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Empirical studies demonstrate striking patterns in stock returns related to scheduled

macroeconomic announcements. A large proportion of the total equity premium is

realized on days with macroeconomic announcements. The relation between market

betas and expected returns is far stronger on announcement days as compared with

non-announcement days. Finally, these results hold for fixed-income investments as

well as for stocks. We present a model in which agents learn the probability of an

adverse economic state on announcement days. We show that the model quantitatively

accounts for the empirical findings. Evidence from options data provides support for

the model’s mechanism.
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1 Introduction

Since the work of Sharpe (1964) and Lintner (1965), the Capital Asset Pricing Model

(CAPM) has been the benchmark model of the cross-section of asset returns. While

the literature has explored many generalizations, the CAPM, with its simple and com-

pelling structure and tight empirical predictions, remains the major theoretical frame-

work for understanding the relation between risk and return. Recently, Savor and

Wilson (2014) document a striking fact about the fit of the CAPM. Despite its poor

performance in explaining the cross section overall, the CAPM does quite well on a sub-

set of trading days, namely those days in which the Federal Open Market Committee

(FOMC) or the Bureau of Labor Statistics (BLS) releases macroeconomic news.

Figure 1 reproduces the main result of Savor and Wilson (2014) using updated

data. We sort stocks into portfolios based on market beta (the covariance with the

market divided by market variance) computed using rolling windows. The figure shows

the relation between portfolio beta and expected returns on announcement days and

non-announcement days in the data.1 This relation is known as the security market

line. On non-announcement days (the majority), the slope is indistinguishable from

zero. That is, there appears to be no relation between beta and expected returns.

This result holds unconditionally, and is responsible for the widely-held view of the

poor performance of the CAPM. However, on announcement days, a strong positive

relation between betas and expected returns appears. Moreover, portfolios line up well

against the security market line, suggesting that the relation is not only strong, but

that the total explanatory power is high. Finally, these results appear even stronger

for fixed-income investments than for equities.

These findings closely relate to a recent empirical literature (Lucca and Moench,

2015; Savor and Wilson, 2013) demonstrating that market returns are much higher

on announcement days than non-announcement days. One potential explanation is

that risk is different on announcement and non-announcement days. However in the

data, market variance and covariances between stock portfolios and the market on

announcement days are nearly indistinguishable from those on non-announcement days.

This deepens the puzzle, ruling out a number of possible explanations.

We summarize the facts as follows:

1Portfolio betas are estimated using the full sample of returns. However, as we will show, betas
using announcement and non-announcement day returns are very close.
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1. The equity premium is much higher on announcement days versus non-announcement

days.

2. Equity volatility is not measurably higher on announcement days versus non-

announcement days.

3. On announcement days, the security market line is upward-sloping. On non-

announcement days, it is flat.

4. Risk-neutral equity volatility (the VIX) declines significantly immediately follow-

ing announcements.

5. Fact 3 holds for Treasury bonds as well as for stocks.

In this paper, we build a frictionless model with rational investors that explains

these findings. Our model is relatively simple and solved in closed form, allowing us to

clearly elucidate the elements of the theory that are necessary to explain these results.

Nonetheless, the model is quantitatively realistic, in that we explain not only these

findings above, but also the overall risk and return of the aggregate stock market.

One important aspect of our model is that, despite the lack of frictions, investors

do not have full information. Macroeconomic announcements matter for stock prices

because they reveal information to investors concerning underlying shocks that have

already occurred.2 The information that is revealed matters to investors, which is why

a premium is required to hold stocks on announcement days (Fact 1). In the benchmark

calibration, the information concerns the likelihood of economic disaster similar to the

Great Depression or what many countries suffered following the 2008 financial crisis.

We assume that this latent probability follows a Markov process.

We further assume that stocks have differential exposure to macroeconomic risk. We

endogenously derive the exposure on stock returns from the exposure of the underlying

cash flows. We also assume, plausibly, that there is some variability in the probability

of disaster that is not revealed in the macroeconomic announcements. Stocks with

greater exposure have endogenously higher betas, both on announcement and non-

announcement days, than those with lower exposure. They have much higher returns,

2Another possibility is that macroeconomic announcements themselves create the risk perhaps
because they reflect on the competence of the Federal Reserve. We do not consider that possibility
here.
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in line with the data, on announcement days, because that is when a disproportionate

amount of information is revealed (Fact 3). Finally, the presence of disasters and of

time-varying disaster risk implies that a linear relation between expected returns and

betas does not hold. Stocks can have high variances, and covariances with the market,

driven by time-varying disaster risk, without exposure to the actual disasters rising

in proportion. This explains a part of the finding, namely why the curve is flat on

non-announcement days.

In our model, learning about regime shifts break the traditional relation between

risk and return. Fact 2 above states that conventional measures of risk such as vari-

ance and covariance do not appear markedly higher on announcement days. Regime

shifts help to produce this finding because, on any given announcement, it is likely

that investors learn that the economy is in a low-risk state. There is a small proba-

bility, however, that they will learn that risk is high. In any given sample, positive

announcements could easily appear in greater proportion than they would in popula-

tion. A prediction of the model, then, is that ex ante measures of risk, expecially those

sensitive to tail events, should decline just after announcements. Indeed, Savor and

Wilson (2013) show that the VIX declines following an announcement, an effect that

we replicate in the model (Fact 4). Moreover, we also show in the data, that implied

volatilities fall following announcements, and do so more for out-of-the-money than

in-the-money options. This is also consistent with rare events as a mechanism. While

these facts suggest that learning about rare events appears to drive the announcement

premium, an alternative interpretation to disasters is that investors learn about the

probability of, say, persistent recession. It is important that negative announcements

be relatively rare; it is less clear that the news need be about a rare disaster.

Finally, an extension of the model to bonds explains Fact 5. We assume that some

information that is revealed on announcements is informative about expected inflation.

Bonds are exposed to announcements to a greater extent than equities. In the model,

as well as in the data, betas on bonds rise dramatically on announcement days (they

are near zero on non-announcement days), while equity betas do not.

While we focus on macroeconomic announcements, the techniques we employ could

be used to address other types of predictable releases of discrete news (i.e. announce-

ments). There is a vast empirical literature on announcement effects (La Porta et al.,

1997; Fama, 1970), of which the literature on macro-announcements is a part. In this
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paper, we develop a set of theoretical tools to handle the fact that announcements oc-

cur at deterministic intervals, and that a finite amount of information is released over

a vanishingly small period of time. In so doing, we complement and extend findings of

Ai and Bansal (2018), who derive necessary conditions on a utility function for the ex-

istence of an announcement premium as well as closed-form expressions for risk premia

in continuous time under the assumption of conditional lognormality. As in their work,

time just before and just after the announcement is connected through intertemporal

optimization conditions. We show that these conditions form a set of boundary condi-

tions for the dynamic evolution of prices in the interval between announcements. It is

this insight that allows us to compute a cross-section of stock prices in closed form.

There is a very recent literature on modeling the macroannouncement premium, fo-

cusing on the Bansal and Yaron (2004) long-run-risk setting. Savor and Wilson (2013)

describe how a long-run risk model might account for a macroannouncement premium.

In work contemporaneous to the present paper, Ai et al. (2018) rationalize the relative

performance of the CAPM on announcement days in a production economy. In their

model, total factor productivity follows an AR(1) process, about which agents receive

normally distributed signals on announcement days. The fact that all shocks are nor-

mal simplifies the filtering problem. However, the evidence that daily returns exhibit

no greater volatility on announcement versus non-announcement days, together with

the option pricing results, is more in line with the regime-shift model that we propose.

Ai et al. (2019) show that stocks whose implied volatilities change more around an-

nouncement days also have higher announcement premium, a result consistent with

our model. In earlier work Andersen et al. (2003) show that foreign exchange markets

respond more to negative announcements than positive ones, which is also consistent

with our model. Cocoma (2018) builds a model to explain the Lucca and Moench

(2015) evidence that much of the premium is realized prior to announcements.

The rest of the paper proceeds as follows. Section 2 discusses the model. Section 3

describes the data, calibration, and our simulation method. Section 4 compares the

results of the simulation to the data. Section 5 compares simulation results from two

alternative models: one with “small” disasters, designed to fit the VIX, and one with

normally-distributed risk. We show that these alternatives do not succeed in matching

at least some of the facts we describe above. Section 6 concludes.
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2 A model of asset prices with macroeconomic an-

nouncements

In the section that follows, we describe the model. Section 2.1 describes the endow-

ment and preferences, Section 2.2 the relation between cash flows and announcements,

Section 2.3 describes state prices, Section 2.4 equity prices, and Section 2.6 nominal

bonds. Unless otherwise stated, proofs are contained in the Appendices.

2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Ag-

gregate consumption (the endowment) follows the stochastic process

dCt
Ct−

= µdt+ σdBCt +
(
e−Zt − 1

)
dNt, (1)

where BCt is a standard Brownian motion and where Nt is a Poisson process. The

diffusion term µdt + σdBCt represents the behavior of consumption during normal

times. The Poisson term
(
e−Zt − 1

)
dNt represents rare disasters. The random variable

Zt > 0, is the decline in log consumption, given a disaster. We assume, for tractability,

that Zt has a time-invariant distribution, which we call ν; that is, Zt is iid over time,

and independent of all other shocks. We use the notation Eν to denote expectations

taken over ν.

We assume the representative agent has recursive utility with EIS equal to 1,

which gives us closed-form solutions up to ordinary differential equations. We use

the continuous-time characterization of Epstein and Zin (1989) derived by Duffie and

Epstein (1992). The following recursion characterizes utility Vt:

Vt = maxEt
∫ ∞
t

f(Cs, Vs)ds, (2)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log[(1− γ)Vt]

)
. (3)

Here β represents the rate of time preference, and γ represents relative risk aversion.

The case of γ = 1 collapses to time-additive (log) utility. When γ 6= 1, preferences
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satisfy risk-sensitivity, the characteristic that Ai and Bansal (2018) show is a necessary

and sufficient condition for a nonzero announcement premium.

2.2 Scheduled announcements and the disaster probability

We assume that scheduled announcements convey information about the probability

of a rare disaster (in what follows, we use the terminology probability and intensity

interchangeably). The probability may also vary over time for exogenous reasons; this

creates volatility in stock prices in periods that do not contain announcements.

To parsimoniously capture these features in the model, we assume the intensity of

Nt is a sum of two processes, λ1t and λ2t.
3 The intensity λ1t follows a latent Markov

switching process. Following Benzoni et al. (2011), we assume two states, λ1t = λL

(low) and λ1t = λH (high), with 0 ≤ λL < λH , and

Prob(λ1,t+dt = λL|λ1t = λH) = φH→Ldt

Prob(λ1,t+dt = λH |λ1t = λL) = φL→Hdt,
(4)

with φH→L, φL→H > 0. Note that φH→L can be interpreted as the probability (per unit

of time) of a switch from the high-risk state to the low-risk state and φL→H is similarly,

the probability of a switch from the low-risk state to the high-risk state.

Announcements convey information about λ1t. Let T be the length of time between

announcements.4 Define
A ≡ {t : t mod T = 0} ,

N ≡ {t : t mod T 6= 0} .
(5)

That is, A is the set of announcement times, and N is the set of non-announcement

times. Note that N is an open set, so we can take derivatives of functions evaluated

at times t ∈ N . Note that announcements occur at an instant in time.

Let pt denote the time-t probability that the representative agent places on λ1t =

3Equivalently, decompose, Nt as
Nt = N1t +N2t,

where Njt, for j = 1, 2, has intensity λjt.
4In the data, announcements are periodic, but, depending on the type of announcement, the

period length is not precisely the same. Our assumption of an equal period length is a convenient
simplification that has little effect on our results.
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λH . For t ∈ N , assume

dpt = ((1− pt)φL→H − ptφH→L) dt = (φL→H − pt(φH→L + φL→H)) dt. (6)

This assumption implies that the agent learns only from announcements.5 Outside of

announcement periods, the agent updates based on (4). If the economy is in a low-risk

state, which it is with probability 1 − pt, the chance of a shift to a high-risk over the

next instant is φL→H dt. If the economy is in a high-risk state, which is with probability

pt, the chance of a shift to the low-risk state over the next instant is φH→L dt. Define

λ̄1(pt) ≡ ptλ
H + (1− pt)λL,

as the agent’s posterior value of λ1t. For simplicity, we assume announcements convey

full information, that is, they perfectly reveal λ1t.
6 Thus the process for pt is right-

continuous with left limits. In the instant just before the announcement it is governed

by (6). On the announcement itself, it jumps to 0 or 1 depending on the true (latent)

value of λ1t. We refer to announcements revealing λ1t to be λL as positive and those

revealing it to be λH as negative. As we will show, this language is precise in the sense

that the risk averse agent’s utility rises when the announcement is positive.

It is useful to keep track of the content of the most recent announcement, because

of the information it conveys about the evolution of the disaster probability. Define τ

as the time elapsed since the most recent announcement:

τ ≡ t mod T,

5Bayesian learning implies

dpt = pt−

(
λH − λ̄1(pt−)

λ̄1(pt−)

)
dN1t +

(
−(pt−)(λH − λ̄1(pt−))− (pt−)φH→L + (1− pt−)φL→H

)
dt

(Wachter and Zhu, 2019). The first term multiplying N1t corresponds to the actual effect of disasters.
The term −p(λH− λ̄1(p)) in the drift corresponds to the effect of no disasters. We abstract from these
effects in (6).

6In effect, we assume the government body issuing the announcement has better information,
perhaps because of superior access to data. Stein and Sunderam (2017) model the strategic problem
of the announcer and investors, and show that announcements might reveal more information than a
naive interpretation would suggest.
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and define χt to be the probability that the announcement reveals:

χt ≡ pt−τ . (7)

Because announcements completely reveal the state, χ ∈ {0, 1}. Under these assump-

tions, pt has takes a simple form.

Lemma 1. The probability assigned to the high-risk state satisfies pt = p(τ ;χt), where

τ ∈ [0, T ), χ ∈ {0, 1} and

p(τ ;χ) = χe−(φH→L+φL→H)τ +
φL→H

φH→L + φL→H
(1− e−(φH→L+φL→H)τ ). (8)

Proof. Equation 6 implies that pt is deterministic between announcements. More-

over, pt is memoryless in that it contains no information prior to the most recent

announcement. Because the information revealed at the most recent announcement is

summarized in χ, any solution for (6) takes the form pt = p(τ ;χ), where τ = t mod T

and χ ∈ {0, 1}. It follows directly from (6) that

d

dτ
p(τ ;χ) = −p(τ ;χ)(φH→L + φL→H) + φL→H , τ ∈ [0, T ). (9)

This has a general solution:

p(τ ;χ) = Kχe
−(φH→L+φL→H)τ +

φL→H
φH→L + φL→H

, (10)

where Kχ is a constant that depends on χ. The boundary condition p(0;χ) = χ

determines Kχ.

Equation 8 shows that pt is a weighted average of χ, the probability of the high-risk

state revealed in the most recent announcement, and φL→H
φL→H+φH→L

, the unconditional

probability of the high-risk state. As τ , the time elapsed since the announcement, goes

from 0 to T, the agent’s weight shifts from the former of these probabilities to the

latter.

Agents forecast the outcome of the announcement based on pt. The optimality

conditions connecting the instant before the announcement to the instant after are

crucial determinants of equilibrium. It is thus useful to define notation for pt just
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before the announcement. Let

p∗χ = lim
τ↑T

p(τ ;χ) χ = 0, 1 (11)

Then p∗0 is the probability that the agent assigns to a negative announcement just

before the announcement is realized, if the previous announcement was positive. If

the previous announcement was negative, then the agent assigns probability p∗1. The

values of p∗0 and p∗1 follow from (8):

p∗χ = χe−(φH→L+φL→H)T +
φL→H

φH→L + φL→H
(1− e−(φH→L+φL→H)T ). (12)

Not surprisingly, 0 < p∗0 < p∗1 < 1:

Finally, we assume investors observe λ2t, which follows

dλ2t = κ(λ̄2 − λ2t)dt+ σλ
√
λ2tdBλt, (13)

with Bλt a Brownian motion independent of BCt. The process for λ2t is the same as

the one assumed for the disaster probability in Wachter (2013).

In what follows, all expectations should be understood to be taken with respect to

the agent’s posterior distribution, unless noted otherwise.

2.3 Equilibrium state prices

In what follows, we will separate quantities into a component that remains constant

upon an announcement and a component that jumps. This separation allows us to focus

our theoretical results on the behavior of asset prices upon an announcement.7 This

separation also implies that the results in this section could in principle be applied

to any underlying model for the equity premium, provided that it is based on the

revelation of latent regimes on announcement days.

We first solve for the value function of the representative agent. We then use this

result to solve for the stochastic discount factor, and finally to price assets. We show

that the value function depends on five state variables: consumption Ct, probability of

7Quantitative implications depend on the behavior of the model at all time, however, and for this
reason a full solution of the model is given in the Appendix.
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the high-risk state pt, time since the announcement τ , the previously announced state

χ, and the observed component of the disaster probability λ2. The state variable pt is

technically redundant, as it is a function of χ and τ . However, separating it out helps

to gain economic intuition.

Theorem 2. In equilibrium, the agent’s continuation value Vt = J(Ct, pt, λ2t, τ ;χt),

with τ = t mod T . Continuation value takes the form:

J(Ct, pt, λ2t, τ ;χt) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ;χt)

1−γ, (14)

with

I(pt, λ2t, τ ;χt) = IA(pt, τ ;χt)IN (λ2t) (15)

for IN is unaffected by the announcement and

IA(pt, τ ;χt) = eζχe
βτ+b̂pt , (16)

where

b̂ =
(λH − λL)Eν

[
e(γ−1)Zt − 1

]
(1− γ)(β + φH→L + φL→H)

, (17)

and where ζχ, χ = 0, 1 satisfy

e(1−γ)(ζχeβT+b̂p∗χ) = p∗χe
(1−γ)(ζ1+b̂) + (1− p∗χ)e(1−γ)ζ0 , (18)

with probabilities p∗ satisfying (12).

The value function J is a product of the usual CRRA utility term (1 − γ)−1C1−γ
t

and a term that depends on the stationary state variables. We are most interested

in IA, which represents that aspect of utility affected by by announcements. The

coefficient b̂ in (17) determines how the agent’s utility responds to changes in the

posterior probability of a high risk state. This term depends on the difference between

the disaster probability in the two states and the expected outcome for utility should

a disaster occur. It also depends on β +φH→L +φL→H , which captures the persistence

of effect. The more patient the investor (the lower is β), and the more persistent the

states (the lower the transition probabilities), the greater the effect.

The value function also depends on the announced state and the time since the last

announcement. The recursion (18) derives from the condition that the value function
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prior to the announcement must equal its expected value following the announcement.

Using the analytical expressions in Theorem 2, we can show that the agent is always

worse off should the high-risk state prevail. The proof follows from the condition (18),

and the result that ζ0 > ζ1 + b̂ (which we prove in the Appendix).

Corollary 3. For all risk averse agents, utility increases for positive announcements

and decreases for negative ones. That is, for γ > 0, IA increases when the announce-

ment is positive and decreases when it is negative:

IA(1, 0; 1) < lim
τ↑T

IA(p∗χ, τ ;χ) < IA(0, 0; 0) χ = 0, 1.

Duffie and Skiadas (1994) link the equilibrium value function to the state-price

density:

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (19)

We can think of πt as the process for marginal utility. Standard calculations (see

Lemma A.3) imply that

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ, (20)

Appendix A derives the process for the state-price density πt. Our present focus is

on the change in πt over announcements, namely πt/πt− , for t ∈ A. It turns out that

many terms drop out, and the change in πt over announcements only depends on the

previously-announced probability and the just-announced probability.8 That is, we can

define a function of the last announcement χ− and the current announcement χ:

M(χ, χ−) ≡

(
exp{ζχ + b̂χ}

exp{eβT ζχ− + b̂p∗χ−}

)1−γ

(21)

The next theorem states that M is indeed the change in the state-price density.

M(χt, χt−) =
πt
πt−

. (22)

8There is a theoretical possibility of a disaster co-occurring with an announcement, in which case
(22) would not hold. Because announcements occur on a set of measure zero, this is a zero probability
event, and we can ignore it when calculating expectations and therefore prices and returns.
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Following Ai and Bansal (2018), we refer to the change in πt upon the announcement

as the announcement stochastic discount factor, or the announcement SDF.

Theorem 4 (Announcement SDF). The change in state-price density upon the an-

nouncement equals

M(χ, χ−) =

(
exp{ζχ + b̂χ}

exp{eβT ζχ− + b̂p∗χ−}

)1−γ

, (23)

where (17) defines b̂ and where ζ satisfies (18). We refer to M(χ, χ−) as the announce-

ment SDF.

Negative announcements decrease utility for all risk averse agents. However, nega-

tive announcements only affect marginal utility, and hence the SDF, for agents with a

preference for the timing of the resolution of uncertainty.:

Corollary 5. The announcement SDF is > 1 for negative announcements and < 1 for

positive ones, if γ > 1. If γ < 1, the inequalities reverse.

A preference for early or late resolution of uncertainty is a special case of risk-

sensitivity, as defined by Ai and Bansal (2018). In their setting, as in ours, risk-

sensitivity is a necessary and sufficient condition for a nonzero announcement premium.

Using the announcement SDF, we can define risk-neutral probabilities of negative

announcements, just before the announcement occurs.

p̃∗χ ≡M(1, χ)p∗χ χ = 0, 1 (24)

These are the risk-neutral counterparts of (11). When χ = 0, (24) is the risk-neutral

probability of a negative announcement, given that the previous announcement was

positive. when χ = 1, (24) is the risk-neutral probability of a negative announcement

given that the previous announcement was negative.

Provided that γ > 1, risk-neutral probabilities of a negative announcements are

higher than physical probabilities because of the effect of the announcement on state

prices. Perhaps less obvious is the fact that, regardless of the value of γ, the risk-neutral

probability of a negative announcement following a previous negative announcement is

higher than the risk-neutral probability of a negative announcement following a positive
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one. This means that a negative announcement is bad news in a dynamic sense: it

affects not only dividends that are about to be realized, but also the agents’ beliefs

about future cash flows. This insight is important for equity pricing.

Theorem 6. Let p̃∗1 be the risk-neutral probability of a negative announcement, just

prior to the announcement occurring, provided that the previous announcement was

negative, and p̃∗0 be the analogous quantity, provided that the previous announcement

was positive. Then

p̃∗1 > p̃∗0.

This section shows that the stochastic discount factor undergoes a discrete change

at the instant of an announcement, provided that there is a preference for the timing

of the resolution of uncertainty. As we will show, any asset whose price undergoes a

discrete change at the instant of an announcement will carry an announcement pre-

mium: investors must be compensated for the risk of holding the asset over any interval

containing the announcement. If the price change is in the opposite direction as the

SDF change, then the announcement premium is positive. Unlike the risk premium

due to diffusion or Poisson risk, the announcement premium does not scale with the

length of time over which the premium is measured. Even though the announcement

occurs at an infinitesimal point in time, the premium is bounded away from zero.

Savor and Wilson (2014) document announcement premia, as measured by the slope

of the security market line, for equities and bonds. In what follows, these are the focus

of our analysis. We endogenously derive the price change for equities and for nominal

bonds upon announcements and show that the magnitude of the effect matches the

Savor and Wilson evidence. Savor and Wilson also document an announcement pre-

mium in foreign exchange markets. When currencies are sorted into portfolios based

on interest rate differentials, higher beta portfolios have higher returns on announce-

ment days, but there is no relation (or a negative relation) on non-announcement days.

While a full explanation of this finding is outside the scope of our paper, the above

reasoning suggests that if high interest rate differential portfolios are those exposed

to macroeconomic disasters (as captured in the λ1(t) regime) then these would have

high announcement day returns, with little or no relation between risk and return on

non-announcement days.
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2.4 Equities

In this section, we derive properties of claims to dividends (that is, equity claims).

Dividends follow a process that is similar to that of consumption:

dDt

Dt−
= µDdt+ σdBCt + (e−ϕZt − 1)dNt. (25)

To reduce the number of free parameters, we assume dividends have the same loading

on Brownian risk as does consumption.9 We allow dividends to display additional

disaster sensitivity, where the parameter ϕ determines the degree of this sensitivity.10

We will define a cross-section of stocks by varying the parameter ϕ.

We first consider the price of an equity strip (a claim that pays a dividend at a

fixed point in time). Let Φ denote the ratio of the price of this claim to the current

dividend. By the Markov property,

Φ(pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

Dt

]
. (26)

Theorem 7. The price of an s-period equity strip, scaled by the current dividend,

equals

Φ(pt, λ2t, τ, s;χt) = ΦA(pt, τ, s;χt)ΦN (λ2t, s), (27)

where ΦN is unaffected by the announcement, and where

ΦA(pt, τ, s;χt) = exp{a(τ + s;χt) + b(s)pt}, (28)

with

b(s) =
(λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
φH→L + φL→H

(
1− e−(φH→L+φL→H)s

)
. (29)

9This specification does imply that dividends in the model will, during normal times, feature the
same volatility as consumption. In the data, dividends are more volatile than consumption, but the
normal-times correlation between dividends and consumption is low. Adding unpriced dividend risk
would make it easier to explain the volatility of dividend growth and of returns but would leave the
results otherwise unchanged.

10 Longstaff and Piazzesi (2004) show that earnings were far more affected than consumption during
the Great Depression. Bianchi (2015), Bai et al. (2019) and Lu and Murray (2017) find that disaster
sensitivity is an important determinant of risk and return in the cross-section.
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The function a : R+ × {0, 1} → R is the unique solution to the system of equations

ea(u;χ)+b(u−T )p∗χ = p̃∗χe
a(u−T ;1)+b(u−T ) + (1− p̃∗χ)ea(u−T ;0) (30)

with boundary condition a(u; ·) = 0, u ∈ [0, T ), for risk neutral probabilities p̃∗χ, χ ∈
{0, 1}, which are functions of the primitive parameters.

Theorem 7 decomposes the price of an equity strip into a component affected by

the announcement, and a component that is unaffected (which we describe in the

Appendix). The component affected by the announcement depends on the probability

of a high-risk state, the time since the announcement, the maturity of the strip, and

the previous announcement. When an announcement occurs, the time since the last

announcement jumps from T back to 0, the probability of a high risk state jumps to

either 0 or 1, and the content of the previous announcement is updated to the content

of the current announcement.

We can gain some intuition from the form of prices in Theorem 7. First, provided

that ϕ > 1, −ϕZt < −Zt, implying that b(s) is strictly negative and decreasing in s.

The greater is the probability that the economy is in the high-risk state, the lower is

the price, and the longer the maturity of the claim, the more pronounced the effect.

Dividing this term is the sum of the transition probabilities; thus, the more persistent

the state, the greater the effect on the price.

Second, consider (30). This equation arises from the fact that the price just prior

to the announcement must be the expected value of the price just after the announce-

ment, under the risk-neutral probabilities. The function a depends on the number of

announcements until maturity, and the most recent announcement.11 It keeps track of

the cumulative effects of anticipated future announcements on the price.

Corollary 8. Assume ϕ > 1. Then the price of an equity strip with positive maturity

on the announcement date increases when the announcement is positive and decreases

when the announcement is negative. That is

ΦA(1, 0, s; 1) < lim
τ↑T

ΦA(pχ, τ, s;χ) < ΦA(0, 0, s; 0) χ = 0, 1,

11The fact that a depends on the sum s+τ rather than s and τ by themselves indicates that it does
not matter how far away in time the next announcement is. As time goes by, τ increases, s decreases,
so that s+ τ remains constant until (upon the announcement) τ jumps back to zero.
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for s > 0.

First consider the equity strip with one announcement prior to maturity. By stan-

dard reasoning (for this equity strip, we do not have to worry about the future an-

nouncements), this asset will fall in price if the announcement is negative and rise if

it is positive. Recall that p̃∗1 > p̃∗0, in other words, the risk-neutral probability of a

negative announcement is higher if the previous announcement was negative than if it

was positive. The value of the equity strip with one announcement to maturity will

reflect the current risk-neutral probability of a negative announcement, and this value

will be higher if the previous announcement was negative.

Now consider the effect of an announcement on an equity strip with two announce-

ments prior to maturity. Consider the effect of the first announcement. After this

announcement has passed, it becomes a strip with one announcement prior to matu-

rity, and so the reasoning in the above paragraph applies. If this first announcement is

negative, then p̃∗1 is the risk-neutral probability of the next announcement being neg-

ative, and the claim with one announcement prior to maturity now has a lower value

than if the announcement had been positive. Thus the strip with two announcements

prior to maturity falls in price if the announcement is negative. Iteratively applying

this reasoning (see Appendix B for details) leads to the result above.

This result tells us immediately that there must be an announcement premium,

because the price moves in opposite direction to marginal utility. Consider the return

on the equity strip of maturity s:

rA(χ, χ−, s) ≡
ΦA(χ, 0, s;χ)

limτ↑T ΦA(p∗χ− , τ, s;χ−)
=

ea(s;χ)+b(s)χ

ea(T+s;χ−)+b(s)p∗χ−
(31)

Just prior to the announcement τ = T , its maximum value. The notation χ− represents

the most recently announced probability. The notation p∗χ− represents the current

posterior, given the most recent announcement. At the announcement, τ goes from T

to 0, and both χ− and p∗χ− becomes χ, the announced probability. All other terms are

unaffected by the announcement, and hence drop out of the equity valuation.12

We can use (31) to derive an intuitive expression for the announcement premium.

Equations 30 and 31 together imply the natural conclusion that the expected (gross)

12As mentioned previously (31) holds almost surely, because there is a theoretical probability that
a disaster could coincide with an announcement.
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announcement return under the risk-neutral probability must equal 1:

p̃∗χ−rA(1, χ−, s) + (1− p̃∗χ−)rA(0, χ−, s) = 1. (32)

Now consider the expected announcement return under the physical probability:

r̄A(χ−, s) ≡ p∗χ−rA(1, χ−, s) + (1− p∗χ−)rA(0, χ−, s) (33)

Subtracting (33) from (32) implies the following form for the announcement premium:

r̄A(χ−, s)− 1 = (p̃∗χ− − p
∗
χ−)(rA(0, χ−, s)− rA(1, χ−, s))

= (p̃∗χ− − p
∗
χ−)

ea(s;0) − ea(s;1)+b(s)

ea(T+s;χ−)+b(s)p∗χ−
, (34)

where (34) follows from (31). As long as the risk-neutral probability of a negative

announcement is greater than the physical probability, the announcement premium is

positive. Corollary 5 and (24) show that this will be the case as long as γ > 1 (namely,

if the agent has a preference for early resolution of uncertainty). This corresponds to

the finding, in Ai and Bansal (2018), that risk-sensitive preferences are a necessary and

sufficient condition for a nonzero announcement premium.

Another way to write the announcement premium is in terms of the co-movement

of the price with the SDF around announcements:

Corollary 9. The announcement premium on the s-period equity strip equals

Et− [rA(χt, χt− , s)− 1] = −Et− [(rA(χt, χt− , s)− 1) (M(χt, χt−)− 1)] (35)

= −Covt−(rA(χt, χt− , s),M(χt, χt−)).

Moreover, provided s > T − τ ,

1. The announcement premium is strictly positive if ϕ > 1 and γ > 1, or if ϕ < 1

and γ < 1.

2. The announcement premium is strictly negative if ϕ < 1 and γ > 1, or if ϕ > 1

and γ < 1.

3. The announcement premium is equal ot zero if either γ or ϕ equals 1.
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It may first appear that Corollary 9 and (34) refer merely to the existence of an

announcement premium; it appears to say nothing of the magnitude. However, im-

plicit in Corollary 9 is a strong statement about the magnitude of the announcement

premium. Equation 35 gives an absolute number; it does not scale with the size of the

interval containing the announcement. By contrast, the risk premium on the equity

strip (or on any other asset) at a non-announcement time is proportional to the time

interval, and is infinitesimal over infinitesimal intervals. The key difference between

the announcement day and the non-announcement day is that the announcement day

provides a discrete amount of news: the agent anticipates receiving news on this day

with probability 1. At any other day, there is either a tiny amount of news for sure (in

the case of Brownian risk), or a large amount of news with a tiny probability (in the

case of Poisson risk). The Brownian and Poisson shocks provide risk that is continuous,

whereas announcement news is discrete.

Because of the discrete quantity of news released on the announcement day, the

daily return on an announcement day can easily be an order of magnitude higher than

on a non-announcement day. Our numerical evaluation in the next section makes this

statement precise. In this numerical evaluation, we will consider claims to continuous

streams of dividends. These will represent stock prices; we will consider a cross-section

with varying parameters ϕ. For the remainder of this section, we specify how pricing

works for a fixed ϕ, and postpone discussion of the cross-section until Section 3. No-

arbitrage gives us the value of the stock:

St = Et
∫ ∞
t

πs
πt
Ds ds =

∫ ∞
t

Et
πs
πt
Ds ds. (36)

Clearly, the price of the stock is an integral of the prices of the underlying strips.

Lemma 10. Let St be the time-t price of an asset paying the dividend process (25).

Then

S
(
Dt, pt, λ2t, τ ;χt

)
=

∫ ∞
0

DtΦ(pt, λ2t, τ, s;χt)ds, (37)

Proof. The result follows directly from Theorem 7 and the no-arbitrage condition

(36).

The stock price moves in the same direction as the underlying strips, given an

announcement:
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Corollary 11. Assume that ϕ > 1. Then S
(
Dt, pt, λ2t, τ ;χt

)
increases when the an-

nouncement is positive and decreases when the announcement is negative. That is,

S(D, 1, λ2, 0; 1) < lim
τ↑T

S(D, pt− , λ2, τ ;χt−) < S(D, 0, λ2, 0; 0).

Proof. The result follows directly from Corollary 8 and from Lemma 10.

The expression for announcement premium on the stock is necessarily more com-

plicated than the announcement premium on the equity strip. However, the sign of

the premium is clearly the same.

Corollary 12. Consider an asset paying dividends given by (25),

1. The announcement premium is strictly positive if ϕ > 1 and γ > 1, or if ϕ < 1

and γ < 1.

2. The announcement premium is strictly negative if ϕ < 1 and γ > 1, or if ϕ > 1

and γ < 1.

3. The announcement premium is equal ot zero if either γ or ϕ equals 1.

Proof. Corollaries 5 and 11 show that increases in S coincide with M(χ, χ−) < 1 in

case 1, whereas increases in S coincide with M(χ, χ−) > 1 in case 2. Finally, in case

3, either M(χ, χ−) = 1 or S does not change given an announcement.

2.5 Implications for the VIX

Since 1993, the VIX, which is reported by the Chicago Board Options Exchange (Cboe),

has been a popular way to measure uncertainty.13 Following Carr and Wu (2009), we

define the VIX as the square root of expected quadratic variation of the equity index

under the risk-neutral measure. For quadratic variation calculated between t and t+v,

the the VIX is defined so that

VIX2
t =

1

v
EQt
[∫ t+v

t

d[logS, logS]u

]
,

13See the Cboe White Paper https://www.cboe.com/micro/vix/vixwhite.pdf.
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where, for ease of interpretation, we follow the Cboe in scaling the expected quadratic

variation by the length of the interval over which it is calculated.

For the same reason that expected returns over any non-announcement interval go

to zero as that interval becomes infinitesimally small, the change in VIX also goes to

zero. However, announcement times are different: our model predicts a discrete fall

in the VIX before and after the announcement. The reason is that the announcement

is a non-infinitesimal source of variance that disappears after the announcement has

passed.14 We test this prediction of the model in Section 4.

The analytical results that we have thus far easily translate into the change in VIX.

Intuitively, the change in VIX is simply the negative of the expected variance of the

announcement.

Theorem 13 (VIX change on announcements). In expectation, the VIX falls on the in-

stant of an announcement. The expected announcement decline, under the risk neutral

measure, equals:

EQt− [VIX2
t − VIX2

t− ] = −1

ν
EQt−

[(
a(s;χt) + b(s)χt −

(
a(T + s;χt−) + b(s)p∗χt−

))2
]

= −1

v
EQt−

[
(log rA(χt, χt− , s))

2] ,
where VIX2 is expected quadratic variation measured over an interval of length v.

While the formula in Theorem 13 shows the change under the risk-neutral measure,

the equivalence of the risk-neutral and physical measure on sets of zero probability

imply that in expectation the VIX undergoes a non-infinitesimal change under the

physical measure as well.

Theorem 13 connects between the model’s predictions for the announcement pre-

mium and the model’s predictions for the VIX. The announcement premium is the

covariance between the announcement return and the announcement SDF, or equiva-

lently, the difference in the return under the risk neutral and physical probability. The

change in the VIX under the risk-neutral measure is the expected squared announce-

14This discussion assumes that the interval over which the VIX is calculated is not shifted to include
a new announcement. This assumption is accurate given that the VIX is calculated using options of
a fixed maturity. Thus as time moves forward, the window length v shrinks until a specific day on
which the options used to calculate the VIX “roll.” See the Supplemental Appendix for more detail.
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ment return. That said, they are not equivalent: we will see it is possible for a model

to explain one but not the other.

2.6 Nominal bonds

The pricing of nominal bonds requires an assumption on inflation. For simplicity, in

event of disaster we assume that inflation rises by the same amount – in percentage

terms – that consumption declines. Thus, in event of disaster, bonds will suffer a loss

equal to the percent decline in consumption. The price level Πt follows

dΠt

Πt−
= qtdt+ σpdBPt +

(
eZt − 1

)
dNt. (38)

Expected normal-times inflation, qt, follows a mean-reverting process:

dqt = κq(q̄t − qt)dt+ σqdBqt, (39)

where BPt and Bqt are independent Brownian motion processes that are also indepen-

dent of BCt and Bλt, and where κq > 0.

Equation 39 implies that expected inflation mean-reverts to a time-varying q̄t, which

follows a Markov-switching process. Consistent with the data (Dergunov et al., 2018),

we assume that high risk to consumption and elevated expected inflation co-occur.

That is, q̄t = q̄H when λ1t = λH and q̄t = q̄L when λ1t = λL, with q̄H > q̄L. This implies

that the macro-announcements, which reveal the latent disaster-probability state, also

reveal expected inflation. Given that macro-announcements are often ostensibly about

inflation, this seems reasonable.15

The nominal state-price density, which prices payoffs written in nominal terms,

equals

π$
t =

πt
Πt

. (40)

Thus if Φ$(pt, qt, τ, s;χt) denotes the price of a default-free nominal bond with s years

15We continue to assume that the agent infers the state only from announcements, and not from
inflation observations.
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to maturity and a face value of 1, no-arbitrage implies

Φ$(pt, qt, τ, s;χt) = Et
[
π$
t+s

π$
t

]
. (41)

Note that realized inflation stays constant upon an announcement, so the nominal

announcement SDF equals the real announcement SDF.

Theorem 14. The nominal price of an s-period nominal bond satisfies the following

decomposition

Φ$
(
pt, qt, τ, s;χt

)
= Φ$

A(pt, τ, s;χt)Φ
$
N (qt, s) (42)

where Φ$
N is constant upon an announcement, and where

Φ$
A(pt, τ, s;χt) = exp

{
a$(τ + s;χt) + b$(s)pt

}
(43)

with b$ satisfying

d

ds
b$(s) = −(φH→L + φL→H)b$(s) +

(
q̄H − q̄L

)
(e−κqs − 1), (44)

with boundary condition b$(0) = 0. The function a$ : R+×{0, 1} is the unique solution

to the system of equations

ea
$(u;χ)+b$p(u−T )p∗χ = p̃∗χe

a$(u−T ;1)+b$p(u−T ) + (1− p̃∗χ)ea
$(u−T ;0), (45)

with boundary condition a$(u; ·) = 0, u ∈ [0, T ), for risk neutral probabilities p̃∗χ satis-

fying (24).

An increase in risk coincides with an increase in inflation. For this reason, bond

prices fall when the announcement is negative and rise when it is positive:

Corollary 15. The price of a zero-coupon bond with positive maturity on the an-

nouncement date increases when the announcement is positive and decreases when the

announcement is negative. That is

Φ$
A(1, 0, s; 1) < lim

τ↑T
Φ$
A(pχ, τ, s;χ) < Φ$

A(0, 0, s; 0) χ = 0, 1,

for s > 0.
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Because bond prices fall when the announcement is negative, bonds have an an-

nouncement premium, provided that there is a preference for early resolution of uncer-

tainty. Define the announcement return on the s-period bond as:

r$
A(χ, χ−, s) =

Φ$
A(p∗χ, 0, s;χ)

limτ↑T Φ$
A(p∗χ− , τ, s;χ−)

Note that, with probability 1, realized inflation is constant upon an announcement,

and therefore the nominal announcement SDF can be treated as if it were identical to

the announcement SDF defined in (23). The remainder of the analysis proceeds in a

manner analogous to that of equities.

Corollary 16. The announcement premium on the s-period nominal bond equals

Et−
[
r$
A(χt, χt− , s)− 1

]
= −Et−

[
(r$
A(χt, χt− , s)− 1) (M(χt, χt−)− 1)

]
(46)

= −Covt(r
$
A(χt, χt− , s),M(χt, χt−))

Moreover, provided s > T − τ , the bond announcement premium is positive if γ > 1,

negative if γ < 1, and zero if γ = 1.

3 Data and Methods

This section describes our data and methods. Section 3.1 describes the data sources.

Section 3.2 describes the calibration and Section 3.3 the simulation method.

3.1 Data

We obtain daily stock and bond returns returns from the Center for Research in Security

Prices (CRSP). We consider individual stocks traded on NYSE, AMEX, NASDAQ

and ARCA from January 1961 to September 2016. In addition, we also use the daily

market excess returns and risk-free rate provided by Kenneth French. Data for bond

returns comes from the CRSP fixed-term indices file. Each month, for each target

maturity, we choose a Treasury bond with a maturity closest to the target maturity and

compute daily returns on this bond. The scheduled announcement dates before 2010

are provided by Savor and Wilson (2014). Following their approach, we add target-
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rate announcements of the FOMC and inflation and employment announcements of

the BLS for the remaining dates.

For annual riskfree returns, we use the CRSP US Treasury and Inflation indices.

For daily riskfree returns, we use the Federal Funds Rate available from the St. Louis

Federal Reserve. For VIX, we use the CBOE S&P 500 Volatility Index. The CBOE

provides intra-day real time VIX, while the open, close, high and low-of-the-day values

are available. Data on the volatility surface comes from OptionMetrics. OptionMetrics

reports implied volatilities as functions of option deltas. Because OptionMetrics calcu-

lations are based on the Black and Scholes (1973) model, we use this model to translate

from option Delta to moneyness, namely the ratio of the strike price to the forward

price of the security.

We define the daily excess return to be the daily (level) return of a stock (or bond)

in excess of the daily return on the 1-month Treasury bill. We estimate covariances on

individual stock returns with the market return using daily data and 12-month rolling

windows. We include stocks which are available for trading on 90% or more of the

trading days. At the start of each trading month, we sort stocks by estimated betas,

and create deciles. We then form value-weighted portfolios of the stocks in each deciles,

and compute daily excess returns.

Table 1 reports summary statistics on the ten beta-sorted portfolios. For each

portfolio j, j = 1, . . . , 10, we use the notation E[RXj] to denote the mean excess

return, σj the volatility of the excess return, and βj the covariance with the value-

weighted market portfolio divided by the variance of the market portfolio. Table 1

shows statistics for daily returns computed over the full sample, over announcement

days, and over non-announcement days.16 There is a weak positive relation between

full-sample returns and market betas. On non-announcement days, there is virtually

no relation between betas and expected returns. However, on announcement days,

there is a strong relation between beta and expected returns.17

Table 2 reports summary statistics for Treasury bonds. On non-announcement

days, the beta on Treasury bond returns with respect to the market is negative, and

16Betas and volatilities are computed in the standard way, as central second moments. An
announcement-day volatility therefore is computed as the mean squared difference between the an-
nouncement return and the mean announcement return. Announcement-day betas are computed
analogously.

17Units for excess returns in this table are basis points (bps) per day. An excess return of 1.53 basis
points is, implies that the asset earned 0.000153 more than the riskfree rate over that day.
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there is no discernable relation between risk and return. However, this beta is positive,

and, like the expected return, increases with maturity.

3.2 Fitting the model to the data

We now describe how we fit the model in Section 2. We choose preference parame-

ters, normal-times consumption parameters, the mean reversion for λ2t (κ), and the

volatility parameter (σλ) as in Wachter (2013). For simplicity, we assume that, when

the economy is in the low-risk state, the intensity λ1t is zero, that is λL = 0. The

magnitude of the announcement premium is determined by the size of informational

friction. In our model, this is captured by, φH→L, φL→H , and the unconditional jump

intensity explained by announcements, λH φL→H
φL→H+φH→L

. We calibrate λH , λ̄2, φL→H ,

φH→L and µD by conducting a grid search. The parameters are picked based on a

least-squares criterion to match 1) the empirical announcement premium 2) change

in VIX on announcement days and 3) the empirical price-dividend ratio of the equity

asset. In addition, the parameters are picked such that the average disaster probability

is 3.6% per annum, as in Barro and Ursúa (2008).

The unconditional probability of the high-risk state in our calibration is φL→H/(φL→H+

φH→L) = 5.3%. λ̄2 = 2.1% and λH = 29.3%. The regime switch process (namely λ1t)

is responsible for 40% of disasters. We assume a multinomial distribution for the out-

comes Zt. This multinomial distribution, which also comes from Barro and Ursúa

(2008), is the same as in Wachter (2013).

We choose the disaster sensitivities ϕj to obtain a reasonable spread in betas, and

so that the average exposure to disasters is three times the consumption claim (this

is a standard calibration, see, e.g. Bansal and Yaron (2004)). We use the fact that

betas depend primarily on the exposure to λ2(t), which, as we show in Appendix B, is

approximately proportional to Eν
[
eγZ(e−ϕZ − e−Z)

]
.18 We solve for ϕj such that

Eν
[
eγZt(e−ϕjZt − e−Zt)

]
Eν
[
eγZ(e−3Zt − e−Zt)

] = k, k ∈ {0.2, 0.35, . . . , 1.85}.

18Note that Eν
[
eγZt(e−ϕZt − e−Zt)

]
is the last term in the ordinary differential equation (B.11) for

the sensitivity bϕλ(s). It therefore determines the magnitude of this sensitivity as ϕ varies.
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This yields 12 firm types, and a spread in betas that is sufficiently wide to compare

model with data.

Our identifying assumption is normal-times betas line up with downside risk in

disasters. Recent events provide an opportunity to test this assumption. Figure 2

plots the realized excess returns of the beta-sorted portfolios in March 2020 against

the portfolios’ corresponding CAPM betas. The figure clearly shows that the realized

returns in March 2020, the month during with the US equity market was hit the hardest,

line up very closely with CAPM beta, with a t-statistic from a linear regression of−6.89.

Normal-times inflation parameters, σq, σP , and κq, are as in Tsai (2016). These

roughly determine the volatility of inflation, the persistence, and the volatility and

persistence of the nominal interest rate. Given these parameters, we choose expected

inflation in each regime to match normal-times expected inflation in the data. Table 3

reports parameter choices.

3.3 Simulation method

To evaluate the fit of the model, we simulate 500 artificial histories, each of length 50

years (240 × 50 days). We assume that announcements occur every 10 trading days.

For each history, we simulate a burn-in period, so that we start the history from a draw

from the stationary distribution of the state variables. We simulate the model using

the true (as opposed to the agents’) distribution. We report statistics for the full set

of sample paths.

While time is continuous in our analytical model, it is necessarily discrete in our

simulations. We simulate the model at a daily frequency to match the frequency of

the data. We compute end-of-day prices, and assume the announcement occurs in the

middle of a trading day. We will use the notation a and n to denote announcement

and non-announcement days respectively.

Given a series of state variables and of shocks, we compute returns as follows. For

each asset j, define the price-dividend ratio

Γj(pt, λ2t, τ ;χt) =
Sj(Dt, pt, λ2t, τ ;χt)

Dj
t

=

∫ ∞
0

Φj(pt, λ2t, τ, s;χt) ds
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We approximate the daily return as

Rj
t,t+∆t ≈

Sjt+∆t +Dj
t+∆t∆t

Sjt

=
Dj
t+∆tΦ

j
t+∆t +Dj

t+∆t∆t

Dj
tΦ

j
t

=
Dj
t+∆t

Dj
t

Γjt+∆t + ∆t

Φj
t

≈ exp

{
µD∆t− 1

2
σ2∆t+ σ(BC,t+∆t −BC,t) + φZ(Nt+∆t −Nt)

}
Γjt+∆t + ∆t

Γjt
,

(47)

where Z is drawn from the specified multinomial distribution, ∆t = 1/240, and where

Nt+∆t−Nt = 1 with probability (λ1t +λ2t)∆t and zero otherwise. The risk free rate is

approximated by

Rft = exp{rft∆t}. (48)

The daily excess return of asset j is then

RXj
t,t+∆t = Rj

t,t+∆t −Rft. (49)

We define the value-weighted market return just as in the data, namely we take a

value-weighted portfolio of returns. We assume that the assets have the same value

at the beginning of the sample. Because the assets all have the same loading on the

Brownian shock and the same drift, and conditional on a history not containing rare

events, the model implies a stationary distribution of portfolio weights. Given a time

series of excess returns on firms (which, because we have no idiosyncratic risk, we

take as analogous to portfolios), and a time series of excess returns on the market, we

compute statistics exactly as in the data.

Before discussing the implications of our model for returns around announcement

days, we confirm that the model replicates the main findings in Wachter (2013): namely

that it can match the equity premium, the average riskfree rate, and the predictability

in stock returns. We show these and their data equivalents in Table 4. When it comes to

these moments, the main difference between this model and the earlier one is that this

model produces negative return skewness, as in the data. One might ask whether this

difference comes from the imperfect information or from the regime-switching process,
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since these are both ways in which the current model differs from that of Wachter

(2013). Under our calibration, it comes from the regime-switching process. Figures 5

and 6 of the Supplental Appendix show that results for full-sample moments do not

change in the limit as the model approaches full information.19

4 Results

In this section, we compare the data to the simulation. Section 4.1 discusses the equity

premium and equity volatility. Section 4.2 discusses the security market line for stocks

and for bonds. Section 4.3 discusses implied volatilities and the VIX. Section 4.4

discusses the results for Treasury bonds.

4.1 The equity premium and volatility on announcement and

non-announcement days

The model captures the time series result that most of the equity premium is realized

on announcement days (Savor and Wilson, 2013; Lucca and Moench, 2015).20 Table 5

shows that the average market return is far higher on announcement days versus non-

announcement days, both in the model and in the data. On the other hand, the increase

in volatility is small. The standard deviation of returns is about 1 percentage point

on both announcement and non-announcement days. While the median increase in

volatility is greater in the model than in the data, the data is well-within the 90 percent

confidence intervals, reflecting the fact that a substantial fraction of the samples feature

no increase in volatility on non-announcement days at all. The fact that announcement-

day volatility does not increase is a key feature, along with options evidence to be

presented in Section 4.3, that distinguishes our model from competing explanations,

as we discuss in greater detail in Sections 4.3 and 5.

19The empirical R2 for return predictability are smaller than those reported in Wachter (2013).
The sample that we look at (motivated by availability of announcement data) happens to be one with
little predictability.

20Lucca and Moench (2015) focus on a later sample period and on scheduled FOMC announce-
ments. They show that the premium is realized on the announcement day, but before the actual
announcement. While outside the scope of our model, this finding could be rationalized in a similar
model in which information about the disaster regime leaks with some probability in the interval prior
to the announcement, and then is fully realized on the announcement itself.
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Savor and Wilson (2013) also show that riskfree interest rates are lower on an-

nouncement days as compared with non-announcement days. Our model can account

for the sign and magnitude of this result. The interest rate in the model equals:

rt = β + µ− γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt(e−Zt − 1)

]
.

and is a decreasing function of the disaster probability. Bonds of non-infinitesimal

maturity are a hedge against disaster risk (because they go up in price when the interest

rate declines (see Section 3.3 of the Supplemental Appendix). They therefore feature

a negative risk premium that, through the same mechanism as equities, is greater in

magnitude on announcement days as compared with non-announcement days. The

difference in the 30-day yield between announcements and non-announcements is 40

basis points in the model, as compared with 80 basis points in the data. To summarize:

short-term interest rates decline in the model, as in the data, and the declines are of

similar magnitude.21

4.2 The cross-section of beta-sorted portfolios on announce-

ment and non-announcement days

Figure 3 shows our main result: the model’s ability to match the differential beta-

return relation on announcement days. We overlay the simulated statistics on the

empirical statistics from Figure 1. Each dot on the figure represents a statistic for one

firm, for one simulated sample. Blue dots show pairs of average excess returns and

betas on announcement days, while grey dots show pairs on non-announcement days.

The figure shows that average returns on announcement days in the model are much

higher than on non-announcement days. Furthermore, average returns vary with beta

on announcement days in the model, whereas they do not on non-announcement days.

Figure 4 further clarifies the relation between the announcement and non-announcement

days in the model by showing medians and interquartile ranges from the full set of sim-

ulated samples. Median returns closely match the data, whereas interquartile ranges

show that the vast majority of samples with announcements can be clearly distin-

guished from those of non-announcements.

21We ignore, for simplicity, the effect of inflation uncertainty on a short-term Treasury bill. The
presence of an average inflation term would not affect this calculation.
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How is it that the model can explain these findings? Announcements convey im-

portant news about the distribution of future outcomes in the economy. On that day,

it is possible that a high-risk state of the economy could be revealed. If the high-risk

state is realized, not only will asset values be affected, but the marginal utility of eco-

nomic agents will rise. Thus investors require a premium to hold assets over the risky

announcement period.

In our model, some assets have cash flows that are more sensitive than others. The

sensitivity parameter ϕj, while not the same as the beta, is closely related. Assets with

high ϕj have a greater dividend response to disasters. Their prices thus move more

with changes in the disaster probability, and in particular with λ1t and λ2t. The value-

weighted market portfolio also moves with the disaster probability, and thus the higher

is ϕj (over the relevant range), the higher is the return beta with the market, both on

non-announcement days (which reveal information about λ2t, and on announcement

days, which reveal additional information about λ1t.

Panel A of Table 6 shows the security market line for equities on announcement

and non-announcement days. We run the regression

Ê[RXj
t | t ∈ i] = δiβ

j
i + error, (50)

where i = a (announcement days) or n (non-announcement days). The regression slope

δi is the slope of the security market line. It is simultaneously a measure of risk and

return, and a measure of the daily market risk premium. Table 6 shows an economically

significant difference between the slope on announcement and non-announcement days

in the data, a difference that is matched in the model.22 Thus the model predicts a

relation between risk and return on both announcement and non-announcement days,

but because the risk is so much greater on announcement days, the premium, and

therefore the spread in expected returns between low and high-sensitivity assets, will

also be much greater.

Thus one reason for the differential slope in the SML is the difference in the an-

22 One concern is that there might be a positive correlation between the slope difference and the
volatility difference (Table 5 shows that the volatility difference is within a 90% confidence interval
implied by the model) in data simulated from the data. If this were true, samples with a large
difference in SML slopes would also be those with a (counterfactually) high difference in volatility.
In fact, there is almost no correlation between these statistics, and a joint test (see Figure 3 of the
Supplemental Appendix) shows that the data has a p-value of greater than 0.5.
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nouncement premium. There is another reason for the difference in the slope, however.

Table 6 shows that the slope of the security market line for equities predicted by the

model is about half the size of the equity premium on non-announcement days. That

is, while the model predicts that the premium is far lower on non-announcement days,

as compared with announcement days, it also implies that the slope of the security

market line is below even the premium on non-announcement days. Furthermore, con-

sider Figure 4. The relation between beta and expected return implied by the model is

linear on announcement days, but concave on non-announcement days, just as in the

data.

The reason is that, on announcement days, there is a single source of variation

driving both the risk premium and the covariance. This is variation due to the disaster

probability pt. The greater the response to a change in pt, the greater the covariance

and the greater the risk premium. This relation is approximately linear. However, on

non-announcement days, there are two sources of covariance: the disaster probability

and disasters themselves. It is exposure to disasters themselves that explain most of

the risk premium, but it is covariation with the disaster probability that determines

the beta. The resulting error-in-variables problem leads to a flattened beta-return

relation, both in non-announcement periods, and in the full sample, thus partially

explaining the beta anomaly.23 It also implies that a conditional CAPM does not hold

on non-announcement days.

4.3 The volatility surface and VIX around announcements

Our explanation for announcement day anomalies is based on resolution of uncertainty

upon the announcement. Direct evidence for resolution of uncertainty can come from

put options prices.

The price of a put option with strike price X is the risk-neutral expectation of

(discounted) max(0, X − S), where S is the price of the underlying. Thus put options

are insurance against adverse states, and their prices are the prices of such insurance.

The greater the likelihood that an adverse state will realize, the higher the put option

price. Moreover, the greater the risk price attached to the adverse state (determined by

the SDF), the more valuable the insurance and the higher the price. Our model predicts

23Figure 4 in the Supplemental Appendix shows the unconditional security market line in the model
and in the data.
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both greater likelihood of tail events, and a higher price of those events, relative to the

Black and Scholes (1973) model.

Negative announcements are priced in the model; Section 2.4 discusses how this is

necessary to explain the announcement premium. Similarly, this is necessary to explain

an average decline in put option prices. While put options should follow a martingale

under the risk-neutral measure, they need not follow a martingale under the physical

measure: as the announcement is realized, the difference between the physical and risk-

neutral measure implies that, on average, put option prices fall. Figure 5 shows implied

volatility of index put options at the close on announcement days, and at the close of

the day prior to the announcement day. Implied volatilities are reported as functions

strike price over underlying price (moneyness); the lower the moneyness, the further

out-of-the-money are the put options that go into the implied volatility calculation.

Options with low moneyness best represent insurance against low-probability crash

events. Implied volatility is a convenient normalization of the option price (analogous

to looking at yield to maturity on bonds). The greater the implied volatility, the higher

the option price.

Figure 5 (Panel A) shows implied volatilities at the close following the announce-

ment and at the close the previous day. Panel B shows the change. The left panel

reports results from the data whereas the right panel reports results from the model.

Put option prices are clearly lower following the announcement, with the difference

being greatest for the most out-of-the-money options. Table 9 shows that the decline

in the slope is statistically significant. This is evidence that investors seek to insure

the risk of a market crash around announcements; that the price falls following the

announcement is evidence of a difference in the risk-neutral and physical expectation

consistent with our model.

Panel B shows implied volatilities in the model. Unlike the VIX, discussed below,

option prices and hence implied volatilities are not available in closed form. To compute

the price of an option, we must simulate from the risk neutral distribution for each

value of the state variables, and then take an unconditional average to obtain values

comparable to the data. Because of rare events, obtaining the risk neutral distribution

at each state is difficult and prone to inaccuracies. Given that the focus of this paper is

not option prices, we encourage the reader to take the model-simulated option data with

a grain of salt. With these caveats, Panel B shows that the model offers a reasonable
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fit to the data. On average, the slope of implied volatilities is steeper in the model; a

known problem with models calibrated to rare events (Backus et al., 2011). Though

there is some non-monotonicity (most likely due to numerical error), the model also

implies that further out-of-the-money options fall by more following the announcement,

with a change of similar magnitude to that in the data.

A second option-implied measure of announcement uncertainty is the VIX. Un-

like implied volatilities, the VIX is itself the (square root) of the risk-neutral moment

and thus has an analytical solution (see Section 2.5 of the Supplemental Appendix).

The formula for a VIX decline following an announcement takes a particularly simple

form, and is closely linked to the announcement return (Theorem 13). A value for

the VIX that is on average higher prior to the announcement than following the an-

nouncement indicates investors expecting that uncertainty will be resolved. Thus one

hypothesis, which is that the average announcement return reflects purely reflects an

institutionally-driven aversion to holding equities over the announcement interval, is

rendered very unlikely the decline in VIX. Another hypothesis is that the announce-

ment return reflects a different price of risk on announcement days but no change in

volatility – as we discuss in Section 5, this too is rendered unlikely. Investors expect

uncertainty to be resolved on macro-announcement days.

Table 5 shows that indeed the VIX declines sharply following announcements: on

average the post-announcement VIX is -0.30 units lower than the pre-announcement

VIX (the decline, also reported by Savor and Wilson (2013), is highly statistically

significant). The model implies a decline that is slightly larger (-0.60). Note that the

VIX itself is on the order of 20, so the difference between model and data is less than

2% of the VIX itself. The model generates 90% standard error bars of [−0.69,−0.48],

the top of which is close to the data. As we discuss In Section 5, there is a tension in

precisely fitting this value and the lack of change in the standard deviation.

The statistically significant decline in the VIX, together with the similarity in return

volatility across announcement and non-announcement days, suggests the presence of

negatively skewed news on announcements. Most announcements confirm positive

expectations, implying that there need not be a large increase in return volatility on

announcement days. However ex ante there is always the possibility of a negative

announcement, which is priced into the pre-announcement VIX. The average decline

in the VIX, and the high realized return represent the resolution of this uncertainty.
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The fact that the VIX is a risk-neutral measure implies that negative announcements

receive disproportionately high weight, further contributing to its decline.

Table 5 also reports average values of the VIX, assuming, pre-announcement, that

there are two announcements within the VIX window (in the data, the VIX covers

approximately one month, and announcements appear approximately twice a month).

As a risk-neutral moment of log returns, which are unbounded from below, the VIX is

particularly sensitive to the probability of very low returns. Such low returns (predicted

the disaster model) do not appear in monthly US data even during disasters, suggesting

some force outside of the model prevents their occurence (recently, Ghaderi et al. (2019)

show that information frictions and learning act as such a mechanism). We follow Seo

and Wachter (2019) in assuming large declines are spread out over a series of months

(see the Supplemental Appendix for further detail). With this adjustment, the model

succeeds in matching the level of the VIX. A recent literature highlights how reconciling

the VIX with the equity premium proves challenging for a wide class of models (Martin,

2017; Dew-Becker et al., 2017; Beason and Schreindorfer, 2020). A full reconciliation

of the average level of the VIX and the average level of the equity premium is an

interesting topic for further research.

4.4 Bond returns on announcement and non-announcement

days

We now consider the results for bonds. Table 6 repeats the regression (50) for bonds

with various maturities. For bonds, the data reveal a slightly negative slope on non-

announcement days. The slope on announcement days is strongly positive.

Unlike equities, bonds are not, in aggregate exposed to stock market risk. For

bonds, this need not be the case. Indeed, Table 2 shows that betas on bonds are close

to zero on average. It is well-known that the covariances between Treasury bonds and

stocks are unstable (Campbell et al., 2017), suggesting that the the beta does not reveal

much about the risk in bonds. This makes it all the more striking that bonds exhibit

positive betas on announcement days, and that these betas line up with the expected

returns. 24

24For further discussion of the properties of bond returns around announcements, see Jones et al.
(1998) and Balduzzi and Moneta (2017).
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What does the model have to say about these findings? Section 2 shows that, on

non-announcement days, the true instantaneous covariance between bonds and stocks

is equal to zero. This implies that the true security market line is undefined on non-

announcement days. Thus the model is consistent both with negative observed betas

on non-announcement days, and the fact that these betas exhibit no relation with

expected returns. On the other hand, macro-announcements directly reveal news about

bond cash flows, because they are informative about inflation. In our model, news

of higher inflation is interpreted as indicating macroeconomic instability. Losses on

bonds therefore coincide with losses on the stock market. Thus the model predicts

both positive betas on bonds on announcement days, and a strong risk-return relation.

Table 8 shows that, indeed, bonds have much higher betas on announcement days in

simulated data. In contrast, equity betas can increase or decrease, with confidence

intervals generally containing zero.

Because betas on announcement days are higher in the model than in the data, the

model does not succeed in capturing the full magnitude of the announcement-day slope.

The model does succeed, however, in capturing the fact that bond returns contain

substantial market risk on announcement days, and no measurable market risk on non-

announcement days. In the model, news about disaster directly correlates with that of

expected inflation. Stated differently, the announcements are concerned with inflation;

investors perhaps infer that information concerning inflation also is informative about

disasters. Moreover, because inflation tends to rise when the probability of a disaster

rises, news about inflation is priced. The greater the bond maturity, the greater the

impact of this news, and the greater is the expected return.

5 Alternative models

In this section, we contrast our findings with two alternative models, one with “small”

disasters and one with normally distributed news, and one with “small” disasters.

While these models can qualitatively capture some of the facts, they fall short in

important ways. The results in this section highlight the characteristics a model needs

to have in order to match the data.25

25In both cases, the proposed models do not match some other aspects of the data, such as excess
volatility and return predictability. We are not undertaking a formal statistical comparison of these
models and ours.
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5.1 Minor Poisson events

Backus et al. (2011) argue that rare disasters are inconsistent with evidence on index

options. Using option data, they back out the features the consumption data need

to have to jointly match options evidence, the equity premium, and equity volatility.

They argue that the data are more consistent with Poisson events that are frequent and

minor, as compared with large rare disasters.26 In the spirit of their model, we apply

the model in Section 2 to a setting in which Poisson events are frequent and minor,

basing the calibration on their preferred model to match the options data, implying risk

aversion γ = 8.7, a jump distribution Z ∼ N(−0.0074, 0.1912), and a jump intensity of

1.4. Furthermore, following Backus et al. we assume β = 0.012, µ = 3.06, σ = 2.53%,

ϕ = 5.1. Thus the jump sizes in their model are 0.74%, to be contrasted with roughly

30% in our benchmark calibration, whereas the jump intensity is 1.4, as opposed to

0.04. We calibrate the remaining parameters (µD, λH , φH→L, φL→H) following the same

strategy as in our benchmark calibration: namely, we seek to match the announcement

premium, the average change in the VIX, and the average price-dividend ratio.

This model differs in two important respects from the original model of Backus

et al. (2011). There is significant time-variation in the event probability, whereas their

model is iid. Second, for the reasons explained in Section 2.4, we require a preference

for early resolution of uncertainty. In an iid model, early versus late verus no preference

for early resolution are all observationally equivalent. That is not the case in the model

with time-varying event probabilities. Thus an important source of the unconditional

equity premium in this model, unlike in the model of Backus et al. (2011), is due to

time-variation in λ1t.

Not surprisingly, restricting the event size to be small implies that the intensity

must be much larger to match the announcement premium. We find λH = 8.73.

Probability of regime shifts are slightly higher in both directions, but this difference is

not large. Overall, Poisson events occur about once a year, as opposed to twice in a

century, consistent with the original model of Backus et al. (2011). Table 10 reports

the parameter values.

Table 11 shows that the model indeed can account for the announcement pre-

mium.27 It also can account for the change in VIX (indeed, the change in VIX is inside

26Seo and Wachter (2018) argue that time-varying disaster risk improves the fit to the options data.
27In the Supplemental Appendix, we show that the model can partially account for the different
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the standard error bars, so this model outperforms the benchmark along this dimen-

sion). There are two drawbacks. First, the announcements in Backus et al. (2011)

are sufficiently “normal” to produce a noticeable difference between the volatility on

announcement and non-announcement days. Recall that a major distinguishing fea-

ture between models is whether they can match the lack of change in second moment.

The small-disasters model is unable to match this lack of change. Second, and related,

the model attributes all normal-times variation in stock market prices to cash flows.

This implies cash flows that are far too volatile (Figure 6).28 One could argue that

this is not a failing of the announcement part of the model, and indeed one could have

a different driving force for normal-times volatility, while still having announcements

deliver information about the frequency of small jumps rather than large. Compar-

ing the results of Tables 5 and 11 suggest this is a valid interpretation in that both

models match key aspects of the data, but neither match every aspect. Note that the

analytical results in Section 2 apply equally to both models, and indeed the economic

interpretations are not very different: in either case the negative announcement is a

rare event for which the agent receives compensation in the form of a premium.

5.2 Normally-distributed news

One alternative to a rare events model is one in which the equity premium arises from

Bansal and Yaron (2004) long-run risk. That is, there is a small, persistent expected

growth term as part of consumption. The agent receives a signal about this term on

announcements. Ai and Bansal (2018) formalize such a model. For simplicity, however,

we consider the version presented in Savor and Wilson (2013).29

slopes around announcement days.
28The baseline model implies cash flows that are arguably not volatile enough. This could easily be

remedied by adding idiosyncratic volatility to the dividend process in (25) without altering any other
conclusions.

29The difference is that Savor and Wilson simply assume that the volatility of the long-run risk
term rises on announcement days, whereas Ai and Bansal (2018) endogenize this result in a model
with learning. In our model, a similar distinction might be assuming that that the risk of a regime
change is greater on announcement days, rather than one learns about the regime. It is preferable,
from a modeling perspective, to endogenize the arrival of new information; otherwise it is as if the
announcement itself causes the risk. However, the quantitative implications of the two approaches are
similar.
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5.2.1 The model

Consider a discrete-time model with conditionally homoskedastic consumption growth.

Let ∆ct+1 = logCt+1 − logCt, and assume

∆ct+1 = µt + εc,t+1 (51)

µt+1 = µ̄+ ρ(µt − µ̄) + εµ,t+1. (52)

Even though time is discrete, we can still use the notation (5) to whether a day is an

“announcement day” or not. The shocks εc,t+1 and εµ,t+1 are mean zero, normal random

variables. Conditional on whether t+1 is an announcement day, they are independent.

Their standard deviations change deterministically, depending on whether the day is

an announcement day or not. With some abuse of notation, define

Vart(εc,t) = σ2
c,t =

{
σ2
c,a t ∈ A
σ2
c,n t ∈ N

and

Vart(εµ,t) = σ2
µ,t =

{
σ2
µ,a t ∈ A
σ2
µ,n t ∈ N

Note that the announcement status of date t + 1 is deterministic, and therefore is

known at time t. The representative agent’s preference is characterized by Epstein and

Zin (1989) utility:

Ut =

(
(1− β)C

1−1/ψ
t + β

(
Et
[
U1−γ
t+1

]) 1−1/ψ
1−γ

) 1
1−1/ψ

, (53)

where, as above, β is the time discount factor and γ is risk aversion. The new parameter

relative to the previous model is ψ, the elasticity of intertemporal substitution.

Savor and Wilson (2013) conjecture a solution in which the price-dividend ra-

tio is approximately log-linear in the state variable µt, and solve the model using

Campbell and Shiller (1988) log-linearization. We follow their approach.30 Let κ1 =

30Because ψ 6= 1, there will not be a closed-form solution, even in continuous time. In the limit as ψ
approaches 1, the price-consumption ratio approaches a constant. The announcement premium on the
consumption claim approaches zero. One could write down an alternative model in which dividends
are more exposed to µt than to consumption. With ψ = 1, such a model would have a closed-form
solution, which could be found using the method outlined in Section 2. Such a model would likely
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(1 + eE log(Ct/St))−1 and κ0 = − log κ1 + (1− κ1) log(1/κ1− 1). The price-dividend ratio

is a function of µt and τ : St/Ct = Γ(µ, τ), such that

Γ(τ, µ) ≈ A0(τ) +
1− 1/ψ

1− κ1ρ
µt, (54)

for a constant A0(τ) satisfying

A0(τ) = κ1A0(τ + 1) + log β + κ0 + κ1
1− 1/ψ

1− κ1ρ
(1− ρ)µ̄

+
1

2
(1− γ)(1− 1/ψ)σ2

c,n +
1

2
(1− γ)(1− 1/ψ)

(
κ1

1− κ1ρ

)2

σ2
µ,n,

for τ = 0, 1, . . . , T − 2, with boundary condition

A0(T − 1) = κ1A0(0) + log β + κ0 + κ1
1− 1/ψ

1− κ1ρ
(1− ρ)µ̄

+
1

2
(1− γ)(1− 1/ψ)σ2

c,n +
1

2
(1− γ)(1− 1/ψ)

(
κ1

1− κ1ρ

)2

σ2
µ,n.

The approximate expression for the riskfree rate rf,t+1 = log(1 + Rf,t+1) between

times t and t+ 1 is:

rf,t+1 ≈ − log β +
µt
ψ

+
1

2ψ
σ2
c,t+1 −

1

2
γ

(
1 +

1

ψ

)
σ2
c,t+1

− 1

2

(
γ − 1

ψ

)(
1− 1

ψ

)(
κ1

1− κ1ρ

)2

σ2
µ,t+1. (55)

We can approximate the equity premium by

logEt
[

1 +Rmkt
t+1

1 +Rf,t+1

]
≈ γσ2

c,t+1 +

(
1− 1

ψ

)(
γ − 1

ψ

)(
κ1

1− κ1ρ

)2

σ2
µ,t+1, (56)

and the variance of the log stock return rmkt,t+1 = log(1 +Rmkt
t+1 ) by

Vart(rmkt,t+1) ≈ σ2
c,t+1 +

(
1− 1

ψ

)2(
κ1

1− κ1ρ

)2

σ2
µ,t+1. (57)

have very similar implications to the one presented here.
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In this conditionally lognormal model, The VIX will simply capture the number of

announcement versus non-announcement days. As in the previous section, we assume

that there are two announcements within the VIX window. Directly applying (57)

implies that just prior to the announcement:

VIX2
t =

2T − 2

2T
σ2
c,n +

2

2T
σ2
c,a +(

κ1(1− 1/ψ)

1− κ1ρ

)2(
2T − 2

2T
σ2
µ,n +

2

2T
σ2
µ,a

)
. t+ 1 ∈ A

After the announcement, there is one fewer announcement day:

VIX2
t =

2T − 2

2T − 1
σ2
c,n +

1

2T − 1
σ2
c,a +(
κ1(1− 1/ψ)

1− κ1ρ

)2(
2T − 2

2T − 1
σ2
µ,n +

1

2T − 1
σ2
µ,a

)
. t ∈ A.

5.2.2 Quantitative results

To calibrate the model, we use the same preference parameters as Savor and Wilson

(2013). That is, β = 0.971/240, γ = 1.2, and ψ = 1.001. We also keep their choice

of the persistence parameter: ρ = 0.8361/240. We set κ1 = 0.9651/240, consistent with

the parameter choice in Bansal and Yaron (2004). We use our own choice of µ̄ = 2.5.

Because of a possible (small) difference in µ̄ and κ, as well as in our data, we follow

their calibration strategy (but do not use their exact values), in choosing the remaining

moments.31 We choose σc,a, σc,n, σµ,a, and σµ,n to match the equity premium and

the equity volatility on announcement days and non-announcement days, using (56)

and (57).We find parameters similar to Savor and Wilson (2013), which we report in

Table 12 .32

Table 13 compares data simulated from the model with historical data. the model

can account for the announcement premium, and lack of change in volatility.33 This

success comes at a cost, however. The calibration implies σµ,a = 3.2% per annum,

31Savor and Wilson (2013) do not report µ̄ or κ1.
32The model frequency is daily. For ease of interpretation, we report annual moments in Table 12.

These should be converted as follows: µ̄ = 0.025/240, σc,a = 0.1515/
√

240, σµ,a = 0.0321/
√

240, and
similarly for non-announcement moments.

33The minor differences between model and data in Table 13 are due to the fact that we fit the log
version of the moments, but simulate and report from the levels.
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or 0.032/
√

240 = 0.002 per day. In comparison, Bansal and Yaron (2004) assume

a monthly volatility of the conditional mean of 0.008. At first glance, the results

appear consistent if one assumes that most of the volatility in expected consumption

growth occurs on announcement days. However, in the model of Bansal and Yaron

µt refers to a monthly growth rate. Here µt is a daily growth rate of consumption.

Shocks to µt are persistent, and each has a permanent effect on consumption growth

through (51). A one-standard-deviation shock (0.002) has cumulative effect over the

next month (20 days) of
∑20

t=0 ρ
t(0.0002) = 0.04, translating into a 4 percentage point

change in expected consumption growth and (therefore) the riskfree rate. Even if such

as shock realized only once a month, it would imply greater volatility of consumption

and interest rates as compared with the Bansal and Yaron (2004) model (0.04 versus

0.008); but there are multiple announcements in a month.34 Equation 55 gives the

formula for the daily interest rate. The unconditional variance of this value, which we

report in Table 13, mainly arises from the unconditional variance in µt and is 150 basis

points per day. This is larger than the volatility of daily stock returns.

Is this an accident of the calibration, or is it true more generally? To understand the

link between the riskfree rate volatility and the equity premium in this model, consider

the mechanism by which this model must match the means and standard deviations

of equity returns. The model has two shocks: the shock to realized expected growth

and the shock to expected consumption growth. If the goal of the calibration is to

keep the volatility the same between announcement and non-announcement days, then

it must be the case that the price of risk is higher on announcement days versus

non-announcement days. There is little scope to do this for the realized consumption

growth shocks. This is because the price of risk is γσc,t, whereas the volatility is σc,t.

Raising the price of risk through σc,t will simply raise the volatility. The situation

is different with shocks to expected consumption growth. Here, the price of risk is

(γ − 1/ψ)
(

κ1
1−κ1ρ

)
σµ,t, whereas the volatility is (1 − 1/ψ)

(
κ1

1−κ1ρ

)
σµ,t. By making ψ

very close to 1 (so that the cash flow and interest rate effects nearly cancel out), one

can raise the price of risk on announcement days with only minimal effects on the

volatility, by raising σµ,t. But a higher σµ,t also raises interest rate volatility.

A second problem with this model concerns its implications for the VIX. The model

matches the approximate level of stock return volatility because the volatility of unex-

34This effect is relatively greater in the Savor and Wilson (2013) model, considering that a higher
ψ dampens the effect of µt on interest rates in the Bansal and Yaron (2004) model.
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pected shocks to consumption, at 15% per annum, is unrealistically high (the fact that

the EIS is very close to one implies that the impact of expected consumption growth

shocks on stock returns is minimal). Because the VIX in their model essentially just

reflects the volatility of stock returns (this is a standard result for models without

skewness), the VIX is also 15%, which is counterfactually low.35 Moreover, because

the volatility is essentially the same on announcement versus non-announcement days,

the decline in the VIX will be an order of magnitude smaller than in the in the data.

The model can explain the lack of change in realized volatility by assuming that there

is no uncertainty about stock returns actually being realized. Data on the VIX suggest

otherwise.

6 Conclusion

The Capital Asset Pricing Model has been a major focus of research in financial eco-

nomics, and the benchmark model in financial practice for over fifty years. Despite its

pre-eminent status, years of empirical research has found little support for the CAPM.

That is, until quite recently. The CAPM predicts a tight relation between market beta

and expected return, known as the security market line. Recent research has shown

that this security market line, seemingly absent on most days, appears on days with

macro-economic announcements (Savor and Wilson, 2014).

This paper builds a general equilibrium model to explain why the security market

line appears on macroeconomic announcement days, but is hard to discern on others.

The model derives the result from underlying economic principles in a frictionless

environment. For this reason, we can explain why the relation between risk and return

is not asset-class specific. It holds for both bonds and equities. Days with scheduled

announcements provide a discrete amount of news, leading to a risk premium that

does not, unlike a risk premium for Brownian or Poisson risk, does not scale with the

time interval. This risk premium can be an order of magnitude greater than the risk

premium realized on other days.

Our model also makes use of a preference for early resolution of uncertainty, imply-

ing risk sensitive preferences (Ai and Bansal, 2018). Because investors have a preference

35Table 13 does not report standard errors, there is no uncertainty about the conditional volatility
in the model.
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for early resolution of uncertainty, they require a risk premium for bearing assets that

fall in price on adverse economic news (as opposed to simply adverse economic events

themselves, as would be the case with time-additive utility). Quantitatively matching

the model to the data also appears to require an asymmetry in the release of bad ver-

sus good economic news. In the data, volatility in equity returns appears about the

same on announcement and non-announcement days. Our model explains this finding

through the result that the release of bad news is relatively unusual; most of the time,

investors learn what they expect, which is that economic fundamentals are sound. Oc-

casionally, they learn that the economy is facing higher risk; this possibility is sufficient

to produce a risk premium, even if the risk does not always realize. A decline in implied

volatilities, especially pronounced for out-of-the-money put options, as well as a decline

in the VIX post-announcement offers further evidence for a risk-based explanation of

the annoucement premium. We show that the model offers a good quantitative fit to

the options data as well.

While our focus in this paper is on macro-announcements, the methodology can be

applied to scheduled announcements more generally, and understanding the rich array

of empirical facts that the announcement literature has uncovered.
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A The value function and the state-price density

For the remainder of the Appendix, define the vector Brownian motion

dBt ≡ [dBCt, dBλt]
>. (A.1)

Lemma A.1. In equilibrium, the representative agent’s continuation value takes the

form

J(Ct, pt, λ2t, τ ;χt) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ;χt)

1−γ, (A.2)

with

I(pt, λ2t, τ ;χt) = eâ(τ ;χt)+b̂pt+b̂λλ2t , (A.3)

and

b̂ =
(λH − λL)Eν

[
e(γ−1)Zt − 1

]
(1− γ)(β + φH→L + φL→H)

, (A.4)

b̂λ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν [e(γ−1)Zt − 1]

)
. (A.5)

for a function â : [0, T )× {0, 1} → R satisfying

â(τ ;χt) = ζχte
βτ +

1

β

(
µ− 1

2
γσ2 + b̂φL→H + b̂λκλ̄2 +

λL

1− γ
Eν
[
e(γ−1)Zt − 1

])
, (A.6)

for scalars ζ0, ζ1 solving a system of two equations in two unknowns.

Proof. Along the optimal path, and over intervals not containing announcements, the

value function must satisfy the usual Hamilton-Jacobi-Bellman equation. That is:

f(Ct, Jt) +
∂J

∂τ
+
∂J

∂C
Ctµ+

∂J

∂p
(φL→H − pt(φH→L + φL→H))− ∂J

∂λ
κ(λ2t − λ̄2)

+
1

2

∂2J

∂C2
C2
t σ

2 +
1

2

∂2J

∂λ2
λ2tσ

2
λ

+
(
ptλ

H + (1− pt)λL + λ2t

)
J Eν

[
J(Ce−Z , ·)− J(C, ·)

J(C, ·)

]
= 0. (A.7)
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Given the conjecture (A.2),

1

J
(J(Ce−Z , ·)− J(C, ·)) = e(γ−1)Z − 1. (A.8)

Further conjecturing (A.3), and using (3) and (A.8), we find

− βâ(1− γ)(â(τ ;χt) + b̂pt + b̂λλ2t)

+ (1− γ)
da

dτ
+ (1− γ)µ+ (1− γ)(φL→H − pt(φH→L + φL→H))b̂− (1− γ)b̂λκ(λ2t − λ̄2)

− 1

2
γ(1− γ)σ2 +

1

2
(1− γ)2b̂2

λσ
2
λλ2t

+ pt(λ
H − λL)Eν

[
e(γ−1)Zt − 1

]
+ λLEν

[
e(γ−1)Zt − 1

]
+ λ2tEν

[
e(γ−1)Zt − 1

]
= 0.

(A.9)

Matching coefficients on λ2t, pt, and on the constant term implies:

−β(1− γ)b̂λ − (1− γ)b̂λκ+
1

2
(1− γ)2b̂2

λσ
2
λ + Eν

[
e(γ−1)Zt − 1

]
= 0 (A.10)

−β(1− γ)b̂− (1− γ)(φH→L + φL→H)b̂+ (λH − λL)Eν
[
e(γ−1)Zt − 1

]
= 0, (A.11)

and

dâ

dτ
= βâ(τ ;χt)− µ+

1

2
γσ2 − b̂φL→H − b̂λκλ̄2 −

λL

1− γ
Eν
[
e(γ−1)Zt − 1

]
. (A.12)

This verifies the conjecture (A.3) over non-announcement intervals. Furthermore, (A.5–

A.6) solve (A.10–A.12).36

It remains to verify (A.3) over announcement intervals. Along the optimal path,

continuation value must satisfy

Vt− = Et−
[∫ ∞

t

f(Cs, Vs)ds

]
= Et− [Vt].

(A.13)

36Equation A.10 as two solutions. Equation A.5 represents the economically reasonable one in that
zero disaster risk implies zero impact of disasters on the value function.
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Applying (A.13) for t ∈ A, we obtain

lim
τ↑T

J(Ct− , pt− , λ2,t− , τ ;χt−) = Et− [J(Ct, pt, λ2t, 0;χt)] . (A.14)

That is, the value function on the instant before the announcement must equal the

expectation of its value just after the announcement. Furthermore, because Ct and λ2t

are continuous at t with probability 1,

lim
τ↑T

J(Ct, pt− , λ2t, τ ;χt−) = Et− [J(Ct, pt, λ2t, 0;χt)] . (A.15)

A solution of the form (A.2) will satisfy (A.13) provided that

lim
τ↑T

I(pt− , λ2t, τ ;χt−) = Et− [I(pt, λ2t, 0;χt)] . (A.16)

because, almost surely, Ct does not change on announcements or on any other specific

time t. Moreover, (A.3) and (A.16) imply a set of two equations in the two unknowns

ζ0 and ζ1, verifying (A.2) and (A.3) over announcement intervals.

Proof of Theorem 2. Define the function IA : [0, 1]× [0, T )×{0, 1} → R as follows:

IA(pt, τ ;χt) = eζχte
βτ+b̂pt . (A.17)

The form of the function I (Equation A.3) then implies the multiplicative decomposi-

tion:

I(pt, λ2t, τ ;χt) = IA(pt, τ ;χt)IN (λ2t), (A.18)

for IN (·) a function of λ2t. Substituting (A.2), (A.3) and (A.17) into (A.15) leads to

lim
τ↑T

IA(pt− , τ ;χt−) = Et− [IA(pt, 0;χt)] . (A.19)

Equation 18 then follows from substituting (A.17) into (A.19), using the definition of

p∗.

Lemma A.2. Define ζ0, ζ1, and b̂ as in Theorem 2. Then b̂ < 0 and

ζ0 > ζ1 + b̂. (A.20)
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Proof. Suppose by contradiction that

ζ0 ≤ ζ1 + b̂. (A.21)

Recall the following pair of equations which determine ζ0 and ζ1:

e(1−γ)(ζ0eβT+b̂p∗0) = p∗0e
(1−γ)(ζ1+b̂) + (1− p∗0)e(1−γ)ζ0

e(1−γ)(ζ1eβT+b̂p∗1) = p∗1e
(1−γ)(ζ1+b̂) + (1− p∗1)e(1−γ)ζ0 ,

(A.22)

The expressions on the left hand side of (A.22) are weighted averages of e(1−γ)(ζ1+b̂) and

e(1−γ)ζ0 with weights between 0 and 1. Thus they must lie between these two terms.

Because the exponential function is strictly increasing, it follows that

ζ0 ≤ ζ0e
βT + b̂p∗0

ζ1e
βT + b̂p∗1 ≤ ζ1 + b̂.

(A.23)

However, (A.23) implies

ζ0(1− eβT ) ≤ b̂p∗0 < 0

ζ1(eβT − 1) ≤ b̂(1− p∗1) < 0,

because b̂ < 0. Therefore ζ0 > 0 and ζ1 < 0, contradicting (A.21).

Proof of Corollary 3. Utility prior to the announcement must equal its expectation

just after the announcement (see Equation A.19). That is:

lim
τ↑T

IA(p∗χ, τ ;χ) = p∗χIA(1, 0; 1) + (1− p∗χ)IA(0, 0; 0), (A.24)

for χ = 0, 1, where p∗χ is the probability of a negative announcement for the previous

announcement being positive (χ = 0) or negative (χ = 1). It follows from Lemma A.2

and the form of IA that

IA(1, 0; 1) < IA(0, 0; 0),

namely, utility is lower for a negative announcement than for a positive one. Utility

just before the announcement is a weighted average of the utility for the announcement
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outcomes as (A.24) shows. Thus it must lie strictly between the two. It follows that

utility falls when the announcement is negative and rises when it is positive.

Lemma A.3. The state-price density πt takes the form

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ, (A.25)

with I(pt, λ2t, τ ;χt) equal to (A.3).

Proof. Duffie and Skiadas (1994) show that

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (A.26)

The form of f implies

∂

∂C
f(Ct, Vt) = β(1− γ)

Vt
Ct

= β(1− γ)(1− γ)−1C−γt I(pt, λ2t, τ ;χt)
1−γ

= βC−γt I(pt, λ2t, τ ;χt)
1−γ.

(A.27)

Combining (A.26) and (A.27) implies

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ.

Proof of Theorem 4. We compute the instantaneous change in πt over an infinites-

imal interval containing an announcement. With probability 1, a disaster does not

coincide with an announcement. Therefore, it follows from (A.25) that

πt
πt−

= lim
τ↑T

IA(pt, 0;χt)

IA(pt− , τ ;χt−)
= lim

τ↑T

IA(χt, 0;χt)

IA(p∗χt− , τ ;χt−)
, t ∈ A. (A.28)

The second equality follows from the definition of p∗ and of χt. We substitute in for
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IA using (A.17) to find

lim
τ↑T

IA(χt, 0;χt)

IA(p∗χt− , τ ;χt−)
=

e(1−γ)(ζχt+b̂χt)

e
(1−γ)(ζχ

t−
eβT+b̂p∗χ

t−
)
. (A.29)

This shows that the change in the state-price density equals the right hand side of (23).

Finally (23) follows from the definition of M as the change in the state-price density

around announcements.

Proof of Corollary 5. The result follows directly from Lemma A.2 and the fact that

the denominator of (23) is a weighted average of two terms, with weights strictly

between 0 and 1, as given in (18).

Proof of Theorem 6. We show the result for γ > 1. The proof for γ < 1 is similar

and easier. Recall that M(χ, χ−) is the announcement SDF for previously announced

probability χ− and current announcement χ. It follows from (23) that

M(1, 1)

M(0, 1)
=
M(1, 0)

M(0, 0)
. (A.30)

Define

x =
M(0, 0)

M(1, 0)−M(0, 0)
=

M(0, 1)

M(1, 1)−M(0, 1)
.

It follows from

p∗χM(1, χ) + (1− p∗χ)M(0, χ) = 1

and (A.30) that
M(1, 0)

M(1, 1)
=
p∗1 + x

p∗0 + x
<
p∗1
p∗0
.

The second inequality follows from the fact that
p∗1+x

p∗0+x
is decreasing in x for p∗1 > p∗0.

Therefore,

p̃∗1 = p∗1M(1, 1) > p∗0M(1, 0) = p̃∗0.

Lemma A.4. Over non-announcement intervals (t ∈ N ), the state-price density πt
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follows the stochastic process

dπt
πt−

= −(rft +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt − 1

]
)dt

− γσdBCt + (1− γ)b̂λσλ
√
λ2tdBλt + (eγZt − 1)dNt, (A.31)

where b̂λ is given by (A.5) and where rft is the instantaneous riskless interest rate:

rft = β + µ− γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt(e−Zt − 1)

]
. (A.32)

Proof. Consider t ∈ N . Ito’s Lemma and Lemma A.3 imply

dπt
πt−

= µπt dt+ σπt dBt +
πt − πt−
πt−

dNt, (A.33)

for a scalar process µπt and a 1 × 2 vector process σπt.
37 It follows from (A.25) and

Ito’s Lemma that

σπt = [−γσ, (1− γ)b̂λσλ
√
λ2t], (A.34)

and that, for ti = inf{t|Nt = i},

πti − πt−i
πt−i

= eγZti − 1. (A.35)

It follows from no-arbitrage that

Et−
[
dπt
πt−

]
= −rft−dt.

It follows from (A.33) and (A.35) that

Et−
[
dπt
πt−

]
= µπt +

(
λ̄1(pt) + λ2t

)
Eν [eγZt − 1],

implying

µπt = −rft −
(
λ̄1(pt) + λ2t

)
Eν [eγZt − 1], (A.36)

where rft = rft− because µπt, and λ2t are continuous.

37Lemma A.3 also implies the continuity of µπt and σπt on non-announcement dates. This allows
us to use t rather than t− to subscript these variables in (A.33) and elsewhere.
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Finally, we show (A.32). Note that

∂

∂V
f(Ct, Vt) =

∂

∂V

(
β(1− γ)Vt logCt − βVt log[(1− γ)Vt]

)
= β(1− γ) logCt − β log[(1− γ)Vt]− β

= −β
(

1 + (1− γ)[â(τ ;χt) + b̂p+ b̂λλ2t]
)
.

(A.37)

It follows from (A.25) and Ito’s Lemma that

µπt =

(
−β
[
1 + (1− γ)â

(
τ ;χt

)
+ (1− γ)b̂pt + (1− γ)b̂λλ2t

]
+ (1− γ)

∂â

∂τ

)
− γµ+ (1− γ)b̂ [−ptφH→L + (1− pt)φL→H ]− (1− γ)b̂λκ(λ2t − λ̄2)

+
1

2
γ(γ + 1)σ2 +

1

2
(1− γ)2b̂2

λσ
2
λλ2t.

Collecting terms and substituting in for â
(
τ ;χt

)
, b̂, and b̂λ using (A.4–A.6) implies

µπt = −
(
β + µ− γσ2 +

(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−1)Zt − 1

])
. (A.38)

The result then follows from (A.36).

B Equity prices

Lemma B.1. The price of an equity strip of maturity s satisfies:

Ψ(Dt, pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

]
, (B.1)

where

Ψ(Dt, pt, λ2t, τ, s;χt) = DtΦ(pt, λ2t, τ, s;χt), (B.2)

and

Φ(pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

Dt

]
. (B.3)

Proof. The validity of (B.1) follows from the Markov property for πt and Dt. That

(B.1) represents the price of an equity strip follows from the absence of arbitrage.
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Finally (B.2) again follows from the Markov property, and (B.3) is by definition, given

(26).

Lemma B.2. Let Ψt = Ψ(Dt, pt, λ2t, τ, t̄− t;χt) be the time-t price of the equity strip

maturing at date t̄. Then, for t ∈ N , Ψt satisfies

dΨt

Ψt−
= µΨtdt+ σΨtdBt + (e−ϕZt − 1)dNt, (B.4)

with scalar µΨt and (row) vector σΨt satisfying

µΨt + µπt + σΨtσ
>
πt +

(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−ϕ)Zt − 1

]
= 0, (B.5)

with µπ as in (A.38) and σπ as in (A.34).

Proof. It follows from (B.2) and (25) that

1

Ψ
(Ψ(De−ϕZ , ·)−Ψ(D, ·)) = e−ϕZt − 1. (B.6)

Then (B.4) follows from Ito’s Lemma.

Equation B.1 implies that πtΨt is a martingale. Consider t ∈ N and chose ∆t

sufficiently small so that the interval [t, t+ ∆t] does not contain an announcement. It

follows from (B.4) that

Ψt+∆tπt+∆t = Ψtπt+

∫ t+∆t

t

πuΨu(µΨu+µπu+σΨuσ
>
πu)du+

∫ t+∆t

t

πuΨu(σΨu+σπu)dBu

+
∑

t<ui≤t+∆t

(πuiΨui − πui−Ψui−
), (B.7)
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where ui = inf{u : Nu = i}. Rewriting, we have:

Ψt+∆tπt+∆t = Ψtπt+

∫ t+∆t

t

πuΨu

(
µΨu + µπu + σΨuσ

>
πu +

(
λ̄1(pu) + λ2u

)
Eν
[
e(γ−ϕ)Z − 1

])
du︸ ︷︷ ︸

(1)

+

∫ t+∆t

t

πuΨu(σΨu + σπu)dBu︸ ︷︷ ︸
(2)

+
∑

t<ui≤t+∆t

(πuiΨui − πui−Ψui−
)−

∫ t+∆t

t

πuΨu

(
λ̄1(pu) + λ2u

)
Eν
[
e(γ−ϕ)Z − 1

]
du︸ ︷︷ ︸

(3)

.

(B.8)

Since Ψtπt is a martingale, the time-t expectation of Ψt+∆tπt+∆t must be Ψtπt. In (B.8),

(2) and (3) equal zero in expectation, so that the integrand in (1) must be zero.38 We

obtain (B.5).

Corollary B.3. The price-dividend ratio of an equity strip with maturity s satisfies

(B.2) with

Φ(pt, λ2t, τ, s;χt) = exp
{
a0(s) + a

(
τ + s;χt

)
+ b(s)pt + bλ(s)λ2t

}
, (B.9)

for some function a : [0, T )× {0, 1} → R, where

b(s) =
(λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
φH→L + φL→H

(
1− e−(φH→L+φL→H)s

)
, (B.10)

where bλ(s) solves

dbλ
ds

=
1

2
σ2
λbλ(s)

2 +
(

(1− γ)b̂λσ
2
λ − κ

)
bλ(s) + Eν

[
eγZt(e−ϕZt − e−Zt)

]
, (B.11)

38 Note that πtΨt follows a jump diffusion with intensity λ̄1(pt) + λ2t and jump size

πui
Ψui
− πu−

i
Ψu−

i

πu−
i

Ψu−
i

= e(γ−ϕ)Zui − 1.

It follows that the term (3) in (B.8) equals zero.
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with boundary condition bλ(0) = 0, and where

a0(s) =

∫ s

0

(
−β + µD − µ+ λLEν

[
eγZt(e−ϕZt − e−Zt)

]
+ κλ̄2bλ(u) + φL→Hb(u)

)
du.

Proof. No-arbitrage applied to the zero-maturity claim implies the following boundary

condition:

Ψ(D, p, λ2, τ, 0;χ) = D.

Thus

a0(0) = b(0) = bλ(0) = 0. (B.12)

Define µΨt and σΨt as in Lemma B.2. Applying Ito’s Lemma to the conjecture (B.2)

and (B.9) implies

µΨt = µD −
da0

ds
+ b(s)φL→H + bλ(s)κλ̄2

+

(
−db
ds
− b(s)(φH→L + φL→H)

)
pt +

(
−dbλ
ds

+
1

2
bλ(s)

2σ2
λ − κbλ(s)

)
λ2t, (B.13)

and

σΨt =
[
σ, bλ(s)σλ

√
λ2t

]
. (B.14)

Substituting (B.13), (B.14), (A.34), and (A.38) into (B.5) and matching coefficients

implies

−db
ds
− (φH→L + φL→H)b(s) + (λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
= 0 (B.15)

−dbλ
ds

+
1

2
σ2
λbλ(s)

2 +
(

(1− γ)b̂λσ
2
λ − κ

)
bλ(s) + Eν

(
eγZt(e−ϕZt − e−Zt)

]
= 0, (B.16)

and

− da0

ds
= β + µ− µD + λLEν

[
eγZt(e−ϕZt − e−Zt)

]
− κλ̄2bλ(s)− φL→Hb(s). (B.17)

Then (B.10) uniquely solves (B.15) together with the boundary condition (B.12).

Proof of Theorem 7. Corollary B.3 implies that there exists a decomposition (27),
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where ΦA : [0, 1]× [0, T )× R+ × {0, 1} → R+ takes the form

ΦA(pt, τ, s;χt) = exp{a(τ + s;χt) + b(s)pt},

with b(s) in (B.10), and with a : R+ × {0, 1} → R. Note that

Ψ(Dt, pt, λ2t, τ, s;χt) = DtΦA(pt, τ, s;χt)ΦN (λ2). (B.18)

We now show (30). We apply (B.1) over an interval containing an announcement:39

lim
τ↑T

Ψ(Dt− , pt− , λ2t, τ, s;χt−) = Et−
[
πt
πt−

Ψ(Dt, pt, λ2t, 0, s;χt)

]
. (B.19)

for t ∈ A. Almost surely, Dt does not change over a sufficiently short announcement

interval. We substitute (B.18) into (B.19) to obtain

lim
τ↑T

ΦA(pt− , τ, s;χt−) = Et−
[
πt
πt−

ΦA(pt, 0, s;χt)

]
, t ∈ A.

We use Theorem 4 to substitute in for the change in the state-price density:

lim
τ↑T

ΦA(p∗χt− , τ, s;χt
−) = Et− [M(χt, χt−)ΦA(χt, 0, s;χt)] , (B.20)

where we have also applied the definition of p∗ and χt. Substituting in for ΦA using

(28) yields

e
a(τ+s;χt− )+b(s)p∗χ

t− = Et−
[
M(χt, χt−)ea(s;χt)+b(s)χt

]
.

Then (30) follows from the definition of p̃∗.

We now show that (30) uniquely characterizes a. In the process, we provide a

recursive algorithm for computing g. Define u = s+ τ . For u < T , a(u, ·) = 0 uniquely

solves (30). Let

n =
⌊ u
T

⌋
equal the number of announcements prior to maturity. We prove uniqueness by induc-

39Note that

Ψ(Dt, pt, λ2t, τ, s;χt) = Et
[
πu
πt

Ψ(Du, pu, λ2u, τ + t− u, s− (t− u);χu)

]
for u ≥ t.
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tion on n. Assume g is unique for u ∈ [(n− 1)T, nT ). Note that (30) defines a(u, ·) in

terms of a(u−T, χ), χ = 0, 1. Consider u ∈ [n, (n+1)T ). Then u−T ∈ [(n−1)T, nT ). It

follows that the right hand side of (30) is unique. Therefore, for each u ∈ [nT, (n+1)T ),

(30), applied at χ = 0, 1, gives the value of a(u, χ) on the left hand side. Thus a(u, ·)
is unique for u ∈ [n, (n+ 1)T ), and hence for all u > 0.

Proof of Corollary 8. It follows from Theorem 7 that the equity strip price just

prior to an announcement is a weighted average of its possible values just after the

announcement, with the weights given by the risk-neutral probabilities (which are

strictly between zero and one). Thus the value prior to the announcement must lie

between the post-announcement values. It therefore suffices to show that the equity

strip price is higher when the announcement is positive as compared to when it is

negative. That is, we need to show:

a(s; 0) > a(s; 1) + b(s) (B.21)

for s > 0.

When s < T , (B.21) follows from a(s; 1) = a(s; 0) = 0 and b(s) < 0 (recall that we

assume ϕ > 1). We now show (B.21) for general s ≥ T using induction on the number

of announcements prior to maturity:

n =
⌊ u
T

⌋
.

Assume for s ∈ [(n− 1)T, nT ), a weaker condition holds:

a(s; 0) ≥ a(s; 1) + b(s).

Consider s ∈ [nT, (n+ 1)T ). It is helpful to write (30) out more explicitly:

ea(s;0)+b(s−T )p∗0 = p̃∗0e
a(s−T ;1)+bϕp(s−T ) + (1− p̃∗0)ea(s−T ;0) (B.22)

ea(s;1)+b(s−T )p∗1 = p̃∗1e
a(s−T ;1)+bϕp(s−T ) + (1− p̃∗1)ea(s−T ;0). (B.23)

By Theorem 6, p̃∗1 > p̃∗0. That is, under the risk-neutral measure, when the previous

announcement was negative, the probability that the high-risk state will prevail in the

next period is higher. However, by the induction step, we know that the equity price,

56

Electronic copy available at: https://ssrn.com/abstract=3044805



in the next period, is (weakly) lower, if the high-risk state occurs. That is,

a(s− T ; 0) ≥ a(s− T ; 1) + b(s− T ).

Because the right hand side of (B.22) puts greater weight on the state with higher

prices, as compared with (B.23), the left hand side of (B.22) is bigger than the left

hand side of (B.23). That is,

a(s; 0) + b(s− T )p∗0 ≥ a(s; 1) + b(s− T )p∗1.

Finally,

a(s; 0) ≥ a(s; 0) + b(s− T )p∗0

≥ a(s; 1) + b(s− T )p∗1

≥ a(s; 1) + b(s− T )

> a(s; 1) + b(s).

The last inequality follows because b is a strictly decreasing function. Thus (B.21)

holds for s ∈ [nT, (n+ 1)T ), and therefore for all s > 0, completing the proof.

Proof of Corollary 9. It follows from the definition of the announcement return (31),

and the instantaneous Euler equation for the price around announcements (B.20) that

Et− [M(χt, χt−)rA(χt, χt− , s)] = 1. (B.24)

Moreover, it follows from (A.19), and (A.28) that

Et− [M(χt, χt−)] = 1 (B.25)

Then, (35) follows from (B.24), (B.25), and algebraic manipulation.

Statement 1 of the corollary follows from the fact that, under the stated conditions,

the announcement return and the announcement SDF are in opposite positions relative

to 1 (see Corollaries 5 and 8). Statement 2 follows from the fact that, under the stated

conditions, they are in the same position relative to 1. Statement 3 follows from the

fact that, under the stated conditions, either M or rA equal 1.
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C The VIX

Lemma C.1 (Characterization of the VIX). Expected quadratic variation for an equity

strip of fixed maturity s equals

vVIX2
t = vσ2 + ϕ2EQt

[∫ t+v

t

Z2
udNu

]
+ EQt

[
bλ(s)

2σ2
λ

∫ t+v

t

λ2uds

]
+

∑
{u:t<u≤t+v,u mod T=0}

EQt
[
(a(s;χu) + b(s)pu − a(T + s;χu−)− b(s)pu−)2] (C.1)

Proof. By definition,

vVIX2
t ≡ EQt

∫ t+v

t

d[log Ψ, log Ψ]u (C.2)

Apply Lemma B.1 and Corollary B.3 to obtain

log Ψ(D, p, λ2, τ, s;χ) = logDt + a0(s) + a
(
τ + s;χt

)
+ b(s)pt + bλ(s)λ2t.

It follows from the process for dividends (25) and the definition of the Poisson process

Nt that

EQt
∫ t+v

t

d[logD, logD]u = vσ2 + ϕ2EQt
[∫ t+v

t

Z2
udNu.

]
,

The process for λ2t (13) implies that

EQt
∫ t+v

t

d[λ2, λ2]u = σ2
λE

Q
t

∫ t+v

t

λ2uds.

Finally, a
(
τ + s;χt

)
+ b(s)pt is deterministic except on days u with u mod T = 0. On

those days, which have τ = T just prior to the announcement and τ = 0 just after,

d[a
(
(u mod T ) + s;χu

)
+ b(u)pu, a

(
(u mod T ) + s;χu

)
+ b(u)pu] =

EQt
[
(a(s;χu) + b(s)pu − a(T + s;χu−)− b(s)pu−)2]

Proof of Theorem 13. Consider an interval ∆t. It follows the definition (C.2) from
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the law of iterated expectations that

EQt
[
(v −∆t)VIX2

t+∆t − vVIX2
t

]
= −EQt

∫ t+∆t

t

d[log Ψ, log Ψ]u. (C.3)

Now assume t is an announcement date, u is a date prior to the announcement, and t̄

is the date that the VIX matures. Apply (C.3) to the interval t− u:

EQu
[
(t̄− t)VIX2

t − (t̄− u)VIX2
u

]
= −EQu

∫ t

u

d[log Ψ, log Ψ]w.

Note that

lim
u↑t

EQu
∫ t

u

d[logD, logD]w = 0

lim
u↑t

EQt
∫ t

u

d[λ2, λ2]w = 0

It follows from Lemma C.1 that:

lim
u↑t

EQu
[
(t̄− t)VIX2

t − (t̄− u)VIX2
u

]
= −EQt−

[
(a(s;χt) + b(s)pt − a(T + s;χt−)− b(s)pt−)2]

because the interval (u, t̄] contains one more announcement relative to (t, t̄]. The result

follows from limu↑t
t−u
t̄−tVIXu = 0.

D Nominal bond prices

Define the vector Brownian motion

dB$
t = [dB>t , dB

Π
t , dBqt]

>,

with dBt defined in (A.1).

We first show the validity of the nominal stochastic discount factor.

Lemma D.1. Let Πt denote a process for the price level, and let Φ$
t denote a time-t

nominal price of a non-dividend paying asset. Then absence of arbitrage implies that
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there exists a nominal state-price density π$
t = πt/Πt, such that

π$
tΦ

$
t = Et

[
π$
uΦ

$
u

]
, u ≥ t. (D.1)

Proof. The time-t real price of the asset equals Φ$
t/Πt. Absence of arbitrage implies

that

πt
Φ$
t

Πt

= Et
[
πu

Φ$
u

Πu

]
, u ≥ t. (D.2)

Define π$
t = πt/Πt, then (D.2) is equivalent to (D.1), implying that π$

t is the nominal

stochastic discount factor process.

Corollary D.2. For t ∈ N , the nominal state-price density π$
t evolves according to

dπ$
t

π$
t−

= −(r$
ft +

(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−1)Zt − 1

]
)dt

− γσdBCt + (1− γ)b̂λσλ
√
λ2tdBλt − σΠdB

Π
t

+ (e(γ−1)Zt − 1)dNt, (D.3)

where r$
ft, the nominal riskless rate, equals

r$
ft = rft + qt − σ2

Π − (λ̄1t + λ2t)Eν
[
e−γZt(eZt − 1)

]
, (D.4)

for rft the real riskless rate in (A.32), and where b̂λ equals (A.5).40

Proof. Applying Itô’s Lemma to

π$
t =

πt
Πt

(D.5)

implies that there exists a (scalar) process µ$
πt and (row vector) process σ$

πt such that

dπ$
t

π$
t−

= µ$
πt dt+ σ$

πt dB
$
t +

π$
t − π$

t−

π$
t−

dNt. (D.6)

Given (A.34) and (38), it follows that

σ$
πt = [−γσ, (1− γ)b̂λσλ

√
λ2t,−σΠ, 0]. (D.7)

40The nominal riskless interest rate is the nominal return on the asset that is instantaneously riskfree
when payoffs are expressed in nominal terms.
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Furthermore, (A.35) and (38) together imply that, for ti = inf{t|Nt = i},

π$
ti
− π$

t−i

π$
t−i

= e(γ−1)Zti − 1. (D.8)

Finally, the drift of π$
t , together with (D.4), arise from (A.36) and the drift of Πt given

in (38). Substituting in for rft using (A.32) implies

µ$
πt = −β − µ+ γσ2 − qt + σ2

Π −
(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−1)Zt − 1

]
. (D.9)

Lemma D.3. Define the function

Φ$(pt, qt, λ2t, τ, s;χt) = Et
[
π$
t+s

π$
t

]
. (D.10)

Then Φ$ represents the nominal price of a nominal bond with maturity s.

Proof. The validity of (D.10) follows from the Markov property of π$
t . The fact that

(D.10) equals the nominal bond price follows from the absense of arbitrage.

Lemma D.4. Define Φ$
t = Φ$(pt, qt, λ2t, τ, t̄ − t;χt), so that Φ$

t is the time-t nominal

price of the nominal bond maturing at date t̄. Then, for t ∈ N , Φ$
t satisfies

dΦ$
t

Φ$
t−

= µ$
Pt dt+ σ$

Pt dB
$
t , (D.11)

with scalar µ$
Pt and (row) vector σ$

Pt satisfying

µ$
πt + µ$

Pt + σ$
πt(σ

$
Pt)
> + (λ̄1(pt) + λ2t)Eν

[
e(γ−1)Zt − 1

]
= 0, (D.12)

with µ$
πt as in (D.9) and σ$

πt as in (D.7)

Proof. Equation D.11 follows from Ito’s Lemma. Equation D.10 implies that π$
tΦ

$
t is

a martingale. Moreover, it follows from (D.3) that for ti = inf{t|Nt = i},

π$
ti

Φ$
ti
− π$

t−i
Φ$
t−i

π$
t−i

Φ$
t−i

=
π$
ti
− π$

t−i

π$
t−i

= e(γ−1)Zti − 1.
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The remainder of the proof follows that of Lemma B.2.

Corollary D.5. The time-t nominal price of a nominal zero-coupon bond with maturity

s equals

Φ$
(
pt, qt, τ, s;χt

)
= exp

{
a$

0(s) + a$(τ ;χ) + b$(s)pt + b$
q(s)qt

}
, (D.13)

for some function a$ : [0, T )× {0, 1} → R, where

b$
q(s) =

1

κq
(e−κqs − 1), (D.14)

b$(s) solves
db$

ds
= −(φH→L + φL→H)b$(s) + b$

q(s)κq
(
q̄H − q̄L

)
(D.15)

with boundary condition b$(0) = 0, and where

a$
0(s) =

∫ s

0

(−β − µ+ γσ2 + σ2
Π + b$

q(u)κq q̄
L + b$(u)φL→H +

1

2
b$
q(u)

2
σ2
q )du. (D.16)

Proof. No-arbitrage applied to the zero-maturity claim implies the following boundary

condition

a$
0(0) = b$(0) = b$

q(0) = 0. (D.17)

Define µ$
Pt and σ$

Pt as in Lemma D.4. Applying Ito’s Lemma to the conjecture (D.13)

implies

µ$
Pt = −da

$
0

ds
+ b$(s)φL→H + b$

q(s)κq q̄
L

+

(
−db

$

ds
− (φH→L + φL→H)b$

p(s)

)
pt +

(
−
db$
q

ds
− κqb$

q(s)

)
qt, (D.18)

and

σ$
Pt =

[
σ, 0, 0, b$

q(s)σq
]
. (D.19)

Substituting (D.18), (D.19), (D.9) and (D.7) into (D.12) and matching coefficients
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implies

0 = −da
$
0

ds
+ b$(s)φL→H + b$

q(s)κq q̄
L +

1

2
b$
q(s)

2
σ2
q − β − µ+ γσ2 + σ2

Π (D.20)

0 = −db
$

ds
− (φH→L + φL→H)b$(s) + b$

q(s)κq
(
q̄H − q̄L

)
(D.21)

0 = −
db$
q

ds
− b$

q(s)κq − 1. (D.22)

Then (D.14) uniquely solves (D.22) together with the boundary condition (D.17).

Moreover, (D.20) and (D.17) ensure that that a$
0 takes the form (D.16).

Proof of Theorem 14. Given the foregoing results, this proof follows closely along

the lines of that of Theorem 7.

Lemma D.6. b$(s) < 0, and db$/ds < 0, for s > 0.

Proof. Substituting the boundary conditions (D.17) into (D.21) yields

db$

ds

∣∣∣
s=0

= 0. (D.23)

In addition, (D.14) implies

κq(q̄
H − q̄L)b$

q(s) < 0, s > 0. (D.24)

It follows that there is a sufficiently small but positive s1, such that

b$(s1) < 0.

Suppose by contradiction that there exists s2 > 0, such that b$(s2) ≥ 0. Then there

must exist s∗ ∈ [s1, s2], such that b$(s∗) = 0 (because of continuity).

Consider the function b$
∗(s) such that b$

∗(s
∗) = 0, and

db$
∗

ds
= −(φH→L + φL→H)b$

∗(s) + b$
q(s
∗)κq

(
q̄H − q̄L

)
Note that this function is strictly negative for s > s∗, and moreover, b$(s) < b$

∗(s) for

s > s∗. Therefore, we cannot have b$(s2) > 0. Given that b$(s) ≤ 0, it follows that

db$/ds > 0, and from there, it follows that b$(s) < 0.
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Proof of Corollary 15. Using (D.13) and the almost-sure continuity of all variables

around announcements, with the exception of pt and χt, it suffices to show that nominal

zero-coupon bond price is higher when the announcement is positive as compared to

when it is negative. That is, we need to show:

a$(s; 0) > a$(s; 1) + b$(s) (D.25)

for s > 0.

When s < T , (D.25) follows from a$(s; 0) = a$(s; 1) = 0 and b$(s) < 0 from

Lemma D.6.

We now show (D.25) holds for s ≥ T . We prove this by using induction on the

number of announcements prior to maturity:

n =
⌊ u
T

⌋
.

Assume for s ∈ [(n− 1)T, nT ), n = 1, 2, 3, . . . , the following weaker condition holds:

a$(s; 0) ≥ a$(s; 1) + b$(s). (D.26)

Equation 45 suggests

ea
$(s;0)+b$(s−T )p∗0 = p̃∗0e

a$(s−T ;1)+b$(s−T ) + (1− p̃∗0)ea
$(s−T ;0)

ea
$(s;1)+b$(s−T )p∗1 = p̃∗1e

a$(s−T ;1)+b$(s−T ) + (1− p̃∗1)ea
$(s−T ;0).

Theorem 6 shows that p̃∗1 > p̃∗0. However, by the induction step, we know that the

equity price, in the next period, is (weakly) lower, if the high-risk state occurs. That

is,

a$(s− T ; 0) ≥ a$(s− T ; 1) + b$(s− T ).

Therefore, it follows that

a$(s; 0) + b$(s− T )p∗0 ≥ a$(s; 1) + b$(s− T )p∗1.
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Finally,

a$(s; 0) ≥ a$(s; 0) + b$(s− T )p∗0

≥ a$(s; 1) + b$(s− T )p∗1

≥ a$(s; 1) + b$(s− T )

> a$(s; 1) + b$(s).

The last inequality follows because b$(s) is strictly decreasing from Lemma D.6. Thus

(D.25) holds for s ∈ [nT, (n+1)T ], and therefore for all s > 0, completing the proof.
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Figure 1: Portfolio excess returns against CAPM betas
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Notes: The figure shows average excess returns on announcement days (diamonds)
and non-announcement days (squares) on beta-sorted portfolios in daily data from
1961.01-2016.09. On the horizontal axis is CAPM beta, estimated using the full
sample. Also shown are estimated regression lines for announcement day returns
against beta (solid red) and non-announcement day returns against beta (dashed red).
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Figure 2: Unconditional betas and returns in a disaster
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Notes: We extend our data to March 2020 and construct the beta-sorted portfolios
with data from 1961.01 to 2020.03. We then compute the realized excess returns
and CAPM beta of the beta-sorted portfolios of the month March 2020. The figure
shows the realized excess returns and the unconditional CAPM beta of the beta-sorted
portfolios. The red dashed line is the fitted line for the regression of March 2020
realized excess return against CAPM beta.
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Figure 3: Portfolio excess returns against CAPM betas on announcement and non-
announcement days
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Notes: The figure shows average excess returns on announcement days (diamonds)
and non-announcement days (squares) on beta-sorted portfolios in daily data from
1961.01-2016.09 as a function of the CAPM beta. Also shown are estimated regression
lines for announcement day returns against beta (solid red) and non-announcement
day returns against beta (dashed red). We simulate 500 samples of artificial data
from the model, each containing a cross-section of firms. The blue and grey dots show
average announcement day and non-announcement day returns for each sample as a
function of beta, respectively.
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Figure 4: Boxplots of simulated portfolio average excess returns on announcement and
non-announcement days
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Notes: We compute average excess returns on announcement and non-announcement
days for a cross-section of assets in data simulated from the model. The red line shows
the median for each portfolio across samples; the box corresponds to the interquartile
range (IQR), and the whiskers correspond to the highest and lowest data value within
1.5 × IQR of the highest and lowest quartile. We plot returns against the median
CAPM beta across samples for each portfolio. The red solid and dashed lines are
the empirical regression lines of portfolio mean excess returns against market beta on
announcement and non-announcement days, respectively.
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Figure 5: Annualized implied volatilities at announcement day closes and prior to
announcements

Panel A: Implied volatilities
Data Model
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Panel B: Change in implied volatilities on announcement days
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Notes: Panel A shows the average implied volatility surfaces computed from put
options on the S&P 500 index against the moneyness of the options. The option’s
moneyness is defined as the ratio of the strike price and the underlying asset’s
forward price. The blue line stands for the average implied volatilities at close on the
announcement days, while the red line is the average implied volatilities at the close
prior to announcements. The left panel is the empirical results, and the right panel
shows the model implied moments generated from simulation. Panel B shows the
difference between the implied volatilities at the announcement day close and the day
prior. Implied volatilities fall for all levels of moneyness following the announcement,
but the decline is most pronounced for out-of-the-money options. The sample period
is 1996.01 to 2016.12.
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Figure 6: Simulated volatility of dividend growth

Panel A: Baseline model
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Notes: In Panel A we show a histogram of dividend volatility in repeated samples from
the baseline model. Panel B shows dividend volatility in a model in which normal-times
volatility arises from realized cash flows (Section 5). The red line denotes the data.
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Table 1: Statistics on excess returns of 10 beta-sorted portfolios

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.53 53.1 0.20 3.32 52.8 0.18 1.30 53.2 0.20
2 1.91 59.2 0.44 6.64 58.8 0.42 1.30 59.2 0.44
3 2.64 69.2 0.57 7.31 70.8 0.57 2.04 69.0 0.58
4 2.63 77.4 0.69 8.00 77.1 0.67 1.94 77.4 0.69
5 2.53 87.9 0.81 7.56 87.6 0.78 1.88 87.9 0.81
6 2.52 96.2 0.90 8.54 96.7 0.88 1.75 96.1 0.91
7 2.56 105.4 1.00 8.58 107.5 0.99 1.79 105.1 1.00
8 2.34 118.9 1.14 10.31 121.8 1.13 1.32 118.5 1.14
9 2.36 136.5 1.31 12.88 139.1 1.30 1.01 136.2 1.31
10 2.25 176.2 1.67 17.86 176.9 1.63 0.25 176.0 1.67

Notes: Sample statistics for excess returns of ten beta-sorted portfolios in daily data
from 1961.01–2016.09. We show the sample mean excess returns (E[RXk]), and CAPM
beta (βk), where k indexes the beta sorted portfolio. Column 1-3 report estimates from
the full sample. Column 4-6 and column 7-9 use returns on announcement and non-
announcement days, respectively. Excess returns and volatilities are in units of basis
points per day.
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Table 2: Statistics on excess bond returns

Maturity Unconditional Announcement day Non-announcement day

k E[RXk] βk E[RXk] βk E[RXk] βk

1 0.363 0.000 −0.043 0.007 0.415 −0.001
5 0.855 −0.007 3.211 0.029 0.549 −0.013
10 0.779 −0.010 3.882 0.051 0.376 −0.019
20 1.122 −0.021 4.988 0.060 0.620 −0.033
30 0.986 −0.045 5.219 0.046 0.437 −0.058

Notes: Sample statistics for excess returns on Treasury bonds in daily data from
1961.01–2016.09. We show the sample mean excess returns (E[RXk]) and CAPM beta
(βk). The excess returns are computed using as the difference between CRSP nominal
bond returns and the CRSP riskfree rates. Returns and betas are computed using the
full sample (first two columns), announcement days (second two columns), and non-
announcement days (last two columns). Maturity is in units of years; returns are in
units of basis points per day.
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Table 3: Parameter values for the baseline model

Panel A: Basic parameters
Expected normal-times growth in consumption µ, (%) 2.52
Expected normal-times growth in dividend µD, (%) 6.02
Volatility of consumption growth σ(%) 2.00
Rate of time preference β 0.012
Relative risk aversion γ 3.00
Average leverage φ 3.00

Panel B: The process for λ1t

Probability of disaster in the low-risk state λL 0
Probability of disaster in the high-risk state λH 0.293
Probability of switching to high-risk state φL→H 0.02
Probability of switching to low-risk state φH→L 0.40

Panel C: The process for λ2t

Average probability of disaster λ̄2 0.021
Mean reversion in disaster probability κ 0.08
Volatility for disaster probability σλ 0.067

Panel D: Inflation
Expected inflation in the low-risk state q̄L 0.023
Expected inflation in the high-risk state q̄L 0.113
Mean reversion in expected inflation κq 0.09
Volatility for expected inflation σq 0.013
Volatility for realized inflation σP 0.008

Notes: Parameter values used in the simulation of the benchmark
model. Parameters are expressed in annual terms.
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Table 4: Annual moments for aggregate market and riskfree rate

Panel A: Summary statistics
Simulation quantiles

Data 0.05 0.5 0.95
E[Rft] 0.94 −4.37 0.47 2.64
σ[Rft] 2.26 0.94 4.57 9.91
E[Rmkt

t+1 −Rft] 6.73 4.39 8.32 14.21
σ[Rmkt

t+1 −Rft] 17.50 8.72 18.79 29.31
Sharpe Ratio 0.38 0.27 0.46 0.82
Skewness −0.67 −2.46 0.81 3.95
exp(E[pd]) 36.38 29.34 38.52 62.95
σ(pd) 0.40 0.11 0.25 0.51
AR1(pd) 0.91 0.52 0.82 0.96

Panel B: predictive regressions: 1-year ahead excess returns
Simulation quantiles

Data 0.05 0.5 0.95
βpd 0.07 −0.18 0.20 0.65
R2 0.03 0.00 0.10 0.47

Panel C: predictive regressions: 5-year ahead excess returns
Simulation quantiles

Data 0.05 0.5 0.95
βpd 0.19 −0.80 0.69 1.57
R2 0.06 0.01 0.29 0.76

Notes: The table reports statistics for the excess market return, the riskfree rate, and
the price-dividend ratio in simulated and historical data from 1961–2009. Historical
data are annual. Model-simulated data are daily, aggregated to an annual frequency.
Panel A reports the mean (E[Rmkt

t+1 −Rft]), the volatility, (σ(Rmkt
t+1 −Rft)), the Sharpe

ratio (mean divided by volatility), and the skewness, where Rmkt
t+1 − Rft is the market

return in excess of the riskfree rate. Similarly, E[Rft] is the mean riskfree rate and
σ(Rft) is its volatility. We also report the exponentiated mean of the log annual price-
dividend ratio pd, and its volatility and first-order autocorrelation. In the data, the
market is the CRSP index. The moments of riskfree rate are computed using the
realized real 30-day Treasury bill return, (i.e. the return on a 30-day Treasury bill
minus realized inflation). Market excess returns are computed using the difference
between the market return and the Treasury bill return. Panel B reports moments
from predictive regressions. Specifically, we run the regression logRmkt

t:t+k − rft = a +
βpd×pdt+εt+1, where Rmkt

t:t+k is the market return from time t to t+k, rft = logRft and
pdt is defined as the log price-dividend at time t. We run this regression for horizons
of 1 and 5 years. For each simulated statistic, we report the median, the 5th, and the
95th percentile value. Units are in percentage per annum.
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Table 5: The equity premium and volatility, riskfree rate and VIX on announcement
and non-announcement days

Statistic Data Simulation Median 90 % CI

Ea[RXmkt
t ] 10.79 11.45 [3.38, 17.87]

σa[RX
mkt
t ] 101.2 247.9 [49.7, 449.1]

En[RXmkt
t ] 1.16 2.55 [0.97, 5.09]

σn[RXmkt
t ] 97.8 81.6 [47.4, 124.6]

Ea[RXmkt
t ]− En[RXmkt

t ] 9.63 9.06 [−0.17, 15.37]
σa[RX

mkt
t ]− σn[RXmkt

t ] 3.4 154.7 [−31.1, 377.1]

E[Rft] 0.42 0.13 [−2.00, 1.08]
σ[Rft] 1.14 2.4 [0.4, 4.8]

Pre-announcement VIX 20.1 26.1 [22.4, 33.9]
Post-announcement VIX 19.82 25.45 [21.70, 33.39]
VIX change on announcement days −0.29 −0.61 [−0.69,−0.48]

Notes: Ea[RXmkt
t ] and En[RXmkt

t ] denote the average excess return on the market
portfolio on announcement days and non-announcement days respectively. σa[RX

mkt
t ]

and σn[RXmkt
t ] denote analogous statistics for the standard deviation. E[Rft] and

σ[Rft] denote the unconditional average and standard deviation of the real riskfree
rate. We use the the difference between the Federal Funds Rate and average realized
inflation of the calendar month as the empirical proxy of the real daily riskfree rate.
Pre-announcement VIX is defined as VIX at close one day before a scheduled an-
nouncement, while post-announcement VIX is the VIX at close of an announcement
day. Their difference is defined as the change of VIX on announcement days. The
first column reports the empirical estimate. The second column reports the median
across samples simulated from the model. The third column reports the two-sided
90% confidence intervals from simulated samples. The units are in basis points per
day.
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Table 6: Cross-sectional regressions on announcement and
non-announcement days

Panel A: Equity Portfolios

Coefficient Data Simulation Median 90 % CI
δa 10.30 11.95 [1.33, 18.64]
δn 1.23 1.75 [0.14, 4.57]
δa − δn 9.07 9.72 [−2.21, 17.17]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 90 % CI
δa 93.33 8.93 [−341.35, 270.31]
δn −0.51 6.42 [−505.30, 686.74]
δa − δn 93.84 −6.19 [−783.37, 736.38]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = a, n stands for sets of announcement
and non-announcement days, respectively. These regressions
are estimated for beta-sorted equity portfolios (Panel A) and
for Treasury bonds (Panel B). The first column reports regres-
sion slopes in daily data from 1961.01-2016.09. The second col-
umn reports medians in simulated samples. The third column
reports 90% confidence intervals computed using simulations.
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Table 7: Summary statistics for simulated equity assets

Panel A: Mean excess returns: announcement days

Portfolio 1 2 3 4 5 6
Median 6.40 9.99 12.76 14.87 16.59 18.17
90% CI [2.75, 9.76] [3.78, 14.53] [4.57, 19.39] [5.32, 23.97] [5.62, 28.62] [5.44, 32.78]

Panel B: Mean excess returns: non-announcement days

Portfolio 1 2 3 4 5 6
Median 2.03 2.31 2.60 2.87 3.09 3.28
90% CI [0.90, 4.09] [0.93, 4.67] [1.06, 5.33] [1.10, 5.93] [1.15, 6.52] [1.20, 7.05]

Panel C: Volatility: announcement days

Portfolio 1 2 3 4 5 6
Median 120.69 223.80 314.73 398.68 477.68 550.08
90% CI [33.85, 200.77] [43.06, 378.24] [49.24, 530.93] [54.62, 668.70] [59.72, 798.74] [64.44, 916.98]

Panel D: Volatility: non-announcement days

Portfolio 1 2 3 4 5 6
Median 54.91 70.07 81.42 93.51 106.19 120.37
90% CI [31.49, 98.55] [40.22, 121.06] [46.25, 137.29] [51.54, 155.52] [56.36, 177.36] [60.66, 199.95]

Notes: In this table, we report the summary statistics of the equity assets from simulated data. We report
the distribution of mean excess returns and volatility of the assets on announcement and non-announcement
days across simulated samples. The units are in basis points per day.
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Table 8: Difference in announcement and non-announcement day betas in simulated
data

Panel A: Equity Portfolios

Portfolio 1 2 3 4 5 6
Median −0.15 0.01 0.07 0.20 0.33 0.42
90% CI [−0.31, 0.07] [−0.16, 0.24] [−0.00, 0.52] [−0.01, 0.78] [−0.07, 0.99] [−0.17, 1.20]

Panel B: Bonds

Maturity 1 3 5 7 10
Median 0.00 0.08 0.19 0.35 0.42
90% CI [−0.00, 0.01] [−0.01, 0.12] [−0.02, 0.30] [−0.03, 0.54] [−0.04, 0.65]

Notes: In data simulated from the model, we compute betas on announcement days and non-
announcement days. We do this for beta-sorted equity portfolios (Panel A) and for zero-coupon
bonds (Panel B). The table reports the median difference and 90% confidence intervals for the dif-
ference.
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Table 9: Statistics on the implied volatility surface

Moneyness 0.87 0.94 0.99 1.02 Slope
Announ. days 26.80 21.11 17.75 16.62 10.18
Pre-announ. days 27.09 21.41 17.98 16.72 10.37
Change −0.29 −0.30 −0.23 −0.10 −0.19
t-stat [−3.73] [−4.34] [−3.30] [−0.80] [−2.03]

Notes: We report the summary statistics of the average 30-day implied volatil-
ity surface computed using put options on the index. The surfaces are com-
puted using the closing prices of each trading day. The pre-announcement days
are the trading days right before the pre-scheduled macro-economic announce-
ments. The option’s delta is defined as the sensitivity of the option price relative
to the underlying asset, or the change in option price per unit change of underly-
ing asset price. The implied volatility slope is defined as the difference between
the implied volatilities of options with delta -0.8 and -0.1. The volatilities are
in units of percentage per annum. The sample period is 1996.01 to 2016.12.
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Table 10: Parameter values for the model with frequent and minor Poisson events

Panel A: Basic parameters
Expected normal-times growth in consumption µ, (%) 3.06
Expected normal-times growth in dividend µD, (%) 6.83
Volatility of consumption growth σ(%) 2.53
Rate of time preference β 0.012
Relative risk aversion γ 8.70
Average leverage φ 5.10

Panel B: The process for λ1t

Probability of disaster in the low-risk state λL 0
Probability of disaster in the high-risk state λH 8.73
Probability of switching to high-risk state φL→H 0.06
Probability of switching to low-risk state φH→L 1.10

Panel C: The process for λ2t

Probability of disaster λ̄2 0.979

Notes: In this table, we report an alternative calibration in which
announcements pertain to frequent, minor Poisson events, and
normal-times volatility is due to cash flow volatility.
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Table 11: The equity premium and volatility on announcement and non-announcement
days when Poisson events are frequent and minor

Statistic Data Simulation Median 90 % CI

Ea[RXmkt
t ] 10.79 9.92 [1.71, 16.87]

σa[RX
mkt
t ] 101.2 220.1 [117.8, 305.5]

En[RXmkt
t ] 1.16 1.16 [−0.29, 2.81]

σn[RXmkt
t ] 97.8 102.6 [96.7, 110.5]

Ea[RXmkt
t ]− En[RXmkt

t ] 9.63 8.92 [−0.27, 15.76]
σa[RX

mkt
t ]− σn[RXmkt

t ] 3.4 116.6 [18.9, 200.9]

E[Rft] 0.42 0.91 [0.58, 1.08]
σ[Rft] 1.14 0.8 [0.0, 1.3]

Pre-announcement VIX 20.1 18.4 [18.1, 19.2]
Post-announcement VIX 19.82 18.15 [17.96, 18.52]
Change on announcement days −0.29 −0.39 [−0.89,−0.13]

Notes: In this table report the simulation result of our model based on a cali-
bration in which announcements pertain to frequent, minor Poisson events, and
normal-times volatility is due to cash flow volatility. Ea[RXmkt

t ] and En[RXmkt
t ]

denote the average excess return on the market portfolio on announcement days
and non-announcement days respectively. σa[RX

mkt
t ] and σn[RXmkt

t ] denote anal-
ogous statistics for the standard deviation. We use the the difference between
the Federal Funds Rate and average realized inflation of the calendar month as
the empirical proxy of the real daily riskfree rate. The VIX is the risk-neutral
volatility of the market portfolio. The first column reports the empirical esti-
mate. The second column reports the median across samples simulated from the
model. The third column reports the two-sided 90% confidence intervals from
simulated samples. For riskfree rate, we use realized riskfree rate to compute
the mean. The units for market portfolio and risk-free rate moments are in basis
points per day, while VIX is reported in percentage per annum.
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Table 12: Parameter values for a model with normally distributed news
on announcements.

Expected normal-times log growth in consumption µ̄(%) 2.5
Consumption volatility on non-announcement days σc,n(%) 15.15
Consumption volatility on announcement days σc,a(%) 15.31
Consumption growth volatility on non-announcement days σµ,n(%) 0.186
Consumption growth volatility on non-announcement days σµ,a(%) 3.21
Persistence of consumption growth ρ 0.836
Rate of time preference β 0.97
Relative risk aversion γ 1.2
EIS ψ 1.001
Log-linearizing constant κ1 0.965

Notes: In this table, we report the parameter values used for a model with
normally distributed news on announcements. All parameters are in annual
terms, except σµ,n and σµ,a, which pertain to daily consumption growth.
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Table 13: The equity premium and volatility on announcement and non-
announcement days in a model with normally-distributed announcement news.

Statistic Data Simulation Median 90 % CI

Ea[RXmkt
t ] 10.79 11.98 [7.20, 16.58]

σa[RX
mkt
t ] 101.2 101.41 [97.78, 105.25]

En[RXmkt
t ] 1.16 1.19 [−0.26, 2.65]

σn[RXmkt
t ] 97.8 97.87 [96.22, 99.58]

Ea[RXmkt
t ]− En[RXmkt

t ] 9.63 10.71 [5.57, 15.49]
σa[RX

mkt
t ]− σn[RXmkt

t ] 3.4 3.91 [0.20, 7.51]

E[Rft] 0.42 2.10 [−116.52, 136.80]
σ[Rft] 1.14 147.20 [103.96, 209.51]

Pre-announcement VIX 20.1 15.20
Post-announcement VIX 19.82 15.18
VIX change on announcement days −0.28 −0.02

Notes: In this table, we report the simulated moments for the model of Savor and Wil-
son (2013). Ea[RXmkt

t ] and En[RXmkt
t ] denote the average excess return on the market

portfolio on announcement days and non-announcement days respectively. σa[RX
mkt
t ]

and σn[RXmkt
t ] denote analogous statistics for the standard deviation. We use the the

difference between the Federal Funds Rate and average realized inflation of the cal-
endar month as the empirical proxy of the real daily riskfree rate. The VIX is the
risk-neutral volatility of the market portfolio. The first column reports the empirical
estimate. The second column reports the median across samples simulated from the
model. The third column reports the two-sided 90% confidence intervals from simu-
lated samples. For riskfree rate, we use realized riskfree rate to compute the mean.
The units for market portfolio and risk-free rate moments are in basis points per day,
while VIX is reported in percentage per annum.
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