ > 1

eliminates this latter effect without affecting the key insights of our analysis on the interaction

between capital and liquidity regulation.

1 In most jurisdictions, the cost of debt is tax-deductible, while dividends are not. Schepens (2016) shows
that a reduction in the tax discrimination between debt and equity financing leads to a significant increase in
bank capital ratios.
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3 The equilibrium with one bank

In this section, we derive the unregulated equilibrium of our basic framework with one bank and

characterize the regulatory intervention. We first characterize debt holders’rollover decisions

at date 1 for given levels of capital k, portfolio liquidity ` and debt repayment r2. This allows

us to pin down the probability of a bank failure. Then, we characterize the bank’s choice of

capital, portfolio liquidity and debt repayment at date 0. Finally, we analyze the regulation

needed to remove the ineffi ciencies of the unregulated equilibrium.

3.1 Debt holders’rollover decisions

Each debt holder decides whether to withdraw at date 1 based on the signal si he receives since

this provides information on both θ and other debt holders’actions. When the signal is high,

a debt holder attributes a high posterior probability to the event that the bank portfolio yields

a high return and, at the same time, he infers that the other debt holders have also received

a high signal. This overall lowers his belief about the likelihood of a bank failure and, as a

result, also his own incentive to withdraw at date 1. Conversely, when the signal is low, a debt

holder has a high incentive not to roll over the debt, as he attributes a high likelihood to the

possibility that the return of the bank portfolio is low and that the other investors withdraw

their debt claim at date 1. This suggests that debt holders withdraw at date 1 when the signal

is low enough, and roll their debt claims over until date 2 when the signal is suffi ciently high.

To show this formally, we first examine two regions corresponding to extremely bad and

extremely good realization of the aggregate state variable θ, where each debt holder’s action

is based only on the realization of θ irrespective of his beliefs about the others’behavior. We

start with the lower region.

Lower dominance region. When θ is very low, not rolling over the debt at date 1 is a

dominant strategy for every debt holder. This is the case when, upon receiving his signal, a

debt holder expects to receive at date 2 a lower payoff than the return 1 he would obtain by

withdrawing at date 1, even if all other debt holders wait until date 2. Since r2 ≥ 1, this occurs
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when the bank fails at date 2 and the debt holder obtains the pro-rata share R(θ)(1−α`)
(1−k) . We

then denote as θ (k, `) the value of θ that solves

R (θ) (1− α`)
(1− k)

= 1 (4)

so that the interval [0, θ (k, `)) identifies the range of values of θ where banking crises are only

driven by low fundamentals.2

Upper dominance region. The upper dominance region of θ corresponds to the range [θ, 1]

in which the state of the economy is so good that rolling over is a dominant strategy. As in

Goldstein and Pauzner (2005), we construct this region by assuming that in the range [θ, 1]

the bank investment is safe, i.e., it yields R(1) (1− α`) > 1 both at dates 1 and 2. Given that

1 ≤ r2 < R (1) (1− α`), this ensures that repaying 1 to the withdrawing debt holders does not

affect the bank’s ability to repay r2 to the debt holders rolling over the debt until date 2. Then,

when an investor receives a signal such that he believes that the fundamental θ is in the upper

dominance region, he is certain to receive the promised payment r2, irrespective of his beliefs

on other debt holders’actions. As a consequence, he does not have any incentive to withdraw

early. In what follows, we assume that θ → 1.

The Intermediate Region. When the signal indicates that θ is in the intermediate range

[θ(k, `), θ), a debt holder’s rollover decision depends on the realization of θ as well as on his

beliefs regarding other debt holders’actions. Debt holders may have the incentive not to rollover

their debt claims at the interim date as they fear that others would do the same. Their concern

is that a large number of withdrawals at date 1 would force a massive liquidation of the bank

portfolio, thus depleting bank’s available resources at date 2 and, in turn, their expected payoff.

Denoting as n the proportion of debt holders withdrawing at date 1, the bank liquidates (1−k)n
`

units of portfolio, so that a debt holder’s payoff differential between rolling over until date 2

2For the lower dominance region to exist, it must be the case that there are feasible values of θ for which
all debt holders receive a signal below θ (k, `). Since the noise contained in the signal is at most ε, when
si < θ (k, `)− ε all debt holders receive a signal below θ (k, `). This holds when θ < θ (k, `)− 2ε.
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and withdrawing at date 1 is given by

v(θ, n) =



r2 − 1 if 0 ≤ n < n̂ (θ)

R(θ)(1−α`)[1− (1−k)n
` ]

(1−k)(1−n) − 1 if n̂ (θ) ≤ n < n

0− `
(1−k)n n ≤ n ≤ 1

, (5)

where

n̂ (θ) =
R (θ) (1− α`)− (1− k) r2

(1− k)
[
R(θ)(1−α`)

` − r2

] (6)

denotes the proportion of early withdrawals at which the bank exhausts the resources to repay

the promised r2 to the remaining debt holders at date 2, and

n =
`

(1− k)
(7)

is the proportion early withdrawals forcing the bank to liquidate the entire portfolio at date 1.

A debt holder’s payoffs at date 1 and 2 are illustrated in Figure 1. At date 2, a debt holder

obtains the promised repayment r2 as long as bank resources suffi ce (i.e., for n < n̂ (θ)), while

he obtains the pro-rata share
R(θ)(1−α`)[1− (1−k)n

` ]
(1−k)(1−n) for n ≥ n̂ (θ). Similarly, at date 1, a debt

holder receives the promised repayment r1 = 1 as long as the bank can raise enough resources

by prematurely liquidating its portfolio (i.e., for n < n), while he receives the pro-rata share

`
(1−k)n for n ≥ n.

Insert Figure 1

In the range [0, n), a debt holder’s payoff differential v (θ, n) is weakly decreasing in n as long

as

` < (1− k) (8)

The condition (8), which is obtained by differentiating v(θ, n) with respect to n, means that the
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value of a bank’s portfolio ` is not enough to repay r1 = 1 if all debt holders were to withdraw

at date 1 and thus guarantees that both n̂ (θ) and n̄ are lower than 1.

When condition (8) holds, debt holders’withdrawal decisions are strategic complements. As

in Goldstein and Pauzner (2005), our model only exhibits the property of one-sided strategic

complementarity since in the range [n, 1], a debt holder’s incentive to roll over his debt claim

until date 2 increases with n. This occurs because, when n is very large (i.e., n ≥ n ), the more

debt holders withdraw at date 1, the lower a debt holder’s payoff from withdrawing at date

1, while the payoff at date 2 is zero. As in their framework, there exists a unique threshold

equilibrium in which a debt holder withdraws if and only if his signal is below the threshold

s∗(k, `, r2). At this signal value, the debt holder is indifferent between withdrawing at date 1

and rolling over his debt claim until date 2. The following result holds.

Proposition 1 The model has a unique threshold equilibrium in which debt holders withdraw

their debt claims at date 1 if they observe a signal below the threshold s∗ (k, `, r2) and roll them

over above. At the limit, when ε→ 0, s∗ (k, `, r2)→ θ∗ (k, `, r2) and corresponds to the solution

to ∫ n̂(θ)

0

r2dn+

∫ n̄

n̂(θ)

R (θ) (1− α`)
[
1− (1−k)n

`

]
(1− k) (1− n)

dn =

∫ n̄

0

1dn+

∫ 1

n̄

`

(1− k)n
dn. (9)

Thus, for any θ > θ∗ (k, `, r2) the bank is solvent and always repays the promised amounts.

The proposition states that in the range of fundamentals θ ≤ θ∗ (k, `, r2), a bank fails as

debt holders choose not to roll over their debt claims. By contrast, for any θ > θ∗ (k, `, r2), all

debt holders choose to roll over their debt claims and the bank is solvent in that it can repay

the promised payment {r1, r2} at date 1 and 2. At the threshold θ∗ (k, `, r2) debt holders are

indifferent between rolling over and withdrawing at date 1 in that the expected payoff at date

2, as given by the two terms on the LHS in (9), equals that at date 1, as given by the terms in

the RHS in (9).

The crisis threshold θ∗ (k, `, r2) emerges as the result of a coordination failure among debt

holders. This is due to the existence of strategic complementarities in that each debt holder fears

14



that other debt holders will withdraw and the bank will not have enough resources to repay

their claims if he rolls over. As mentioned above, strategic complementarities emerge only

if condition (8) holds. More formally, denoting as kmax (`) the solution to (8) with equality,

θ∗ (k, `, r2) is the relevant crisis threshold if the bank has a level of capitalization k and portfolio

liquidity ` in the region below the curve kmax (`). By contrast, when this is not the case, i.e.,

when (8) does not hold, there are no strategic complementarities among debt holders and the

relevant crisis threshold is θ (k, `).3 The relevance of the two crisis thresholds is illustrated in

Figure 2. In what follows, we refer to the crises in the region below kmax (`) as liquidity-driven

ones and to those in the region above kmax (`) as solvency-driven crises.

Insert Figure 2

The following corollary illustrates how the levels of bank capitalization and portfolio liquidity

affect the crisis thresholds for a given repayment r2.

Corollary 1 The following holds:

1) The threshold θ decreases with the level of bank capital k and increases with portfolio

liquidity ` (i.e., ∂θ∂k < 0 and ∂θ
∂` > 0);

2) The threshold θ∗ i) decreases with k for any k ∈ (k̃ (`) , 1], and increases otherwise (i.e.,

∂θ∗

∂k < 0 if k ≥ k̃ (`) and ∂θ∗

∂k > 0 otherwise); ii) decreases with ` for any k ∈ (k (`) , k (`))

and k ≥ kT (`), and increases otherwise (i.e., ∂θ
∗

∂` < 0 if k (`) < k < k (`) and k ≥ kT (`) and

∂θ∗

∂` > 0 otherwise).

The boundaries k̃ (`), kT (`), k (`) and k (`), with k̃ (`) < k (`) < k (`), are defined in the

Appendix.

The corollary, which is illustrated in Figure 3a and 3b, shows that capital is beneficial for

fundamental crises, while portfolio liquidity is detrimental. The reason is that higher capital

reduces leverage, thus leaving more resources to repay debt holders at date 2. By contrast,
3To keep the notation simple, in what follows, we denote the thresholds θ(k, `) and θ∗(k, `, r2) as θ and θ∗,

respectively.
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liquidity reduces bank profitability at date 2, thus increasing the incentives of debt holders to

withdraw at date 1.

Insert Figures 3a and 3b

The effect of capital and liquidity on the threshold θ∗ is more involved as these affect debt

holders’payoffs at both dates 1 and 2, as it emerges from (9). Higher capital increases debt

holders’expected repayment both at date 1 and at date 2. The first effect dominates in the

region below the curve k̃ (`), where the bank faces a high risk of failure at date 1 as it is poorly

capitalized and/or holds illiquid portfolios. The second effect dominates in the region above

the curve k̃ (`) since the bank is likely to withstand early withdrawals and survive until date 2.

Concerning portfolio liquidity, its increase raises a debt holder’s repayment at date 1, but

has an ambiguous effect on the date 2 payoff. On the one hand, higher liquidity reduces the

(per unit) portfolio return at date 2; on the other hand, it lowers the amount of portfolio that

has to be liquidated at date 1 so that more resources are available at date 2 to pay debt holders.

As shown in the corollary, portfolio liquidity is only beneficial in the region between the curves

k (`), k (`) and above kT (`). Here, the bank holds an intermediate level of capitalization and/or

portfolio liquidity. As a consequence, it is less exposed to the risk of failure at date 1 than in

the region below k (`) and kT (`), in which it holds either low levels of capital and liquidity or

both, but there are still significant strategic complementarities among debt holders’actions.

Thus, holding a more liquid portfolio allows the bank to liquidate fewer units at date 1 to repay

withdrawing debt holders, and, as a consequence, increases the expected payoff for remaining

investors at date 2.

By contrast, portfolio liquidity has a detrimental effect on the threshold θ∗ in the regions

below the curves k (`) and kT (`) and between k (`) and kmax (`). In the former region, the bank

faces a high risk of failure at date 1, thus debt holders value the effect of higher liquidity on

their date 1 payoffmore than at date 2. In the latter region, liquidity increases θ∗ because of the

negative effect it has on the (per unit) portfolio return at date 2. Since in this region the bank

faces a low risk of failure at date 1, as it holds high levels of capital and/or portfolio liquidity,
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the prospect of lower date 2 profitability increases debt holders’incentives to withdraw, thus

increasing θ∗.

Corollary 1 has implications on the effects of capital and liquidity on the probability of crises.

First, increasing capital or liquidity does not help banks that face high risk of failure at date 1

(as in the regions below k̃ (`) and k (`) in Figures 3a and 3b) because they are poorly capitalized

and hold illiquid portfolios. Second, and related to this, the timing of a regulatory/supervisory

intervention is key: Asking banks to recapitalize and/or hold more liquidity when they face

a high risk of failure at date 1 may precipitate a run rather than containing it because debt

holders expect even higher payoffs at date 1. Third, holding more liquid portfolios may increase

run risk for banks that are well capitalized and/or hold already enough liquid portfolios (as

in the region above k (`) in Figure 3b) as this has mainly a negative effect on their date 2

profitability. In line with this, imposing the same regulation to banks with different balance

sheets may not be optimal.

To sum up, the analysis of the properties of the crisis thresholds shows that the same increase

in capital or liquidity may have different effects on stability for weakly, moderately or strongly

capitalized banks, as well as for banks with low, moderate or high portfolio liquidity. The

results highlight the importance of considering the interaction between capital and liquidity to

assess their effects on stability. As we show below, looking at such interaction is crucial for the

bank’s choice of capital and portfolio liquidity, as well as for designing and evaluating capital

and liquidity regulation.

3.2 Bank choice

Having computed the crisis thresholds θ and θ∗, we can now characterize the bank’s decisions

concerning capital k, portfolio liquidity ` and debt interest rate r2 at date 0. To do this, we

start by assuming that (9) holds so that θ∗ is the relevant crisis threshold and we then show
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that this is consistent with the bank’s choice. Given this, the bank problem is as follows:

max
k,`,r2

ΠB =

∫ 1

θ∗
[R (θ) (1− α`)− (1− k) r2] dθ − kρ (10)

subject to

IRD :

∫ θ∗

0

`

1− kdθ +

∫ 1

θ∗
r2dθ ≥ 1, (11)

ΠB ≥ 0, (12)

0 ≤ k ≤ 1, 0 ≤ ` ≤ 1. (13)

The bank chooses k, ` and r2 to maximize its expected profit ΠB subject to a number of

constraints. The first term in (10) is the revenue of the bank net of the debt repayments at

date 2 when, for θ ≥ θ∗, all debt holders roll over their debt and the bank remains solvent,

while the second term represents the expected return to equity holders. Condition (11), which

represents debt holders’participation constraint, requires their expected payoffs from lending

to the bank to be at least equal to the storage return. For θ < θ∗, debt holders choose not to

roll over their debt at date 1 thus forcing the liquidation of the entire bank portfolio for the

value `. Each debt holder then receives the pro-rata share of bank’s available resources `
1−k .

For θ ≥ θ∗, debt is rolled over and investors receive the promised repayment r2. The second

constraint in (12) is a non-negativity constraint on bank profit, while the last two conditions

in (13) are physical constraints on the level of capital and portfolio liquidity.

The solution to the bank’s maximization problem yields the following result.

Proposition 2 The market equilibrium features rB2 > 1 as the solution to (11) and kB ∈ (0, 1)

and `B ∈ (0, 1) as given by the solutions to

−
[
∂θ∗

∂k
+
∂θ∗

∂r2

dr2

dk

]
[R (θ∗) (1− α`)− `]− (ρ− 1) = 0, (14)
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and

−
[
∂θ∗

∂`
+
∂θ∗

∂r2

dr2

d`

]
[R (θ∗) (1− α`)− `] +

∫ θ∗

0

dθ −
∫ 1

θ∗
αR (θ) dθ = 0. (15)

The equilibrium pair
{
kB , `B

}
satisfies condition (8) and lies in the region between the curves

k (`) and k (`) and kT (`).

The proposition shows that in equilibrium the bank chooses to be exposed to liquidity

crises due to strategic complementarities in debt holders’withdrawal decisions and to liquidate

profitable portfolios prematurely, forgoing the return R (θ) (1− α`) − `. Increasing capital up

to the level ` = (1− k) that is necessary to eliminate liquidity crises requires the bank to

bear the higher cost of capital ρ > 1, while entailing no benefit from preventing the premature

liquidation of its portfolio. In other words, when kB and `B are such that ` = (1 − k), the

benefit for the bank in terms of reduced crisis probability approaches zero, while the marginal

cost in terms of higher funding costs (i.e., ρ > 1) is still positive.4 It follows that the bank

chooses a level of capital that is too low relative to the socially optimal level, as we analyze in

detail below.

At the optimum, the bank always chooses kB and `B in the range where both ∂θ∗

∂k < 0 and

∂θ∗

∂` < 0 as this allows it to be less exposed to crises and, in turn, also reduce financing costs rB2 ,

with an overall positive effect on its profit. In choosing its capital structure, the bank trades off

the marginal benefit of capital with its marginal cost. The former, as represented by the first

term in (14), is the gain in expected profits [R (θ∗) (1− α`)− `] induced by a lower probability

of a crisis, as measured by ∂θ∗

∂k + ∂θ∗

∂r2
dr2
dk . The latter, as captured by the last two terms in (14),

is the increase in funding cost ρ− 1 associated with an increased reliance on equity financing.

The interpretation for (15) is analogous, with the only difference that the marginal benefit

of an increase in liquidity consists now of two terms. First, more liquidity is beneficial as it

leads to a lower crisis probability, as captured by the first term in (15). Second, more liquidity

leads to a higher portfolio return at date 1, as captured by the second term in (15). Finally,

4When (1− k) = ` holds, θ∗ → θ and r2 = 1 from debt holders’ participation constraint in (11). Thus,
R (θ∗) (1− α`)− ` = 0.
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the marginal cost of increasing liquidity corresponds to the third term in (15), which captures

the effect that more liquidity has on the date 2 return of bank portfolio.

3.3 Regulatory intervention

The market equilibrium characterized above is ineffi cient. Given the presence of costly capital

(i.e., ρ > 1), the bank has an incentive to choose a level of capital k and a level of portfolio

liquidity ` that are not optimal from a social welfare perspective for two reasons. First, in the

unregulated equilibrium condition (8) holds. This implies that the relevant crisis threshold is

θ∗ > θ as defined in (4) so that when a run occurs for θ ≤ θ∗, the bank liquidates its portfolio

obtaining ` and thus giving up the return R (θ) (1− α`) at date 2. Such liquidation is ineffi cient

for any θ > θE , where θE corresponds to the solution to

R (θ) (1− α`)
`

= 1. (16)

Comparing (16) with (4), it follows from (8) that θE < θ < θ∗ and that θ∗ → θ = θE when

` = 1− k (17)

holds. This implies that crises in the unregulated equilibrium can be ineffi cient, entailing a

total loss TL equal to

TL =

∫ θ∗

θE
[R (θ) (1− α`)− `] dθ, (18)

which is increasing in θ∗. Such a loss can be eliminated by enforcing θ∗ → θ = θE , which can

be achieved, as shown in (17), by appropriately designing capital and liquidity requirements.

Second, as shown in Proposition 2, the bank chooses k and ` so to maximize its own

expected profit rather than social welfare. The latter simply corresponds to the total return of

bank portfolio, while the former also takes account of the cost of funding, and in particular, of

the higher cost of capital ρ relative to the unitary cost of debt. This leaves room for regulation

as a way to improve upon the market allocation, as we analyze next.
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We consider a regulator that can set capital and/or liquidity requirements so to maximize

social welfare as given by the sum of the bank’s profits and investors’returns. Regulation is

announced at the beginning of date 0, before the bank raises its funds and invests. Then, debt

holders take their rollover decisions at date 1. We denote with the superscript R the equilibrium

variables in the regulatory allocation.

The problem of the regulator is then to choose capital and/or liquidity requirements {k, `}

so to maximize

SW =

∫ 1

θ∗
[R (θ) (1− α`)− (1− k) r2] dθ − kρ+ (1− k)

∫ θ∗

0

`

1− kdθ + (1− k)

∫ 1

θ∗
r2dθ + kρ =

=

∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ. (19)

subject to the promised repayment to debt holders r2 satisfying (11) with equality as chosen

by the bank and non-negative bank profit as in (12).

As shown in (19), the social welfare boils down to the expected portfolio returns as given

by ` for θ ≤ θ∗ when the bank liquidates its portfolio at date 1 to satisfy debt holders’with-

drawals, and by R (θ) (1− α`) for θ > θ∗ when no run occurs and the bank continues until

date 2. Importantly, from a social perspective, both debt and equity have a cost of 1 since the

repayments to debt holders and equity holders are a simple redistribution between the bank

and investors. This means that there is a wedge between the private (i.e., the bank’s) and the

social cost of capital. We have the following result.

Proposition 3 The regulator sets capital requirements k and the bank chooses the level of

portfolio liquidity ` and the debt repayment r2. Thus, the regulatory equilibrium features the

following:

i) For ρ < ρ, kR = 1, `R = 0 and ΠB(kR, `R) > 0;

ii) For ρ ≤ ρ < ρ̃ (α), kR = 1− `R < 1, and `R > 0 as the solution to

ΠB(kR, `R) = 0,
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and rR2 = 1;

ii) Otherwise (i.e., for ρ ≥ ρ̃ (α)), kR < 1−`R < 1 as given by the solution to ΠB(kR, `R) =

0, `R > 0 as the solution to

−
[
∂θ∗

∂`
+
∂θ∗

∂r2

∂r2

∂`

]
[R (θ∗) (1− α`)− `] +

∫ θ∗

0

dθ −
∫ 1

θ∗
R(θ)αdθ = 0, (20)

and rR2 > 1 as the solution to (11).

The thresholds ρ, ρ̃ (α) are defined in the Appendix.

The main insight of Proposition 3 is that the regulator only needs to set capital requirements

to tackle the ineffi cient liquidation of the bank portfolio, thus leaving the choice of portfolio

liquidity to the bank. This is the case despite capital and liquidity requirements being equally

effective in preventing the occurrence of liquidity crises. This result hinges on the fact that

there is no wedge between the private and social cost of liquidity, while the opposite is true

for capital. This implies that, for a given level of k, the bank chooses the socially optimal

level of portfolio liquidity. In other words, the ineffi ciencies in the unregulated equilibrium

arise because the bank chooses too much debt financing, which, in turn, forces it to hold an

ineffi ciently high amount of liquidity to mitigate the run risk. Thus, requiring the bank to

hold the level of capital that is optimal from a social perspective is enough to also enforce the

socially optimal level of liquidity and so maximize social welfare.

The proposition, which is illustrated in Figure 4, also shows that the regulatory allocation

depends on the costs of capital and liquidity, as measured by ρ and α. When the cost of capital

is low enough (i.e., ρ < ρ), the equilibrium features a corner solution in that the regulator

requires banks to be fully equity financed. This implies that there is no short term debt and

thus liquidity is unnecessary. The reason is that from a social perspective the additional cost

of capital relative to debt is zero, whereby the return ρ is simply a redistribution between the
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bank and equity holders, while liquidity reduces the portfolio return at date 2.

Insert Figure 4

As capital becomes more costly, requiring banks to be fully equity financed is no longer

feasible as it violates the bank’s non-negative profit constraint. In this case, the regulatory

allocation also features a positive level of portfolio liquidity. As long as the cost of capital and

liquidity are contained, i.e., below the curve ρ̃ (α), there exist combinations of k and ` that

are consistent with the bank making non-negative profit and, at the same time, eliminating

ineffi cient crises. In other words, a pair
{
kR, `R

}
satisfying kR = 1− `R and ΠB

(
kR, `R

)
= 0

emerges as the equilibrium of the regulated economy.

In the presence of higher cost of capital and liquidity (i.e., in the region above the curve

ρ̃ (α)), ineffi cient liquidity crises occur in equilibrium as eliminating them is either not feasible

(i.e., it is not consistent with the bank making non-negative profits), or too costly for the bank as

it would require it to hold excessively liquid portfolios. In this case, the regulator sets capital at

the maximum level consistent with the bank’s zero-profit constraint, while liquidity is chosen by

bank at the level that maximizes bank’s portfolio return in the presence of ineffi cient liquidity

crises. The allocation with ineffi cient liquidity crises dominates the one with only effi cient

solvency crises when the cost of capital and liquidity are high, as it allows the regulator to

choose a higher level of capital, consistent with the bank making non-negative profit. In other

words, when the cost of capital and liquidity are high, the benefits in terms of prevention of

ineffi cient liquidation are offset by the costs in terms of distortion to date 2 project return.

4 The economy with G banks

So far, we have focused on an economy with one bank in which the ineffi ciency spurs from

the bank’s preference for debt financing over equity and thus capital regulation is needed to

restore optimality. Next, we extend our baseline framework to embed an additional friction
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that justifies the use of liquidity regulation and study its interaction with capital requirements.

Specifically, we introduce the possibility of fire sales. To achieve this, we consider the presence

of multiple symmetric banks, indexed with g = 1, 2...G, which share the same fundamental θ.

As in the baseline model, each bank raises 1 unit of funds- a fraction kg as capital and 1−kg as

short term debt- to be invested in a risky portfolio, and chooses the liquidity `g of the portfolio.

However, unlike in the baseline model, a bank may no longer obtain `g when liquidating its

portfolio at date 1. The reason is that we now assume that banks sell their portfolios on a

secondary market to outside investors holding in aggregate an amount w > 0, which we refer

to as market liquidity. Thus, market conditions determine the price at which banks are now

able to sell their portfolios. When market conditions are tight, there may be fire sales in that

banks raise less than `g for each unit of their portfolio sold at date 1.

As common in the literature (see e.g., Shleifer and Vishny, 1992; Acharya and Yorulmazer,

2008; Acharya, Shin and Yorulmazer, 2010; and Eisenbach, 2017), we assume that the outside

investors may be less able than banks in managing the portfolios they acquire so that transfer-

ring assets outside the banking sector may entail a loss of resources. In other words, each bank

may be able to sell its portfolio for a value less than `g. The idea is that investors bear some

costs in managing banks’assets and these costs increase with the aggregate degree of specificity

of the assets as well as with the amount on sale. The specificity of bank assets is captured by

the degree of liquidity of each bank portfolio `g in the sense that assets that are more liquid are

less costly to be managed outside the banking sector, i.e., they are less specific. By contrast,

the amount of assets on sale increases with the aggregate number of withdrawing depositors as

represented by
∑
g

ng(1− kg).

To ease the exposition, we denote as n, k and ` the vectors of proportions of running debt

holders, bank capital and portfolio liquidity, respectively, and specify Q(n,k, `) as a measure of

the quantity and specificity of the pool of assets on sale in the market, with ∂Q(.)
∂ng

> 0, ∂Q(.)
∂kg

< 0

and ∂Q(.)
∂`g

< 0 for all g = 1, ...G.5 To capture the idea of fire sales due to asset redeployment,

5 In what follows, the variables in bold always identify vectors.
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we introduce the variable χ representing the market price of each unit of bank portfolio sold in

the market at date 1, which can be specified as follows:

χ (Q) =

 `g if Q < Q̂

h (Q) < `g if Q ≥ Q̂
, (21)

where Q̂ = Q̂(n,k, `, w) is such that the market conditions become tight, i.e., Q(n,k, `) = w.

It follows from (21) that the amount that each bank can raise in the market depends on its own

choice of portfolio liquidity `g as well as on the aggregate market funding conditions as affected

by n,k, `. Market conditions are good when either a few assets are sold in the market or the

pool of assets on sale is not too specific relative to investors’resources (i.e., when Q < Q̂). In

this case, each individual bank can raise `g per unit of portfolio liquidated at date 1. On the

contrary when there is a large pool of assets on sale and/or they are very specific (i.e., Q ≥ Q̂),

fire sales emerge and banks can only raise (per unit) χ (Q) = h (Q) < `g. In what follows, we

denote as χ (`) the market price of each unit of bank portfolio at date 1 when all banks sell the

entire portfolio in the secondary market.

This specification modifies the analysis in two important dimensions. First, it affects debt

holders’ rollover decisions, as it introduces strategic complementarity between banks in ad-

dition to that within a bank as characterized in the baseline model. Second, it leads to an

additional ineffi ciency since, when G is large enough, banks do not internalize the effect that

their individual choices have on the secondary market asset price.

We characterize the equilibrium in an economy with G banks following the same steps as

in Section 3. We first characterize debt holders’ rollover decisions at date 1 for given levels

of capital kg, portfolio liquidity `g and debt repayment r2g. Then, we determine kg, `g and

r2g. Finally, we derive the regulatory intervention that addresses the ineffi ciencies plaguing the

unregulated economy.
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4.1 Debt holders’rollover decisions

As in the baseline model, debt holders decide whether to withdraw at date 1 based on the

signal si they receive since this provides information on both θ and other debt holders’actions.

Unlike the baseline model, a debt holder in bank g is now concerned about the action taken by

the other debt holders in his own bank as well as the action by debt holders in other banks.

In such context, there exist two types of strategic complementarity as in Goldstein (2005):

within- and between-banks. The former refers to the fact that, as in the baseline model, a debt

holder’s incentive to withdraw at date 1 increases with the proportion of other debt holders in

his own bank withdrawing at date 1. The latter captures the fact that a debt holder’s incentive

to withdraw at date 1 now also increases with the proportion of debt holders in other banks

in the economy taking a similar action. The reason is that the more debt holders choose to

withdraw early in other banks, the more those banks need to liquidate, thus leading to a larger

drop in the market price χ (Q). This forces each bank to sell more assets, thus leaving fewer

resources to repay the debt holders at date 2 and, as a result, increasing their incentive to

run. Such between-banks strategic complementarity is a direct consequence of the existence of

a common asset market, and its severity depends on the aggregate market conditions.6

As in the baseline model, each debt holder i in bank g receives a private signal of the same

form as in (1) with the error term being now i.i.d. across both individuals and banks. Despite

the existence of two types of strategic complementarities, as in the baseline model, debt holders

choose to withdraw early when they receive a low enough signal and roll over otherwise. To see

this formally, we follow the same steps as in Section 3.1 in that we first characterize the two

extreme ranges of fundamentals where debt holders in each bank have a dominant action. The

lower and upper dominance regions are the same as the ones in the baseline model, so that the

threshold θ and θ remain the same. The reason is that θ is computed under the assumption that

no debt holders withdraw in any bank and θ is obtained assuming that the bank’s investment

6The strategic complementarities between banks resulting from the existence of a common asset market are
also present in Eisenbach (2017) and Liu (2019). In these papers banks are exposed to idiosyncratic shocks to
the fundamental θg rather than to aggregate shocks as in our framework.
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becomes safe and yields R (1) (1− α`g) also at date 1.

Besides these extreme ranges of θ, a debt holder’s action depends crucially on what other

debt holders, both within his own bank and in other banks, do. Thus, the existence of the

between-banks strategic complementarity affects the derivations of the crisis threshold as illus-

trated in the following proposition.

Proposition 4 For given k, `, r2, the model has a unique threshold equilibrium where all debt

holders in bank g withdraw at date 1 if they receive a signal below s∗g and roll over otherwise.

The vector s∗G of equilibrium threshold signals corresponds to the solution of the system of G

indifference conditions of the form

∫ n̂(s∗g,s
∗
(−g))

0 r2gdng +
∫ n(s∗(−g))
n̂(.)

R(s∗g+ε−2εng)(1−α`g)

(
1− ng(1−kg)

χ(Q(`,k,s∗g,s∗(−g)))

)
(1−kg)(1−ng) dng

−
∫ n(s∗(−g))

0 1dng −
∫ 1

n
(
s∗
(−g)

) χ(Q(`,k,s∗g,s
∗
(−g)))

(1−kg)ng
dng = 0

(22)

for all g = 1, ...G.

The vector of equilibrium thresholds s∗G is the solution of a system of G equations repre-

senting a debt holder’s indifference condition between rolling over the debt until date 2 and

withdrawing at date 1. It emerges from the expression (22) in the proposition that debt holders’

actions crucially depend on the actions taken by all other debt holders in the economy, both in

their own bank and in other banks. In particular, the greater the likelihood of a run in another

bank (i.e., s∗(−g)), the larger the probability of a run in bank g since the thresholds s
∗
g and s

∗
(−g)

are positively related. This implies that there are ranges of θ where debt holders run on their

own bank only because they fear that runs are going to occur in other banks in the economy.

The positive correlation between the equilibrium thresholds of all G banks is a direct impli-

cation of the between-banks strategic complementarity induced by the existence of a common

asset market. In an economy without fire sales, debt holders in different banks would take their

withdrawal decisions only on the basis of other debt holders’actions in their own bank despite
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the common fundamental θ. Then, bank failures are (strategically) independent, that is the

run at one bank does not affect the run risk at other banks. By contrast, in a framework with

fire sales and between-banks strategic complementarity, there is contagion between banks as the

run risk of one bank depends on that of the others. The following proposition describes this

feature of the equilibrium with G banks.

Proposition 5 When ε→ 0, all debt holders withdraw early if θ < θ∗G and roll over otherwise,

with θ∗G > θ∗ as characterized in the baseline model.

The proposition shows that, similarly to the baseline model, there is a unique crisis threshold

θ∗G and this is the same for all banks. However, banks are now more fragile in that they fail

in a larger range of fundamentals (i.e., θ∗G > θ∗). In the region between θ∗ and θ∗G banks fail

because of the strategic interdependence in the asset market, rather than because they share

the same fundamental θ. In other words, each bank fails because its debt holders are concerned

about the run risk at other banks in the system and the negative consequences it has for market

funding conditions.

4.2 Banks’choices

Having characterized debt holders’withdrawal decisions and the likelihood of a bank failure

at date 1, we can now turn to date 0 and solve banks’choices of capital kg, liquidity `g and

interest rate on debt r2g. As banks are symmetric we focus on a representative bank, thus

removing the subscript g, and we use the subscript G to denote the equilibrium variables.

The maximization problem is similar to that in Section 3.2 with only a few differences. First,

the bank makes now positive profits only for θ > θ∗G > θ∗. Second, debt holders’participation

constraint is now equal to

IRDG :
∫ θ∗G

0

χ (`)

1− kdθ +

∫ 1

θ∗G

r2dθ ≥ 1, (23)

where χ (`) captures the amount the bank raises in the asset market when all banks are selling
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their entire portfolio at date 1. The function χ (`) depends on the degree of specificity of the

pool of assets on sale, as determined by all banks’liquidity choices `, but it no longer depends

on k and n as all banks liquidate the entire portfolio (i.e., 1 unit), with

χ (`) =

 ` ` ≥ ̂̀
h (`) < ` ` < ̂̀ , (24)

and h′ (`) > 0. The expression in (24) hints to the fact that fire sales do not occur when banks

hold suffi ciently liquid portfolios (i.e.,when ` ≥ ̂̀), while they emerge otherwise (i.e., when
` < ̂̀).7 As in the baseline model, debt holders receive a pro-rata share of bank’s available

resources,
χ(`)

1−k , in the event of a run and the promised repayment r2 when no run occurs.

The solution to the bank’s maximization problem yields the following result.

Proposition 6 The market equilibrium features rB2G > 1 as the solution to (23) and kBG ∈ (0, 1)

and `BG ∈ (0, 1) as given by the solutions to

−
[
∂θ∗G
∂k

+
∂θ∗G
∂r2

dr2

dk

] [
R (θ∗G) (1− α`)− χ (`)

]
− ρ+ 1 = 0, (25)

and

−
[
∂θ∗G
∂`

+
∂θ∗G
∂r2

dr2

d`

] [
R (θ∗G) (1− α`)− χ (`)

]
−
∫ 1

θ∗
αR (θ) dθ = 0. (26)

In equilibrium liquidity crises occur since χ (`) < `BG <
(
1− kBG

)
holds.

As in the baseline model, banks choose to be exposed to liquidity crises. As before, the

reason is that when χ (`) = 1 − k, the gain in terms of lower run probability approaches zero,

while the loss in terms of higher financing costs is still equal to ρ− 1. Thus, reducing k slightly

so that χ (`) < 1− k holds is always optimal.8

In choosing their capital structure k and portfolio liquidity `, banks trade-off their marginal

7The exact value of ̂̀ depends on the tightness of the market, as measured, for example, by the amount of
resources available to outside investors w: The larger w, the lower the ̂̀.

8When 1 − k = χ (`), the term
[
R
(
θ∗G
)
(1− α`)− χ (`)

]
simplifies to

[
R (θ) (1− α`)− χ (`)

]
= 0 since

θ∗G → θ, with θ as given by (4).
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benefits and costs. The former, which are captured by the first term in (25) and (26), refer to

the reduction in the run threshold θ∗G and in the bank financing costs associated with higher

capital and liquidity. The latter, as given by ρ − 1 in (25) and the last term in (26), capture

the higher financing costs and the lower return, respectively, triggered by a marginal increase

in k and `. Equation (25) is as in the case with one bank except that the value of the bank

portfolio at date 1 is now χ (`) instead of `. By contrast, equation (26) also differs from the

baseline model as banks take χ (`) as given and thus do not internalize the effect of the choice

of ` on the date 1 portfolio value χ (`).

4.3 Regulatory intervention

The market equilibrium characterized above entails three ineffi ciencies. First, as in the baseline

model, banks’ choice of k and ` spurs the occurrence of liquidity crises, thus leading to the

premature termination of potentially profitable portfolios. Second, as in the baseline model,

each bank chooses k and ` taking into account the wedge between the higher cost of capital ρ

relative to the unitary cost of debt, which is zero from a social perspective. Third, banks do

not internalize the effect that their liquidity choices have on the market funding conditions and

thus on the market price χ (`). In what follows, we consider the case where `BG < ̂̀ so that the
unregulated equilibrium features fire sales, i.e., χ (`) < `BG. This is equivalent to assume that

the market liquidity w is limited relative to the quality and quantity of banks’portfolios on

sale. We can then specify the per bank output loss in the unregulated economy with G banks

as follows:

TL =

∫ θ∗G

0

[
`− χ (`)

]
dθ +

∫ θ∗G

θE
[R (θ) (1− α`)− `] dθ (27)

The first term in (27) captures the loss associated with fire sales in the event of run for θ ≤

θ∗G, while the second term represents the output loss associated with the ineffi cient premature

liquidation of portfolios for θE < θ ≤ θ∗G, similarly to the case with one bank analyzed before.

As in the baseline model, the question is whether a regulator can improve upon the market

allocation. Her maximization problem is as in the baseline model with the difference that in
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the event of a run the portfolio value at date 1 is χ (`) as specified in (24) rather than `. Thus,

formally, the regulator chooses the level of bank capital kRG and portfolio liquidity `
R
G at date 0

to maximize the per bank social welfare SWG as given by:

max
kRG,`

R
G

SWG =

∫ θ∗G

0

χ (`) dθ +

∫ 1

θ∗G

R (θ) (1− α`) dθ

subject to

rB2 = arg max ΠB ,

ΠB ≥ 0, 0 ≤ kRG ≤ 1, 0 ≤ `RG ≤ 1,

and

χ (`) ≤ `.

The following proposition characterizes the optimal regulatory intervention.

Proposition 7 The regulator sets both capital and liquidity requirements k, while banks choose

the debt repayment r2. Thus, the regulatory equilibrium features the following:

i) For ρ ≤ ρ, kRG = 1, `RG = 0 and ΠB(kRG, `
R
G) > 0;

ii) For ρ < ρ (α) ≤ ρ < ρ̃ (α) and α ≤ α, kRG = 1− `RG, `RG ≥ ̂̀ and rB2G = 1;

iii) For ρ < ρ (α) and α > α, kRG = 1 − χ (`) and `RG < ̂̀ as given by the solution to
ΠB(kRG, `

R
G) = 0 and rB2G = 1

iii) Otherwise (i.e., for ρ ≥ ρ̃ (α)), kR < 1−`R < 1 as given by the solution to ΠB(kRG, `
R
G) =

0, `R > 0 as the solution to

−
[
∂θ∗G
∂`

+
∂θ∗G
∂r2

∂r2

∂`

] [
R (θ∗) (1− α`)− χ (`)

]
+

∫ θ∗G

0

∂χ (`)

∂`
dθ −

∫ 1

θ∗G

R(θ)αdθ = 0, (28)

and rB2G > 1 as the solution to (11).

The thresholds ρ, ρ̃ (α), ρ (α) and α are defined in the Appendix.
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The main insight of the proposition is that both capital and liquidity requirements are

needed to tackle the ineffi ciencies of the market equilibrium. The reason is that there is now

a wedge between private and social cost for both capital and liquidity. For capital, the wedge

is as in the baseline model. For liquidity, the wedge emerges as its social cost is now lower

than the private cost: Increasing liquidity reduces the extent of costly fire sales, as χ (`) is

increasing in `, besides reducing the date 2 return of banks’investment projects. As a result,

the characterization of the optimal regulation described in the proposition is more involved

than in the baseline model.

The proposition, which is illustrated in Figure 5, shows that, as in the baseline model, the

regulatory allocation depends on the costs of capital and liquidity, as measured by ρ and α.

As in the economy with one bank, when the cost of capital is small (i.e., ρ < ρ), the regulator

finds it optimal to require banks to be fully equity financed. By doing so, it eliminates the run

risk and so the need for liquidity. Thus, differences in the characterization of the regulatory

equilibrium between the baseline model and the framework featuring fire sales only emerge

when the cost of capital is large (i.e., ρ ≥ ρ). The proposition shows that when the cost of

liquidity is high (i.e., α > α) but that of capital is small (i.e., ρ < ρ (α)), the regulator chooses

to eliminate liquidity-driven runs (i.e., θ∗ → θ), but does not to require banks to hold a level of

portfolio liquidity above ̂̀ so that fire sales still occur in equilibrium. The reason is that when
the cost of liquidity is large eliminating fire sales is very costly in terms of forgone portfolio

return at date 2. Still, though, the low cost of capital allows the regulator to require banks to

raise a large fraction of their funds as equity, thus reducing the likelihood of a run and so the

cost associated with the fire sales. Interestingly, in this case, the regulator eliminates liquidity

crises, but, at the same time, prevents the liquidation of ineffi cient project. To see this, notice

that when the regulator sets kRG = 1 − χ (`) < 1 − `, θ < θE , which implies that for any

θ ∈ [θ, θE), runs do not occur and so portfolios yielding a date 2 return R (θ) (1− α`) < ` are

not liquidated.

Insert Figure 5
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As the cost of capital increases and that of liquidity decreases, the regulator finds it optimal

to eliminate both ineffi cient crises and fire sales (i.e., in the region between the curves ρ (α)

and ρ̃ (α) when α ≤ α). Finally, when the cost of capital and liquidity are very large (i.e., in

the region above ρ̃ (α)), similarly to the baseline model, the regulator finds it optimal not to

eliminate liquidity crises, although fire sales are alleviated.

Overall, the proposition highlights that, when choosing the optimal regulatory mix, the

regulator takes into account the impact that increased capital has on banks’profits, as well

as the benefits and costs associated with increased portfolio liquidity. In particular, requiring

banks to hold more liquidity has two effects. On the one hand, it is associated to a lower portfolio

return at date 2. On the other hand, more liquidity increases the value of bank portfolio at date

1, by ameliorating fire sales. This implies that, when the former effect is large, the regulator

may find it optimal not to eliminate fire sales, while the opposite is true when the cost of

liquidity in terms of forgone date 2 return is more contained.

5 Concluding remarks

In this paper we develop a model where banks’exposure to crises depends on their balance sheet

composition and both banks’and debt holders’decisions are endogenously determined. The

paper offers a convenient framework to evaluate the implications of bank capital and liquidity

on the likelihood of crises, as it allows to endogenize the probability of crises, distinguish their

different type, and account for the different effects that changes in bank capital structure and

portfolio liquidity have on each of them.

One of the main implications of the analysis is that, in order to be beneficial for stability,

regulation should be designed considering both sides of banks’balance sheet. The same (mar-

ginal) increase in capital and liquidity may be beneficial for some banks, while detrimental for

others. Real world regulatory tools like risk-weighted capital ratio (RWC), liquidity coverage

ratio (LCR) or net stable funding ratio (NSFR) seem to fulfil this criterion, as they specify a

ratio between banks’assets and liabilities (see Cecchetti and Kashyap, 2018).
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The analysis of the impact of capital and liquidity on bank stability is also the starting point

to characterize optimal regulation. In our framework, public intervention in the form of capital

and liquidity requirements is desirable as the market equilibrium is plagued by two ineffi ciencies.

First, banks choose levels of capitalization and portfolio liquidity that are consistent with the

occurrence of liquidity crises and, as such, lead to ineffi cient portfolio liquidation. Second, in

choosing their capital structure and portfolio liquidity banks do not fully internalize the effect

that such choices have on social welfare, thus leading to lower aggregate output, as represented

by lower long-term return of banks’investment projects, and costly fire sales.

We show that in the absence of fire sales, capital regulation is enough to tackle the ineffi -

ciencies of the market solution, while both capital and liquidity regulation are needed when the

economy is also exposed to costly fire sales. In both cases, the ability and willingness of the

regulator to eliminate the ineffi ciencies of the decentralized solution depend crucially on the

cost of capital and liquidity. When they are contained, the regulator can achieve to eliminate

all ineffi ciencies, while when they are large it may not be feasible or too costly in terms of

forgone aggregate output to eliminate both ineffi cient crises and fire sales.

Our analysis of the impact of capital and liquidity on bank stability is conducted in a

framework where the ineffi ciencies of the unregulated market equilibrium are all associated

with the occurrence of runs and consequently the premature liquidation of banks’portfolio.

In doing this, we disregard other possible sources of ineffi ciencies connected to the asset side

decision of the bank (e.g., moral hazard associated with the riskiness of bank portfolios) which

(capital) regulation is designed to tackle. Incorporating this into our analysis so to study the

design of regulation in the presence of interaction between fire sales, run and credit risk is an

interesting path for future research.

The analysis in our paper focuses on the interaction between two ex ante forms of inter-

vention, namely capital and liquidity requirements. However, it abstracts from the interaction

of those with other ex post policy tools− like, for example, the lender-of-last-resort policy and

government guarantees to banks− which are used to limit financial instability (see, e.g., Rochet
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and Vives, 2004; Keister, 2016; and Allen, Carletti, Goldstein and Leonello, 2018). Analyzing

the interaction between capital and liquidity regulation and other ex post interventions would

require to assess and compare the effectiveness of each policy in preventing the occurrence of

crises, as well as its costs in terms of forgone long-term returns and deadweight loss in the

event of a crisis. We believe that Including this in our analysis to study the optimal policy mix

represents a fruitful path for future research.
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Figure 1: Debt holders’ payoffs. The figure illustrates how a debt holder’s payoffs change with the 

proportion of debt holders withdrawing their funds at date 1 𝑛 for a given 𝜃 ≥ 𝜃(𝑘, ℓ). The blue line 

represents a debt holder’s payoff at date 2. A debt holder receives the promised repayment 𝑟2 as 

long as the bank has enough funds to repay it (i.e., when 𝑛 < �̂�(𝜃)); otherwise he obtains a pro-rata 

share of bank’s available resources. Such pro-rata is equal to zero when the bank liquidates the 

entire portfolio at date 1 (i.e., 𝑛 ≥ 𝑛). The red line represents a debt holder’s payoff at date 1. A 

debt holder receives the promised repayment 𝑟1 as long as the bank has enough resources (i.e., 

𝑛 < 𝑛); otherwise he obtains a pro-rata share.   

 

 

Figure 2: Capital, liquidity and type of crises. The figure illustrates how a bank’s exposure to crises 

depends on its capital structure 𝑘 and portfolio liquidity ℓ. A bank characterized by high capital 

and/or portfolio liquidity (i.e., one falling in the region above the curve 𝑘𝑚𝑎𝑥(ℓ)) is only exposed to 

solvency-driven crises so that the relevant crisis threshold is 𝜃. A bank characterized by low capital 

and/or portfolio liquidity (i.e., one falling in the region below the curve 𝑘𝑚𝑎𝑥(ℓ)) is also exposed to 

liquidity-driven crises so that the relevant crisis threshold is 𝜃∗. The curve 𝑘𝑚𝑎𝑥(ℓ) corresponds to 

(1 − 𝑘) = ℓ and pins down the pairs {𝑘, ℓ} for which there is no strategic complementarity among 

debt holders’ withdrawal decisions. 



 

Figure 3a: Capital and Stability. The figure illustrates the effect of a marginal increase in bank capital 

on stability. Capital has a beneficial effect on stability for a bank characterized by intermediate and 

high values of capital and/or portfolio liquidity (i.e., 
𝜕𝜃∗

𝜕𝑘
< 0 in the region above the curve �̃�(ℓ) ), 

while it is detrimental otherwise.  

 

 

Figure 3b: Portfolio liquidity and stability. The figure illustrates the effect of a marginal increase in 

portfolio liquidity on stability. Liquidity has a beneficial role on stability only for banks characterized 

by intermediate values of capital and/or portfolio liquidity (i.e., 
𝜕𝜃∗

𝜕ℓ
< 0 in the region bounded by the 

curves 𝑘(ℓ), 𝑘(ℓ) and 𝑘𝑇(ℓ)), while it is detrimental otherwise. 



 

Figure 4: Regulatory equilibrium. The figure illustrates how the regulatory equilibrium varies 

depending on the cost of capital 𝜌 and liquidity 𝛼. When the cost of capital is small, i.e., below 𝜌, the 

regulator finds it optimal to require the bank to be fully equity-financed, i.e., 𝑘𝑅 = 1 and ℓ𝑅 = 0. By 

doing so, she completely eliminates runs and so the need for costly liquidity. When the cost of 

capital is large (i.e., 𝜌 ≥ 𝜌), requiring the bank to raise only capital is no longer feasible. As long as 

the cost of capital and liquidity are not too large (i.e., in the region below the curve �̃�(𝛼)) 

eliminating inefficient runs by requiring the bank to hold 𝑘𝑅 = 1 − ℓ𝑅 with ℓ𝑅 > 0 is optimal. When 

the cost of capital and liquidity are higher (i.e., in the region above the curve �̃�(𝛼)), this is no longer 

the case and the regulator finds it optimal to choose 𝑘𝑅 < 1 − ℓ𝑅 with ℓ𝑅 > 0.  

 

 

Figure 5: Regulatory equilibrium with G banks. The figure illustrates how the regulatory equilibrium 

varies depending on the cost of capital 𝜌 and liquidity 𝛼. When the cost of capital is small, i.e., below 

𝜌, the regulator finds it optimal to require banks to be fully equity-financed, i.e., 𝑘𝑅 = 1 and ℓ𝑅 = 0. 

By doing so, she completely eliminates runs and so the need for costly liquidity. When the cost of 

capital is large (i.e., 𝜌 ≥ 𝜌), requiring banks to raise only capital is no longer feasible. As long as the 

cost of capital and liquidity are not too large (i.e., in the region below the curve �̃�(𝛼))  eliminating 

panic runs is optimal. Otherwise (i.e., in the region above the curve �̃�(𝛼)), the regulator finds it 

optimal to choose ℓ𝑅 > 0 and 𝑘𝑅 < 1 − ℓ𝑅 so that panic runs occur. In the region below the curve 

�̃�(𝛼), eliminating also fire sales by requiring the bank to hold ℓ𝑅 ≥ ℓ̂ is optimal as long as the cost of 

liquidity 𝛼 is small (i.e., and for 𝛼 ≤ 𝛼). In the dotted area, below the curve 𝜌(𝛼) the regulator finds 

it optimal to set 𝑘𝑅 = 1 − 𝜒(ℓ) and ℓ𝑅 < ℓ̂ so that in equilibrium fire sales still occur.  



7 Online Appendix

Proof of Proposition 1: The proof follows closely that in Goldstein and Pauzner (2005) since

our model also exhibits the property of one-sided strategic complementarity.

Assume that debt holders behave accordingly to a threshold strategy, that is each debt

holder withdraws at date 1 if he receives a signal below s∗ and rolls over otherwise. Then, the

fraction of debt holders not rolling over the debt claim n is equal to the probability of receiving

a signal below s∗. Given that debt holders’signals are independent and uniformly distributed

in the range [θ − ε, θ + ε], n (s∗, θ) is equal to

n (s∗, θ) =


1 if θ ≤ s∗ − ε

s∗−θ+ε
2ε if s∗ − ε ≤ θ ≤ s∗ + ε

0 if θ ≥ s∗ + ε

. (29)

When θ is lower than s∗ − ε, all (1− k) debt holders receive a signal below s∗ and so

withdraw at date 1, i.e., n = 1. On the contrary, when θ is higher than s∗ + ε, all (1− k) debt

holders receive a signal above s∗ and, as a result, decide to roll over their debt claim, i.e., n = 0.

In the intermediate range of fundamental, when s∗ − ε ≤ θ ≤ s∗ + ε, there is a partial run, in

that only some debt holders withdraw at date 1. The proportion of those not rolling over their

debt claim decreases linearly with θ, as fewer investors observe a signal below the threshold s∗.

Denote as ∆(si, ṅ(θ)) an agent’s expected difference in utility between withdrawing at date

2 and at date 1 when he holds beliefs ṅ(θ) regarding the number of depositors running. The

function ∆(si, ṅ(θ)) is given by

∆(si, ṅ(θ)) =
1

2ε

∫ si+ε

si−ε
En [v(θ, ṅ(θ))] dθ.

Since for any realization of θ, the proportion of depositors running is deterministic, we can

write n(θ) instead of ṅ(θ) and the function ∆(si, ṅ(θ)) simplifies to

∆(si, n(θ)) =
1

2ε

∫ si+ε

si−ε
v(θ, n(θ))dθ.

Notice that when all depositors behave according to the same threshold strategy s∗, n(θ) =

n(θ, s∗) defined in (29). The following lemma states a few properties of the function ∆(si, ṅ(θ)).

Lemma 1 i) The function ∆(si, ṅ(θ)) is continuos in si; ii) for any a > 0, ∆(si + a, ṅ(θ) + a)

is non-decreasing in a, iii) ∆(si + a, ṅ(θ) + a)is strictly increasing in a if there is a positive

probability that n < n and θ < θ.
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Proof of Lemma 1: The proof follows Goldstein and Pauzner (2005). The function ∆ (.)

is continuous in si, as si only changes the limits of integration in the formula for ∆ (si, n (s∗, θ)).

To show that the function ∆ (si, n (s∗, θ)) is non-decreasing in a, we need first to show that

v (θ, n) is non-decreasing in θ. As θ increases, we have two effects. First, a higher θ implies

that R (θ) is higher, thus increasing the date 2 payoff in the range n̂ (θ) ≤ n < n. Second, a

change in θ affects the threshold n̂ (θ) as follows:

∂n̂ (θ)

∂θ
= R′ (θ) (1− α`)

[
R(θ)(1−α`)

` − r2

]
− [R (θ) (1− α`)− (1− k) r2] 1

`

(1− k)
[
R(θ)(1−α`)r1

` − r2

]2 =

=
R′ (θ) (1− α`)

(1− k)
[
R(θ)(1−α`)

` − r2

]2 r2

[
(1− k)

`
− 1

]
> 0,

since R′ (θ) > 0 and (1− k) > `. Thus, as the interval [0, n̂ (θ)) where the utility differential

v (θ, n) = r2 − 1 > 0 becomes larger, while the range (n, 1] is unaffected by a change in θ, the

date 2 payoff increases so that the utility differential v (θ, n) is non-decreasing in θ. This also

implies that ∆(si + a, ṅ(θ) + a) is non-decreasing in a, as when a increases, debt holders see

the same distribution of n but expects θ to be larger. In order for ∆(si + a, ṅ(θ) + a) to be

strictly increasing in a, we need that θ < θ and that there is a positive probability that n < n.

This is the case because, when n < n and θ < θ, v(θ, n) is strictly increasing in θ, and, thus,

∆(si + a, ṅ(θ) + a) is strictly increasing in a. �
Since the rest of the proof follows closely that in Goldstein and Pauzner (2005) we omit it

here and only specify the condition pinning down the threshold s∗. A debt holder who receives

the signal s∗ is indifferent between rolling over the debt claim until date 2 and withdrawing it

at date 1. The threshold s∗ can be computed as the solution to

f (θ, k, `) =

∫ n̂(s∗)

0

r2dn+

∫ n̄

n̂(s∗)

R (θ (n)) (1− α`)
[
1− (1−k)n

`

]
(1− k) (1− n)

dn−
∫ n̄

0

1dn−
∫ 1

n̄

`

(1− k)n
dn = 0,

(30)

where from (29), we obtain θ (n) = s∗+ε−2εn and n̂ (s∗) solves R (θ (n)) (1− α`)
[
1− (1−k)n

`

]
−

(1 − k) (1− n) r2 = 0. At the limit, when ε → 0, θ (n) → s∗ and we denote it as θ∗, which

corresponds to the solution to the condition (9) in the proposition.

To complete the proof, we need to show that the bank is solvent for any θ > θ∗. To do that

we need to exclude the possibility that the bank fails at date 2 despite all debt holders rolling

over the debt until date 2. Denote as θ̂ the level of fundamental at which the bank fails at date
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2 even when all debt holders roll over the debt claim (i.e., when n = 0). The threshold θ̂ solves

R (θ) (1− α`)− (1− k) r2 = 0.

In order to show that the bank is always solvent for any θ > θ∗, we need to show that the

threshold θ∗ characterized in (30) larger than θ̂. To see this, denote as θ̃ the level of θ at which

the bank is at the margin between failing and being solvent at date 2 when n debt holders

withdraw early. Then, θ̃ is the solution to

R (θ) (1− α`)
[
1− (1− k)n (s∗, θ)

`

]
− (1− k) (1− n (s∗, θ)) r2 = 0, (31)

where n
(
s∗, θ̃

)
is given in (29). Rearranging (31) as

R (θ) (1− α`)− (1− k) r2 − n (s∗, θ)

[
R (θ) (1− α`) (1− k)

`
− (1− k) r2

]
= 0,

it is easy to see that (31) is negative when evaluated at θ = θ̂ when (1− k) > ` holds. Thus,

since (31) is increasing in θ, it follows that θ̃ > θ̂.

The equilibrium in debt holders’withdrawal decision characterized in the proposition cor-

responds to the pair {s∗, θ∗} solving (31) and the indifference condition as given by v (θ, n) = 0

after the change of variable giving θ (n) = s∗ + ε− 2εn. Thus, it is the case that, when ε→ 0,

s∗ → θ∗ > θ̂ and the proposition follows. �

Proof of Corollary 1: The proof proceeds in steps. First, we compute the effect of k and

` on the crisis threshold θ and then their effect on the threshold θ∗.

Denote as z(θ, k, `) = 0 the condition pinning down the threshold θ(k, `) as given in (4). By

using the implicit function theorem, we have that

∂θ(k, `)

∂k
= −

∂z(θ,k,`)
∂k

∂z(θ,k,`)
∂θ

and
∂θ(k, `)

∂`
= −

∂z(θ,k,`)
∂`

∂z(θ,k,`)
∂θ

.

The denominator ∂z(θ,k,`)
∂θ = R′(θ)(1−α`)

1−k > 0 as R′ (θ) > 0. Thus, the sign of ∂θ(k,`)∂k and ∂θ(k,`)
∂`

are equal to the opposite sign of the respective numerators. Deriving (4) with respect to k and

` we obtain
∂z(θ, k, `)

∂k
=
R (θ) (1− α`)

(1− k)
2 > 0,

∂z(θ, k, `)

∂`
= −R (θ)α

(1− k)
< 0,
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which imply ∂θ(k,`)
∂k < 0 and ∂θ(k,`)

∂` > 0.

Consider now the effect of capital and liquidity on the threshold θ∗. Denote as g (θ, k, `) = 0

the equation pinning down θ∗, as defined in (9). Using the implicit function theorem we obtain:

∂θ∗

∂k
= −

∂g(θ,k,`)
∂k

∂g(θ,k,`)
∂θ

and
∂θ∗

∂`
= −

∂g(θ,k,`)
∂`

∂g(θ,k,`)
∂θ

,

The denominator ∂g(θ,k,`)
∂θ is given by

∂g (θ, k, `)

∂θ
=

∫ n̄

n̂(θ∗)

R′ (θ∗) (1− α`)
[
1− (1−k)n

`

]
(1− k) (1− n)

dn > 0

since the derivatives of the extremes of the integrals cancel out. Thus, the sign of ∂θ
∗

∂k and ∂θ∗

∂`

are equal to the opposite sign of ∂g(θ,k,`)∂k and ∂g(θ,k,`)
∂` , respectively.

We start from ∂g(θ,k,`)
∂k . Deriving (9) with respect to k and multiplying it by −1, we obtain

1

(1− k)
2

[
−
∫ n

n̂(θ∗)

R (θ∗) (1− α`)
(1− n)

dn+ `

∫ 1

n

1

n
dn

]
, (32)

since the derivatives of the extremes of the integrals cancel out. Similarly, differentiating (9)

with respect to `, after a few manipulation and multiplying it by −1, we obtain

1

(1− k) `

[∫ n

n̂(θ∗)

α`
R (θ∗)

1− n dn+ `

∫ 1

n

1

n
dn−

∫ n

n̂(θ∗)

R (θ∗) (1− k)n

(1− n) `
dn

]
. (33)

as the derivatives of the extremes of the integrals cancel out.

Consider first the effect of k on θ∗. We can rearrange the terms in the square bracket in

(32) as follows:

R (θ∗) (1− α`)Log
[

1− n
1− n̂ (θ∗)

]
− `Log[n]. (34)

The first term is negative since n > n̂ (θ∗) and so 1−n
1−n̂(θ∗) < 1, while the second one is positive

since n < 1. Using n = `
(1−k) and n̂ (θ∗) = R(θ∗)(1−α`)−(1−k)r2

(1−k)
[
R(θ∗)(1−α`)

` −r2
] , after a few manipulations, the

expression above can be rewritten as follows:

Log

(1− `r2

R (θ∗) (1− α`)

)R(θ∗)(1−α`)
`

− Log [( `

(1− k)

)]
. (35)
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Denote as k̃ (`) the solution to Log

(1− `r2
R(θ∗)(1−α`)

)R(θ∗)(1−α`)
`

 − Log [( `
(1−k)

)]
= 0. The

expression in (35) can be rearranged as

k̃ (`) = 1− ` (Λ)
−
R(θ∗)(1−α`)

` , (36)

where Λ =
(

1− `r2
R(θ∗)(1−α`)

)
. Since for any pair {k, `}, θ∗ varies between θ and θ → 1, it

holds that k̃ (`) < kmax (`) for any ` ∈ (0, 1), since kmax (`) = 1 − ` and (Λ)
−
R(θ∗)(1−α`)

` > 1.

Furthermore, from (36), it follows that k̃ (`)→ 1, when `→ 0 and that k̃ (`) = 0 requires ` > 0.

Consider a pair {k, `} in the region below kmax (`). When we approach the curve kmax (`),

the threshold θ∗ → θ. To see this, we can rearrange the expression in (9) as follows:

∫ ñ(θ)

0

min

r2,
R (θ) (1− α`)

[
1− (1−k)n

`

]
(1− k) (1− n)

− 1

 dn+ (37)

+

∫ n̄

ñ(θ)

R (θ) (1− α`)
[
1− (1−k)n

`

]
(1− k) (1− n)

− 1

 dn− ∫ 1

n̄

`

(1− k)n
dn,

with n = `
(1−k) and ñ (θ) = R(θ)(1−α`)−(1−k)

(1−k)[R(θ)(1−α`)` −1]
denoting the proportion of debt holders with-

drawing at date 1 at which the bank’s resources at date 2 are exactly enough to pay 1 to debt

holders rolling over the debt claim until date 2. When k → kmax (`), n → ñ (θ) → 1 and the

expression above simplifies to

∫ 1

0

min

r2,
R (θ) (1− α`)

[
1− (1−k)n

`

]
(1− k) (1− n)

− 1

 dn = 0.

Since r2 > r1, θ
∗ solves R(θ)(1−α`)

(1−k) − 1 = 0, which is equivalent to the equation pinning down

θ, as given in (4).

This implies that for pairs {k, `} very close to the curve kmax (`), ∂θ
∗

∂k < 0. Thus, since
∂θ∗

∂k = 0 on the curve k̃ (`), by continuity it must be the case that ∂θ
∗

∂k < 0 in the region between

k̃ (`) and kmax (`).

Consider now a pair {k, `} below the curve k̃ (`) and close to the axes origin. For any

0 ≤ k << 1 and ` → 0, the expression in (35) is positive since the second term approaches to
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−∞, while the first term is equal to

Lim`→0
R (θ∗) (1− α`)

`
Log [Λ] = Lim`→0

Log [Λ]
`

R(θ∗)(1−α`)
,

and using l’Hopital’s rule, after a few manipulations, we obtain

Lim`→0
R (θ∗) (1− α`)

`
Log [Λ] = −

r2
Lim`→0[R(θ∗)(1−α`)−`r2](1−α`)

1

Lim`→0[R(θ∗)(1−α`)2]

= −r2 < 0,

where Lim`→0 [R (θ∗) (1− α`)] is equal to a finite number. This implies that ∂θ∗

∂k > 0 for

k << 1 and ` → 0. Since the derivative ∂θ∗

∂k is zero on the curve k̃ (`), by continuity it stays

positive below k̃ (`).

Consider now the effect of liquidity ` on θ∗. The expression (33) determining the sign of
∂θ∗

∂` can be rearranged as follows, after adding and subtracting
1

(1−k)`

∫ n̄
n̂(θ∗)

R(θ∗)
1−n dn:

∂g (θ, k, `)

∂`
=

1

(1− k) `

[∫ n̄

n̂(θ∗)

R (θ∗) (1− α`)
1− n dn− `

∫ 1

n̄

1

n
dn−

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)n

`

)
dn

]
.

Since, from (32), we have that ∂g(θ,k,`)
∂k = 1

(1−k)2

[∫ n̄
n̂(θ∗)

R(θ∗)(1−α`)
1−n dn− `

∫ 1

n̄
1
ndn

]
, we can write

∂g (θ, k, `)

∂`
=

(1− k)

`

∂g (θ, k, `)

∂k
− 1

(1− k) `

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)n

`

)
dn =

=
1

`

[
(1− k)

∂g (θ, k, `)

∂k
− 1

(1− k)

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)n

`

)
dn

]
. (38)

From (38), then, it is easy to see that when k ≤ k̃ (`) ∂g(θ,k,`)
∂` < 0, as ∂g(θ,k,`)

∂k ≤ 0. This implies

that ∂θ
∗

∂` > 0 in the region below the curve k̃ (`).

Consider now the range
(
k̃ (`) , kmax (`)

)
. We want to show that there are levels of bank

capitalization k ∈
(
k̃ (`) , kmax (`)

)
for which increasing liquidity leads to a lower probability

of liquidity-driven runs, i.e., ∂θ
∗

∂` < 0. To do this, we need to show that there exist a region of

k and `, where the expression in the bracket in (33) is negative.

Rearrange the terms in the square bracket in (33) as follows:

−
∫ n̄

n̂(θ∗)

R (θ∗)

1− n

[
n

(1− k)

`
− α`

]
dn+ `

∫ 1

n̄

1

n
dn.
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Using Log (Λ) = −
∫ n
n̂(θ∗)

1
1−ndn and n = `

(1−k) , the expression above simplifies to

−R (θ∗)α`Log (Λ)− `Log (n) +
R (θ∗) (n− n̂ (θ∗))

n

(1− k)

`
+
R (θ∗)Log (Λ)

n

(1− k)

`
. (39)

Since n̂ (θ∗) = nR(θ∗)(1−α`)−(1−k)r2
R(θ∗)(1−α`)−`r2 , we can rearrange the expression above as

R (θ∗)Log (Λ)

(
1

n
− α`

)
− `Log (n) +R (θ∗)

[(1− k)− `] r2

R (θ∗) (1− α`)− `r2
,

and further as

R (θ∗)Log (Λ)

(
(1− k)

`
− α`

)
− `Log (n) +R (θ∗)

[(1− k)− `] r2

R (θ∗) (1− α`)− `r2
.

After a few manipulations, the expression above can be rearranged as

R (θ∗)

[R (θ∗) (1− α`)− `r2]

[
Log (Λ)

(
1

n
− α`

)
R (θ∗) (1− α`)− `r2Log (Λ)

(
1

n
− α`

)
(40)

−`Log (n) (1− α`) +
`2r2Log (n)

R (θ∗)
+ [(1− k)− `] r2

]
.

The sign of the expression above is determined by the sign of the terms in the square bracket,

which, after a few manipulations, we can rearrange as follows

`r2

R (θ∗)

[
`Log (n)−R (θ∗)

(
1

n
− α`

)
Log (Λ)

]
+ [(1− k)− `] r2

− (1− α`)
[
`Log (n)−R (θ∗)

(
1

n
− α`

)
Log (Λ)

]
,

and further as[
R (θ∗)

(
1

n
− α`

)
Log (Λ)− `Log (n)

](
1− α`− `r2

R (θ∗)

)
+ [(1− k)− `] r2.

Multiply and divide the expression above by R (θ∗) [(1− k)− `] r2. It becomes

R (θ∗) [(1− k)− `] r2

R (θ∗)

[[
R (θ∗)

(
1

n
− α`

)
Log (Λ)− `Log (n)

]
R (θ∗) (1− α`)− `r2

R (θ∗) [(1− k)− `] r2
+ 1

]
.

(41)

We want to show that
[
R (θ∗)

(
1
n − α`

)
Log (Λ)− `Log (n)

] R(θ∗)(1−α`)−`r2
R(θ∗)[(1−k)−`]r2 +1 can be nega-

tive for some {k, `} between the curves k̃ (`) and kmax (`). First, notice that R(θ∗)(1−α`)−`r2
R(θ∗)[(1−k)−`]r2 > 1
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as long as 1 − α` > (1− k) r2 holds because R (θ∗) > r2 ≥ 1 must hold to guarantee positive

profits also for ` = 0. Thus, we denote the curve kT (`) as the solution to

(1− k) r2 = 1− α`.

The curve kT (`) is increasing in the plane {k, `}, kT (0) = 1− 1
r2
and kT (1) = 1− 1

r2
+ α`

r2
. It

follows that for any pair {k, `} above the curve kT (`) R(θ∗)(1−α`)−`r2
R(θ∗)[(1−k)−`]r2 > 1, while the opposite

is true for pairs below the curve. Second, denote as k̂ (`), the pairs {k, `} for which

R (θ∗)

(
1

n
− α`

)
Log (Λ)− `Log (n) = −1.

Writing 1 = Log (e), we can rewrite the expression above as

Log
(

ΛR(θ∗)( 1
n−α`)

)
− `Log (n) = −Log(e),

thus obtaining

Log
(

Λ−R(θ∗)( 1
n−α`)

)
= Log(

e

n
),

and finally

k = 1− `e− 1
` Λ−

R(θ∗)( 1
n
−α`)

` . (42)

From (42), the Lim
`+→0

`e−
1
` Λ−

R(θ∗)( 1
n
−α`)

` = 0, thus when ` approaches 0, k̂ approaches 1. Fur-

thermore, k̂ = 0 requires ` >> 0. On the curve k̂ (`) ∂θ∗

∂` < 0 holds because the expression in

(41) is negative. The curve k̂ (`) must lie below kmax (`) and above k̃ (`) as k̂ (`) above kmax (`)

and k̂ (`) below k̃ (`) would contradict the result that ∂θ
∗

∂` > 0 below the curve k̃ (`) and above

kmax (`).

Given that ∂θ∗

∂` > 0 for pairs {k, `} below the curve k̃ (`) and above the curve kmax (`), by

continuity, there exist two thresholds k (`) ∈
(
k̃ (`) , k̂ (`)

)
and k (`) ∈

(
k̂ (`) , kmax (`)

)
, such

that ∂θ∗

∂` > 0 for pairs {k, `} between the curves k̃ (`) and k (`), and k (`) and kmax (`), while
∂θ∗

∂` < 0 for pairs {k, `} between the curves k (`) and k (`).9 Thus, the proposition follows. �

Proof of Proposition 2: The proof proceeds in steps. First, we characterize the equilib-

rium choice of k, ` and r2. Second, we show that the equilibrium k and ` are consistent with
∂θ∗

∂k < 0 and ∂θ∗

∂` < 0. Finally, we show that in equilibrium banks choose k and ` in such a way

9Note that
R(θ∗)(1−α`)−`r2
R(θ∗)[(1−k)−`]r2

> 1 is a suffi cient condition for ∂θ
∗

∂`
< 0. This implies that for pairs {k, `} below

the curve kT (`), it could still be that ∂θ
∗

∂`
< 0. In that case, it holds that ∂θ

∗

∂`
< 0 for any pair {k, `} between

the curves k (`) and k (`).
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that (1− k) > ` holds in equilibrium so that liquidity crises occur.

Before starting solving the bank’s problem, it is important to notice that the interest rate r2

affects the threshold θ∗ and it is chosen at date 0 from the debt holder’s participation constraint,

thus anticipating the withdrawal threshold θ∗. Differentiating the LHS of (11) with respect to

θ∗, we obtain

−
[
r2 −

`

1− k

]
+

∫ 1

θ∗

dr2

dθ∗
dθ, (43)

where dr2
dθ∗ can be computed using the implicit function theorem from (9) and it is then equal

to

−
∫ n̄
n̂(θ∗)

R′(θ∗)(1−α`)[1− (1−k)n
` ]

(1−k)(1−n) dn∫ n̂(θ∗)

0
dn

< 0.

This implies that the expression in (43) is negative and so that each pair {k, `} implements
only one θ∗.

Now we move on to solve bank’s optimal choice of its capital structure and portfolio liquidity.

The conditions (14) and (15) in the proposition are obtained by substituting r2 from (11) into

(10) and differentiating it with respect to k and `.

Concerning the proof that the bank’s choice is always consistent with ∂θ∗

∂k < 0 and ∂θ∗

∂` < 0,

first notice that a higher θ∗ leads to lower bank expected profit as a run becomes more likely

and, from (11), when there is no for θ > θ∗, a higher run probability translates into a higher

r2. Thus, we need to show that the effect of a change in k and ` on the threshold θ
∗ is positive

when ∂θ∗

∂k > 0 and ∂θ∗

∂` > 0, even accounting for the indirect effect of k and ` on θ∗ via r2.

We can compute the total effect of k on θ∗ dθ∗

dk as follows. Implicitly differentiating (11)

with respect to k, we obtain

dθ∗

dk
= −

∫ θ∗
0

`
(1−k)2

dθ +
∫ 1

θ∗
dr2
dk dθ

−
[
r2 − `

(1−k)

]
+
∫ 1

θ∗
dr2
dθ∗ dθ

,

where ∂r2
∂θ∗ < 0 and ∂r2

∂k is obtained by implicitly differentiating (9) and is equal to

dr2

dk
= −

∂g(θ∗,k,`)
∂k

∂g(θ∗,k,`)
∂r2

.

Given that ∂g(θ∗,k,`)
∂r2

> 0, as long as ∂g(θ
∗,k,`)
∂k < 0, dr2dk > 0 and dθ∗

dk > 0 since −
[
r2 − `

(1−k)

]
+∫ 1

θ∗
∂r2
∂θ∗ dθ < 0. As shown in the proof of Corollary 1, ∂g(θ

∗,k,`)
∂k < 0 for pairs {k, `} below the

46



curve k̃ (`). Following the same steps to compute dθ∗

d` , we have that

dθ∗

d`
= −

∫ θ∗
0

1
(1−k)dθ +

∫ 1

θ∗
dr2
d` dθ

−
[
r2 − `

(1−k)

]
+
∫ 1

θ∗
dr2
dθ∗ dθ

,

with
∂r2

∂`
= −

∂g(θ∗,k,`)
∂`

∂g(θ∗,k,`)
∂r2

.

The derivative dr2
d` and, in turn,

dθ∗

d` are positive when
∂g(θ∗,k,`)

∂` < 0. As shown in the proof

of Corollary 1, this is the case for any pair {k, `} below the curve k (`) and above the curve

k (`). Thus, the bank would only choose a pair {k, `} in the region bounded by the curves k (`)

and k (`).

To complete the proof, we need to show that the equilibrium k and ` satisfy (1− k) > `. To

see this, we rearrange the first order conditions for k and `:

−∂θ∗∂k [R (θ∗) (1− α`)− (1− k) r2] +
∫ 1

θ∗
r2dθ − ρ

−dr2dk
{∫ 1

θ∗
(1− k) dθ + ∂θ∗

∂r2
[R (θ∗) (1− α`)− (1− k) r2]

}
= 0

, (44)

and

−∂θ∗∂` [R (θ∗) (1− α`)− (1− k) r2]−
∫ 1

θ∗
αR (θ) dθ

−dr2d`
{∫ 1

θ∗
(1− k) dθ + ∂θ∗

∂r2
[R (θ∗) (1− α`)− (1− k) r2]

}
= 0

. (45)

Assume that a bank sets ` = (1− k). From (11), it follows immediately that r∗2 = 1. Then, the

expression (44) simplifies to

∫ 1

θ

dθ − ρ− dr2

dk

∣∣∣∣
(1−k)=`

∫ 1

θ

(1− k) dθ.

The derivative dr2
dk can be computed using the implicit function theorem on (11) and is, then

equal to

dr2

dk

∣∣∣∣
(1−k)=`

= −

∫ θ
0

`
(1−k)2

dθ∫ 1

θ
dθ

< 0,

which implies that the expression for (44) evaluated at (1− k) = ` can be rearranged as

∫ 1

θ

dθ − ρ+

∫ θ

0

dθ = −(ρ− 1) < 0.
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The fact that (44) is negative when evaluated at (1− k) = ` implies that the bank will always

choose a level of k so that the inequality (1− k) > ` holds in equilibrium. This, in turn, implies

that r∗2 > 1 for the (11) to be satisfied. Thus, the proposition follows. �

Proof of Proposition 3: The regulator maximizes (19) subject to the constraint that the

bank’s profits in (10) are non-negative, r2 = arg max ΠB , which implies solving the depositors’

participation constraint in (11) with equality.

From (11), we can obtain

∫ 1

θ∗
(1− k) r2dθ = (1− k)−

∫ θ∗

0

`dθ.

Then, substituting it into (10), we can rearrange the expression for bank profits as follows

ΠB =

∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ − (1− k)− ρk.

The Lagrangian for the regulator’s problem is given by

L =

[∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ

]
(1 + λ1)− λ1ρk − λ1 (1− k) ,

where λ1 is the Lagrangian multipliers for the non-negativity condition on ΠB . The Kuhn-

Tucker conditions are as follows:

∂L
∂k

= −
[
∂θ∗

∂k
+
∂θ∗

∂r2

∂r2

∂k

]
[R (θ∗) (1− α`)− `] (1 + λ1)− λ1(ρ− 1) = 0; (46)

∂L
∂`

= −
[
∂θ∗

∂`
+
∂θ∗

∂r2

∂r2

∂`

]
[R (θ∗) (1− α`)− `] (1 + λ1)+

[∫ θ∗

0

dθ −
∫ 1

θ∗
αR (θ) dθ

]
(1 + λ1) = 0;

(47)

λ1 ≥ 0; ΠB ≥ 0 (48)

λ1

[∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ − (1− k)− ρk

]
= 0. (49)

From (47) it can be easily seen that for a given k the bank’s and regulator’s choice of ` are the

same as the expression in (47) is the same as (15). This implies that no liquidity regulation is

needed: The regulator only sets capital requirements and the bank chooses the level of liquidity
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given the level of capitalization k chosen by the regulator. In what follows, we then consider

that liquidity ` is chosen by the bank as the solution to (15).

Suppose that λ1 = 0. This means that from (49), ΠB =
∫ θ∗

0
`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ −

(1− k) − ρk > 0 in the candidate maximum. When λ1 = 0, we can rewrite (46) and (15) as,

respectively,

−∂θ
∗

∂k
[R (θ∗) (1− α`)− `] = 0; (50)

−∂θ
∗

∂`
[R (θ∗) (1− α`)− `] +

[∫ θ∗

0

dθ −
∫ 1

θ∗
αR (θ) dθ

]
= 0; (51)

It follows from (50) that kR = 1− `R must hold, while `R corresponds to the solution to (51)
which becomes ∫ θE

0

dθ −
∫ 1

θE
αR (θ) dθ = 0, (52)

since, when kR = 1− `R, θ∗ → θ = θE and so R
(
θE
)

(1− α`)− ` = 0. In this case, the social

welfare can be rewritten as

∫ θE

0

(
1− kR

)
dθ +

∫ 1

θE
R (θ)

(
1− α(1− kR)

)
dθ,

and the bank’s profit as

∫ θE

0

(
1− kR

)
dθ +

∫ 1

θE
R (θ)

(
1− α(1− kR)

)
dθ − ρkR − (1− kR). (53)

By choosing kR = 1, the regulator eliminates all runs (i.e., θE = 0) and so the need for costly

liquidity, thus maximizing social welfare. From (52), it is easy to see that the bank sets `R = 0.

When `R = 0 and kR = 1, θE = 0 and the expression in (53) becomes

∫ 1

0

R (θ) dθ − ρ. (54)

Denote as ρ the solution to the expression in (54) equal to zero. For any ρ > ρ, ΠB < 0, while

ΠB ≥ 0 for ρ ≤ ρ. This implies that, when ρ ≤ ρ, the regulator’s choice is kR = 1 and `R = 0

solving (52). From (11), it is easy to see that in this case rR2 = 1.

When ρ > ρ, kR = 1 and `R = 0 cannot be a solution, as it violates the non-negativity

constraint on the bank’s profit. We check here whether a solution featuring kR = 1 − `R is
feasible in that is consistent with the bank accruing non-negative profits. From (53), using
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kR = 1− `R, it is easy to see that ΠB increases in `, as

∂ΠB

∂`
=

∫ θE

0

dθ −
∫ 1

θE
αR (θ) dθ + ρ− 1 =

= −
∫ 1

θE
1dθ −

∫ 1

θE
αR (θ) dθ + ρ > 0,

given that
∫ 1

0
R (θ) (1− α) dθ > 1must hold in order for the bank to invest in the risky portfolio,

it follows that
∫ 1

0
R (θ) dθ > 1+

∫ 1

0
R (θ)αdθ, which is, in turn, greater than

∫ 1

θE
1dθ+

∫ 1

θE
αR (θ).

Thus,
∫ 1

θE
1dθ+

∫ 1

θE
αR (θ) <

∫ 1

0
R (θ) (1− α) dθ <

∫ 1

0
R (θ) dθ ≤ ρ for any ρ > ρ. Furthermore,

ΠB decreases with both ρ and α since

∂ΠB

∂ρ
= −ρ < 0,

and
∂ΠB

∂α
= −

∫ 1

θE
R (θ) `dθ < 0.

This implies that, when both α and ρ increase, a higher ` is required for the bank profit to

be non-negative. For a given `, we can denote as ρ̂ (α) as the combinations of ρ and α for

which ΠB = 0. The curve ρ̂ (α) is downward sloping in the plane {α, ρ} and takes value ρ
when ` = 0, while it corresponds to a vertical line when ` = 1. For any pair {α, ρ} below ρ̂ (α),

ΠB > 0, while ΠB < 0 above the curve ρ̂ (α). Thus, for pairs {α, ρ} above the curve ρ̂ (α), the

equilibrium features λ1 > 0 and kR < 1− `R < 1.

For pairs {α, ρ} below the curve ρ̂ (α), there are two candidate equilibria for the regulator’s

problem. One features only effi cient runs and is characterized by kR = 1− `R < 1 and solving

ΠB = 0. The other, instead, features kR < 1 − `R < 1, `R > 0, λ1 > 0 with kR, `R and λ1

corresponding to the solution of (46) and (15) and

ΠB =

∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ − (1− k)− ρk = 0.

Comparing social welfare in the two equilibria, it is easy to see that the equilibrium featuring

the highest welfare is the one characterized by the highest level of capital, since, using (19), we

can rewrite

SW = 1 + (ρ− 1) k

This follows directly from the fact that, in both equilibria, ΠB = 0, debt holders receive 1

in expectation and ρ > 1. The candidate equilibrium featuring only effi cient runs features

kR = 1− `R and requires a high `R when ρ and α are large, while in the equilibrium in which
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liquidity crises occur an increase in `R does not necessarily requires kR to decrease by one (i.e.,
∂kR

∂`R
6= 1). This implies that the equilibrium features no liquidity crises only when ρ and α are

suffi ciently low. We then denote as ρ̃ (α) the curve below which eliminating ineffi cient liquidity

crises is optimal. The curve ρ̃ (α) corresponds to the pair {α, ρ} for which the two candidate
equilibria entail the same k and so the same welfare.

When ρ > ρ̃ (α), the equilibrium features kR < 1 − `R, `R and λ1 corresponding to the

solution of (46) and (15) and

ΠB =

∫ θ∗

0

`dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ − (1− k)− ρk = 0.

The solution
{
kR, `R

}
lies in the region where ∂θ

∗

∂k < 0, as, otherwise, (46) does not hold. Given

that kR < 1−`R in equilibrium, it follows from (11) that r2 > 1. Thus, the proposition follows.

�

Proof of Proposition 4: The proof proceeds in steps. First, we prove that in any bank

debt holders behave according to a threshold strategy when assuming that debt holders in other

banks also behave according to a threshold strategy. Second, we characterize the equilibrium

thresholds. Finally, we show that they are unique.

When debt holders at any bank behave according to a threshold strategy s∗g, the proportion

of debt holders in bank g withdrawing at date 1 is equal to the probability of receiving a signal

below s∗g. We denote it as ng = ng(θ, s
∗
g) and it is still given by (29).

A debt holder’s utility differential is similar to the one in (5) with the difference that the

bank liquidates (1−kg)ng
χ(Q) units of the portfolio to meet the (1− kg)ng early withdrawals rather

than (1−kg)ng
`g

as in the baseline model. This implies that a debt holder’s utility differential is

also a function of n(−g) that is of the proportion of other debt holders withdrawing at date 1

in all other banks.

The proof that a debt holder in bank g behave according to a threshold strategy when all

other debt holders in the economy also behave according to a threshold strategy follows the

same steps as in the proof of Proposition 1. Thus, denote as ∆(si, ṅ(θ), ṅ(−g)(θ)) the expected

difference in utility between withdrawing at date 2 and at date 1 of debt holder i in bank g

when he holds beliefs ṅ(θ) and ṅ(−g)(θ) regarding the number of depositors running in his own

bank and in all the other banks in the economy. The function ∆(si, ṅ(θ), ṅ(−g)(θ)) is given by

∆(sig, ṅ(θ), ṅ(−g)(θ)) =
1

2ε

∫ si+ε

si−ε
En
[
v(θ, ṅ(θ), ṅ(−g)(θ))

]
dθ.

Since for any realization of θ, the proportion of depositors running is deterministic, we can

write ng(θ) and n(−g)(θ) instead of ṅg(θ) and ṅ(−g)(θ) and the function ∆(si, ṅ(θ), ṅ(−g)(θ))
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simplifies to

∆(si, ṅ(θ), ṅ(−g)(θ)) =
1

2ε

∫ si+ε

si−ε
v(θ, n(θ),n(−g) (θ))dθ.

Notice that when all debt holders behave according to the same threshold strategy s∗, ṅ(θ) =

n(s∗, θ) as defined in (29). As in the proof of Proposition 1, for a unique threshold signal to

exist we need to show that the utility differential of a debt holder in bank g is decreasing in

n and increasing in θ. Regarding the former, the v (.) is as in the baseline model, thus still

exhibiting the property of one-sided strategic complementarity. Regarding the latter, unlike the

baseline model, we also need to account the effect that θ has on v(θ, n(θ),n(−g) (θ)) through

its effect on the proportion of debt holders running in other banks n(−g) (θ). Specifically, the

effect of θ on the v (.) is given by

∫ n

n̂(θ)

R′ (θ) (1− α`g)
[
1− ng(1−kg)

χ(Q)

]
(1− kg) (1− ng)

dng (55)

+

∫ n

n̂(θ)

R (θ) (1− α`g) ng(1−kg)
χ(Q)

(1− kg) (1− ng)
dng −

∫ 1

n

χ (Q)

(1− kg)ng
dng

 χ′ (Q,w)

χ (Q)
,

since the derivatives of the extreme of the integrals cancel out and given (29) and ∂Q
∂ng

> 0 it

is easy to see that χ′ (Q) > 0 since as θ increases the proportion of debt holders running in all

other banks decreases for all g = 1, ...G. The expression in (55) is positive for R′ (θ) suffi ciently

large.

The analysis above implies that, even accounting for the effect of θ on the proportion of

debt holders running in all other banks, the function v (.) exhibits the same properties as in

the baseline model. Thus, the rest of the proof goes through and all debt holders in bank g

withdraw at date 1 if they receive a signal below s∗g and roll over otherwise when they expect

debt holders in the other banks also to behave according to a threshold strategy. The condition

(22) in the proposition represents a debt holder’s indifference condition between rolling over

the debt and withdrawing at date 1 and it is obtained by substituting θ = s∗g+ε−2εng into the

expression for the proportion of early withdrawing debt holders n(−g) for all banks other than

g as given in (29). The equilibrium corresponds to the vector of threshold signals s∗ solving

the system of G indifference condition as the one given in (22).

To complete the proof we need to show that the system of G indifference conditions has a

unique solution. Denote as fg
(
s∗g, s

∗
(−g)

)
= 0 each indifference condition. We can rearrange the

system in a matrix form as As∗ = b, with b 6= 0.
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The matrix of the coeffi cients A is equal to

A =



∂f1(.)
∂s∗1

∂f1(.)
∂s∗2

... ∂f1(.)
∂s∗G

.

.

.

∂f2(.)
∂s∗2

...

.

.

.

∂fG(.)
∂s∗1

... ... ∂fG(.)
∂s∗G


,

where the terms on the diagonal capture the effect of the threshold signal s∗g on the indifference

condition of a debt holder in bank g (i.e., ∂fg(.)
∂s∗g

), while all other terms are the effect of the

threshold signal of debt holders in a bank other than g on the indifference condition of a debt

holder in bank g (i.e., ∂fg(.)
∂s∗

(−g)
). From (22), it is easy to see that ∂fg(.)

∂s∗g
> 0 while ∂fg(.)

∂s∗
(−g)

< 0

and
∣∣∣∂fg(.)
∂s∗g

∣∣∣ > ∣∣∣ ∂fg(.)
∂s∗

(−g)

∣∣∣, as the latter also includes the direct effect that s∗g has on date 2 per

unit return R
(
s∗g + ε− 2εng

)
(1− α`) on top of the effect of the signals on χ (.). Furthermore,

given the bank are symmetric, in equilibrium they choose the same kg, `g and r2g. This implies

that ∂fg(.)
∂s∗

(−g)
is the same for all g and ∂fg(.)

∂s∗g
=

∂f(−g)(.)

∂s∗
(−g)

. Then, it follows that the determinant of

matrix A is equal to

(
∂fg (.)

∂s∗g
− ∂fg (.)

∂s∗(−g)

)(G−1)(
∂fg (.)

∂s∗g
+ (G− 1)

∂f(−g) (.)

∂s∗g

)
6= 0

and the system of G indifference conditions has a unique solution, which we denote as the

vector s∗G. Thus, the proposition follows. �

Proof of Proposition 5: The proof follows Goldstein (2005) and it is done for ε → 0, so

that s∗g → θ∗g given that θ = s∗g + ε− 2εng. The arguments in his proof establish that there is

a unique threshold of fundamental θ, which we denote as θ∗G, below which debt holders at all

bank withdraw at date 1 and roll over otherwise.

The proof hinges on the characterization of the equilibrium thresholds in the case where debt

holders in a bank g have extreme beliefs about the actions of debt holders in the other banks.

Denote as θ∗g
(
n(−g) = 1

)
and θ∗g

(
n(−g) = 0

)
debt holders’ equilibrium threshold in the case

they expect that no investors roll over and all investors roll over, respectively, in all other −g
banks in the economy. As banks are symmetric, θ∗g

(
n(−g) = 1

)
and θ∗g

(
n(−g) = 0

)
are the same

for all banks. These thresholds under extreme beliefs can be computed following the same steps

illustrated in Proposition 4 but fixing the proportion of debt holders running in other banks.

Notice that the threshold θ∗g
(
n(−g) = 0

)
is the same as θ∗ characterized in Proposition 1 since
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if only one bank sells asset in the market no fire sale occurs and χ (Q) = `g. Since threshold

characterized in Proposition 4 are computed for 0 ≤ n(−g) ≤ 1 and the actions of debt holders

in different banks are strategic complements, it follows that equilibrium thresholds θ∗g lies in

the range (θ∗g
(
n(−g) = 0

)
, θ∗g
(
n(−g) = 1

)
] that is it is strictly larger than θ∗g

(
n(−g) = 0

)
≡ θ∗.

To complete the proof we need to show that all θ∗g converges to the same value θ
∗
G. Assume

by contradiction that θ∗g < θ∗(−g). Then, a debt holder i in bank g receiving the signal si = θ∗g

is indifferent between running and rolling over and believes that debt holders in all other banks

in the economy withdraw at date 1. Thus, θ∗g would converge to θ
∗
g

(
n(−g) = 1

)
> θ∗(−g). A

similar argument rules out the possibility that θ∗g > θ∗(−g). Thus, in equilibrium it must be that

θ∗g = θ∗(−g) and we denote it as θ
∗

G and the proposition follows. �

Proof of Proposition 6: The proof is analogous to that of Proposition 2. The conditions

(25) and (26) in the proposition are obtained by substituting r2 from (23) into (10) and differ-

entiating it with respect to k and `. Following the same steps as in the proof of Proposition

2, it can be shown that when banks choose 1 − k = χ (`), θ∗G → θ, which is still given by

(4). Furthermore, from (23), r2 = 1 and the bracket [R (θ∗G) (1− α`)− (1− k)] = 0 and so

the expression in (25) becomes negative. This implies that 1 − kBG > χ (`) holds and so the

proposition follows. �

Proof of Proposition 7: The Lagrangian for the regulator’s problem is given by

L =

[∫ θ∗G

0

χ (`) dθ +

∫ 1

θ∗G

R (θ) (1− α`) dθ
]

(1 + λ1)− λ1ρk − λ1 (1− k) + λ2

(
`− χ (`)

)
.

It only differs from that in the proof of Proposition 3 because the relevant run threshold is

θ∗G instead of θ∗ and the regulator faces the additional constraint that χ (`) ≤ ` so that the

term λ2

(
`− χ (`)

)
also appears in the expression. The Kuhn-Tucker conditions are as (46)-

(49) in the proof of Proposition 3 with two differences. First, condition (47) features the extra

term +λ2

[
1− ∂χ(`)

∂`

]
and

∫ θ∗G
0

∂χ(`)

∂` dθ instead of
∫ θ∗

0
1dθ. Second, the conditions λ2 ≥ 0 and

λ2

(
`− χ (`)

)
= 0 must be added to the set of conditions.

Based on the same arguments as in the proof of Proposition 3, it holds that the regulator

chooses kR = 1, `R = 0 as long as it is feasible, i.e., for ρ ≤ ρ.
Consider now the case ρ > ρ. We start by characterizing the set of candidate equilibria.

Then, we move on to identify the regions in the plane {α, ρ} in which each of them emerges as

the solution to the regulator’s maximization problem.

Suppose first that λ1 = 0 and λ2 > 0 so that χ (`) = `. This implies that in equilibrium

` ≥ ̂̀must hold. From (46) we obtain kR = 1 − `R, which in turn implies that θ∗ → θ = θE ,
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while (47) becomes ∫ θE

0

dθ −
∫ 1

θE
αR (θ) dθ = 0,

since
∂χ(`)

∂`

∣∣∣
`=̂̀= 1. Denote as ρ̂ (α) the pairs {α, ρ} for which ΠB

(
1− ̂̀, ̂̀) = 0. As shown in

the proof of Proposition 3, banks’profit evaluated at k = 1− ` increases with ` and decreases
with α and ρ. Thus, the solution kR = 1 − ̂̀ and `R = ̂̀ is feasible for pairs {α, ρ} below
the curve ρ̂ (α), while above the curve ρ̂ (α), ` > ̂̀ is required for the banks’ profit to be
non-negative.

Suppose now that λ1 = 0 and λ2 = 0, then χ (`) < `, or equivalently ` < ̂̀, holds. From
(46) we obtain kR = 1 − χ (`), which in turn implies that θ∗ → θ < θE , while from (47) we

obtain ∫ θ

0

∂χ (`)

∂`
dθ −

∫ 1

θ

αR (θ) dθ = 0 (56)

Since both (56) and ΠB(1−χ (`) , `) are increasing in `, the regulator chooses `R as the solution

to ΠB
(
kR, `R

)
= 0. As in the previous case, it is easy to see that ΠB

(
1− χ (`) , `

)
is decreasing

in both ρ and α and increasing in `. Thus, we denote as ̂̂ρ (α) the pairs {α, ρ} for which
ΠB

(
1− χ (`) , `

)
= 0, so that the solution kR = 1−χ

(
`R
)
and `R < ̂̀as given by the solution

to ΠB
(
1− χ

(
`R
)
, `R
)

= 0 is only feasible for pairs {α, ρ} in the region below the curve ̂̂ρ (α).

Finally, suppose λ1 > 0, then kR < 1−`R and the relevant crisis threshold is θ∗. Specifically,
the candidate equilibrium features λ1, kR and `R solving ΠB

(
kR, `R

)
= 0 and

−
[
∂θ∗G
∂k

+
∂θ∗G
∂r2

∂r2

∂k

] [
R (θ∗) (1− α`)− χ (`)

]
(1 + λ1)− λ1 (ρ− 1) = 0,

and

−
[
∂θ∗G
∂`

+
∂θ∗G
∂r2

∂r2

∂`

] [
R (θ∗) (1− α`)− χ (`)

]
+

∫ θ∗G

0

∂χ (`)

∂`
dθ −

∫ 1

θ∗G

R(θ)αdθ = 0.

Given the three candidate equilibria described above, to determine which one emerges as

the equilibrium, we need to consider different ranges of values for α and ρ. In particular, it is

convenient to distinguish two cases depending on whether the curve ρ̂ (α) lies below the curve

ρ̃ (α), which we defined in the proof of Proposition 3.

When the curve ρ̂ (α) lies below the curve ρ̃ (α), using the same arguments as in the proof of

Proposition 3, the regulator optimally chooses kR = 1−`R for pairs {α, ρ} in the region between
the curves ρ̂ (α) and ρ̃ (α), while for pairs {α, ρ} above the curve ρ̃ (α) it chooses kR < 1− `R

solving ΠB
(
kR, `R

)
= 0 and `R ≥ ̂̀being the solution to (47) so that rB2 > 1.

Below the curve ρ̂ (α), there are two candidate equilibria. One corresponds to λ1 = 0,
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λ2 > 0, kR = 1 − `R and `R ≥ ̂̀ solving ΠB
(
kR, `R

)
= 0. The other, instead, corresponds to

λ1 = λ2 = 0 so that (46) gives kR = 1 − χ (`), which in turn implies that θ∗ → θ < θE , while

`R solves ΠB
(
1− χ (`) , `

)
= 0. In the two equilibria, the expression for the social welfare is

given by

SWθ =

∫ θ

0

χ (`) dθ +

∫ 1

θ

R (θ) (1− α`) dθ

when kR = 1− χ (`) and

SWθE =

∫ θE

0

̂̀dθ +

∫ 1

θE
R (θ)

(
1− α̂̀) dθ

when kR = 1− ̂̀.
When α = 0, the difference between SWθ and SWθE is equal to

SWθ − SWθE = −
∫ θ

0

[̂̀− χ (`)
]
dθ −

∫ θE

θ

[̂̀−R (θ)
]
dθ < 0,

since θ < θE and R (θ) < ̂̀ for any θ < θE , given the definition of θE as given by (16). For

any α > 0, for SWθ > SWθE to hold α must be suffi ciently high, we denote as α the threshold

value of α for which SWθ = SWθE so that for α > α SWθ > SWθE holds. Thus, for α > α

as long as ρ < ̂̂ρ (α) so that ΠB
(
1− χ (`) , `

)
≥ 0 for ` < ̂̀, the regulator optimally chooses

kR = 1−χ (`). Given that ΠB
(
1− χ (`) , `

)
is decreasing in both α and ρ, there exists a curve

ρ (a), with ρ′ (a) < 0 such that in the region below ρ (a) and α > α the regulator chooses

kR = 1−χ (`). For any other pairs {α, ρ} below the curve ρ̂ (α), the regulator chooses, instead,

kR = 1− `R.
Consider now the case when the curve ρ̂ (α) lies above the curve ρ̃ (α), that is ̂̀ is large.

Using the same argument as above, for pairs {α, ρ} below ρ (a) and α > α, the regulator

chooses kR = 1 − χ (`), otherwise the allocation featuring kR = 1 − `R and `R = ̂̀ emerges
as the equilibrium to the regulator’s problem. In the region above ρ̃ (α), based on the same

arguments established above, the equilibrium features kR < 1 − `R solving ΠB
(
kR, `R

)
= 0

and `R ≥ ̂̀being the solution to (47) so that rB2 > 1 and the proposition follows. �
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