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Abstract

Active mutual fund managers care about fund size, which is affected by common fund
flows driven by macroeconomic shocks. Fund managers hedge against common flow
shocks by tilting their portfolios toward low-flow-beta stocks. In equilibrium, common
flow shocks earn a risk premium. A multi-factor asset pricing model similar to the
ICAPM arises, even with all agents behaving myopically. Empirically, fund flows obey
a strong factor structure with the common component earning a risk premium, and
fund portfolios are, on average, tilted toward low-flow-beta stocks. This tilt increases
in magnitude when flow-hedging motives strengthen following natural disasters and

unexpected trade-war announcements.
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1 Introduction

Over the past few decades, delegated asset management such as mutual funds and pension
funds have become the dominant player in the United States (US) financial markets (e.g.,
French, 2008). In 2016, the combination of mutual funds and pension funds held more than
44% of the US equity market. Because the funds charge asset management fees based on
their assets under management (AUM), fund managers’ incentives are closely related to
fund size. Indeed, recent studies have shown that the compensation of active fund managers
is significantly and monotonically associated with fund size (e.g., Ibert et al., 2018). Fund
size fluctuates not only because of fund returns but also because of fund flows.

We show empirically that fund flows share a significant degree of common time-series
variation, consistent with the findings of Ferson and Kim (2012). As a contribution to
this area of research, we establish the finding that active equity funds of different asset
size groups, age groups, industry concentration levels (Kacperczyk, Sialm and Zheng,
2005), and portfolio liquidity levels (Pastor, Stambaugh and Taylor, 2019) exhibit strong
commonality in fund flows at a frequency higher than that of business cycles. The common
flow component is closely related to fluctuations in macroeconomic conditions, especially in
economic uncertainty faced by investors.

In this paper we develop and test the central theoretical implications of the agency
problem between the managers of active mutual funds and fund investors. We show in our
model that fund managers tilt their portfolios to hedge against the common component of
fund flow fluctuations. By doing so, they raise aggregate demand for stocks with low betas
on the common fund flows, thus increasing valuations of such stocks and lowering their
expected returns.!

This paper addresses an important limitation of standard risk-based explanations of
compensated systematic shocks in the cross-section of stock returns, which use Merton’s
Intertemporal Capital Asset Pricing Model (ICAPM) framework (Merton, 1973) and attribute
risk premia on return factors to the intertemporal hedging demand of investors. Many
researchers have questioned the core assumption of the ICAPM that investors are able
to form accurate long-term expectations and develop sophisticated dynamic investment

and consumption plans. An extensive body of the literature provides evidence that many

10ur findings illustrate the general insight that institutions have different demand for stock characteristics
relative to other investors, which has important implications for stock prices and returns (e.g., Gompers and
Metrick, 2001; Koijen and Yogo, 2019).



investors, particularly households, are unsophisticated in their financial decision making.?
In our model, stock market investors (and even fund managers) do not need to anticipate
and hedge against possible intertemporal changes in their investment environment. Instead,
if investors adjust their asset allocation following realizations of a macroeconomic shock,
they expose fund managers to aggregate fluctuations in the fund flow. Such macroeconomic
shock is then priced in equilibrium because of its endogenous relation with the fund flows.?
We introduce a general equilibrium model of delegated asset management. In our model,
fund flows fluctuate endogenously with the aggregate state of the economy. Fund managers
account for the fund flow risk in their portfolio choice, and their flow-hedging behavior
affects stock prices. Our model features an exchange economy populated with investors and
active fund managers. Investors allocate their capital between the risk-free asset and multiple
stocks. They choose whether to form their portfolio on their own and become “direct
investors,” or to delegate their investments to the fund managers and become “fund clients.”
Fund clients pay a fee to the fund managers, proportional to the amount of delegated assets.
Fund managers operate active equity funds and consume the net income of these funds.
We use an overlapping-generations (OLG) structure, with all agents living for two periods
and behaving myopically. The assumption of myopic behavior is not necessary for the main
results, but serves to emphasize that the asset pricing implications of our model do not rely
on sophisticated intertemporal optimization by the market participants. Instead, the risk
premium on flow shocks in our model arises because of the myopic (single-period) hedging
motives of the fund managers, owing to the exposure of the funds” AUM to the flow shocks.
In our model, firm fundamentals are subject to economic uncertainty shocks: conditional
volatility of firms” dividends fluctuates with the state variable that captures economic
uncertainty. When economic uncertainty rises, fund clients pull their capital out of active
equity funds and invest in the safe asset. As a result, they endogenously generate common
outflows across active equity funds. Fund managers have an incentive to hedge against
(endogenous) fluctuations in common fund flows in order to reduce the volatility of their

funds” AUM, which directly affects the volatility of their compensation. They do so by tilting

2For example, recent papers by Greenwood and Shleifer (2014), Bordalo et al. (2019), and Bordalo et al.
(2020) document financial advisors and professionals form systematically biased expectations, especially for
long-term growth. Hirshleifer (2015) discusses how investor overconfidence and limited cognitive processing
hamper implementation of strategic plans. Further, empirical evidence has shown that fund managers as
investors are often short-sighted in their decision making (e.g., Prat, 2005; Hermalin and Weisbach, 2012).

3The mere existence of priced factors in stock returns does not guarantee that the premia on these factors
reflect compensation for risk (e.g., MacKinlay (1995) and Kozak, Nagel and Santosh (2018)).



their portfolios away from the stocks with high flow betas. Because of this hedging demand,
market clearing conditions imply that the aggregate stock market portfolio deviates from the
mean-variance efficient frontier in equilibrium. In particular, prices of high-flow-beta stocks
are reduced by the managers” hedging demand, and their expected returns are elevated
relative to their market betas.

Common fund flows bridge the gap between the macroeconomic shocks affecting house-
holds and portfolio decisions of self-interested institutions. Because common fund flows
are driven by the economic uncertainty shocks in the model, stock betas on common fund
flows and their betas on the economic uncertainty shocks are closely related across firms
in equilibrium. This means that not only are common fund flow shocks priced in the
cross-section of stock returns, but the economic uncertainty shocks are priced as well, even
though households themselves do not hedge against uncertainty shocks.

We provide empirical support for the above predictions of our model using detailed data
on the returns, asset size, and portfolio holdings of active mutual funds. These empirical
results are novel, and represent another contribution of this paper. First, we establish
a relation between the common component of fund flows and macroeconomic shocks.
Particularly, we find that common fund flows are significantly negatively correlated with
fluctuations in the economic policy uncertainty measure proposed by Baker, Bloom and
Davis (2016), the (implied) market volatility used by Bloom (2009), and the consumption
dispersion measure used by Brav, Constantinides and Geczy (2002), Vissing-Jorgensen (2002),
and Jacobs and Wang (2004), suggesting that common fund flows endogenously respond
to primitive economic shocks that drive economic uncertainty. Second, we find that stocks
with higher flow betas are associated with higher excess returns and higher CAPM alphas.
The magnitudes of the flow-beta spreads are both statistically and economically significant.*
Third, we find that funds tilt their portfolio positions away from the stocks with high
common flow betas, reducing the covariance of the funds’ portfolios with the common fund
flow shocks. This finding is robust to defining the tilt relative to the market portfolio or the
self-disclosed benchmarks.

To further confirm that the observed portfolio tilts are driven by the flow hedging

motive, we use two quasi-natural experiments to see how funds respond to changes in the

“We find that capital flows in and out of index funds are not priced in the cross-section of stock returns,
which is consistent with the logic of our models: index funds are much more constrained than active funds in
their ability to deviate from their benchmark.



magnitude of their outflow risk. In the first experiment, we examine changes of mutual
fund holdings following natural disaster shocks in the US. We find that active mutual funds
experience an increase in outflow risk in the subsequent quarters when some stocks in their
portfolios are negatively affected by natural disaster shocks. The heightened outflow risk
increases funds’ incentives to hedge against common fund flow shocks. Consistent with
our theoretical predictions, active equity mutual funds tilt their holdings of the unaffected
stocks more aggressively toward those with lower flow betas. Importantly, this portfolio tilt
is economically costly, judging by its negative impact on the funds’ investment performance.

In the second experiment, we study how mutual funds rebalance their portfolio holdings
following the unexpected announcement of a possible US-China trade war made by the
Trump administration. The common flow betas of China-related stocks increase sharply,
relative to China-unrelated stocks, in the aftermath of the unexpected trade war announce-
ment and the resulting heightened trade policy uncertainty. Thus, the unexpected trade war
announcement strengthens the flow hedging incentives of the active funds with substantial
positions in China-related stocks. Again, consistent with our theory, the exposed mutual
funds tilt their China-unrelated holdings toward the low-flow-beta stocks more aggressively
after the unexpected trade war announcement.’

In addition to its main implications for pricing common fund flow shocks, our model
also generates a countercyclical pattern of net fund alphas, which is an important empirical
property of active mutual funds.® The key model element responsible for this result is the
negative relation between the net alpha and the AUM of active funds, which is in turn
driven by the funds’ convex operating costs. This specification of the funds’ investment
technology is standard (e.g., Berk and Green, 2004; Berk and van Binsbergen, 2015, 2016a). In
equilibrium, the net alpha and delegation size are jointly determined by clearing the market
for delegation. During periods of heightened uncertainty, fund clients in the model reduce
their delegation supply by moving money out of stocks and into the safe asset. This shift in

the supply curve of delegate investment assets simultaneously reduces the size of the funds’

>In the online appendix, we also examine changes of mutual fund holdings after the unexpected announce-
ment made by the Organization of the Petroleum Exporting Countries (OPEC) in 2014 (e.g., Gilje, Ready and
Roussanov, 2016). In the announcement, the member countries decided not to cut their oil supply in response
to increased supply from non-OPEC countries and falling prices. The 2014 OPEC announcement substantially
increased the uncertainty betas and the flow betas for “oil-related” stocks relative to “oil-unrelated” stocks. In
response, mutual funds increased the tilt of their oil-unrelated positions toward low-flow-beta stocks.

6See, for example, Moskowitz (2000), Moskowitz (2000), Kosowski (2011), and Kacperczyk, Van Nieuwer-
burgh and Veldkamp (2016). Interestingly, a recent paper by Péstor and Vorsatz (2020) shows that most active
funds underperformed passive benchmarks during the 2020 COVID-19 crisis.
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AUM and raises their net alpha.

Related Literature. Our paper contributes to the literature on the relation between mutual
fund flows and asset prices in the capital market (see Christoffersen, Musto and Wermers,
2014, Chapter 5, for a survey). One strand of this literature has focused on the relation
between aggregate mutual fund flows and market returns (e.g., Warther, 1995; Edelen and
Warner, 2001; Goetzmann and Massa, 2003; Ben-Rephael, Kandel and Wohl, 2012). Another
strand of the literature has examined the predictable price pressure induced by mutual
fund flows (e.g., Coval and Stafford, 2007; Frazzini and Lamont, 2008; Ben-Rephael, Kandel
and Wohl, 2011; Lou, 2012; Shive and Yun, 2013; Akbas et al., 2015). Moreover, Greenwood
and Nagel (2009) show that large inflows into the mutual funds managed by inexperienced
managers may contribute to the formation of asset price bubbles. Ben-Rephael, Choi and
Goldstein (2019) show that intra-family flow shifts toward high-yield bond mutual funds
predict credit spreads. Pastor and Vorsatz (2020) analyze capital flows in and out of active
equity mutual funds during the COVID-19 crisis and find that these outflows are rapid
during the market crash, outpacing the long-term trend. Similar to our paper, Kim (2020)
also studies the asset pricing implications of fund flow betas. The key differences stem from
our emphasis on the factor structure of fund flow shocks and the hedging behavior of active
mutual funds. Our paper is different from Kim (2020) in at least the following aspects: (i)
we endogenize the pro-cyclical fund flow and countercyclical net alpha in the model, and
show how market participants optimally choose their portfolios under endogenous fund
flow risk; (ii) we show that mutual fund flow shocks obey a strong factor structure and
that shocks to the common fund flow factor are priced in the cross section of stock returns;
(iii) we show that mutual fund flows respond to aggregate economic shocks such as shocks
to economic policy uncertainty, market volatility, and consumption dispersion; (iv) we use
detailed holdings data to document the hedging behavior of mutual funds; and (v) we
exploit quasi-natural experiments to study the active hedging behavior of mutual funds.
Our paper also contributes to the literature on the asset allocation of institutional investors
(e.g., Grinblatt and Titman, 1989; Daniel et al., 1997; Wermers, 2000; Gompers and Metrick,
2001; Bennett, Sias and Starks, 2003; Brunnermeier and Nagel, 2004; Kacperczyk, Sialm and
Zheng, 2005; Basak, Pavlova and Shapiro, 2007; Cremers and Petajisto, 2009; Hugonnier
and Kaniel, 2010; Cuoco and Kaniel, 2011; Lewellen, 2011; Agarwal et al., 2013; Kacperczyk,
Nieuwerburgh and Veldkamp, 2014; Sialm, Starks and Zhang, 2015; Blume and Keim, 2017;

5



Lettau, Ludvigson and Manoel, 2018; Koijen and Yogo, 2019; Pastor, Stambaugh and Taylor,
2019, 2020). We add to this literature by showing that the portfolios of active mutual funds
are tilted toward stocks with low flow betas. We show that stock characteristics such as
book-to-market ratio are correlated with common flow betas in the way such that exploiting
the predictive content of these characteristics renders funds more exposed to common fund
tlow shocks. Koijen and Yogo (2019) construct a characteristics-based demand system that
allows for flexible heterogeneity in asset demand across investors and matches institutional
and household holdings, including zero holdings and index strategies.

Our paper is closely related to the branch of the literature studying the effect of managers’
compensation contracts on institutional portfolio choice. Fraction-of-fund fees are by far
the predominant compensation contract in the mutual fund industry (e.g., Hugonnier and
Kaniel, 2010; Ibert et al., 2018). However, some funds have a performance component in their
compensation contract. Particularly, Grinblatt and Titman (1989), Carpenter (2000), Basak,
Pavlova and Shapiro (2007), and Cuoco and Kaniel (2011) study the optimal asset allocation
of fund managers receiving relative performance fees. Like us, Hugonnier and Kaniel (2010)
focus on fraction-of-fund fees and study how flow hedging motives of managers distort
funds’ asset allocation decisions. This paper differs in its focus on the hedging motives
against the aggregate component of fund flows, and aggregate implications of flow hedging
in the capital market.

Our paper is related to the emerging literature on the role of intermediaries, particularly
delegated portfolio management, in asset pricing (e.g., Brennan, 1993; Goldman and Slezak,
2003; Asquith, Pathak and Ritter, 2005; Cornell and Roll, 2005; Nagel, 2005; Cuoco and
Kaniel, 2011; He and Krishnamurthy, 2011, 2013; Basak and Pavlova, 2013; Kaniel and
Kondor, 2013; Vayanos and Woolley, 2013; Adrian, Etula and Muir, 2014; Koijen, 2014; He,
Kelly and Manela, 2017; Koijen and Yogo, 2019; Haddad, Huebner and Loualiche, 2021).
In a recent paper, Gabaix and Koijen (2020) estimate that flows in and out of the stock
market exert a large impact on stock prices because of the low price-elasticity of demand by
many institutional investors, especially mutual funds. These findings suggest that inelastic
demand by a subset of investors may further motivate the demand for hedging against
common fund flow shocks and magnify the effect of the flow-hedging behavior, which is the
subject of this paper. Cuoco and Kaniel (2011), Kaniel and Kondor (2013), Basak and Pavlova
(2013), Vayanos and Woolley (2013), Breugem and Buss (2018), Buffa and Hodor (2018), and



Buffa, Vayanos and Woolley (2019), investigate the asset pricing implications of contractual
distortions or restrictions among fund managers, fund companies, and fund clients, such
as relative-performance-based compensation of fund managers, index-tracking restrictions,
and costly adjustment of fund clients. Like our work, Vayanos and Woolley (2013) highlight
endogenous fund flow risk and its asset pricing implications for return momentum and
reversals. We add to this literature by showing that common fund flow shocks play an
important role in the financial market; specifically, our paper is the first to highlight the role
of endogenous fund flows as an invisible hand in the capital market, connecting the asset
allocation of institutions, as well as its asset pricing implications, to the aggregate shocks

affecting (myopic) households.

2 An Elaborate Model

Although the contribution of this paper comes mainly from the empirical results, we use the
elaborate model to establish the simplest conceptual framework for clearly explaining the
basic economics and setting up the hypotheses.

Despite the simplicity of the elaborate model, we need to consider a general-equilibrium
framework to illustrate endogenous aggregate fund flows and their equilibrium asset pricing
implications. Specifically, we introduce fund managers and delegated investment man-
agement into a discrete-time, infinite-horizon, overlapping-generations (OLG) exchange
economy with multiple risky assets, one risk-free asset, and a single perishable consumption
good. Instead of deriving the optimal compensation contracts to fund managers, we pos-
tulate a simple specification of compensation contracts, which is strongly supported in the
data. In particular, we specify the compensation structure of fund managers based on the

estimation of Ibert et al. (2018).

2.1 Assets

There are n risky assets in the economy, indexed by i =1, - - - , n. Their dividends are stacked
in a n-dimensional vector Dy = [Dyy, - -, Dn,t]T, and the log dividends are d; = In(Dy). The

data-generating process of the log dividend growth rates is

Adp1 = p+ Ve (Bupgr +€041), (2.1)



where u; = [uyy, -+, ug,]’ are k primitive factors distributed as ii.d. N(0,I), and & =

T are residuals distributed as i.i.d. N(0,I,). The n x k matrix B captures

[eve, - €n]
the loading coefficients of the n log dividend growth rates Ad;,; on the k factors u; .
By postulating distributional structure (2.1) for log dividend growth, we assume that the
covariance matrix of assets’ cash flows is mainly captured by that of a few dominant factors,
similar to many other multi-asset portfolio choice and asset pricing models (e.g., Kozak,
Nagel and Santosh, 2018; Koijen and Yogo, 2019). This assumption is consistent with the
empirical evidence documented by Ball, Sadka and Sadka (2009), who show that there is a
strong factor structure in firms” fundamentals.

We assume that the number of assets in this economy, 7, is large, and various cross-
sectional averages of idiosyncratic shocks, e.g., (1/n) Y ; ¢;, are approximately equal to 0,
which is essentially the assumption of the Arbitrage Pricing Theory (e.g., Ross, 1976). In
particular, the number of assets is much larger than the number of primitive factors, i.e.,
1<k<n.

The time-varying uncertainty is characterized by univariate state variable h;, which is

driven by k aggregate shocks u; as follows:”
hiwr = h+p(hy — ) + V/lyouiq, withp € (0,1) and o € RV, (2.2)

Without loss of generality, we assume that the 1 X k vector ¢ = [y, -+, 0%] has positive
elements, i.e., 0 >0 forj=1,---,k

Stock i is a claim to dividend stream D;; for i = 1,---,n, and is in unit net supply.
Similar to Kozak, Nagel and Santosh (2018), we assume that the supply of the risk-free bond
is perfectly elastic, with a constant risk-free rate of Ry > 1.8 Let rf=In (R f) denote the log
risk-free interest rate. The return of risky asset i is given by R;;11 = (P41 + Dity1)/Pis
where P;; is the price of risky asset i at time ¢ for i = 1,--- ,n. The vector that stacks the

risky asset returns is denoted by Ry 1 = [Ry 441, -+, Ry 1)T

Log-Linear Approximation. We use a log-linear approximation to characterize the equilibrium

relation among consumption, portfolio holdings, and asset prices analytically. The log return

"We impose a zero lower bound on /; similar to Bansal and Yaron (2004) and Chen, Dou and Kogan (2019).

8We fix the risk-free rate in the model for tractability. This assumption is not unreasonable for the US
market, where US Treasuries are largely held and traded by foreign investors, and the risk-free rate is not
determined entirely by domestic demand (e.g., Gourinchas and Rey, 2007; Caballero, Farhi and Gourinchas,
2008; Dou and Verdelhan, 2017).



vector, 7111 = 1log(Rs41), can be expressed as
rev1 ~ Lz — 2z + Adpyq + 4, (2.3)

where z; = In (P;/Dy) is the n x 1 vector of log price-dividend ratios with elements z;; =
In(P;;/D;;). The matrix L in (2.3) is a n x n diagonal matrix with the ith diagonal element
equal to L; = €% /(1 +¢€%) € (0,1), where Z; is the long-run average of the log price-dividend
ratio for asset i. The vector ¢ in (2.3) is a n x 1 vector with the ith element equal to
li=—-In(Lj))+(1-L;)In(1/L; - 1).

We conjecture that the log price-dividend ratio is an affine function of the aggregate state
variable h;:

Z =~ g + Ch(ht — E), (24)

where 7, {;, € R"*! are constant vectors to be determined in equilibrium.
Based on the representation of log returns in (2.3) and the equilibrium log price-dividend
ratio in (2.4), equilibrium log returns ;1 can thus be characterized as follows. The proof is

in Online Appendix 1.1.

Proposition 2.1 (Excess log returns of risky assets). The equilibrium excess log returns of risky

assets are

Tig1 — rfl R Ut =+ \/ ht (Kutﬂ + St—l—l) , (25)
where 1 € R™ 1 is a vector of ones, uy € R™ ! is the conditional expected excess log return given
the information set up to time t, and K € R" <k captures stock returns’ systematic risk exposure:

ur = (oL — I,)Cphy and K = L0+ B, (2.6)

where B is defined in (2.1), p and o are defined in (2.2), L is defined in (2.3), and (}, is defined in

(2.4). The variance-covariance matrix of the log returns is
>y = Xhy, with ¥ =I,+ KK". (2.7)

In principle, factor models can arise in the equilibrium whether expected returns reflect
systematic risk or mispricing. The macro factors u;,1 can capture systematic risks for which
investors require compensation, or they can capture common sources of mispricing, such

as market-wide investor sentiment (e.g., Hirshleifer and Jiang, 2010; Stambaugh and Yuan,



2016; Kozak, Nagel and Santosh, 2018).9 Particularly, if the kth column of the loading matrix
B in (2.1) is zero and the kth element of ¢ in (2.2) is strictly positive, the macro factor uy
tends to be a non-fundamental one (e.g., a sentiment factor or “mispricing factor”).

Next, we approximate the portfolio’s log return. Let r;11(¢) = In[R;11(¢)] denote the
log return of the portfolio with weights ¢ € R"*!. Then, we approximate the portfolio’s log

return as
1
rev1(p) = e+ ¢ (i1 — rel) + §¢T (v — Z4¢p), (2.8)

where v; = diag(X;) is the vector that contains the diagonal elements of X;.

2.2 Funds

To focus on the common component of fund flow shocks, we assume that the funds are
homogenous.!? The funds are typically active mutual funds and pension management,
while fund clients are typically individual investors and pension sponsors. Funds can trade
all assets freely, and they charge an advisory fee from fund clients. The advisory fee is a
constant f > 0 fraction of AUM.!!

Similar to the framework of Berk and Green (2004), we assume the active funds have
skillful managers and information advantages to add value by generating expected excess
return relative to passive investment strategies. As argued by the literature (e.g., Vayanos and
Woolley, 2013; Berk and van Binsbergen, 2015, 2016a; Pedersen, 2018; Leippold and Rueegg,
2020), there are some meaningful ways for active funds to outperform (i.e., add value) as
a group.!? More precisely, the value that a mutual fund extracts from capital markets is
essentially a transfer of wealth from passive to active funds at least in the following three
ways. First, active fund managers act as informed arbitrageurs to make money at the cost of
passive funds (especially index funds) as uninformed participants when new price-sensitive

information arrives (see, e.g., Grossman and Stiglitz, 1980; Garcia and Vanden, 2009, for the

9Moreover, as emphasized, for example, by Long et al. (1990), there need not be a clear-cut distinction

between mispricing and risk compensation as alternative justifications for multi-factor models of expected
return. Specifically, Long et al. (1990) show that fluctuations in market-wide sentiment of noise traders give
rise to a source of systematic risk for which rational traders require compensation.

10Heterogenous funds have been considered in studies on cross-fund flows (e.g., Berk and Green, 2004;
Barber, Huang and Odean, 2016; Berk and van Binsbergen, 2015; Roussanov, Ruan and Wei, 2020a).

Different from Berk and Green (2004) and Kaniel and Kondor (2013), we assume exogenous constant
expense ratio f for simplicity. The expense ratio can be endogenized similar to Kaniel and Kondor (2013).

12The authors show that the argument claiming it to be impossible for the average active fund manager to
add value in a fully rational equilibrium (Sharpe, 1991) relies upon extremely strong assumptions.
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theoretical framework). Second, index funds have to track the benchmark indices closely,
thereby making them demand and pay for immediacy. Active fund managers are not
subject to the same index-tracking requirements, which in principle allows them to avoid
the immediacy costs faced by the index funds and even act as liquidity providers. Third, the
benchmark indices do not contain all available assets in the markets such as frontier markets,
emerging markets, and private markets. This provides ample scope for active fund managers
to diverge from benchmark indices and explore profitable investment opportunities (e.g.,
Vayanos and Woolley, 2013).

Suppose an active fund controls Q; in AUM. We model the value added by the active
fund in reduced form as xQ;, which is independent of the fund’s portfolio composition. The
expected excess return a captures the gross alpha of the active fund before expenses and
fees. Active funds incur various costs, which we assume to be increasing and convex in the
AUM of the fund, as in Berk and Green (2004). Specifically, an active fund of size Q; incurs
a total cost of ¥(g;)W;, where W; is the total wealth of all agents, g; = Q;/W;, and

Y(q) =6 1g'*¢, with & > 0. (2.9)
Our specification implies decreasing return to scale for the active funds.'

The expected excess total payout by the active funds to their clients is

net gain of funds

N\

TP, = Qs — ¥ (q:)W; — fQs, (2.10)

where ®Qy is the value added by the active funds, ¥ (q:)W; is the cost incurred by the active

funds to create the gross alpha, and fQ; is the management fee charged by the active fund

13The literature has advanced two hypotheses regarding the nature of the convex operating cost. The first one
is fund-level decreasing returns to scale: as the size of an active fund increases, the fund’s ability to outperform
its benchmark declines (e.g., Perold and Salomon, 1991; Berk and Green, 2004). The second hypothesis is
industry-level decreasing returns to scale: as the size of the active mutual fund industry increases, the ability of
any given fund to outperform declines (Pastor and Stambaugh, 2012; Pastor, Stambaugh and Taylor, 2015). Both
hypotheses are motivated by the price impact of trading and they are not mutually exclusive. At the fund level,
a larger fund’s trades have a larger impact on asset prices, eroding the fund’s performance. At the industry
level, as more money chases opportunities to outperform, prices move, making such opportunities more elusive.
Consistent with such price impact of trading, there is mounting evidence showing that trading by mutual
funds can exert meaningful price pressure in equity markets. Edelen and Warner (2001) and Ben-Rephael,
Kandel and Wohl (2011) find that aggregate flow into equity mutual funds has an impact on aggregate market
returns. Coval and Stafford (2007), Edmans, Goldstein and Jiang (2012), Khan, Kogan and Serafeim (2012), and
Lou (2012) also find significant firm-level price impact associated with mutual fund trading. Edelen, Evans and
Kadlec (2007) argue that trading costs are a major source of diseconomies of scale for mutual funds.
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in period t.
We define the net alpha as a; = %, which is the expected return received by the fund

clients in period t in excess of the benchmark return:

Kt :E—lp(qt) —f, (211)

where ¢(q:) = Y(q¢)/q¢ = 6’1q§. We assume that ¢ = 1 for the rest of this paper, and
thus, the relation (2.11) can be rewritten as a linear relation between the amount of asset

management service supplied by funds and the net alpha:

qt = 9(& — Dét) — 9f (212)

2.3 Agents

Different Types of Agents. The economy is populated by agents of three different types: direct
investors, fund clients, and fund managers. Direct investors, labeled by d, have to trade
risky assets directly on their own accounts or hold passive investments such as benchmark
indices. Fund clients, labeled by ¢, can choose to delegate their investment to professional
fund managers. Fund clients can be retail investors or institutions such as pension sponsors
and university endowments (e.g., Gerakos, Linnainmaa and Morse, 2020). Fund managers,
labeled by m, control the AUM of the active funds and consume the net income of these
funds. Direct investors and fund clients own the assets.

All agents live for two periods, and form overlapping generations. Cohort ¢t agents are
born at the beginning of period ¢ and die in period t + 1 after they collect their payoffs. All
agents have the same Epstein-Zin-Weil preferences with unitary elasticity of intertemporal
substitution (EIS). Each direct investor or fund client in cohort ¢ cares about her consumption
in period ¢t (when she is young) and the bequest to her descendants in period ¢ + 1 (when
she is old). Each fund manager consumes all her compensation within the period.

At the beginning of each period, new direct investors and fund clients are born with a unit
measure of population. Investors are randomly assigned to be fund clients with probability
A, or direct investors with probability 1 — A. As a result, in period ¢, the newly-born direct
investors are endowed with (1 — A)W; as their total initial wealth, while the newly-born
fund clients are endowed with AW; in total. The newly-born fund managers have a unit

measure of population but zero endowment.
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We adopt an overlapping-generation framework to avoid tracking the wealth shares as
endogenous state variables when characterizing the equilibrium.!* Moreover, we assume
that agents in our model do not internalize their descendants’ utility.15 As a result, agents
are myopic. To simplify the consumption policy, we set agents” EIS to 1. At the same time,

we do not restrict the relative risk aversion, 7.

Direct Investors. The direct investor’s wealth is W;; = (1 — A)W;. Direct investors solve a
standard optimal portfolio problem. Denoting by ¢, ; the optimal portfolio weights of time ¢

investable wealth W;; — C;;, we have

Ua(Way) = max (1= B)In(Cay) + (1 =) InEy Wy 7, |, (2.13)
d,tr\~d,t
subject to the dynamic budget constraint:
Wasi1 = (Was = Cae —8Q0) [Ry +@5,(Ri1 — Rp)| (2.14)

Here, «Q; is the transfer of wealth from direct investors to active funds as discussed in

Section 2.2.

Proposition 2.2 (Direct investors). The optimal consumption of direct investors is
Cd,t = (1 — ﬁ) (1 —A— th)Wt, (215)
and the optimal portfolio of direct investors is the standard myopic mean-variance efficient portfolio:
1o 1
bap = —%; " (]/lt —rfl+ —Vt> , (2.16)
0% 2
where yu; and Xy are defined in Proposition 2.1, and v; contains the diagonal elements of L.

See Online Appendix 1.2 for the proof in detail.

Fund Clients. Fund clients decide the amount of wealth to delegate to the funds, denoted

by Q:, and then the fund managers make allocation decisions for the delegated funds.

145uch a simplification assumption is innocuous in the sense that Kaniel and Kondor (2013) show that the
constant wealth share of fund clients can endogenously arise as an equilibrium outcome.

15Seminal works (e.g., Barro, 1974; Abel, 1987) show that an equilibrium in overlapping-generation models
with operative bequests is formally equivalent to that of a representative infinitely lived age. Our assumption
violates the conditions to ensure operative bequests.
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Barber, Huang and Odean (2016) and Berk and van Binsbergen (2016b) find evidence that
fund clients are not perfectly sophisticated in terms of incorporating the consideration of
intertemporal hedging when they assess fund performance and make delegation decisions.
To highlight this lack of sophistication, we assume that fund clients behave myopically and
do not hold rational expectations about funds’ strategies. In particular, fund clients in our
model do not properly anticipate that portfolios of fund managers depend on the delegation
choice of the next generation of fund clients. Instead, we assume that fund clients care about
the net alpha of the active managers relative to investing in the passive benchmark.!® The
fund clients are also free to become direct investors and manage their own portfolios.
We assume that the fund clients solve the following problem:

Ue(Wer) = max (1= B)In(Cer) +B(1=7) " InEr [(Worn +wQ)' 7], @17

subject to the budget constraint:

Weti1 = (Wer — Cet)Rp + Qe [Rig1(dar) + ot — Ry, (2.18)

and the participation constraint:
Uc(Wer) 2> Uy(Weyt). (2.19)

The utility function in (2.17) contains the non-pecuniary benefit wQ; echoing the important
insight that the net alpha in the eyes of a fund client depends on the client’s specific utility
of delegation (e.g., Ferson and Lin, 2014). And more specifically, the non-pecuniary benefit
wQ; can be interpreted as the trust in active managers perceived by fund clients (Gennaioli,
Shleifer and Vishny, 2015). The wealth evolution according to budget constraint (2.18) is
intuitive. The fund client consumes C.; out of wealth W, ;, invests W.; — C.+ — Q; to the
risk-free bond, and delegates Q; to the fund manager with perceived return Ry (¢g;) + o
and additional non-pecuniary benefit wQ;. The participation constraint (2.19) recognizes that
fund clients are free to switch to direct investors, and it needs to hold to ensure that fund

clients would decide to trust the active funds and delegate their investment management.

16While we model the behavior of fund clients to be consistent with the main thrust of the recent literature
on mutual fund flow, the precise behavioral assumptions we make are not essential for the key conclusions of
our model about mutual fund hedging of common fund flow shocks, and the risk premium the flow-hedging
demand generates. The essential element of the fund client’s behavior is that they reduce their investment in
equity mutual funds in high-uncertainty states when facing heightened economic uncertainty.
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When the term, wQ;, is sufficiently large, fund clients would choose to delegate their
investment management even when the net alpha «; is negative.
The following proposition characterizes the optimal consumption and delegation decision

of fund clients.

Proposition 2.3 (Fund clients). If the perceived benefit from active management is sufficiently
large relative to the cost of delegation, i.e., @ +w > 0~ 1BA + f, fund clients choose to delegate their

portfolios to the active funds. In this case, the optimal consumption of fund clients is
Cer = (1 —B)AW,, (2.20)

and the total amount of asset management service demanded by fund clients satisfies

. w + o
q: = pA (1 + =T ) , (2.21)

where w is the non-pecuniary benefit as in (2.17), and the term “yh; captures the effective risk aversion
T

with 7y = [(pL — L) + %V} x! [(pL — L), + %v], and v = diag(X). Here p, L, and {, are

defined in (2.2), (2.3), and (2.4), respectively.

In our theory, delegation to active funds is endogenously caused by (i) the net alpha of
the active asset management «;, (ii) the non-pecuniary benefit of the fund client, w, and (iii)
the degree to which the excess return incentivizes the investors to delegate their wealth to
active asset management, captured by economic uncertainty /;. The proof of Proposition 2.3

is in Online Appendix 1.3.

Fund Managers. Quantity Q; is a fund manager’s AUM at the beginning of period t. For
each t, the fund manager of cohort t — 1 and that of cohort t collect compensation C;, ; = % fQr
in period t. Thus, the total compensation for two generations of fund managers is fQ; in
period t. Similar compensation specification has been adopted in the literature.!” Following
the literature, we take the compensation specification between the fund complex and the
fund manager as exogenously given in the spirit of Shleifer and Vishny (1997), instead of
deriving the incentive contracts from first principles. Importantly, motivated by the empirical

tindings of Ibert et al. (2018), we consider the compensation contract specification, which

7e.g., Brennan (1993), Gémez and Zapatero (2003), Basak, Pavlova and Shapiro (2007), Chapman, Evans and
Xu (2010), Cuoco and Kaniel (2011), Kaniel and Kondor (2013), Basak and Pavlova (2013), and Koijen (2014).
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mainly depends on the AUM Q.1

Moreover, we assume that the manager must consume her compensation each period.
This assumption has been adopted in the literature (e.g., Berk and Green, 2004; Cuoco and
Kaniel, 2011; Kaniel and Kondor, 2013) for technical simplicity, which allows us to avoid
keeping track of the fund manager’s private wealth, and modeling her private investment
decisions. Under this assumption, the fund manager invests delegated funds Q; in a portfolio
with weights ¢, on the n risky assets and 1 — (,bZ”I in the risk-free bond.

The optimal consumption and portfolio choice solve the following two-period optimiza-
tion problem:

max(1 — B)In(Cuy) + (1 — 7) ' InE, [CLZH , (2.22)

¢m,t
with Cp, ¢ = % fQt Cut+1 = 3fQi+1, and subject to the dynamic budget constraint of the
fund’s AUM:

Qt1 = Qt [Re1 () + ] + Qtflowyyq, (2.23)

J

-~

fund returns fund flows

where Q; is the delegation characterized in (2.21) given the net alpha a; and the aggregate
state h;, and Q¢ flow; is the net fund flow into the fund.

Equation (2.23) essentially gives the definition of the fund flow, denoted by flow;,1:

Flowy1 = Qt+1 — Qt [Re1 (Pmyr) + [Xt]' (2.24)

Qr

The dynamic budget constraint in equation (2.23) above is very intuitive. The total asset

valuation at the beginning of period t + 1 is Q; [R¢+1(¢m,t) + ¢}, because active fund man-
agers would consume management fees fQ; and incur costs () Q; to add value &Q; for
the funds. The AUM at the beginning of period t + 1 is the sum of the fund return and fund
flow: Qs11 = Qr [Res1(Pmyt) + ¢ + flowyyq].

We assume that fund managers are myopic to highlight that our equilibrium results do
not require any agents in the model to engage in sophisticated dynamic optimization. As a
behavioral model, our assumption can be further justified by the fund managers’ short-term

focus stemming from their career concerns (e.g., Prat, 2005; Hermalin and Weisbach, 2012).

8More precisely, Ibert et al. (2018) find that the compensation of mutual fund managers concavely depends
on the mutual fund’s AUM, which suffices to ensure the key conclusions of our model about fund managers’
flow hedging motives. Our specification basically assumes that the incentives of the fund manager and the
fund size are perfectly aligned for simplicity.
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2.4 Equilibrium

Fund flow flow;;; and net alpha «; after fees are endogenous, driven by aggregate shocks
in a predictable way in equilibrium. Below, we describe how fund flows depend on fund

managers’ portfolio ¢, + and aggregate shocks u;.

Equilibrium Delegation and Endogenous Flows. Market clearing in the market for delegated
funds is described by the two relations between the total amount of delegated capital and
the net alpha — the first describing the alpha production technology of mutual funds, and

the second describing the delegation decision of fund clients:

gt =0(@— f) — 6a; (funds’ supply for asset management service),

qr = BA (1 + w%—l (Xt) (clients” demand for asset management service).
t

Proposition 2.4 below summarizes the solution.

Proposition 2.4 (Equilibrium delegation and alpha). The equilibrium amount of delegation q;

and the net alpha wy are given by

derw ) Ph ana g = pa |14 Q80D P 2.25)

Ky = —w + — — ,
* 0+ A/ (Tht) 67h + A

where w is the non-pecuniary benefit term in (2.17), 7y is defined in (2.21), and gross alpha ®, cost
coefficient 6, and advisory fee f are defined in Section 2.2.

Corollary 2.1 (Countercyclical net alpha and pro-cyclical delegation). When the benefits
from active management are large relative to the cost of delegation, i.e., ® +w > 07 'BA + f, the
equilibrium net alpha of funds is countercyclical and the equilibrium delegation is pro-cyclical. That

is, ay rises and q; declines as uncertainty h; increases:

alXt aqt
o >0 and ohs < 0. (2.26)

With the characterization of equilibrium delegation g, we are now ready to characterize
the endogenous fund flows in equilibrium. We first conjecture the equilibrium aggregate

fund flow
floth — ]E,} floth \/_AutH, (227)

where E; [flow; ;1] € R and A € R'*F are to be determined in the equilibrium. According
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to (2.23), the process of fund flows can be approximated as shown in Proposition 2.5, whose

proof is in Online Appendix 1.5.

Proposition 2.5 (Equilibrium aggregate fund flows). The exposure of common fund flows to the

aggregate primitive shocks satisfies

q'(h) 7 T T\ !
A= —= 1—n(h)| AK® (I, + KK K, 2.28
gty ¢ =) (1n+KKT) (2.28)
and thus, the exposure of common fund flows to the aggregate primitive shocks is
q'(h) N\ kT N
A= "—= Iy —|1—n(h)| K" (I, + KK K , 2.29
g T e )] (1n+KKT) (2.29)

where 1(h) = q(h)/ [(1 = A)B+ (1 —=)q(h)] and 1(hs) captures the endogenous delegation in-

tensity, which is derived in Theorem 2 below.

According to Corollary 2.1, each element of q/((—g))a is negative, which captures the
negative relation between primitive shocks and d?anges in equilibrium delegation g, as
well as the mechanical relation between fund flows and fund size, q;. Because the k x k
matrix [1—#7(h)] KT (I, + KKT) 'Kis positive definite, Proposition 2.5 shows that the flow-
hedging portfolio held by the active fund managers has a dampening effect on the sensitivity
of fund flows to primitive shocks in equilibrium (i.e., the magnitude of A decreases in 7(h)).
Meanwhile, the eigenvalues of [1—#()] KT (I, + KKT) “1 K are all between 0 and 1, and
thus, exposure of fund flows to aggregate primitive shocks exists and is (approximately)
equal to the quantity in (2.29). We emphasize the endogenous nature of fund flows, which is
manifested by the fact that the endogenous steady-state delegation intensity is determined
by the market clearing condition of competitive equilibrium illustrated in Theorem 2 below.

Theorem 1 shows that the optimal portfolio of the fund manager has two components —

a myopic and a flow-hedging component. See Online Appendix 1.6 for proof.

Theorem 1 (Equilibrium fund portfolio). Fund managers hold a tilted portfolio to hedge against

fluctuations in fund flows at the cost of a reduced Sharpe ratio:

Pt = Pat — Pots (2.30)

where the optimal portfolio of the fund manager, ¢y, 1, is different from that of the direct investors, ¢
(i.e., the mean-variance efficiency portfolio), and the portfolio tilt of active fund ¢y is the hedging
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demand for the common fund flow:

prt = Z; By (2.31)
Here, By = Covy [1441, flow; 1] is the vector of fund flow betas, and in equilibrium, By = Bh; with

B ~ KAT € R, Subscript T in ¢ stands for tilting.

The main theoretical result of this paper is that the portfolio tilt of the active fund relative
to the benchmark is, on average, greater when the common fund flow beta is higher. We

formalize this insight in Corollary 2.2, whose proof can be found in Online Appendix 1.7.

Corollary 2.2 (Portfolio tilt and common flow beta). The cross-sectional covariance between the

two n-dimensional vectors By and ¢ is always positive:

Cov [By, ¢ t] > 0, foreach t. (2.32)

Competitive Equilibrium. Now we formally state the definition of the equilibrium. We focus
on the symmetric competitive equilibrium with atomistic homogeneous fund managers, fund
clients, and direct investors. Formally speaking, we are looking for a stationary symmetric

competitive equilibrium defined as follows.

Definition 2.1 (Competitive equilibrium). A competitive equilibrium is a price process, P;, for the
stocks, a risk-free rate, r¢, a fund'’s net alpha process, ay, offered by the fund, consumption processes

Ce, and Cy 4 of investors, and portfolio processes ¢4, P+, and q; of investors such that
(i) given the equilibrium prices, fund’s excess return, and aggregate allocations,

(i.a) each direct investor’s consumption C, ; and portfolio strategy ¢, ; are optimal in terms of

maximizing the utility in (2.13) subject to (2.14);

(i.b) each fund client’s consumption C.; and delegation decision (portfolio strategy) q; are

optimal in terms of maximizing the utility in (2.17) subject to (2.18);

(i.c) each fund manager’s portfolio strategy ¢, ¢ is optimal in terms of maximizing the utility
in (2.22) subject to (2.23);

(ii) prices Py, risk-free rate r¢, and fund’s net alpha a; clear goods, assets, and delegation markets:

(it.a) goods market: Y ;' 1 Djy = Cyqp+ Cor + fQr + ¥ (q) Wy,

(ii.b) delegation market: v~ (& — oy — f) = q1;
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(ii.c) assets market: QP+ [Wyr — Cap — aQi] ar = [War — Cap + (1 — &) Q4] Pt

The market clearing condition (ii.a) reflects that the total goods, Y ! ; D;; are either
consumed by the agents (i.e.,, C;; + Ccr + fQ;) or used by the active fund managers to
create gross alphas (i.e., ¥(g:)W;). The market clearing condition (ii.b) is essentially the
demand curve of delegation (2.12), and the supply curve of delegation (2.21) results from
the optimization condition (i.b). The market clearing condition (ii.c) effectively characterizes
the market portfolio in the economy, leading to the relation among the market portfolio, the
myopic portfolio, and the active fund’s portfolio, summarized in Theorem 2.

The great contribution of the CAPM theory is to connect systematic risk to return
covariance with the market portfolio returns, which can be approximated in the data.
Considering the deviation of active equity mutual funds’ holdings ¢, from the market
portfolio, ¢+, we can construct useful empirical tests for our fund flow hedging results.
Specifically, the testable implication can be summarized in Theorem 2. See Online Appendix

1.8 for proof.

Theorem 2 (Portfolio tilt from the market portfolio and common flow beta). The fund
managers hold a tilted portfolio to hedge against fluctuations in fund flows, relative to the market
portfolio:

Pt = P — (1= 1t)Prt, (2.33)

where n; = n(hy) = q¢/ [(1—A)B+ (1 —w)g] € [0,1], and portfolio tilt of an active fund
(1 — 5t) s is the additional hedging demand for the common fund flow relative to the market
portfolio, with ¢ defined in (2.31). Thus, the cross-sectional covariance between the deviation of

fund holdings from the market portfolio and the common flow beta is always negative:
Cov [Bt, pmpi — Py <0, for each t. (2.34)

In equilibrium, common fund flows respond to aggregate economic shocks, and thus risk
premia analogous to the hedging term in the ICAPM emerge even in a myopic environment,
which is summarized in the following theorem. Theorem 3 is based on Theorem 1 and the

market clearing condition of risky assets, and its proof is in Online Appendix 1.9.

Theorem 3 (Conditional two-beta asset pricing model). For any portfolio r¢1(¢) = ¢Triq

with 1T¢ = 1, the risk premium is explained by the covariance with the market return, denoted by
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t1+1(Pamt), and the covariance with the common fund flow, denoted by flowy.1:

1
E: [re1(9)] = 17+ 5" ve & 4Covt [ri41(¢), resa (Pmp)] + 1evCovr [1141(9), flowiia],
explained b;market beta explained ?7; flow beta

where %cpTvt is the Jensen’s term and 1 is defined in Theorem 2.

If Covy [ri41(¢), flowsiq] < 0, portfolio ¢ provides a natural hedging against fluctuations

in the common fund flow.

Corollary 2.3 (CAPM holds when there is no delegation). When there is no delegation in the
economy, i.e., A = 0, Theorem 3 implies the conditional CAPM:

Et [reea(@)] —rp + %QDTW ~ yCovt [re41 (), e (Pme)] - (2.35)

It further implies that the CAPM holds:
1
E {7’}_,_1 (4)) — i’f + §¢T1/t} ~ ﬁM((P)A (236)

where Bur(¢p) = Cov [ri11(¢), Prr1(Pae)] /Var [Prp1(Pare)] is tF%e market beta with f11(Pat) =
rer1(Pme) — Er [ripa(pmye)], and A = [(PL —L)0n + %V} IR [(PL — In)Zn + %V] is the

market price of risk.

When there is no fund client in the economy (i.e., A = 0), the equilibrium delegation
is 0 (i.e., gt = 0) according to Proposition 2.4, leading to 7; = 0. In this case, every
investor consumes C; = (1 — B)W; and holds the mean-variance myopic portfolio ¢;; =

%Z;l <yt — 7+ %vt>. The proof of Corollary 2.3 is in Online Appendix 1.10.

Corollary 2.4 (Multifactor asset pricing). The primitive aggregate shocks are correlated with the
common component of fund flows, so they are priced in the cross section just as in the ICAPM

framework:

k
E¢ [repa ()] —rp+ %¢Tvt ~ YCovy [re1(9), Tev1(Pane)] + Y v AjV/heCovy [rey1(9), i),
j=1

where %quvt is the Jensen's term, Aj is the j-th element of A, and n; is defined in Theorem 2.
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3 Data

Data on Mutual Fund Returns and Assets. We obtain fund names, monthly returns, monthly
total net assets (TNA), investment objectives, and other fund characteristics from the Center
for Research in Security Practices (CRSP) Survivorship-Bias-Free Mutual Fund database.
Similar to prior studies (e.g., Kacperczyk, Sialm and Zheng, 2008; Huang, Sialm and Zhang,
2011), we identify actively managed US equity mutual funds based on their objective codes
and disclosed asset compositions.!” We further identify and exclude index funds based on
their names and the index fund identifiers in the CRSP data.?’ Because data coverage on the
monthly TNAs prior to 1991 is scarce and poor, the sample in our paper spans the period
from January 1991 to December 2018.

We use the Morningstar database to cross-check the accuracy of the fund returns and
asset size in the CRSP data, following recent studies (e.g., Berk and van Binsbergen, 2015;
Pastor, Stambaugh and Taylor, 2015). Specifically, we define a share class as a well matched
one if and only if: (i) the 60th percentile (over the available sample period) of the absolute
value of the difference between the CRSP and Morningstar monthly returns is less than
5 basis points, and (ii) the 60th percentile of the absolute value of the difference between
the CRSP and Morningstar monthly TNA is less than $100,000.2! Around 63% of fund
share-month observations in the CRSP panel data are matched with the Morningstar data.
Around 2% of share-month observations in the CRSP panel data are not matched with the
Morningstar data because of the discrepancies in reported returns and TNA across the two
datasets. The remaining 35% of share-month observations in the CRSP panel data are not

matched because of no coverage in the Morningstar data. The above summary statistics for

19We first select funds with the following Lipper objectives: CA, CG, CS, EL FS, G, GI, H, ID, LCCE, LCGE,
LCVE, MC, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, MR, NR, S, SCCE, SCGE, SCVE, SG, SP, TK, TL, UT.
If a fund does not have any of the above objectives, we select funds with the following strategic insights (SI)
objectives: AGG, ENV, FIN, GMC, GRI, GRO, HLT, ING, NTR, SCG, SEC, TEC, UTI, GLD, RLE. If a fund has
neither the Lipper nor the SI objective, then we use the Wiesenberger fund type code to select funds with the
following objectives: G, G-1, G-S, GCI, IEQ, ENR, FIN, GRI, HLT, LTG, MCG, SCG, TCH, UTL, GPM. If none of
these objectives is available and the fund holds more than 80% of its value in common shares, then the fund
will be included.

20CRSP mutual fund data provide a variable “index fund flag” to identify index funds. We define a fund as
an index fund if its index fund flag is B (index-based fund), D (pure index fund), or E (index fund enhanced).
Similar to previous studies (e.g., Busse and Tong, 2012; Ferson and Lin, 2014; Busse, Jiang and Tang, 2017), we
also define a fund as an index fund if its name contains any of the following text strings: Index, Ind, Idx, Indx,
Mkt, Market, Composite, S&P, SP, Russell, Nasdaq, D], Dow, Jones, Wilshire, NYSE, iShares, SPDR, HOLDRs,
ETF, Exchange-Traded Fund, PowerShares, StreetTRACKS, 100, 400, 500, 600, 1000, 1500, 2000, 3000, 5000.

2I'The cutoffs of 5 basis points and $100,000, as well as the 60th percentile, are the same as those used by
Pastor, Stambaugh and Taylor (2015).
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the matching percentage are similar to those in Pastor, Stambaugh and Taylor (2015).
Throughout this paper, we present the results of our analysis based on two versions of
common fund flows. The first version of common fund flows is constructed based on the
sample in the CRSP mutual fund data alone, and the second the sample that is well-matched
between the CRSP and Morningstar databases. We show that all of our results are robust for

both versions of common fund flows.

Data on Mutual Fund Portfolio Holdings and Benchmarks. We obtain the portfolio holdings
of mutual funds from the Thomson Reuters Mutual Fund Holdings Data (512) and CRSP
mutual fund holdings data. Recent studies have shown that Thomson’s portfolio holdings
data suffer from problems such as missing funds after 2008 (Zhu, 2020), while CRSP portfolio
holdings data are “inaccurate prior to the fourth quarter of 2007” (Schwarz and Potter, 2016).
To minimize data quality concerns, we use Thomson’s portfolio holdings data up to the
second quarter of 2008 and use CRSP portfolio holdings data after the third quarter of 2008
following the recommendation of previous studies (e.g., Shive and Yun, 2013; Zhu, 2020).
We obtain the self-declared benchmarks of mutual funds from the Morningstar database
(downloaded from the Morningstar Direct platform). The composition and weights of stocks
in the benchmarks are from Financial Times Stock Exchange (FTSE) Russell index holdings

data and Compustat index constituents data, both obtained from Wharton Research Data
Services (WRDS).

Data on Natural Disasters. We obtain information on the property losses caused by natural
disasters hitting US territory from the Spatial Hazard Events and Loss Databases for the
United States (SHELDUS). The types of natural disasters covered by SHELDUS include
natural hazards (such as thunderstorms, hurricanes, floods, wildfires, and tornados) and
perils (such as flash floods and heavy rainfall). SHELDUS has been widely used in recent
finance literature (e.g., Barrot and Sauvagnat, 2016; Cortés and Strahan, 2017; Alok, Kumar
and Wermers, 2020; Dou, Ji and Wu, 2020). We map public firms in Compustat-CRSP
to the SHELDUS data using firm headquarters. We obtain headquarters information of
public firms based on textual analysis of Electronic Data Gathering, Analysis, and Retrieval
(EDGAR) filings. We also use establishment-level data provided by the Infogroup Historical
Business database to refine the mapping between public firms and SHELDUS as an additional

robustness test.
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Data on Firms” Exposure to China. We measure stocks’” exposure to China using several
datasets. We use Factset Revere data to measure firms’ revenue from China. We use Bill of
Lading data from US Customs and Border Protection to measure firms” import from China.
We also use text-based offshoring network data (Hoberg and Moon, 2017, 2019) to identify

whether a firm sells goods to or purchases inputs from China.

Other Data Sources. Stock returns are from the CRSP database, and financial variables the
Compustat database. We download the shocks of market liquidity (Pastor and Stambaugh,
2003) from L'ubos Péstor’s website. The economic policy uncertainty index is obtained from
Baker, Bloom and Davis (2016). The Standard and Poor’s (S&P) 100 volatility index (VXO)
and crude oil exchange-traded funds (ETF) volatility index are obtained from Chicago Board
Options Exchange (CBOE). We construct the consumption dispersion using the Consumer
Expenditure Survey (CEX) data from the Bureau of Labor Statistics. We measure discount
rates using the dividend-to-price ratio and the smoothed earnings-price ratio (Campbell
and Shiller, 1988, 1998). The two measures are constructed based on data downloaded from
Robert Shiller’s website. We measure sentiments using the investor sentiment index of Baker
and Wurgler (2006).

4 Empirical Analysis

In this section, we test the main predictions of our model. Section 4.1 shows that fund flow
shocks share a striking degree of common time-series variation, explains how we construct
the common fund flows, and documents the negative relation between common fund flows
and economic uncertainty. Section 4.2 shows that common flow betas are priced in the cross
section. Section 4.3 shows that the hedging behavior of active mutual funds is consistent

with the model’s predictions.

4.1 Factor Structure of Fund Flow Shocks

Construction of Fund Flow Shocks. We define flows at the fund level as follows:

Fo_ Qit— Qit—1 % (14 Retj;)
i,t — ’
Qit-1

(4.1)

24



where Q;; and Ret;; are, respectively, the TNA and the net return for fund i in month ¢.
Following Elton, Gruber and Blake (2001), we require lagged TNA (i.e., Q;;_1) to be larger
than $15 million. We also address the incubation bias following Evans (2010).

22 we control for the flow-

Because fund flows respond to past fund performance,
performance sensitivity to construct the unpredictable component in fund flows. Fur-
thermore, the empirical measure, F;; defined by (4.1), is an imperfect proxy for fund flow
shocks owing to intermediate, contemporaneous flows and returns within month ¢ (e.g.,

Berk and Tonks, 2007). To mitigate this concern, we also control for the contemporaneous

fund performance by running a pooled panel regression as follows:?*
2
Fi,t =a-+ 2 bk X ExReti,t_kH + 91} + it (42)
k=1

where ExRet;; is the fund excess return relative to the market return, RM over month ¢, and
0; represents the month fixed effects. We then define the fund flow shock after controlling

for the performance-flow sensitivity at the fund level as follows:

flow;y = 0 + €. (4.3)

Construction of Common Fund Flows. Below, we show that there is one dominant common
factor that drives much of the common variation of fund flow shocks (i.e., one factor with a
high eigenvalue).

To extract the common component of fund flow shocks empirically, we sort active funds
into groups based on their characteristics. First, we use five groups of funds sorted on asset
size. Among fund characteristics, asset size is one of the most informative about fund flow
and performance, as extensively studied in the past few decades (e.g., Sirri and Tufano, 1998;
Chen et al., 2004; Pollet and Wilson, 2008; Pastor, Stambaugh and Taylor, 2015). Second,

22Gee, e.g., Ippolito (1992), Brown, Harlow and Starks (1996), Chevalier and Ellison (1997), Sirri and Tufano
(1998), Bergstresser and Poterba (2002), Del Guercio and Tkac (2002), Lynch and Musto (2003), Huang, Wei and
Yan (2007), Frazzini and Lamont (2008), Pastor and Stambaugh (2012), Del Guercio and Reuter (2014), Péastor,
Stambaugh and Taylor (2015), Barber, Huang and Odean (2016), Berk and van Binsbergen (2016b), Goldstein,
Jiang and Ng (2017), Song (2019), and Roussanov, Ruan and Wei (20200).

ZLee, Trzcinka and Venkatesan (2019) and Ma, Tang and Gémez (2019) suggest that active fund managers’
pay could depend on relative performance even after controlling for fund size in the US, while Ibert et al.
(2018) provide strong and clear evidence that managers’ pay does not depend on relative performance after
controlling for fund size using Swedish data. Our goal is to investigate managers’ motives to hedge the
aggregate component of fund flows, and their implications.
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B. Size Q5 vs size Q4 (Q3)
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Note: Panel A plots active mutual fund flows by quintiles sorted on fund asset size after removing relative performance. We control for
the flow-performance sensitivity at the fund level. The lines represent the asset-value-weighted fund flows of individual quintiles. Gray
areas represent the National Bureau of Economic Research (NBER) recession periods. Panels B and C plot the detrended flows of the
funds with largest asset (Q5) against the detrended flows of other asset size groups presented in panel A.

Figure 1: Mutual fund flows by asset size after removing relative performance.

for comparison and robustness, we also consider the five groups of funds sorted on age,
another important characteristic (e.g., Chevalier and Ellison, 1997; Berk and Green, 2004;
Pastor, Stambaugh and Taylor, 2015). Consistent with the findings of Ferson and Kim (2012),
we find that fund flow shocks obey a strong factor structure, and importantly, the fund flow
shocks comove strongly with each other at a frequency higher than business cycles.?*
More precisely, panel A of Figure 1 plots the value-weighted average fund flow shocks
after removing relative performance for each quintile of funds sorted on asset size. It is clear
that fund flow shocks comove across different funds with different asset sizes. Panels B and

C of Figure 1 plot the detrended fund flows of quintile 5 size group against the detrended

24Besides asset size and age, fund flow shocks sorted on other characteristics also exhibit a high degree of
common time-series variation. Figures OA.3 and OA .4 in the online appendix plot the fund flow shocks sorted
on industry concentration as defined by Kacperczyk, Sialm and Zheng (2005) and portfolio liquidity as defined
by Péstor, Stambaugh and Taylor (2019). Similar to asset size and age, we find that fund flow shocks sorted on
these characteristics also comove strongly at a frequency higher than that of business cycles.

26



A. Mutual fund flows by age quintiles B. Age Q5 vs age Q4 (Q3)
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Note: Panel A plots active mutual fund flows by quintiles sorted on the fund age after removing relative performance. We measure
fund age by the number of years since the inception dates. We control for the flow-performance sensitivity at the fund level. The lines
represent the asset-value-weighted fund flows of individual quintiles. Gray areas represent the NBER recession periods. Panels B and C
plot the detrended flows of the oldest funds (Q5) against the detrended flows of other age groups presented in panel A.

Figure 2: Mutual fund flows by age after removing relative performance.

flows of other size groups presented in panel A. We find that all flow shocks for funds of
different sizes exhibit very similar time series patterns. The correlation between mutual fund
flow shocks of size quintiles 5 and 4 is 0.72 with p-value < 0.001, and that of size quintiles 5
and 1 is 0.36 with p-value < 0.001.

Similarly, panel A of Figure 2 plots value-weighted fund flow shocks after removing
relative performance for each quintile of funds sorted on age. The same high-frequency
comovement across different groups of fund flow shocks with different ages robustly shows
up. Further, panels B and C of Figure 2 plot the detrended flows of quintile 5 age group
against the detrended flows of other age groups presented in panel A. The correlation
between mutual fund flow shocks of age quintiles 5 and 4 is 0.72 with p-value < 0.001, and
that of age quintiles 5 and 1 is 0.36 with p-value = 0.001.

To obtain the common fund flow, we extract the first principal component of the fund

27



A. PCA analysis of flows sorted on asset size B. PCA analysis of flows sorted on fund age
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Note: Panel A plots the fraction of variance explained by different principal components from the principal component analysis (PCA)
of flows sorted on asset size. Panel B plots the fraction of variance explained by different principal components from the PCA of flows
sorted on fund age presented in panel A.

Figure 3: Eigen-decomposition of the covariance matrix of mutual fund flow shocks.

flows across funds.?> The eigen-decomposition of the covariance matrix of five groups
of fund flow shocks exhibits a dominant highest eigenvalue and fast decay for the rest
of the eigenvalues. Figure 3 shows that there is one dominant factor that drives much
of the common variation of fund flow shocks — the first principal component (PC1).2°
With no loss of generality, we standardize the first principal component by removing the
unconditional mean and normalizing the unconditional standard deviation to 1. We refer to
the standardized first principal component as the common fund flow. Our construction of the
common fund flow using the first principal component across groups of funds is analogous
to the approach of Herskovic et al. (2016), where they extract the common component in
idiosyncratic volatility across groups of stocks.

Figure 4 plots the monthly common fund flows based on asset size and age of funds
using the CRSP mutual fund data and CRSP-Morningstar intersection mutual fund data. The
four monthly time series are highly correlated with each other, and the correlation ranges

from 0.83 to 0.96. In the rest of this paper, we focus on the common fund flow constructed

2We detrend the fund flow of each quintile using a linear model before extracting the principal components,
because fund flow is scaled by lagged TNA and thus exhibits a decreasing trend as asset size of the mutual
fund sector grows over time.

26 According to Figure 3, the eigenvalue criterion, scree plot criterion, and Bartlett criterion all suggest that one
is the optimal number of PCs to capture the factor structure of the fund flow shocks. Jolliffe (2002) provides an
excellent summary of existing approaches to determining the number of PCs.
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Note: This figure plots the monthly common fund flows constructed based on fund asset size and fund age shares using the CRSP
mutual fund data and CRSP-Morningstar intersection mutual fund data. The four common flows are standardized to have means of 0
and standard deviations of 1. The pairwise correlation coefficients among these four common flows range from 0.83 to 0.96, with the
pairwise p-values all being lower than 0.001. Gray areas represent the NBER recession periods.

Figure 4: Common fund flows constructed based on fund asset size and fund age.

using asset size quintiles, and we show all empirical results on common fund flows not only
using the CRSP mutual data, but also using the CRSP-Morningstar intersection mutual fund

data.?’

Common Fund Flows and Economic Uncertainty. We now examine the relation between com-
mon fund flows and economic uncertainty. Particularly, we show that common fund flows
are negatively related to economic policy uncertainty, market volatility, and idiosyncratic
consumption dispersion, consistent with our model’s prediction (Proposition 2.5). We are
by no means advocating economic uncertainty as the only primitive driver of common
fund flows. Rather, we emphasize that economic uncertainty is one of the major primitive
forces causing common fund flows in equilibrium. Our findings are consistent with those

of Ferson and Kim (2012), who show that common mutual fund flows correlate with vari-

¥Qur results remain robust if we construct the common fund flows based on the quintiles of fund flow
shocks sorted using age, industry concentration, or portfolio liquidity. The common fund flows constructed
based on size, age, industry concentration, and portfolio liquidity are highly correlated with each other (see
Table OA.2 in the online appendix for details). We also verify that the PCA loadings on fund flows of the
five fund size quintiles are stable over different subperiods. Particularly, we find that the PCA loadings over
the whole sample period (1991 — 2018) are [0.3999, 0.4146,0.4808, 0.4777,0.4569], those over 1991 — 2004 are
[0.3993, 0.4080, 0.4833, 0.4753, 0.4633], and those over 2005 — 2018 are [0.4009, 0.4265,0.4733, 0.4841, 0.4460] when
using the CRSP mutual fund data. We find similar results when using the CRSP-Morningstar intersection data.
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A. Quarterly average VXO and average common fund flows
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Note: Panel A shows the quarterly average common fund flow and the quarterly average VXO index, which is based on the CBOE
S&P 100 monthly volatility index. Panel B shows the quarterly average common fund flow and the quarterly average economic policy
uncertainty index, which is based on the monthly news based policy uncertainty index (Baker, Bloom and Davis, 2016). Panel C shows
the quarterly average common fund flow and the quarterly average market volatility, which is based on the standard deviation of the
daily returns of the S&P 500 index each month. All time series are standardized to have means of 0 and standard deviations of 1. The
quarterly average common fund flow is constructed from the monthly fund flow shocks based on the CRSP mutual fund data and asset
size groups. Gray areas represent the NBER recession periods.

Figure 5: Average common fund flows and economic uncertainty.

ous macroeconomic variables including market volatility. Our findings are also related to
those of Ben-Rephael, Choi and Goldstein (2019), who show that mutual fund flows are
correlated with fluctuations in credit and business cycles. Furthermore, Hoopes et al. (2016)
examine retail stock sales from 2008 to 2009 using population tax return data, and show that
volatility-driven sales were prevalent across sectors; especially, mutual fund sales by retail
investors responded more strongly to increased volatility than stock sales.

We first perform regression analysis to examine the relation between common fund
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Table 1: Common fund flows are negatively correlated with uncertainty shocks.

) @ (©) (4) ®) (6)

Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection
Common_flows; Common_flows;
V XO_shock; —0.233*** —0.282***
[—3.298] [—4.515]
EPU_shock; —0.145*** —0.157***
[—3.241] [—3.159]
MktVol_shock; —0.156*** —0.231%**
[—3.002] [—4.103]
Common_flows;_1 0.202%** 0.170*** 0.178*** 0.329*** 0.300%** 0.298***
[3.784] [2.964] [3.086] [6.534] [5.501] [5.502]
Observations 334 334 334 334 334 334
R-squared 0.090 0.056 0.060 0.179 0.123 0.152

Note: This table shows the negative relation between uncertainty shocks and common fund flows (Common_flows;). VXO_shock;
is the shock to the CBOE S&P 100 volatility index at month t estimated by an AR(1) model. EPU_shock; is the shock to the news
based policy uncertainty index (Baker, Bloom and Davis, 2016) at month ¢ estimated by an AR(1) model. MktVol_shock; is the shock
to the market volatility at month ¢ estimated by an AR(1) model. The monthly market volatility is the standard deviation of the
daily returns of the S&P 500 index in month t. All variables are standardized to have means of 0 and standard deviations of 1. The
constant term is omitted for brevity. The analysis is performed at a monthly frequency. Standard errors are computed using the
Newey-West estimator with one lag allowing for serial correlation in returns. We include f-statistics in brackets. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period spans from 1991 to 2018.

flows and economic uncertainty shocks. Specifically, we regress common fund flows on
the contemporaneous shocks to the different economic uncertainty measures, which are
estimated as the residuals of AR(1) regressions. As shown in panel A of Table 1, active
mutual funds experience outflows when contemporaneous economic uncertainty rises. The
negative relation is both statistically and economically significant. A one-standard-deviation
increase in the shocks to the VXO index, the economic policy uncertainty index, and the
market volatility is associated with a 0.233-, 0.145-, and 0.156-standard-deviation decline,
respectively, in common fund flows constructed from the CRSP mutual fund data and asset
size groups. In panel B, we find similar results for common fund flows constructed from
the CRSP-Morningstar intersection data and asset size groups. It is difficult to visualize the
negative relation between the common fund flows and the economic uncertainty shocks in
time-series plots. Instead, Figure 5 plots the quarterly average common fund flow (level)
against the quarterly average economic uncertainty (level). It is clear that the quarterly
average common fund flow (level) comoves negatively with both the quarterly average
economic policy uncertainty (level) and average market volatility (level).

We next examine the relation between the common fund flows and the shocks to the
idiosyncratic consumption dispersion, which is measured by the dispersion of consumption
growth rates (e.g., Brav, Constantinides and Geczy, 2002; Vissing-Jergensen, 2002; Jacobs and

Wang, 2004). Table 2 shows that mutual funds experience outflows when there is an increase
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Table 2:

Consumption dispersion shocks and common fund flows.

M

@

CRSP mutual funds alone

Common_flows;

®) 4)

CRSP-Morningstar intersection
Common_flows;

Consumption_disp_shock; —0.135** —0.126** —0.138** —0.126**

[—2.412] [—2.535] [—2.435] [—2.536]

Common_flows;_q 0.204*** 0.2327%** 0.323*** 0.355***
[3.555] [4.133] [5.874] [6.209]

RetM 0.313*** 0.353***
[4.776] [5.942]

RetM, —0.004 —0.007

[—0.075] [-0.139]

Observations 322 322 322 322

R-squared 0.055 0.153 0.119 0.243

Note: This table shows the relation between consumption dispersion shocks and the common fund flows of active mutual funds
(Common_flows;). Consumption_disp_shock; is the consumption dispersion shock, which is the AR(1) shock to the cross-sectional
dispersion of the growth rate of household consumption in the CEX data. RetM is the market return in month ¢. All variables are
standardized to have means of 0 and standard deviations of 1. The constant term is omitted for brevity. The analysis is performed
at a monthly frequency. Standard errors are computed using the Newey-West estimator with one lag allowing for serial correlation
in returns. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
The sample period spans from 1991 to 2017.

in idiosyncratic consumption dispersion.

Lastly, we emphasize that economic uncertainty is by no means the only primitive force
behind common fund flows. Rather, it is one of the major underlying shocks that affect
households and drive their fund flows. Exploring which economic shocks cause fund clients
to move their capital in and out of active funds is an important question for future research.
As a partial step toward this goal, we show that common fund flows comove negatively with
shocks to the aggregate discount rates in Table OA.3 in Online Appendix 2. In the same
table, we also show that common fund flows comove positively with shocks to sentiment,

although this relation is statistically insignificant.
4.2 Common Flow Betas Are Priced
In this section, we test one of the main predictions of our model: the exposure to common

fund flows is priced in the cross-section of stock returns (Theorem 3).

Portfolio Sorting Analyses. We first perform portfolio sorting analyses. For each stock, we
estimate its common flow beta in each month by regressing its monthly excess returns on
the common fund flows using a 3-year rolling window (if at least 12 monthly non-missing

observations are available):

retip_r = a;;+ ,B{iow x common_flow;  + €y, witht=20,1,---,35, (4.4)
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Table 3: Excess returns and CAPM alphas of portfolios sorted on common flow betas.

Panel A. CRSP mutual funds alone Panel B. CRSP-Morningstar intersection
ﬁ{ fow quintiles Excess returns CAPM « Excess returns CAPM «
Q1 5.14 —5.76"** 5.02 —4.70**
[1.19] [—2.65] [1.32] [—2.55]
Q2 7.32%* —0.88 7.31%* —0.23
[2.37] [—0.70] [2.58] [—0.20]
Q3 8.07** 0.18 8.44** 0.65
[2.72] [0.15] [2.99] [0.73]
Q4 9.64"** 1.71* 10.23*** 1.10
[3.34] [1.81] [3.02] [0.85]
Q5 12.20*** 2.26 12.82%** 1.31
[3.05] [1.08] [2.72] [0.51]
Q5 -Q1 7.06** 8.01** 7.80** 6.01*
[2.25] [2.53] [2.40] [1.85]

Note: This table shows the value-weighted average excess returns and alphas for stock portfolios sorted on common flow betas.
In June of year t, we sort firms into quintiles based on their average common flow betas from January to June of year f. Once the
portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1. Our sample includes the firms
listed on the NYSE, NASDAQ, and American Stock Exchange (Amex) with share codes 10 and 11. We exclude financial firms and
utility firms from the analysis. We annualize the average excess returns and CAPM alphas by multiplying them by 12. The Sample
period spans from July 1992 to June 2018. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels, respectively.

where common_flow;_, denotes the common fund flow in month ¢ — T and ,8{ iow denotes
stock i’s common flow beta in month t.

In June of each year, we sort firms into quintiles based on their common flow betas. Table
3 shows average excess returns and CAPM alphas of the long-short portfolios sorted on
the common flow betas. We find that stocks with higher flow betas are associated with
higher excess returns and higher CAPM alphas. The magnitudes of the return spreads are
economically large. For common fund flows constructed using the CRSP mutual fund data
(see panel A of Table 3), the spread in average excess returns between the stocks with the
highest flow betas (Q5) and the stocks with the lowest flow betas (Q1) is 7.06%, while the
spread in their CAPM alphas is 8.01%. These spreads are comparable to the equity premium
and the value premium. We find a similar pattern when constructing common fund flows
based on the CRSP-Morningstar intersection sample (see panel B of Table 3). Figure 6 plots
the annualized value-weighted excess returns of the portfolios sorted on common flow betas.
We find that higher flow betas predict higher excess returns cross portfolios persistently in

the 12 month window after portfolio formation.

Index fund flows and hedge fund flows. Our theory in Section 2 suggests that the common
fund flows of active equity mutual funds are priced in the cross section of stock returns,

because they are open-end funds featuring (i) daily redemption obligations, (ii) an explicit
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A. Excess returns, CRSP alone data B. Excess returns, CRSP-Morningstar data
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Figure 6: Excess returns after portfolio sorting based on quintiles of common flow betas.

AUM-based fee structure, and (iii) full asset allocation discretion. By contrast, index funds
have no allocation discretion and simply mimic a given index, and hedge funds have an
explicit performance-based fee structure with limited redemption rights granted to their
investors.?® In fact, both index funds and hedge funds are classified as direct investors in
our simple model.

In Online Appendix 2, we examine the pricing of the betas to common flows of index
funds and hedge funds. As we show in Table OA.7 and OA.8 of the online appendix, the
long-short portfolios sorted on both the betas to common flows of index funds and those
to common flows of hedge funds have insignificant average (risk-adjusted) returns. This is
consistent with our theoretical model, where the common fund flows are priced because
of the flow hedging behavior of active equity mutual funds. The common flows of index
funds fail to share the same properties because index fund managers have little allocation
discretion to actively hedge against their fund flow risk, so do the common flows of hedge
funds because hedge fund managers care mainly about their relative performance rather

than their asset size.

Flow Betas and Price Impact. In principle, there could be two primitive sources behind the
common flow betas. First, flow betas may simply capture the price impact of trading,

referred to as the liquidity channel. Second, flow betas capture the loadings of stock returns

Z8Hedge funds often contain “lock-up” provisions, typically impose limitations on the frequency of redemp-
tions, and require advance notice periods for redemptions.
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on primitive macro factors as illustrated in our model in Section 2, referred to as the
fundamental channel.

We differentiate these two channels by examining the relation between flow betas and
various measures of stock liquidity and price impact. In Table OA.9 of the online appendix,
we show that stocks with higher flow betas tend to have higher liquidity betas (Pédstor and
Stambaugh, 2003) and higher Amihud illiquidity (Amihud, 2002). Despite the positive rela-
tion with the market liquidity measures, we find that flow beta has independent information
about expected stock returns in the cross section. Specifically, we perform a double sort on
flow betas and the market liquidity measures in panels A and B of Table 4, showing that the
flow betas remain significantly priced in the cross section of stock returns after controlling
for market liquidity.

We next study the relation between the flow beta and the price impact of trading caused
by different types of investors (e.g., mutual funds, households, investor advisors, and pension
funds). It is possible that high flow betas are mainly caused by high price impact of trading.
We obtain the price impact measures from Koijen and Yogo (2019), who estimate the price
impact based on an asset pricing model with flexible heterogeneity in asset demand across
different types of investors. Table OA.5 of the online appendix shows that flow betas are
positively correlated with the price impact measures in the cross section of stocks.?” We then
examine the asset pricing implications of flow betas by double sorting on price impact. As
shown in Panel D of Table 4 and Table OA.6 of the online appendix, the flow betas remain
signficantly priced in the cross section of stock returns even after controlling for price impact
caused by various types of investors, suggesting that the asset pricing implications of flow
betas cannot be entirely explained by price impact.

Finally, we study the relation between the flow beta and the flow-induced trading pressure
(FIT). Existing literature has documented that aggregate fund flows can exert a substantial
price impact that affects short-term stock returns, which reverts over a longer horizon (e.g.,
Coval and Stafford, 2007; Frazzini and Lamont, 2008; Lou, 2012). Because flow betas are
estimated based on the 36-month rolling windows, it is possible that different flow betas

simply reflect that the stocks have experienced different flow-induced trading pressures or

2The results are especially strong for the price impact caused by households and investment advisors.
Households are direct retail investors and investment advisors are mainly hedge funds, which are classified as
the direct investors in our model. The positive relation between flow betas and price impact caused by mutual
funds and pension funds is slightly weaker. This is probably because Koijen and Yogo (2019) include both
active and passive funds in their sample of mutual funds and pension funds.

35



they are at different stages in the flow-induced trading-pressure cycles. Particularly, we
construct the FIT measure following Lou (2012) and examine its relation with flow betas. As
shown in Table OA .4 of the online appendix, flow betas have insignificant cross-sectional
correlation with the contemporaneous FIT, lagged FIT, and FIT accumulated across different
time horizons (i.e., past two quarters, one year, two years, and three years). Given such weak
associations, it is not surprising that the flow betas remain significantly priced in the cross
section of stock returns after controlling for FIT (see panel C of Table 4). Taken together, the
asset pricing implications of the flow betas are unlikely to be a side effect of different stages

in the flow-induced trading-pressure cycles.

Fama-MacBeth Regressions. We perform Fama-MacBeth tests by regressing monthly stock
returns on the common flow betas. As Table 5 shows, the slope coefficient for the common
tflow beta is positive and statistically significant. The slope coefficient is also economically
significant. According to column (1) of Table 5, a one-standard-deviation increase in the
common flow beta is associated with a 0.215- (2.580-) percentage-point increase in the
monthly (annualized) stock returns. This result is robust to data choices in computing
common flow betas (i.e., panel A vs. panel B). The relation between flow betas and returns
is not subsumed by the stock characteristics in columns (2-6) and (8-12), including market
betas, momentum, short-term and long-term reversal, market cap, book-to-market ratio,
historical liquidity betas, Amihud illiquidity, betas to the monthly changes of the CBOE S&P
100 volatility index, betas to the monthly changes of the news-based policy uncertainty index

(Baker, Bloom and Davis, 2016), and betas to the monthly changes of the market volatility.

Common Flow Betas and Stock Characteristics. We examine the relation between common

flow betas and several stock characteristics by running the following regression:
reti = a+ag; X common_flow; + a1T,iZi,t—1 x common_flow; + ¢; (4.5)

where Z;;_; are the lagged stock characteristics, which include the natural log of the market
cap (Lnsize; ;), the natural log of the book-to-market ratio (LnBEME; ;), the historical liquidity
beta (Ligbeta;;), and the Amihud illiquidity measure (AIM; ;). As Table 6 shows, stocks with
high flow betas tend to be small, value, illiquid, a