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Abstract

We use machine learning to construct a statistically optimal and unbiased bench-
mark for firms’ earnings expectations. We show that analyst expectations are on average
biased upwards, and that this bias exhibits substantial time-series and cross-sectional
variation. On average, the bias increases in the forecast horizon, and analysts revise
their expectations downwards as earnings announcement dates approach. We find that
analysts’ biases are associated with negative cross-sectional return predictability, and
the short legs of many anomalies consist of firms for which the analysts’ forecasts are
excessively optimistic relative to our benchmark. Managers of companies with the

greatest upward biased earnings forecasts are more likely to issue stocks.

Key words: Earnings Forecasts, Machine Learning, Investment Strategies

*We thank Refinitive for their guidance in using the I/B/E/S database. We are grateful for helpful
comments and suggestions provided by seminar participants at BI Norwegian Business School.
"Emails: julesv@wharton.upenn.edu; xiao.han@ed.ac.uk; alejandro.lopez-lira@bi.no



1 Introduction

One necessary input for pricing a risky asset is an estimate of expected future cash flows
to which the asset owner would be entitled. Common proxies include the most recent real-
ized cash flow, simple linear forecasts, or analysts’ forecasts. However, a significant strain of
literature documents that forecasts can be biased or predict poorly out-of-sample, thereby
limiting their practical usefulness.! In this study, we propose a novel approach for construct-
ing a statistically optimal and unbiased benchmark for earnings expectations, which uses
machine learning. We demonstrate that our new benchmark is effective out-of-sample.

To provide conditional expectations available in real-time, we use the cross-sectional in-
formation of firms’ balance sheets, macroeconomic variables, and analysts’ predictions. Due
to analysts’ forecasts belonging to the public information set, the question arises whether
these forecasts can be used to improve upon forecasts obtained from other publicly available
data sources. Namely, analysts’ forecasts may become redundant if other publicly available
variables are included in the analysis. Alternatively, analysts may collect valuable private
information that is subsequently reflected in their forecasts. We find evidence consistent with
the latter: Analysts’ forecasts are not redundant relative to the large set of publicly avail-
able variables in our algorithm. As such, these forecasts provide a key input to our machine
learning approach, as Figure 1 and Figure 2 show.?

We use random forest regression for our main analysis. Random forest regression has
two significant advantages. First, it naturally allows nonlinear relationships. Second, it is
designed for high-dimensional data and is therefore robust to overfitting.?* We construct
one-year- and two-years-ahead forecasts for annual earnings, and one-quarter-, two-quarters-
, and three-quarters-ahead forecasts for quarterly earnings. We focus on these particular

horizons as analysts’ forecasts for other horizons have significantly fewer observations. Given

1See Kothari et al. (2016) for an extensive review.

2Using mixed data sampling regression, Ball and Ghysels (2018) find that analysts’ forecasts provide
complementary information to the time-series forecasts of corporate earnings at short horizons of one quarter
or less.

3See Gu et al. (2020) for an excellent overview of this and other common predictive algorithms in the
context of cross-sectional returns. See Bryzgalova et al. (2020) for a novel application of random forest to
construct portfolios.



the benchmark expectation provided by our machine learning algorithm, we then calculate
the bias in expectations as the difference between the analysts’ forecasts and the machine
learning forecasts.

We show that analysts’ biases increase in the forecast horizon. On average, analysts revise
their expectations downwards as the earnings announcement day approaches. These revisions
induce negative cross-sectional stock predictability: stocks with more optimistic expectations
earn lower subsequent returns. Importantly, the short legs of common anomalies consist of
firms for which the analysts’ forecasts are excessively optimistic relative to our unbiased
benchmark. Finally, we show that managers of those companies with the largest biases seem
to take apparent advantage of the over-optimistic expectations by issuing stocks.*

Although previous research has used realized earnings to evaluate the bias and efficiency of
analyst forecasts, the extant studies do not provide a time series or cross-section of unbiased
real-time earnings estimates.” Without such forecasts, it is difficult to assess and/or correct
for the dynamics of forecast biases before the actual value is realized. Specifically, we cannot
know whether the given forecasts are conditionally biased, nor do we know the variance of
these biases across stocks and their impact on asset returns.

We fill this void by constructing a statistically optimal time series and cross-section of
earnings forecasts. The resulting estimates enable us to compute implied analyst biases,
which can be used in cross-sectional stock-pricing sorts. As we show in Figure 3, the realized
analysts’ bias exhibits substantial time series as well as cross-sectional variation. Therefore,
our benchmark expectation diverges from the conventional approach, which uses either the
raw analysts’ expectations, the realized value, or a simple linear model to form the conditional
forecast.5

Another strain of the relevant literature sorts stocks cross-sectionally using long-term

1We are agnostic on the source of the biases for analysts’ forecasts. Scherbina (2004) and Scherbina
(2007) show that the proportion of analysts who stop revising their annual earnings forecasts is associated
with negative earning surprises and abnormal returns, suggesting that analysts withhold negative information
from their forecasts.

5See for example Kozak et al. (2018) and Engelberg et al. (2018).

6The limitations of a simple linear model to forecast earnings have drawn academics’ attention recently.
See Babii et al. (2020), for example, who use the sparse-group LASSO panel-data regression to circumvent
the issue of using mixed-frequency data (such as macroeconomic, financial, and news time series) and apply
their new technique to forecast price-earnings ratios.



earnings forecasts, without comparing these values to a benchmark (e.g., La Porta (1996),
Bordalo et al. (2019)). Additionally, Zhou (2018) argues that, despite the useful results
that have been documented, it remains difficult to determine whether a belief is biased or
exaggerated without a benchmark model.

Finally, studies have posited linear forecasting rules as a solution to the analysts’ bias
problem. An important contribution to this line of research is So (2013). Using a linear
regression framework with variables that have been shown to provide effective forecasting
power (Fama and French (2006), Hou et al. (2012)), So (2013) provides a linear forecast, and
studies the predictable components of analysts’ errors and their impact on asset prices. We
differ from So (2013) in three important ways.

First, the linear forecasts in So (2013) are not designed to be statistically optimal. In
fact, analysts’ forecasts are a better proxy for the conditional expectation than are linear
forecasts as measured by the mean squared error. In contrast, our machine learning forecasts
are a superior proxy both in-sample and out-of-sample. Second, because linear regressions
do not efficiently handle high-dimensional data, a variable selection step is necessary. Often,
variables that have been documented as effective predictors are selected in this step. In
contrast, our machine learning approach considers the broad set of macroeconomic and firm-
specific signals at every point in time. We therefore, do not incur any data leakage. Third
and finally, there is no reason to impose the linearity of the conditional expectation function,
and indeed we find that allowing for nonlinear effects improves the forecasts, consistent with
previous studies using machine learning (Gu et al. (2020)).

Armed with a statistically optimal and unbiased benchmark for firms’ earnings expec-
tations and the implied real-time measure for firm-level conditional forecast biases across
multiple horizons, we focus on two applications. First, we study the impact of expectations
and biases on stock market returns. Second, we evaluate the effect of biases on managers’
actions. Concerning the first application, we find significant return predictability associated
with our measure of conditional biases. Concerning the second, we find that managers tend
to issue more stocks when their firms are subject to more optimistic forecasts relative to our

benchmark.



Our work relates to recent work by Hirshleifer and Jiang (2010) and Baker and Wurgler
(2013) who argue that managers can take advantage of overpricing on their firms’ valuation
by issuing stocks. Hirshleifer and Jiang (2010) use firms’ stock issuances and repurchases
to construct a misvaluation factor, and Stambaugh and Yuan (2017) construct a mispricing-
factor based on the net stock issuances. We contribute to this literature by providing direct
and novel evidence relating to conditional biases and stock issuances. Since we show that
it is feasible to have better forecasts than analysts’ forecasts using public information, it
seems plausible that managers would have superior forecasts when they exploit their private
information.

Finally, there is an extensive literature documenting biases and the importance of ex-
pectations for macroeconomic variables using the Survey of Professional Forecasters (SPF)
(see Bordalo et al. (2018), Coibion and Gorodnichenko (2015), and Bianchi et al. (2020) for
recent expositions).” We complement this literature by (1) providing direct evidence of the
existence of systematic biases in analysts’ earnings forecasts, (2) constructing a more efficient
forecast using the publicly available information in each period, and (3) documenting that

these biases relate to outcomes in financial markets and corporate policies.

2 Methodology and Data

2.1 Random Forest and earnings forecasts

In this study, we use random forest regressions to forecast future earnings. Random for-
est regression is a non-linear and non-parametric ensemble method that averages multiple
forecasts from (potentially) weak predictors. The ultimate forecast is superior to a forecast
following from any individual one predictor (Breiman 2001). We train the algorithm using
rolling windows analogous to a rolling regression forecast. The hyper-parameters are chosen

using cross-validation: a data-driven method that does not have look-ahead bias by design.

In particular, Bianchi et al. (2020) characterizes the time-varying systematic expectation errors embedded
in survey responses using machine-learning techniques. See also Bordalo et al. (2019) and Bordalo et al. (2020)
who provide evidence of systematic biases in analysts’ forecasts of earnings growth.



We summarize the key parameters of our implementation in Table 1 and discuss the cross-
validation method in detail in the Appendix. We explain the algorithm itself in detail in this

subsection.

[Insert Table 1 about here]

The building blocks for random forest regression are decision trees with a flowchart struc-
ture in which the data are recursively split into non-intersecting regions. At each step, the
algorithm splits the data choosing the variable and threshold that best minimizes the mean
squared error when the average value of the variable to be forecasted is used as the prediction.
Decision trees contain two fundamental substructures: decision nodes by which the data are
split, and leaves that represent the outcomes. At the leaves, the forecast is a constant local
model equal to the average for that region.

The decision tree in Figure 5 provides an illustration. The variable we wish to forecast
is the earnings-per-share (eps hereafter) for a cross-section of firms. At the first step, the
selected explanatory variable is the analysts’ forecast (denoted by adj_afeps), and the thresh-
old (or cutoff) value is at —0.206. If we were to end at this step, the forecast eps-value is
—0.222 when adj_afeps is less than or equal to —0.206, and 3.232 when adj_afeps is less than
or equal to —0.206. In the next step, the algorithm splits each of the previous two sub-spaces
in two again. The first subspace (analysts’ forecast less than or equal to —0.206) is split into
two using the price-to-book ratio (PTB) as an explanatory variable. The threshold value is
—0.624. The second subspace (analysts’ forecast greater than —0.206) uses short-term debt.
We then continue for the predefined number of splits until we arrive at the final nodes. In
the final nodes, the prediction is the historical local average of that subspace.

A decision tree model’s goal is to partition the data to make optimal constant predictions
in each partition (or subspace). Consequently, decision trees are fully non-parametric and
allow for arbitrary non-linear interactions. The only parameter for training a decision tree

model is the depth, i.e., the maximum length of the path from a root node to leaves. The



larger the depth, the more complex the tree, and the more likely it will overfit the data.®
More formally, the decision tree model forecast is constant over a disjoint number of

regions R,,:
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and each region is chosen by forming rectangular hyper-regions in the space of the pre-

dictors:
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where X denotes a Cartesian product, I is the number of predictors. Thus, each predictor
x; can take values in the set X;.

The algorithm minimizes numerically the mean squared error in order to best approximate
the conditional expectation by choosing the variables and thresholds, and hence the regions
R,, in a greedy fashion. Because of their non-parametric nature and flexibility, decision tree
models are prone to overfitting when the depth is large. The most common solution is to use
an ensemble of many decision trees with shorter depth: specifically, random forest regression
models.

Random forest regression models are an ensemble of decision trees that bootstrap the
predictions of different decision trees. Each tree is trained on a random sample, usually
drawn with replacement. Instead of considering all predictors, decision trees are modified
so that they use a strict random subset of features at each node to render the individual

decision trees’ predictions less correlated.” The final prediction of a random forest model is

8The standard approach to decrease the risk of overfitting is to stop the algorithm whenever the next split
would result in a sample size smaller than a predetermined size, usually five observations for regression. This
sample threshold is called the minimum node size.

9The algorithm allows a fixed set of variables to always be considered at each split. More generally, the
algorithm enables us to specify the probability for each predictor to be considered at each split.



obtained by averaging each decision tree’s predictions.

Random forest regressions provide a natural measure of the importance of each variable,
the so-called impurity importance (Ishwaran 2015). The impurity importance for variable X;
is the sum of all mean squared error decreases of all nodes in the forest at which a split on
X; has been used, normalized by the number of trees. The impurity importance measure can
be biased, and we use the correction of Nembrini et al. (2018) to address this well-known
concern. Finally, we normalize the features’ importance of each variable as percentages for
ease of interpretation.

There are three main parameters in the random forest algorithm: (1) the number of
decision trees; (2) the depth of the decision trees; and (3) the fraction of the sample that is
taken in each split.!°

Since the random forest is a bootstrapping procedure, a high number of decision trees
are recommended. Notwithstanding computational time, there is no theoretical downside to
using more trees. That said, performance tends to plateau following a large number of trees.
Figure 6 and 7 confirm that this indeed holds in our setup: The performance is increasing in

the number of trees but reaches a plateau.'!

[Insert Figure 6 and 7 about here]

The depth of each decision tree determines the overall complexity of the model. More
complex models usually over-fit. Nevertheless, because of the inherent randomization, ran-
dom forests are resilient to over-fitting in a wide variety of circumstances. Figures 8 and 9
show that the performance of the model is increasing in model complexity up until a depth

of 7.

[Insert Figure 8 and 9 about here]

10T here is an additional parameter: the percentage of the predictors considered in each splitting step. The
random forest algorithm is not sensitive to its value in our specification.

"Tn the cross-validation step, we measure the performance using the out-of-sample R? of the year 1986:
R2 —1_ SX(MLF;—EPS,)?
oos T S (EPS;—EPS)? °
earnings respectively. The denominator, Y (EPS; — EPS)?, is constant across different specifications.

MLF and EPS denote the machine learning forecast and actual realized



The last hyper-parameter we have to choose is the fraction of the sample used to train
each tree. For example, if that fraction is set to 1%, for each decision tree we would then
first take a 1% random sub-sample without replacement as the training sample. We then
repeat the process for each remaining tree. Figures 10 and 11 show the relationship between
the fraction of the sample used to train each tree and the out-of-sample R? in 1986, the year
we use for cross-validation. The performance is first increasing in the fraction size and then

decreasing. The algorithm benefits from using a small fraction of the sample for each tree.

[Insert Figure 10 and 11 about here]

For the quarterly earnings forecasts and one-year ahead forecast, we train the random
forest model using data from the most recent year and forecast earnings in the following
periods using only the information available at the current time. For the two-year-ahead
forecasts, we train the model using data from the two most recent years because we do not

1‘12

have enough observations when using a 12-month window to train the model.”* The forecasts

are therefore out-of-sample by design. The resulting forecasting regression is:

Eilepsi+-] = RF[Fundamentals;;, Macros, AF; ].

RF denotes the random forest model using data from the most recent periods. Fundamentals;,
Macro;, and AF;; denote firm fundamental variables, macroeconomic variables, and analysts’
earnings forecasts respectively. The earnings per share of firm i in quarter t+ 7 (7=1 to 3)
or year t+7 (7=1 to 2) is eps; ;+,. We focus on five forecast horizons, including one-quarter-
ahead, two-quarters-ahead, three-quarters-ahead, one-year-ahead, and two-years-ahead be-
cause analysts’ forecasts for other horizons have significantly fewer observations. As analysts
make earnings forecasts every month, we provide our statistically optimal benchmark for

every month as well.'?

120ur results remain similar when using longer windows to train the models.
13To minimize the impacts of outliers within the model, we winsorize the forecasting variables at the 1%
level and standardize them following the recommended guidelines in the literature.



2.2

Variables used for earnings forecasts

We consider an extensive collection of public signals available at each point in time, sum-

marized into three categories: firm-specific variables, macroeconomic variables, and analysts’

earnings forecasts.

2.2.1 Firm fundamentals

We consider firm fundamental variables related to future earnings

1.

Realized earnings from the last period. Earnings data are obtained from /I/B/E/S

. Earnings growth, defined as the growth rate in earnings

Sales growth, defined as the growth rate in sales and obtained from COMPUSTAT

Asset growth, defined as the growth rate in total assets and obtained from COMPUSTAT
Investment growth, defined as the growth rate in capital expenditure and obtained from COMPUSTAT
Monthly stock prices and returns from CRSP

Sixty-seven financial ratios such as book-to-market ratio and dividend yields obtained from the Finan-

cial Ratios Suit by Wharton Research Data Services.!*

2.2.2 Macroeconomic variables

We consider several macroeconomic variables that can affect firms’ earnings. We obtain the

from the real-time data set provided by the Federal Reserve Bank of Philadelphia.

1.

Consumption growth, defined as the log difference of consumption in goods and services
GDP growth, defined as the log difference of real GDP
Growth of industrial production, defined as the log difference of Industrial Production Index (IPT)

Unemployment rate

2.2.3 Analyst forecasts

Analysts’ forecasts at time ¢t — 1 for firm j’s earnings at fiscal end period ¢ can be decomposed

into public and private signals:®

1Gee Appendix for details of these variables’ definitions.
15See Hughes et al. (2008) and So (2013) among others.


https://www.philadelphiafed.org

N M M
AF;,t—l = Z /Bin,t—l + Z ,VZPJJ—I + Z O-iBj7i—1a (4)
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where X, 1 are public signals known at ¢ — 1; P;;_; are private signals; and B;;_; are
analysts’ biases generated by expectation errors or incentive problems. Our machine learning
algorithm is designed to use the private signals optimally in analyst forecasts while correcting
for their biases.

As pointed out by Diether et al. (2002), mistakes occur when matching I/B/E/S unad-
justed actual file (actual realized earnings) with I/B/E/S unadjusted summary file (analysts’
forecasts), because stock splits may occur between the earnings forecast day and the actual
earnings announcement day. In these cases, the forecast and the actual EPS value are based
on different numbers of shares outstanding. To address this issue, we use the cumulative
adjustment factors from the CRSP monthly stock file to adjust the forecast and the actual

EPS on the same share basis.!6

2.3 Measuring the term structure of real-time biases in analysts’

expectations

The I/B/E/S database provides different forecast periods indicated by FPI for analysts’
earnings forecasts.!” The span of the earnings forecast periods is one quarter to five years.
The I/B/E/S database also provides forecasts of long-term earnings growth, defined as the
expected annual increase in operating earnings over the company’s next cycle ranging from
three to five years (Bordalo et al.; 2019). At each month ¢, we measure the biases in investors’
expectations as the differences between the analysts’ forecast and the machine learning fore-

cast, scaled by the closing stock price from the most recent month:

16We do not use the adjusted summary files, because there are rounding errors when I/B/E/S adjusts the
share splits for forecasts and actual earnings (Diether et al. (2002)).
TFor example, the F'PI of 1 corresponds to the one-year-ahead earnings forecasts.

10



Analysts' Forecasts't" — M LForecast! "

t+h _
t Price;

BiasedExpectation;

()

in which subscript ¢ denotes firm, and ¢ denotes the date when earnings forecasts are made.

The superscript t + h denotes forecasting periods, and M L denotes machine learning.

3 Hypotheses

3.1 Biased expectations and cross-section of stock returns

If indeed, our machine learning forecasts provide the rational benchmark for earnings expec-
tations, while investors are affected by (biased) analysts’ forecasts, we should observe that
the stocks with optimistic earnings forecasts will earn low future returns. After all, overly
optimistic earnings forecasts are associated with stock overpricing. Our first hypothesis is,

therefore:

Hypothesis 1: Stocks with more optimistic earning forecasts earn lower future

returns.

3.2 Biased expectations and market timing

Bordalo et al. (2019) and Bouchaud et al. (2019) show that investors exhibit biases when
using current and past earnings information to issue forecasts for the future. Baker and
Wurgler (2013) argue that corporate managers have more information about their own firms
than investors have, and can use that informational advantage. As such managers could take
advantage of investors’ expectation biases.

We, therefore, conjecture that managers can identify when investors overestimate or un-
derestimate firms’ future cash flows and, further, that managers’ expectations will align more

closely to our statistically optimal benchmark.'® For example, managers may issue more stock

18Baker and Wurgler (2013) provide a comprehensive review of how rational managers make firm policies
in response to mispricing caused by irrational investors.

11



when investors’ expectations are higher than their own, i.e., engage in market timing (Baker

and Wurgler; 2002). Therefore, our second hypothesis is:

Hypothesis 2: Firms with more optimistic analysts’ forecasts relative to the

statistically optimal benchmark issue more stocks in the subsequent periods.

4 Empirical Findings

4.1 Stylized fact: Downward Revisions in Analysts’ Earnings Fore-

casts

Analysts revise their earnings forecasts every month. As the announcement dates approach,
analysts should process new information and update their positions to make better forecasts.

Table 2 demonstrates that analysts revise their earnings forecasts.

[Insert Table 2 about here|

We find that the average forecast error, defined as the difference between analysts’ earn-
ings forecasts per share and the realized earnings per share, is consistently positive for all hori-
zons; the results suggest that analysts make over-optimistic forecasts. Further, the average
error decreases as the earnings announcement dates approach; i.e., on average, a downward
revision occurs in analysts’ forecasts. As expected, the mean squared error also decreases.
Analysts make more precise forecasts when the earning announcement dates approach.

For the one-quarter-ahead forecast, the average forecast error decreases from $0.025, when
analysts make the first forecast, to $0.014, when analysts make the last forecast for the
same fiscal quarter end date, which usually follows the quarter end date but precedes the
announcement. The mean squared error also declines from 0.075 to 0.061.

A downward revision also occurs in the two-quarters-ahead, the three-quarters-ahead, the
one-year-ahead, and the two-years-ahead forecasts. To the extent that investors follow ana-

lysts’ forecasts and analysts make optimistic expectations (Hribar and McInnis; 2012), these

12



downward updates may result in negative cross-sectional return predictability. Specifically,
stocks with more optimistic expectations should earn lower subsequent returns than stocks
with less optimistic expectations.

The realized values of earnings are not available when making the forecasts; therefore, the
ex-post establishment of biases and their importance is not conducive to forming portfolios
in real-time. We cannot know which stocks have biased expectations when using the realized
value as a benchmark until that realized value is revealed. In contrast, our statistically

optimal benchmark allows us to study the effects of the bias before realization.

4.2 FEarnings Forecasts via Machine Learning

Table 3 compares the properties of analysts’ earnings forecasts with the statistically optimal

forecasts estimated using the Random Forest regressions.

[Insert Table 3 about here|

We find that for forecasts at all horizons, analysts make over-optimistic forecasts on
average. The realized analysts’ forecasts errors, defined as the difference between the analysts’
forecasts and the realized value, increase in the forecast horizon, ranging from 0.018 to 0.348,
all of which are statistically significantly different from zero. In sharp contrast, the time-
series averages of the differences between the machine-learning forecast and realized earnings
are statistically indistinguishable from zero, with an average value of around -0.004 for the
quarterly earnings forecasts, 0.016 for the one-year- ahead forecast, and -0.022 for the two-
years-ahead forecast.

The mean squared errors of the machine-learning forecast are smaller than the analysts’
mean squared errors, demonstrating that our forecasts are, as expected, more precise than
are the analysts’ forecasts. Overall, our results are consistent regarding machine-learning
forecasts” being closer to realized earnings than are analysts’ forecasts.

Figure 1 and 2 report the feature importance for the one-year-ahead and one-quarter-

ahead earnings forecasts, respectively. The feature importance results are similar for other

13



forecast horizons, and we report them in the Appendix. Analysts’ forecasts, past realized
earnings, and stock price are the most important variables, and their normalized importance
roughly equals 0.20, 0.15, and 0.10, respectively. Other variables such as return on cap-
ital employed (ROCE), return on equity (ROE), and pre-tax profit margin (PTPM) also
contain useful information for future earnings. Analyst forecasts and stock price get high

importance values likely because they reflect the information from many market participants.

[Insert Figure 1 and 2 about here]

We define the conditional expectation bias for every stock as the difference between the
analysts’ forecast and the machine-learning forecast, scaled by the price in the most recent
month, as consistent with the previous literature. The second-to-last column of Table 3
reports the time-series average of the real-time biased expectations. The average conditional
bias is statistically different from zero for all horizons. Furthermore, we find that analysts
are more biased in longer horizons.

Figure 4 shows the conditional aggregate bias, defined as the average of the individual
stocks’ expectations. We consider five different forecast horizons and consider the possibility
that the aggregate bias is higher during historical bubbles. We find that clear spikes during
the Internet bubble around 2001 (Griffin et al. (2011)) and in the financial crisis around 2008;
these findings are consistent with the position that analysts are more over-optimistic during

bubbles and more pessimistic when stock markets collapse.

[Insert Figure 4 about here]

4.3 Conditional Bias and the Cross-section of Stock Returns

We demonstrated above that analysts are, on average, over-optimistic relative to both the
machine-learning benchmark and the realized value, and on average, they update their fore-

casts downward. If market participants’ beliefs align closely with analysts’ expectations,

14



then we should observe negative return predictability. Stocks with a higher conditional bias
(over-optimistic) should earn lower returns than stocks with a lower conditional bias.'?

We conduct monthly (Fama-MacBeth) cross-sectional predictive regressions of stock re-
turns on the conditional bias from the previous month, and we report the time-series average
of the slope coefficients. Analysts make forecasts on firms’ cash flows at multiple horizons;
hence we have many conditional biases at every point in time for each firm. For each firm,
we use the average of the conditional biases at the multiple horizons, scaled appropriately, as
the predictor.?’ For a robustness check, we define the bias score as the arithmetic average of
the percentile rankings on each of the five conditional bias measures. We then run a separate
predictive regression for the bias score.

Table 4 shows the regression results. The first column in each panel of Table 4 reports
the regression without control variables. We find that both the conditional bias and the
bias score are associated with negative cross-sectional stock predictability. The coefficient on
the conditional bias is —0.0808 with a t-statistic of —4.61, so the zero-investment portfolio
associated with this variable has a Sharpe ratio of approximately 0.23. The coefficient on
the bias score is also significantly negative with a t-statistic of —6.57. The R2s for both

regressions is approximately 0.01.

[Insert Table 4 about here]

The second column in each panel of Table 4 reports the regressions with control variables,
including size, book-to-market ratio, short-term reversal, medium-term momentum, return
volatility, share turnover, idiosyncratic volatility; and investment. These variables have been
shown to predict stock returns with significant efficacy (Green et al. (2017), Freyberger et al.
(2020), and Gu et al. (2020)). We find that the coefficients on both the conditional bias and
the bias score remain statistically significant after controlling for those variables. We report

the individual conditional bias results in the Appendix: all biases exhibit negative return

19We note that, if market participants are using the statistically optimal benchmark and do not follow
analyst expectations, we should not find cross-sectional predictability. We document the predictability.

20We divide annual forecasts by four to make them comparable to quarterly forecasts. Each month we
exclude stocks with fewer than two observations for the five forecasts at different horizons.
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predictability. Moreover, conditional biases’ return predictability remains consistent when
we either scale conditional biases with total assets from the most recent fiscal period or drop
stocks whose price are lower than $5. We report these and further robustness checks in the
Appendix.

Table 5 reports the correlations between the bias measures and the control variables.
We find that the conditional bias and the bias score are, as expected, very positively cor-
related. Moreover, the conditional bias is negatively correlated with size and momentum;
we find the conditional bias positively correlated with book-to-market ratio, idiosyncratic
volatility, return volatility, and share turnover. Accordingly, stocks with a smaller size, lower
past cumulative returns, and with higher book-to-market ratio, idiosyncratic volatility, re-
turn volatility, and share turnover, tend to have more over-optimistic expectations. In the

Appendix, we report the summary statistics of these variables.

[Insert Table 5 about here|

Additionally, we show that the results from the cross-sectional regressions also hold in
time-series regressions. We sort stocks into five quintile portfolios based on the conditional
bias. Table 6 reports the portfolio sorts in which we can see two interesting patterns: First,
the value-weighted returns decrease in the conditional bias. A long-short portfolio of the ex-
treme quintile results in a return spread of 1.95% per month (¢-statistic 5.88) for the average
bias and 1.53% per month (t¢-statistic 4.90) for the bias score. Second, the CAPM betas of
these portfolios tend to increase with higher biased expectations, which is consistent with
the results of Antoniou et al. (2015) and Hong and Sraer (2016), who show that high-beta

stocks are more susceptible to speculative overpricing.

[Insert Table 6 about here]

We further examine whether returns on this long-short strategy can be explained by lead-

ing asset pricing models. Table 7 Panel A reports the results of using the conditional bias as

16



the portfolio sorting variable. We find that the long-short strategy has a significant CAPM
alpha of 2.39% per month, with a significantly negative market beta of —0.66. Columns four
to seven show the regression results with the Fama-French three-factor and five-factor mod-
els. Neither model can explain the documented return spread. The alpha in the three-factor
model is 2.52% with a t-statistic of 9.70; the alpha in the five-factor model is 2.02% with a
t-statistic of 7.21. Table 7 Panel B reports the long-short strategy using the average bias as
the sorting variable, and we find consistent results.?! Overall, we conclude that the return
predictability of the conditional bias appears in cross-sectional regressions and time-series

tests against common multi-factor representations.

[Insert Table 7 about here]

Since the magnitude and significance of the results seem large by usual standards, we
conduct a placebo test in the Appendix to better understand the results. We replace the
machine learning forecast with the future realized value and then compute the conditional
bias. The implied returns of these infeasible strategies are overwhelmingly better than the
ones presented, with monthly excess returns in the order of 5% and t-statistics above 20,

making the previous results look small in comparison.

4.4 Conditional Bias and Market Anomalies

In two recent studies, Engelberg et al. (2018) and Kozak et al. (2018) compare analysts’
earnings forecasts to the realized values and both find that analysts tend to have over-
optimistic expectations for stocks in the short side of anomalies, which are usually associated
with lower returns. However, as previously mentioned, the realized value is not available in
time for analysts’ forecasts; therefore, we cannot assess whether the bias drives anomalies
using the realized value. To shed light on this issue, we use our conditional bias measure

to examine whether analysts have more conditional over-optimistic expectations on anomaly

21'We report the results of the long-short strategy based on individual conditional bias in the Appendix.
All strategies but for the one using the one-year-ahead bias exhibit significant alpha.
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shorts.

We focus on the 27 significant and robust anomalies considered in Hou et al. (2015).
We examine these anomalies for two reasons: i) they cover the most prevalent anomalies,
including momentum, value-versus-growth, investment, profitability, intangibles, as well as
trading frictions; and i) they have been widely used to test leading asset pricing models
(Hou et al. (2015), Stambaugh and Yuan (2017), and Daniel et al. (2017)).22 We follow the
literature and sort stocks into ten portfolios based on the decile of each anomaly variable.
We define the extreme deciles as the long and the short legs of the anomaly strategies.

Having obtained ranks of stocks based on each anomaly variable, we then combine these
ranks to construct an anomaly score defined as the equal-weighted average of the rank scores
of the 27 anomaly variables. To calculate the score, for each month, we assign decile ranks to
each stock based on the 27 anomaly variables.? The anomaly score for an individual stock
is calculated as the arithmetic average of its ranking on each of the 27 anomalies. Next, we
break stocks into 10 decile portfolios based on the anomaly score. The long legs are defined as
the stocks in the top decile portfolio. The short legs are defined as the stocks in the bottom

decile portfolio.

[Insert Table 8 about here]

Table 8 Panel A presents the average anomaly score for portfolios sorted independently on
the conditional bias and the anomaly score.?* For each anomaly decile portfolio, the anomaly
score ranges from 3.21 to 6.92, with the highest (lowest) score indicating the long (short) leg of
the anomaly strategy. Table 8 Panel B reports the average number of stocks in each of 10x5
portfolios. On average, we have around 50 stocks every month in each portfolio. Moreover,

the average number of stock per month for the portfolio with the highest conditional biases

22Table A13 in Appendix lists the anomalies associated with their academic publications. The sample
period spans July 1965 to December 2019, depending on the data availability. We follow the descriptions
detailed in Hou et al. (2015) to construct the anomaly variables. The last column in Table A13 reports the
monthly average returns (in percent) of the long-short anomaly portfolios.

23We exclude stocks with fewer than 10 anomaly variables data.

24For the results shown in Tables 8 and 9, we use the average of the conditional biases at different forecast
horizons to sort the portfolios. The results remain robust when we use the arithmetic average of the percentile
rankings on each of the five conditional bias measures.
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and the lowest anomaly score is 93, which is more than double the average number of stocks
per month for the portfolio with both the lowest conditional biases and the lowest anomaly
score (32 stocks). Stocks with higher conditional biases tend to be anomaly shorts.

Table 9 presents the value-weighted excess returns of the portfolios formed by sorting in-
dependently on the conditional bias and the anomaly score.?” While the long-short anomaly
strategy in each quintile sort on the conditional bias has a similar anomaly score (around
3.60), we find that anomalies’ payoffs increase when the conditional bias increases. In the
quintile group with the greatest conditional bias, the long-short strategy based on anomaly
score earns the highest returns (2.22% per month with a ¢-statistic of 6.11). In sharp contrast,
the anomaly payoff becomes 0.30% (t-statistic is 0.95) in the quintile group with the smallest
conditional bias. Further, we find that the short-leg portfolio’s return decreases from 1.24%
per month to —2.27% when we move from the first quintile of the conditional bias to the
fiftth quintile. These findings suggest that anomaly payoffs tend to arise from overpricing on

stocks with the most over-optimistic expectations.

[Insert Table 9 about here]

The last two rows in Table 9 report the conditional biases on each of the 10 decile portfolios
formed on the anomaly score. We find that the short-leg portfolio is comprised of stocks
with more over-optimistic expectations, suggestive of overpricing. Moreover, the difference
in conditional biases between anomaly-short and anomaly-long is 0.006 and significant at the
1% level (with t-statistic of 5.75). This finding is consistent with Engelberg et al. (2018)
and Kozak et al. (2018) who find that analysts tend to have over-optimistic expectations for

stocks in the short side of anomalies.

4.5 Conditional Bias and Firm’s Financing Decisions

Managers have more information about their firm than most investors have, due to the access

managers have to private information as well as available public signals. Baker and Wurgler

25The long-short portfolio using the anomaly score earns 1.20% per month (the t-statistic is 5.32).
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(2013) argue that managers use their additional information to the advantage of existing
shareholders and engage in market timing (Baker and Wurgler; 2002). Following Hypothesis
2, we conjecture that managers issue more equity whenever analysts’ expectations are more
optimistic than the statistically optimal benchmark.

We follow the literature and measure net stock issuances as the logarithm of the ratio
of the split-adjusted shares outstanding at the fiscal year ending in calendar year ¢ to the
split-adjusted shares outstanding at the fiscal year ending in ¢ — 1. Because the net stock
issuances are measured annually, we match the average of the conditional bias in the past 12
months to the fiscal year ending at time ¢.26 Table 10 Panel A reports the value-weighted
average net stock issuance for companies sorted in portfolios according to the conditional
bias of analysts’ forecasts relative to the machine-learning forecast.

The net stock issuances increase monotonically in the conditional bias. Importantly, we
find that stocks in the decile portfolio with the most optimistic expectations issue signifi-
cantly more stocks than do those stocks with the least optimistic expectations. Managers of
firms whose earnings forecasts are more optimistic issue on average 6% more of total shares

outstanding. The difference is statistically significant at the 1% level.

[Insert Table 10 about here]

Table 10 Panel B reports the Fama-MacBeth regressions of firms’ net stock issuances on
the conditional bias. As in Baker and Wurgler (2002) and Pontiff and Woodgate (2008), we
control for variables such as firm size, the book-to-market ratio, and earnings before interest,
taxes, and depreciation divided by total assets. Overall, our findings are consistent with the
previous portfolio sorts: managers of firms with a larger conditional bias issue more stocks.
We also find that firms with a smaller size, lower book-to-market ratio, and lower profitability
tend to issue more stocks, consistent with the results in Baker and Wurgler (2002) and Pontiff

and Woodgate (2008).

26Qur results remain robust when matching the average of the conditional bias from the past 24-12 months
to the net stock issuances of the fiscal year ending at time ¢t. We report this robustness check in the Appendix.
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5 Conclusion

The pricing of assets relies significantly on the forecasts of associated cash flows. Analysts’
forecasts of earnings are often used as a measure of expectations, despite the common knowl-
edge that these forecasts are on average biased upward. Namely, a structural misalignment
obtains between these earnings forecasts and their subsequent lower realizations. In this
paper, we develop a novel machine learning forecast algorithm that is statistically optimal,
unbiased, and immune to variable selection bias.

This new measure is useful not only as an input to asset-pricing exercises but also as
an available real-time benchmark against which other forecasts can be compared. We can
therefore construct a real-time measure of analyst biases both in the time series and the
cross-section. We find that these biases exhibit considerable variation in both dimensions.
Further, cross-sectional asset-pricing sorts based on this real-time measure of analyst biases
show that stocks for which the earnings forecast is the most upward- (downward-) biased
earn lower (higher) average returns going forward. This finding indicates that the analyst
forecast errors may have a nontrivial effect on asset prices.

In addition to these asset-pricing results, our findings also have critical implications in
corporate finance. Managers of firms for which the earnings forecast is most upward-biased
issue more stocks. This finding indicates that managers are at least partially aware of analyst
biases or the associated influence on asset prices. This study applies our machine learning

approach to earnings, and the approach can easily be extended to other variables.
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Figure 1: Feature importance of the one-quarter-ahead forecast
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Notes: This figure plots the time-series average of feature importance of the 10 most important variables for
the one-quarter-ahead earnings forecasts. The feature importance for each variable is the normalized sum
of the reduced mean squared error decrease when splitting on that variable using the method in Nembrini
et al. (2018). The feature importance of each variable is normalized so that the features’ importance sums
up to one.
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Figure 2: Feature importance of the one-year-ahead forecast
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Notes: This figure plots the time-series average of feature importance of the 10 most important variables
for the one-year-ahead earnings forecasts. The feature importance for each variable is the normalized sum
of the reduced mean squared error decrease when splitting on that variable using the method in Nembrini
et al. (2018). The feature importance of each variable is normalized so that the features’ importance sums
up to one.
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Figure 3: Average realized bias of analysts’ earnings expectations
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Notes: This figure plots the realized bias of analysts’ expectations, which is measured as the average of
the bias of expectations of individual firms. We trim the data at the 1% level each period before taking
the average. The bias is calculated as the difference between analysts’ earnings forecast and the realized
value, scaled by the stock price from the most recent period. To ensure the annual earnings forecasts have
the same scale as quarterly forecasts, we divide annual forecasts by four.
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Figure 4: Average bias of analysts’ earnings expectations relative to machine learning
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Notes: This figure plots the conditional bias of analysts’ expectations, which is measured as the average
of the bias of expectations of individual firms. We trim the data at the 1% level each period before taking
the average. The bias is calculated as the difference between analysts’ earnings forecast and the machine
learning forecast, scaled by the stock price from the most recent period. To ensure the annual earnings
forecasts have the same scale as quarterly forecasts, we divide annual forecasts by four.
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Figure 5: Example Decision Tree

adj_afeps = -0.206

mse = 7.46
samples = 53
value = 1.211

True False

PTB < -0.624 SHORT_DEBT =0.325

mse = 5.529 mse = 3.204
samples = 31 samples = 22
value =-0.222 value = 3.232

mse = 13.074 mse = 0.443 mse = 1.478
samples = 6 samples = 25 samples = 19
value = -3.54 value = 0.574 value = 2.691

Notes: This Figure shows an example decision tree. The variable we wish to forecast is the earnings-per-
share (eps hereafter) for a cross-section of firms. At the first step, the selected explanatory variable is the
analysts’ forecast (denoted by adj-afeps), and the threshold (or cutoff) value is at —0.206. Were we to
end at this step, the forecast eps-value is —0.222 when adj_afeps is less than or equal to —0.206, and 3.232
when adj_afeps is less than or equal to —0.206. In the next step, the algorithm splits each of the previous
two sub-spaces in two again. The first subspace (analysts’ forecast less than or equal to —0.206) is split
in two using the price-to-book ratio (PTB) as an explanatory variable. The threshold value is —0.624.
The second subspace (analysts’ forecast greater than —0.206) uses short-term debt. We then continue for
the predefined number of splits until we arrive at the final nodes. In the final nodes, the prediction is the
historical local average of that subspace.
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Figure 6: Cross-validation results of the number of trees in the one-quarter-ahead forecast
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Notes: This figure plots the relation between the number of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R? for the one-quarter-ahead earnings forecasts in
1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure 7: Cross-validation Results of the number of trees in the one-year-ahead forecast
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Notes: This figure plots the relation between the number of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R? for the one-year-ahead earnings forecasts in
1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.

28



Figure 8: Cross-validation results of the maximum depth of each tree in the
one-quarter-ahead forecast
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Notes: This figure plots the relation between the depth of of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R? for the one-quarter-ahead earnings forecasts
in 1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R?.
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Figure 9: Cross-validation results of the maximum depth of each tree in the one-year-ahead

forecast
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Notes: This figure plots the relation between the depth of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R? for the one-year-ahead earnings forecasts in 1986
February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using the
machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R?.
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Figure 10: Cross-validation results of the fraction of the sample that is taken in each split
in the one-quarter-ahead forecast
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Notes: This figure plots the relation between the fraction of the sample that is taken in each split used

in the random forest for training up to 1986 January and the out-of-sample R? for the one-quarter-ahead

earnings forecasts in 1986 February. The out-of-sample R? is defined as 1 minus the mean squared error

implied by using the machine learning forecast divided by the mean squared error of using the realized

average value as a forecast. The random forest algorithm is random by design, so we take the average of
100 runs to measure the out-of-sample R?.
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Figure 11: Cross-validation results of the fraction of the sample that is taken in each split
in the one-year-ahead forecast
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Notes: This figure plots the relation between the fraction of the sample that is taken in each split used

in the random forest for training up to 1986 January and the out-of-sample R? for the one-year-ahead

earnings forecasts in 1986 February. The out-of-sample R? is defined as 1 minus the mean squared error

implied by using the machine learning forecast divided by the mean squared error of using the realized

average value as a forecast. The random forest algorithm is random by design, so we take the average of
100 runs to measure the out-of-sample R?.
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Table 1: Hyper-parameters for the Random Forest Regression

Notes: This table reports the parameters chosen for the random forest regression. Number
of trees is the number of decision trees used. Maximum Depth is the maximum number
of splits that each decision tree can use. Sample Fraction is the fraction of observations
used to train each decision tree. The minimum node size is the threshold to stop the
decision tree whenever the split would result in a sample size smaller than the minimum
node size. The hyper-parameters are chosen using cross-validation over 1986 as detailed
in the Appendix. The random forest regression is trained using rolling regressions keeping
the hyper-parameters fixed.

Number of Trees 2000

Maximum Depth 7
Sample Fraction 1%
Minimum Node Size 5
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Table 4: Fama-Macbeth regressions

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ excess
returns on the conditional bias in each forecast horizon, including one-quarter, two-quarters, three-
quarters, one-year, and two-years-ahead. “Average BE” denotes the average of the conditional
biases, defined as the difference between analysts’ forecasts and the machine learning forecasts
scaled by the share price from the most recent period, at different forecast horizons. “BE Score”
denotes the arithmetic average of the percentile rankings on each of the five conditional biases
at different forecast horizons. (1) and (2) report the regression results with and without control
variables, respectively. The control variables include log of firm size (Lnsize), log of book-to-market
ratio (Lnbeme), short-term reversal (Ret_1), medium-term momentum (Ret12_7), investment-to-
asset (IA),idiosyncratic volatility (IVOL), return volatility (Retvol), and share turnover (Turnover).
We report the time-series average of slope coefficients associated with Fama-MacBeth t-statistics
(in parentheses). The sample period is 1987 to 2019.

8
Ry =a+ /i BE;; + Z Control;; + €411

i=1

Panel A: Average BE  Panel B: BE Score

(1) (2) (1) (2)
BE —0.0808 —0.0852 —0.0279  —0.0456
(—4.61) (—5.30) (—=6.57) (—15.99)
Lnsize —0.0009 —0.0029
(—2.46) (—8.37)
Lnbeme 0.0012 0.0019
(2.00) (3.16)
Ret12_7 0.0038 0.0011
(2.44) (0.73)
Retl —0.0284 —0.0313
(—6.62) (—7.29)
IA —0.0007 —0.0007
(—2.60) (—2.73)
Ivol —0.1941 —0.1743
(—1.72) (—1.53)
Retvol 0.1339 0.1982
(1.13) (1.67)
Turnover —0.0006 —0.0005
(—1.38) (—1.18)
Intercept  0.0078 0.0213 0.0215 0.0675
(2.74) (3.98) (8.70) (13.69)
R? 0.0105 0.0604 0.0156 0.0629
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Table 6: Portfolios sorted on conditional bias

Notes: This table reports the time series average of excess returns (in percent) on value-weighted
portfolios formed on the conditional bias in different forecast horizons. Panel A looks at “Average
BE”, defined as the average of conditional bias at different forecast horizons. Panel B presents the
sorts based on “BE score”, defined as the arithmetic average of the percentile rankings on each of
the five conditional biases at different forecast horizons. The sample period is 1987 to 2019.

Quintile 1 2 3 4 5 1-5
Panel A: Average BE
Mean 1.07 0.70 0.46 -0.04 -0.88 1.95
t-stat 5.03 3.17 1.82 -0.12 -2.05 5.88
CAPM Beta 0.92 0.98 1.11 1.28 1.58 -0.66
Panel B: BE Score
Mean 0.96 0.66 0.43 0.07 -0.57 1.53
t-stat 4.76 2.93 1.64 0.22 -1.38 4.90
CAPM Beta 0.89 1.01 1.14 1.28 1.53 -0.63
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Table 7: Time series tests with common asset-pricing Models

Notes: This table reports the regression of stock returns (in percent) on the long-short portfolio
sorted with the conditional bias, on the CAPM, the Fama-French three-factor model (FF3), and
the Fama-French five-factor model (FF5). Panel A looks at average conditional bias at different
forecast horizons. Panel B presents the sorts based on “BE score”, defined as the arithmetic average
of the percentile rankings on each of the five conditional biases at different forecast horizons. The
sample period is 1987 to 2019. The t-statistics are adjusted by the White’s heteroscedasticity
robust standard errors.

5
LS_Port, = a + Z Bili: + €

=1

CAPM FF3 FF5
Coef fi t-stat Coef fi t-stat Coef fi t-stat

Panel A: Average BE

Intercept 2.39 8.15 2.52 9.70 2.02 7.21
Mkt_RF -0.66 -7.81 -0.61 -7.52 -0.42 -5.34
SMB -0.86 -6.33 -0.62 -4.33
HML -0.60 -4.10 -1.01 -6.10
RMW 0.84 4.07
CMA 0.53 1.79
Panel B: BE Score
Intercept 1.94 7.02 2.03 8.01 1.53 5.73
Mkt_RF -0.63 -7.50 -0.56 -6.58 -0.37 -4.62
SMB -0.83 -6.89 -0.57 -4.39
HML -0.44 -3.07 -0.83 -4.93
RMW 0.90 4.63
CMA 0.48 1.63
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Table 10: Net stock sssuances and conditional biases

Notes: Panel A reports the time series average of net stock issuances of value-weighted portfolios
sorted on the conditional bias. “Average BE” denotes the average of the conditional bias at
different forecast horizons. “BE score” denotes the arithmetic average of the percentile rankings
on each of the five conditional biases at different forecast horizons. Panel B reports the Fama-
MacBeth regressions of firms’ net stock issuances on the conditional bias and control variables
include the log of firm size (Lnsize), the log of book-to-market ratio (Lnbeme), and earnings
before interest, taxes, and depreciation divided by total assets (EBITDA). The sample period is
1987 to 2019. We report the time series average of slope coefficients associated with Newey-West
t-statistics.

3
NSI,"t_H =+ BIBEi,t + Yi Z C’ontroli,t + €it+1

i=1

Panel A: Net Stock Issuances of Portfolios formed on BE

Quintile 1 2 3 4 5 5-1
Average BE 0.013 0.011 0.017 0.040 0.073 0.060
t-stat 1.82 1.82 3.33 4.31 5.32 3.44
BE score 0.009 0.016 0.020 0.033 0.066 0.058
t-stat 1.33 2.14 3.69 5.17 4.18 3.39

Panel B: Fama-MacBeth regressions

A: Average BE B: BE Score
(1) (2) (1) (2)
BE 1.7048 1.2870 0.1191 0.0510
t-stat 3.86 4.53 6.74 4.82
Lnsize -0.0053 -0.0051
t-stat -3.25 -2.76
Lnbeme -0.0239 -0.0230
t-stat -6.10 -5.70
EBITDA -0.1086 -0.1129
t-stat -4.36 -4.34
Intercept 0.0621 0.1186 0.0108 0.0775
t-stat 6.12 3.72 0.95 2.46
R? 0.0178 0.0921 0.0084 0.0750
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Appendix

A1l. Sample selection and machine learning tests

In this section, we detail the sample selection and the procedures of machine learning earnings
forecasts.

Our first step is to obtain actual realized earnings and analysts’ earnings forecasts from the
I/B/E/S database.?” We keep firms that have both realized earnings and analysts forecasts.
We focus on one-year- and two-years-ahead forecasts for annual earnings (IBES F'PI of 1 and
2), and one-quarter-, two-quarters-, and three-quarters-ahead forecasts for quarterly earnings
(IBES FPI of 6, 7, and 8), because analysts’ forecasts for other horizons have significantly
fewer observations.

We then match the IBES actual file (actual realized earnings) with the summary file
(analysts’ consensus forecasts) using Ticker and fiscal end date.?® As pointed out by Diether
et al. (2002) and Bouchaud et al. (2019), mistakes occur when matching I/B/E/S actual file
with I/B/E/S summary file, because stock splits may occur between the earnings forecast
day and the actual earnings announcement day. However, the I/B/E/S adjusted summary
files round the forecast and actual earnings to the nearest penny for adjusting the splits. To
circumvent these rounding errors, we obtain data from unadjusted actual and summary files.
We use the cumulative adjustment factors (CFACSHR) from the CRSP monthly stock file to
adjust the forecast and the actual EPS on the same share basis. For example, if forecasts are
made at £ — 1 and the actual earnings are announced at ¢, we measure the adjusted actual

earning as,

AdjustActual; = Actual, x CFACSHR, 1/CFACSHR,

2"We do not obtain the actual earnings from Compustat, because I/B/E/S use different accounting basis
from Compustat to measure actual earnings. Since or primary goal is to construct a statistically optimal
and unbiased benchmark for analysts’ earnings forecasts, we obtain the realized earnings from /I/B/E/S
database.

Z8PENDS denotes the fiscal end date in the actual file and FPEDATS denotes the fiscal end date in the

summary file.



For matching /I/B/E/S with CRSP, we follow the guidance provided by the Wharton
Research Data Service to create a link table that uses CUSIP. We require firms’ historical
CUSIP to be same in both /I/B/E/S and CRSP. ?* We keep common stocks (share code 10
and 11) in stock exchanges of NYSE, AMEX, and NASDAQ (exchange code 1, 2, and 3).%.

Our sample is in monthly frequency, because analysts make earnings forecasts for firms’
earnings every month (I/B/E/S estimate date is STATPERS). We therefor provide our sta-
tistically optimal forecast for every I/B/E/S estimate date (STATPERS). Specifically, we
assume that we are making forecasts at the same date as when analysts make forecasts.
We trained the Random Forest model using the information available at the current time,
and then forecast earnings in the same fiscal end periods as analysts do. When matching
the forecasts variables such as firm characteristics and macroeconomic variables, we require
announcement dates of these information are before STATPERS. The forecasts are there-
fore out-of-sample and are not based on any future information. The resulting forecasting

regression is:

Eilepsi s = RF[Fundamentals; s, Macrog, AF; ).

RF denotes the random forest model using data from the most recent periods. Fundamentals;,
Macro;, and AF;; denote firm fundamental variables, macroeconomic variables, and analysts’
earnings forecasts respectively. The earnings per share of firm i in quarter t+ 7 (7=1 to 3)
or year t+7 (7=1 to 2) is eps; sy

For the quarterly earnings forecasts and one-year ahead forecast, we trained the Random
Forest model using the data from the most recent year and then forecast earnings in the
following periods using information available at the current time. For the two-year ahead
forecasts, we trained the model using the data from the two most recent years rather than
from the most recent year, because we do not have enough observations when using a 12-

month window to train the model. Our forecasts remain consistent when using different

ZYMatching details can be found via “ https://wrds-www.wharton.upenn.edu/pages/support /applications/linking-
databases/linking-ibes-and-crsp-data/”.

30We do not delete the smallest firms, because the smallest firms are simply not covered in /I/B/E/S and
the intersection of /I/B/E/S and CRSP heavily tilt towards big stocks (Diether et al. (2002))



windows to train the model. Our training data starts in 1986 January, and our first forecast

observations are in 1987 January.

A2. WRDS financial ratios

In the Random Forest model, we use financial ratios obtained from the Financial Ratio Suit

by Wharton Research Data Service (WRDS) as forecasting variables. According to WRDS,

these variables are most commonly used financial ratios by academic researchers and available

at both quarterly and annual frequency. The variables can be grouped into the following seven

categories: Capitalization, Efficiency, Financial Soundness/Solvency, Liquidity, Profitability,

Valuation and Others. Table A1 details the definitions of financial ratios.?!

We exclude PEG _lyrforward, PEG_ltgforward, pe_op_basic, pe_op_dil from our forecast

model, because these variables have too many missing observations. We replace the missing

values of other variables as the industry medians. The industries are defined as in Fama-

French 49 industry portfolios.

Table A1l: WRDS financial ratios

Variable Definition Variable Definition
Accrual Accruals/Average Assets invt_act Inventory/Current Assets
adv_sale Avertising Expenses/Sales 1t_debt Long-term Debt/Total Liabilities
aftret_eq After-tax Return on Average Common It_ppent Total Liabilities/Total Tangible Assets
Equity
aftret_equity After-tax Return on Total Stockhold- npm Net Profit Margin
ers Equity
aftret_invcapx After-tax Return on Invested Capital ocf_lct Operating CF/Current Liabilities
at_turn Asset Turnover opmad Operating Profit Margin After Depreciation
bm Book/Market opmbd Operating Profit Margin Before Depreciation
capei Shillers Cyclically Adjusted P/E Ratio pay_turn Payables Turnover
capital_ratio Capitalization Ratio pcf Price/Cash flow
cash_conversion Cash Conversion Cycle (Days) pe-exi P/E (Diluted, Excl. EI)
cash_debt Cash Flow/Total Debt pe-inc P/E (Diluted, Incl. EI)
cash_lt Cash Balance/Total Liabilities pe-op-basic Price/Operating Earnings (Basic, Excl. EI)
cash_ratio Cash Ratio pe-op-dil Price/Operating Earnings (Diluted, Excl. EI)
cfm Cash Flow Margin PEG_lyrforward Forward P/E to 1-year Growth (PEQG) ratio
curr_debt Current Liabilities/Total Liabilities PEG._ltgforward Forward P/E to Long-term Growth (PEG) ratio
curr_ratio Current Ratio PEG_trailing Trailing P/E to Growth (PEG) ratio
de_ratio Total Debt/Equity pretret_earnat Pre-tax Return on Total Earning Assets
debt_assets Total Debt/Total Assets pretret_noa Pre-tax return on Net Operating Assets
debt_at Total Debt/Total Assets profit_lct Profit Before Depreciation/Current Liabilities
debt_capital Total Debt/Capital ps Price/Sales
debt_ebitda Total Debt/EBITDA ptb Price/Book
debt_invcap Long-term Debt/Invested Capital ptpm Pre-tax Profit Margin
divyield Dividend Yield quick_ratio Quick Ratio (Acid Test)
dltt_be Long-term Debt/Book Equity RD_SALE Research and Development/Sales
dpr Dividend Payout Ratio rect_act Receivables/Current Assets

31The formulas to calculate these financial ratios are available at the WRDS website.


https://wrds-web.wharton.upenn.edu/wrds/ds/wrdsapps/finratiofirm/index.cfm?navId=401

continued from previous page

efftax Effective Tax Rate rect_turn Receivables Turnover
equity_invcap Common Equity/Invested Capital roa Return on Assets

evim Enterprise Value Multiple roce Return on Capital Employed
fcf_ocf Free Cash Flow/Operating Cash Flow roe Return on Equity

gpm Gross Profit Margin sale_equity Sales/Stockholders Equity
GProf Gross Profit/Total Assets sale_invcap Sales/Invested Capital
int_debt Interest/Average Long-term Debt sale_nwc Sales/Working Capital
int_totdebt Interest/Average Total Debt short_debt Short-Term Debt/Total Debt
intcov After-tax Interest Coverage staff_sale Labor Expenses/Sales
intcov_ratio Interest Coverage Ratio totdebt_invcap Total Debt/Invested Capital
inv_turn Inventory Turnover

A2. Parameters in Random Forest

We choose the hyper-parameters in a purely data-driven way using cross-validation. We use
data up to (and including) 1986 by dividing the data into into two partitions: training and
testing (cross-validation). The training data contains the beginning of the sample: from
the beginning of the sample until January 1986. The testing data contains a single month:
February 1986. The results are similar for other testing periods in 1986. We train the model
using the training data for different configurations of the hyper parameters. We evaluate
the results in the testing data and pick the parameters that result in the best performance.
Notice that the testing data is not using information from future periods. We maintain the
hyper parameters chosen in 1986 for the whole sample, and we start our forecasts in 1987.
The model is then trained using rolling windows keeping the hyper parameters fixed.

We choose 2000 trees from the cross-validation procedure but remark that there is little
difference after 500. We use the recommended minimum node size of 5. We find that there
are no significant differences in the out-of-sample R2 and even a slight reduction after a depth
of seven so we choose that parameter. The result is explained in the following way: we train
using a rolling window of 12 months for a total of around 10,000 observations. Since each split
divides the data into two and we use a minimum node of 5, the maximum number of splits is
10 since % = 9.77. Figure A1, Figure A2, and Figure A3 show the cross-validation results
for the first-period two-quarters-ahead, three-quarters-ahead, and two-years-ahead earnings

forecasts.



The standard algorithm allows to specify the probability of a predictor being chosen at
each step. We take advantage of that and implement a two step procedure. First, we run
a standard random forest regression, where every variable has the same probability of being
chosen and obtain the variable importance for each of the features. We then run a different
random forest where at each split, besides considering the strict random subset, we include
the top n features from the first step up until that point in time for consideration at each
split. This gives the algorithm the option, but not the obligation, of considering the best
predictors from the first stage at each step. We find that adding this step increases the

accuracy of the algorithm significantly. We choose n = 5 based on cross-validation.



Figure A1l: Cross-validation Results of the number of trees in the two-quarters-ahead

forecast
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Notes: This figure plots the relation between the number of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R? for the two-quarters-ahead earnings forecasts in
1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.



Figure A2: Cross-validation Results of the number of trees in the three-quarters-ahead

forecast
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Notes: This figure plots the relation between the number of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R? for the three-quarters-ahead earnings forecasts in
1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a

forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.



Figure A3: Cross-validation Results of the number of trees in the two-years-ahead forecast
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Notes: This figure plots the relation between the number of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R? for the two-years-ahead earnings forecasts in
1986 February. The out-of-sample R? is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.



A3. Summary statistics of variables in Fama-MacBeth return re-

gressions

Table A2 reports the summary statistics of conditional biases in analysts’ one-quarter (BE_Q1),
two-quaters (BE_Q2), three-quarters (BE_Q3), one-year (BE_A1), and two-years (BE_A2)
ahead earnings forecasts. Average BE denotes the average of these conditional biases at the
multiple horizons. BE score denotes the arithmetic average of the percentile rankings on each
of the five conditional biases at different forecast horizons. We report the summary statistics
we use as control variables, which include the log of firm size (Lnsize), the log of book-
to-market ratio (Lnbeme), short-term reversal (Ret_1), medium-term momentum (Ret12.7),
investment-to-asset (IA),idiosyncratic volatility (IVOL), return volatility (RetVol), and share

turnover (Turnover).

Table A2: Summary statistics

Variable N Mean Std P1 Q1 Median Q3 Q99

Average BE 1137094 0.008 0.043 -0.007 0.000 0.002 0.006 0.106
BE Score 1137094  50.265  22.777 8.250 32.600 47.000 67.000  97.750
BE_Q1 1063631 0.005 0.036 -0.006 0.000 0.000 0.003 0.086
BE_Q2 987185 0.007 0.048 -0.016 0.000 0.001 0.005 0.103
BE_Q3 899907 0.008 0.052 -0.024 0.000 0.002 0.006 0.115
BE_A1 1099495 0.022 0.133 -0.008 0.001 0.004 0.014 0.305
BE_A2 921693 0.039 0.206 -0.074 0.003 0.013 0.037 0.450
Lnsize 1137080  13.085 1.878 9.304 11.732 12.948 14.297  17.970
Lnbeme 1029863  -0.772 0.859 -3.288  -1.241 -0.678 -0.209 1.040
Ret12_7 1077283 0.079 0.466 -0.691  -0.138 0.038 0.221 1.563
Retl 1136967 0.010 0.161 -0.387  -0.063 0.005 0.074 0.497
TIA 1049608 0.314 1.047 -0.424 0.001 0.090 0.259 4.518
IVOL 1136942 0.025 0.020 0.005 0.013 0.020 0.031 0.097
RetVol 1136397 0.030 0.022 0.007 0.016 0.024 0.037 0.111
Turnover 1135432 1.571 13.458 0.074 0.492 1.000 1.908 8.534

A4. Fama-MacBeth regressions with conditional bias in each fore-

cast horizon

Table A3 reports the Fama-MacBeth of monthly stock returns on conditional bias in each

forecast horizon, including one-quarter, two-quarters, three-quarters, one-year, and two-



years-ahead. (1) and (2) report the regression results with and without control variables
respectively. We find that for when only consider conditional biases as predictors, they neg-
ative predict stock returns. The predictability of two-quarters, three-quarters, and two-years
ahead forecast bias also remains robust after controlling for other return predictors.

Table A4 reports the value-weighted portfolio sorts on conditional bias in each forecast
horizon. Overall, we find consistent evidence that stocks with larger biases earn lower future
returns, though the relation between returns and one-year-ahead conditional bias seems to
be flat.

Table A5 shows that the return-predictability results from the cross-sectional regressions
and portfolio sorts also hold in time series regression against factor models such as the CAPM

and the Fama-French five-factors model.
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Table A4: Portfolios sorted on conditional bias

This table reports the time series average of excess returns (in percent) on value-weighted portfolios
sorted on the conditional bias at different forecast horizons. Panel A looks at the one-quarter-ahead
conditional bias. Panel B looks at the two-quarters-ahead bias. Panel C looks at the three-quarters-
ahead bias. Panel D looks at the one-year-ahead bias. Panel E looks at the two-years-ahead bias.
The sample period is 1987 to 2019.

Quintile 1 2 3 4 5 1-5
Panel A: One-quarter-ahead BE

Mean 0.70 0.59 0.69 0.63 0.37 0.33

t-stat 3.19 2.69 2.90 2.16 0.95 1.21

CAPM Beta 0.96 0.99 1.04 1.21 1.48 -0.52

Panel B: Two-quarters-ahead BE

Mean 1.36 0.70 0.44 0.22 -0.85 2.21

t-stat 5.91 3.21 1.82 0.79 -2.17 7.89

CAPM Beta 0.94 0.98 1.05 1.16 1.50 -0.56

Panel C: Three-quarters-ahead BE

Mean 1.16 0.67 0.46 0.05 -1.02 2.17

t-stat 4.51 2.95 1.91 0.17 -2.72 8.43

CAPM Beta 0.98 0.93 1.03 1.20 1.40 -0.42
Panel D: One-year-ahead BE

Mean 0.63 0.61 0.71 0.62 0.70 -0.07

t-stat 3.17 2.86 3.03 2.22 1.98 -0.27

CAPM Beta 0.87 0.93 1.00 1.16 1.28 -0.41
Panel E: Two-years-ahead BE

Mean 1.01 0.77 0.66 0.37 -0.65 1.66

t-stat 4.29 3.67 2.75 1.27 -1.62 5.51

CAPM Beta 1.00 0.93 1.03 1.21 1.51 -0.51
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Table Ab: Time series tests with common asset-pricing models

This table reports the regression of stock returns (in percent) on the long-short portfolio sorted
with the conditional bias in different horizons, on the CAPM, the Fama-French three-factor model
(FF3), and the Fama-French five-factor model (FF5). Panel A looks at the one-quarter-ahead
conditional bias. Panel B looks at the two-quarters-ahead bias. Panel C looks at the three-quarters-
ahead bias. Panel D looks at the one-year-ahead bias. Panel E looks at the two-years-ahead bias.
The sample period is 1987 to 2019. The t-statistics are adjusted by the White’s heteroscedasticity
robust standard errors.

Panel A: CAPM Panel B: FF3
Coef fi t-stat Coef fi t-stat

Panel A: One-quarter-ahead BE

Panel C: FF5
Coeffi t-stat

Intercept 0.67 2.81 0.73 3.33 0.28 1.23
Mkt _RF -0.52 -6.79 -0.45 -5.89 -0.29 -4.16
SMB -0.70 -7.48 -0.45 -4.20
HML -0.30 -2.74 -0.63 -4.23
RMW 0.85 5.46
CMA 0.35 1.36
Panel B: Two-quarters-ahead BE
Intercept 2.58 10.32 2.70 11.83 2.31 10.29
Mkt _RF -0.56 -7.16 -0.55 -7.34 -0.41 -6.09
SMB -0.53 -5.41 -0.32 -2.78
HML -0.55 -4.19 -0.84 -5.85
RMW 0.71 4.10
CMA 0.32 1.30
Panel C: Three-quarters-ahead BE
Intercept 2.44 9.94 2.51 10.39 2.17 9.00
Mkt _RF -0.42 -5.40 -0.39 -4.83 -0.26 -3.44
SMB -0.45 -4.62 -0.28 -2.65
HML -0.34 -2.53 -0.61 -3.41
RMW 0.61 3.63
CMA 0.34 1.34
Panel D: One-year-ahead BE
Intercept 0.20 0.86 0.26 1.23 0.05 0.21
Mkt _RF -0.41 -6.21 -0.34 -5.33 -0.25 -3.72
SMB -0.72 -5.63 -0.65 -5.55
HML -0.32 -2.68 -0.54 -3.42
RMW 0.27 1.61
CMA 0.38 1.61
Panel E: Two-years-ahead BE
Intercept 2.01 7.18 2.16 8.50 1.80 6.24
Mkt _RF -0.51 -6.44 -0.48 -6.54 -0.33 -3.95
SMB -0.66 -5.53 -0.48 -3.70
HML -0.56 -4.60 -0.83 -5.22
RMW 0.65 3.70
CMA 0.28 0.87
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A5. Cross-sectional return predictability: realized biases

As a placebo tests, we use the realized forecasts biases, defined as the difference between
analysts’ forecasts and the machine learning forecasts scaled by the share price from the
most recent period, to “predict” stock returns, though realized earnings are not available at
time t. A6 reports the Fama-MacBeth regression with individual realized bias in different
horizon. A7 reports the regressions with average realized biases, and A8 and A9 report the
mean return and alpha on the long-short portfolio strategy based on realized average biases.
Overall, we find very consistent results, stocks with larger forecast biases earn lower future

returns.

14
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Table A7: Fama-Macbeth regressions: realized forecast bias

Notes: This table reports the unfeasible Fama-MacBeth cross-sectional regressions of
monthly stocks’ excess returns on the realized bias. We define the realized bias as the
difference between analysts’ earnings forecasts and actual realized values, scaled by the
stock price from the most recent month. “Average BE” denotes the average of the realized
biases at different forecast horizons including one-quarter, two-quarters, three-quarters,
one-year, and two-years-ahead. “BE score” denotes the arithmetic average of the per-
centile rankings on each of the five realized biases at different forecast horizons. (1) and
(2) report the regression results with and without control variables, respectively. The ¢-
statistics are reported in parentheses. The sample period is 1987 to 2019. It is important
to remark that the realized bias are not available at time ¢ and the table is only presented
for bench-marking purposes.

Panel A: Average BE

Panel B: BE_score

(1) (2) (1) (2)

BE —0.1208 —0.1473 —0.0945 —0.1061
(—14.34) (—16.47) (—38.25) (—45.94)
Lnsize —0.0012 —0.0026
(—3.18) (—6.96)

Lnbeme 0.0019 0.0012

(3.15) (2.02)
Ret12_7 0.0026 —0.0019
(1.66) (—1.23)
Retl —0.0324 —0.0573
(=7.52) (—12.89)
IA —0.0006 —0.0004
(—2.09) (—1.57)
Ivol —0.1731 —0.1286
(-1.52) (—1.12)

Retvol 0.1693 0.1437

(1.41) (1.20)
Turnover —0.0006 —0.0002
(—1.26) (—0.36)

Intercept 0.0089 0.0251 0.0549 0.0940
(3.03) (4.56) (19.28) (16.42)

R? 0.0104 0.0655 0.0340 0.0917

16



Table A8: Portfolios sorted on realized bias

This table reports the time series average of excess returns (in percent) on value-weighted portfolios
formed on the average of the realized analyst’ forecast bias. We define the realized bias as the
difference between analysts’ earnings forecasts and actual realized values, scaled by the stock
price from the most recent month. Panel A looks at average conditional bias at different forecast
horizons including one-quarter, two-quarters, three-quarters, one-year, and two-years-ahead. Panel
B presents the sorts based on “BE score”, defined as the arithmetic average of the percentile
rankings on each of the five reazlied biases at different forecast horizons. The sample period is
1987 to 2019.

Quintile 1 2 3 4 5 1-5
Panel A: Average BE
Mean 2.97 1.30 -0.04 -0.98 -2.00 4.97
t-stat 11.77 6.10 -0.20 -3.61 -5.61 21.77
CAPM Beta 1.03 0.94 0.98 1.16 1.39 -0.36
Panel B: BE Score
Mean 2.87 1.40 0.14 -1.01 -2.59 5.46
t-stat 11.61 6.50 0.65 -3.94 -7.83 25.74
CAPM Beta 1.04 0.95 0.95 1.10 1.31 -0.27
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Table A9: Time series tests of long-short portfolios sorted on realized bias

This table reports the regression of stock returns (in percent) on the long-short portfolio sorted with
the realized bias, on the CAPM, the Fama-French three-factor model (FF3), and the Fama-French
five-factor model (FF5). We define the realized bias as the difference between analysts’ earnings
forecasts and actual realized values, scaled by the stock price from the most recent month. Panel A
looks at average conditional bias at different forecast horizons including one-quarter, two-quarters,
three-quarters, one-year, and two-years-ahead. Panel B presents the sorts based on “BE score”,
defined as the arithmetic average of the percentile rankings on each of the five conditional biases
at different forecast horizons. The sample period is 1987 to 2019. The ¢-statistics are adjusted by
the White’s heteroscedasticity robust standard errors.

5
LSPort,=a+» BiFF,+¢

=1

CAPM FF3 FF5
Coef fi t-stat Coef fi t-stat Coef fi t-stat

Panel A: Average BE

Intercept 5.20 23.24 5.25 23.70 4.90 21.11
Mkt_RF -0.36 -5.74 -0.33 -4.95 -0.19 -2.93
SMB -0.39 -4.53 -0.25 -2.87
HML -0.21 -1.87 -0.54 -4.26
RMW 0.52 4.56
CMA 0.51 2.29
Panel B: BE Score
Intercept 5.64 26.87 5.67 27.46 5.45 24.53
Mkt_RF -0.27 -4.50 -0.24 -3.76 -0.15 -2.35
SMB -0.37 -4.33 -0.29 -3.02
HML -0.16 -1.51 -0.37 -3.19
RMW 0.32 2.87
CMA 0.34 1.68
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A6. Cross-sectional return predictability: other robustness checks

In this section, we check the robustness of Fama-MacBeth regression results in Table 4 by
omitting stocks whose prices are lower than $5 and also by scaling the conditional biases with
total asset (per share) from the last fiscal year. Total assets are obtained from Compustat
(Item AT) Table A10 and A1l report the two robustness checks results respectively. Overall,

we find robust return predictability of conditional biases.

Table A10: Fama-Macbeth regressions: omitting stocks with price lower than $5

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ excess
returns on the conditional bias. “Average BE” denotes the average of the conditional biases at
different forecast horizons including one-quarter, two-quarters, three-quarters, one-year, and two-
years-ahead. “BE score” denotes the arithmetic average of the percentile rankings on each of
the five conditional biases at different forecast horizons. (1) and (2) report the regression results
with and without control variables, respectively. The ¢-statistics are reported in parentheses. The
sample period is 1987 to 2019. We omit stocks whose previous end of the month price is smaller
than 5.

Panel A: Average BE ~ Panel B: BE_score
(1) (2) (1) (2)

BE —0.6093 —0.7398 —0.0422 —0.0531
(—-12.36) (—16.04) (—12.41) (—19.47)

Lnsize —0.0015 —0.0025
(—4.81) (—7.94)

Lnbeme 0.0019 0.0022
(3.38) (3.83)

Ret12_7 0.0033 0.0021
(2.21) (1.47)
Retl —0.0187 —0.0210
(—4.60) (—5.21)
IA —0.0004 —0.0004
(—1.34) (—1.38)
Ivol —0.2269 —0.2247
(—2.04) (—2.01)

RetVol 0.1643 0.1935
(1.34) (1.59)
Turnover —0.0005 —0.0003
(-1.07) (—0.80)

Intercept 0.0102 0.0330 0.0264 0.0653
(3.95) (6.95) (11.20) (14.02)

R? 0.0105 0.0676 0.0148 0.0698
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Table A11: Fama-Macbeth regressions: scaling conditional biases by total assets per share

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ excess
returns on the conditional bias, which is defined as the difference between analysts’ earnings
forecasts and machine learning forecasts, scaled by the total asset from the most recent fiscal
period. “Average BE” denotes the average of the conditional biases at different forecast horizons
including one-quarter, two-quarters, three-quarters, one-year, and two-years-ahead. “BE score”
denotes the arithmetic average of the percentile rankings on each of the five conditional biases
at different forecast horizons. (1) and (2) report the regression results with and without control
variables, respectively. The t-statistics are reported in parentheses. The sample period is 1987 to
2019.

Panel A: Average BE  Panel B: BE score

(1) (2) (1) (2)

(Intercept)  0.0080 0.0206 0.0232 0.0597
(2.79) (3.78) (9.89) (11.69)
BE —0.0249 —0.0413 —0.0310 —0.0440
(—2.65) (—6.11) (—6.65) (—16.31)
Lnsize —0.0009 —0.0026
(—2.38) (—7.35)
Lnbeme 0.0006 —0.0012
(0.99) (—2.05)

Ret12_7 0.0047 0.0034

(2.92) (2.20)
Retl —0.0287 —0.0311
(—6.68) (=7.27)
TA —0.0007 —0.0007
(—2.52) (—2.55)
Ivol —0.1981 —0.1741
(—1.75) (—1.54)

Retvol 0.1221 0.1963

(1.03) (1.68)
Turnover —0.0006 —0.0003
(—1.29) (—0.64)

R? 0.0052 0.0571 0.0180 0.0623
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A7. Net stock issuances: robustness check

We check the robustness of results in Table 10 by matching average of conditional bias from

the past 24-12 months to net stock issuances of the fiscal year ending in ¢. Table A12 reports

this robustness check. Overall, we find consistent results that Managers of those companies

for which analysts’ upward biases are greatest take apparent advantage of these biases by

issuing stocks.

Table A12: Net stock sssuances and conditional bias

Panel A reports the time series average of net stock issuances of value-weighted portfolios sorted
on the conditional bias. “Average BE” denotes the average of the conditional bias at different
forecast horizons. “BE score” denotes the arithmetic average of the percentile rankings on each
of the five conditional biases at different forecast horizons. Panel B reports the Fama-MacBeth
regressions of firms’ net stock issuances on the conditional bias and control variables include
the log of firm size (Lnsize), the log of book-to-market ratio (Lnbeme), and earnings before
interest, taxes, and depreciation divided by total assets (EBITDA). The sample period is 1987
to 2019. We report the time-series average of slope coefficients associated with Newey-West

t-statistics.

Panel A: Net stock issuances of portfolios formed on BE

Quintile 1 2 3 4 5 5-1
Average BE 0.013 0.012 0.018 0.032 0.078 0.065
t-stat 1.98 1.46 3.15 4.1 6.29 4.56
BE score 0.010 0.012 0.022 0.033 0.071 0.062
t-stat 1.42 1.57 4.08 3.86 5.62 5.49
Panel B: Fama-MacBeth regressions
A: Average BE B: BE Score
(1) (2) (1) (2)
BE 1.7651 1.0731 0.1136 0.0717
t-stat 5.80 4.37 7.32 5.33
Lnsize -0.0039 -0.0019
t-stat -2.69 -1.02
Lnbeme -0.0199 -0.0206
t-stat -4.90 -5.26
EBITDA -0.1293 -0.1273
t-stat -4.83 -4.59
Intercept 0.0345 0.0809 -0.0125 0.0253
t-stat 8.22 3.35 -1.53 0.76
R? 0.0301 0.0835 0.0197 0.0786
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A8. Anomalies

In this study, we follow Hou et al. (2015) as close as possible to define anomaly variables.
Table A13 lists the significant anomalies documented in Hou et al. (2015). L-S ret (%) denotes
the monthly average return (in percent) of each of the 27 long-short anomaly strategies. The

sample period is July 1972 to December 2019, depending on data availability.

Table A13: List of significant anomalies

Anomalies Descriptions Sample period L-S ret (%)

Sue-1 Earnings surprise (1-month holding pe- 01/1974—12/2019 0.42
riod), Foster et al. (1984)

Abr-1 Cumulative abnormal stock returns (1- 07/1972—12/2019 0.89
month holding period), Chan et al.
(1996)

R11-1 Price momentum (11-month prior re- 07/1972—12/2019 1.23
turns, 1-month holding period), Fama
and French (1996)

BM Book-to-market  equity, Rosenberg 07/1972—12/2019 0.46
et al. (1985)

Dur Equity duration, Dechow et al. (2004) 07/1972—12/2019 1.27

E/P Earnings-to-price, Basu (1983) 07/1972—12/2019 0.39

CF/P Cash flow-to-price, Lakonishok et al. 07/1972—12/2019 0.33
(1994)

NO/P Net payout yield Boudoukh et al. 07/1972—12/2019 0.30
(2007)

I/A Investment-to-assets, Cooper et al. 07/1972—12/2019 0.45
(2008)

NOA Net operating assets, Hirshleifer et al. 07/1972—12/2019 0.50
(2004)

API/A Changes in property, plant, and equip- 07/1972—12/2019 0.41
ment plus changes in inventory scaled
by assets Lyandres et al. (2007)

IG Investment growth, Xing (2007) 07/1972—12/2019 0.34

CEI Composite equity issues, Daniel and 07/1972—12/2019 0.40
Titman (2006)

NSI Net stock issues, Pontiff and Woodgate 07/1972—-12/2019 0.59
(2008)

IvC Inventory changes, Thomas and Zhang 07/1972—12/2019 0.51
(2002)

IvG Inventory growth, Belo and Lin (2012) 07/1972—12/2019 0.34

OA Operating accruals, Sloan (1996) 07/1972—12/2019 0.26

POA Percent operating accruals, Hafzalla 07/1972—12/2019 0.33
et al. (2011)

PTA Percent total accruals, Hafzalla et al. 07/1972—12/2019 0.30
(2011)

GP/A Gross profits-to-assets, Novy-Marx 07/1972—12/2019 0.21
(2013)

ROE Return on equity, Haugen and Baker 07/1972—12/2019 0.72

(1996)
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ROA
NEI

0C/A
Ad/M

RD/M
OL

Average

continued from previous page

Return on assets, Balakrishnan et al.
(2010)

Number of consecutive quarters with
earnings increases, Barth et al. (1999)
Organizational capital-to-assets, Eis-
feldt and Papanikolaou (2013)
Advertisement expense-to-market,
Chan et al. (2001)

R&D-to-market, Chan et al. (2001)
Operating leverage, Novy-Marx (2010)

07/1972—12/2019
07/1972—12/2019
07/1972—12/2019
07/1972—-12/2019

07/1972—12/2019
07/1972—12/2019

0.57

0.30

0.26

0.46

0.78
0.23

0.47
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