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Abstract

Factors in prominent asset pricing models are positively serially correlated. Momentum strate-

gies profit by timing these factors; they pick up factor “ine�ciencies.” We show that, rather than

augmenting a model with the momentum factor, each factor can instead be made time-series

e�cient. Time-series e�cient factors earn significantly higher Sharpe ratios than the original

factors; they typically contain all the information found in the original factors; and an asset pric-

ing model with time-series e�cient factors, such as an e�cient Fama-French five-factor model,

prices momentum. Time-series e�cient factors also explain more of the covariance structure of

returns; they therefore appear to align more closely with the true SDF.
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1 Introduction

Most factors are positively autocorrelated: if a factor such as value or profitability has done well,

this good performance typically persists.1 Momentum stems from these autocorrelations: stocks

with high past returns load on factors that have done well and those with low past returns load on

factors that have done poorly (Ehsani and Linnainmaa, 2019). An investor who trades momentum

therefore indirectly times factors based on their past returns; and an asset pricer who wants to

describe the cross section of returns needs to add a momentum factor to the model to capture the

predictable time variation in the factor premiums.

In this paper we show that it is not necessary to augment an asset pricing model with a

momentum factor. The momentum factor serves a purpose only when the original factors are

“ine�cient,” that is, when they are time-series predictable. Instead of adding the momentum factor,

we can replace the original factors with their e�cient counterparts. A time-series e�cient factor

exploits the autocorrelation in factor returns; its weight on the original factor varies to minimize

variance while maintaining expected returns. We show that time-series e�cient factors earn higher

Sharpe ratios than the original factors and that they typically contain all the information found

in the original factors. Moreover, a time-series e�cient version of an asset pricing model captures

momentum without requiring a distinct momentum factor: Fama and French (2015) five-factor

model, for example, does not price momentum, but a model with e�cient versions of the same five

factors—a time-series e�cient five-factor model—does. Time-series e�cient factor models push

momentum back into the model’s individual factors.

We use the Ferson and Siegel (2001) procedure to generate time-series e�cient factors. This

procedure finds the mean-variance e�cient portfolio when an investor has conditioning information.

Because factors are autocorrelated, the conditioning information in our context is the factor’s past

1
See, for example, McLean and Ponti↵ (2016), Arnott et al. (2019), Ehsani and Linnainmaa (2019), and Gupta

and Kelly (2019).
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return. The optimal weight is a function of three constant parameters and one variable. The

constants are the factor’s unconditional mean, variance, and autocorrelation. The only variable is

the factor’s past return, which the investor uses to smooth expected returns; doing so improves the

Sharpe ratio. A surprising feature of the optimal weights is that they are nonmonotonic in past

returns (Ferson and Siegel, 2001). A factor that has done exceedingly well has a very high expected

premium. However, if so, the investor can lower the weight to reduce the strategy’s riskiness; the

investor earns a higher Sharpe ratio by swapping a high mean for lower volatility.

A useful feature of the Ferson-Siegel procedure is that an investor can estimate, ex-ante, the

scope and statistical significance of potential e�ciency gains: given beliefs about the factor’s un-

conditional moments, the investor can compute a test statistic for the expected improvement in its

Sharpe ratio. The standard value factor, HML, for example, has an annualized mean of 3.9% with a

standard deviation of 9.7%. An investor who holds this factor with a constant weight of one there-

fore earns a Sharpe ratio of 0.40. However, because this factor is significantly autocorrelated—the

first-order autocorrelation is 0.17 (t-value = 4.46)—an investor can vary the investment on HML

to preserve its premium while taking less risk. We estimate that implementing the Ferson and

Siegel program, designed here to exhaust the first-order correlation of HML, increases the Sharpe

ratio of HML by 0.32 units. We also predict this improvement to be statistically significant with

an expected z-value of 2.54. After implementing the problem, we can compare these predictions to

realized improvements: HML’s actual Sharpe ratio increases by 0.22 units, and this improvement

is significant with a z-value of 2.29. In a five-factor model regression, this e�cient factor’s alpha is

1.6% (t-value = 3.32). By contrast, in an e�cient five-factor model regression, the original HML’s

alpha is 0.7% (t-value = 0.84). That is, the e�cient HML contains all the information in the

standard HML and more. The time-series e�cient HML no longer carries an autocorrelation that

can be harvested because our procedure transforms its autocorrelation into a higher Sharpe ratio.
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A comparison between the standard and time-series e�cient five-factor models illustrates the

connection between factor e�ciency and momentum. Carhart’s (1997) UMD factor earns a monthly

CAPM alpha of 73 basis points (t-value = 4.48) from 1963 through 2018, and this factor’s five-factor

model alpha is 72 basis points (t-value = 4.44). This is also the finding of Fama and French (2016):

“No combination of the factors in [the five-factor model] explains average returns on portfolios

formed on momentum.” UMD’s alpha in the e�cient five-factor model, by contrast, falls by two-

thirds and has a t-value of 1.60. The reason for this improvement is that the predictable time

variations in the factor premiums in the Fama-French model alone are responsible for a significant

share of UMD’s profits; therefore, when we push this predictability back into the factors, UMD

turns largely redundant.

An investor does not need to know the factors’ precise unconditional moments to attain sig-

nificant time-series improvements. We show that even large estimation errors in means, variances,

and autocorrelations reduce e�cient factors’ Sharpe ratios relatively little. An investor who trades

under the weak assumption that factors are at least weakly autocorrelated gains significantly. At

the same time, we show that the average factor’s moments are quite stable over time; investors can

learn enough about autocorrelations from just a small sliver of data. Consistent with these findings,

we find that real-time implementations of e�cient factors perform very similar to the factors that

use the original factors’ full-sample moments.

Our results are not confined to the Fama-French five-factor model. We examine other factor

models—including the four-factor models of Novy-Marx (2013), Hou et al. (2015), and Stambaugh

and Yuan (2017)—and find the same pattern: time-series e�cient factors dominate standard factors.

Time-series e�ciency is not the only method for improving factors. Cohen and Polk (1998), Asness

et al. (2000), and Novy-Marx (2013) show that industry-neutral factors typically outperform the

standard factors, and Daniel et al. (2019) show that loadings-hedged factors have this same property.
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We show that time-series e�ciency complements these other methods; an investor can improve

already improved factors by conditioning out the autocorrelations. An industry-hedged HML, for

example, has a Sharpe ratio of 0.79, and a time-series e�cient version of this factor has a Sharpe

ratio of 0.94.

Time-series e�cient factors appear to align more closely with the true stochastic discount factor.

We follow Kozak et al. (2018) and extract principal components from the 15 anomalies used in

their study. The first principal component explains more of the variation in factor returns than

other components. This component can also be viewed as the aggregate risk premium: it increases

together with most factors and has a time-series correlation of 0.84 with an equal-weighted portfolio

of all 15 anomalies. We find that the e�cient five-factor model explains more of the variation in

the first PC than the standard five-factor model. Moreover, when the e�cient and original factors

are included jointly, the first PC loads positively on all e�cient factors and negatively on original

factors, suggesting that the e�cient factors better align with the aggregate risk premium. In fact,

the standard factors contain little information about this PC when we already condition on the

information found in the e�cient factors. These results are striking considering that the size,

value, asset growth, and investment anomalies—that closely relate to the original factors SMB,

HML, RMW, and CMA—directly feed into the first PC, yet they become insignificant in presence

of their e�cient versions. Time-series e�cient factors therefore seem to be more “systematic” in

the cross section of returns than their standard counterparts.

Why might e�cient factors have this property? Suppose that we have an unobserved factor

Ft for which we attempt to create a mimicking portfolio. If we create a factor F̂t, such as HML,

by sorting on characteristics, this factor’s loading against Ft may vary over time: F̂t = �tFt + "̂t,

where "̂t is noise unrelated to Ft. That is, there is no reason why, for example, a portfolio sort

with fixed 30th and 70th percentile breakpoints would yield a constant correlation against Ft. The
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correlation between F̂t and Ft may be low because �t is volatile. If factor F̂t’s risk premium varies

over time, we cannot say why: it could be that the risk premium associated with Ft, �t, varies—or

it could be that the premium is constant but that �t varies: �̂t = �t�. The autocorrelations found

in almost all factors indicate that some of the variation in �̂t is predictable. And the fact that the

e�cient factors appear more “systematic” than the standard factors appears to suggest that they

more closely track the true latent factors. That is, when we move from the standard factors to

e�cient factors, we might be stabilizing the factors’ betas against the true factors.

Our results are important from the viewpoint of investing. Because the momentum factor’s

five-factor model alpha is statistically significant, an investor who trades that model’s five factors—

the market, size, value, profitability, and investment factors—can earn a higher Sharpe ratio by

trading also momentum (Huberman and Kandel, 1987). Our point is that the investor can “trade

momentum” in three distinct ways. The first method is for the investor to trade momentum in

the cross section of stocks returns (Jegadeesh and Titman, 1993). This strategy, however, is just a

noisy version of factor momentum, and so the investor might as well trade “factor momentum” in

addition to the five factors: invest in the factors that have done well and shun those that have done

poorly (Ehsani and Linnainmaa, 2019). The third method, based on our results, is that investors

can distribute factor momentum back into the factors; by trading e�cient factors, the investor need

not be concerned with a distinct momentum factor.

2 E�cient factors with conditioning information

We use the Ferson and Siegel (2001) framework to construct time-series e�cient factors. The

problem that Ferson and Siegel examine relates to mean-variance e�cient portfolios: what are the

weights of the optimal portfolio when an investor is endowed with some conditioning information?

An investor might, for example, have a signal that indicates that an asset’s return distribution lies
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to the right relative to its unconditional distribution. The investor’s problem is to use the signal

to find the mean-variance e�cient portfolio, that is, the portfolio with the lowest volatility for any

level of expected return.

We first describe the general framework of Ferson and Siegel (2001) under the case of one risky

asset and one risk-free asset. We then apply this framework to factors with past returns as the

conditioning information. The Ferson-Siegel analysis starts from a single risky asset with a return

of

R̃ = µ(S̃) + ✏̃, (1)

in which R̃ is the excess return on the risky asset relative to the risk-free rate, S̃ is the information

in the predictor variable (signal), µ(S̃) is the expected excess return conditional on the signal, and

✏̃ is the random noise net of the signal with a mean of zero and a variance of �2
✏ (S̃).

The e�cient strategy invests x(S̃) in the risky asset and the remaining, 1 � x(S̃), in the risk-

free asset that earns a zero excess return. This strategy’s unconditional expected excess return and

variance are

µp = E
⇥
x(S̃) · µ(S̃)

⇤
, (2)

�2
p = E

h
x2(S̃) ·

�
µ2(S̃) + �2

✏ (S̃)
�i

� µ2
p. (3)

Ferson and Siegel (2001) show that, for a given conditional expectation µp, the portfolio that

minimizes �2
p invests x(S̃) in the risky asset:

x(S̃) =
µp

⇣
· µ(S̃)

µ(S̃)2 + �2
✏ (S̃)

, (4)
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in which ⇣ is a constant equal to

⇣ = E


µ2(S̃)

µ2(S̃) + �2
✏ (S̃)

�
. (5)

This weighting program produces a unique mean-variance e�cient portfolio (Ferson and Siegel,

2001). That is, no other portfolio obtains the same unconditional return at a lower unconditional

variance.

In this paper, we assume that the signal (S̃) is a function of past realized returns. We describe

an asset’s (or: a factor’s) return as following an autoregressive process,

R̃t = µ+ ⇢R̃t�1 + ✏t, (6)

with an unconditional mean and variance of µ/(1�⇢) and �2
✏ /(1�⇢2), respectively. We assume that

the agent knows how to predict the value of the next period’s excess return. If the agent has the

right model, the conditional expected excess return is µ(S̃) = µ+⇢R̃t�1. Under these assumptions,

the R2 of a regression of expected returns on the signal (past returns) is equal to

R2 =
�2
µ(S̃)

�2
µ(S̃)

+ �2
✏
= ⇢2. (7)

Using equations (2) and (4), the investor’s optimal weight on the risky asset in this setting is

x(St) =
µp

⇣

✓
µ(St)

µ(St)2 + �2
✏

◆
, (8)

where the constant ⇣ and the conditional expected return are equal to

⇣ =
SR2 + ⇢2

SR2 + 1
, (9)

µ(St) = µp (1� ⇢) + ⇢ rt�1. (10)
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In this formulation SR is the risky asset’s unconditional Sharpe ratio. We define time-series

e�cient factor as the portfolio that places the weight x(St) from equation (8) on the original

factor. A time-series e�cient HML, for example, would be the return on a portfolio that optimally

times HML given, in this derivation, its month t�1 return. In Appendix A.3 we derive the optimal

weight for an e�cient factor that conditions on the factor’s average return over the prior n months.

In our empirical analyses we use both month t�1 return and the average return from month t�12

to t� 1 as the conditioning information.

Kozak et al. (2019) suggest that reduced-form factor models do not adequately describe the cross

section of stock returns, but that the first few principal components extracted from the universe of

factors does. Let us call the first such principal component the dominant factor. We now extend

our framework to let a factor’s return in month t to depend not only its own past return, but also

on the dominant factor’s past return. That is, we assume that factors are positively autocorrelated

and positively cross-serially correlated with the dominant factor,

R̃f,t = µ+ ⇢R̃f,t�1 + ⇢0R̃0
t�1 + ✏t, (11)

where R̃0
t�1 is the dominant factor’s past return. The signal is now a function of both the fac-

tor’s own past return and the dominant factor’s past return: µ(St) = µ + ⇢R̃f,t�1 + ⇢0R̃0
t�1. In

Appendix A.4 we show that the optimal weight in this extended model is,

x(St) =
µp

⇣

✓
µ(St)

µ(St)2 + �2
✏

◆
, (12)

⇣ =
SR2 + ⇢2 + ⇢02

SR2 + 1
, (13)

µ(St) = µp (1� ⇢) + ⇢R̃f,t�1 + ⇢0R̃0
t�1. (14)
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Figure 1: The optimal weight function. An investor constructs a time-series e�cient factor by
predicting month t factor returns with month t � 1 returns. The optimal weight depends on the
factor’s mean, standard deviation, and first-order autocorrelation. We compute the average values
of these parameters using factor data from popular factor models (see text for details). This figure
plots the optimal weight invested in the factor, x(St) = x(rt�1), as a function of month t�1 return.
The returns on the x-axis are in percentage points; the weights on the y-axis in decimals, that is,
a value of 1.0 indicates a weight of 100%.

2.1 An example of the optimal weight function

What is the optimal investment policy in this setting, that is, how much should an investor

allocate to a factor when its return has been close to zero or when it has been very high? To

illustrate the optimal policy, we consider the case in which the signal is the factor’s return in the

prior month. The optimal weight depends on factor means, standard deviations, their ratio and, in

this formulation, first-order autocorrelations. For the factors in our sample, the average full-sample

monthly estimates of these parameters are approximately:

Mean: 0.35%

Standard deviation: 2.00%

First-order autocorrelation: 0.12
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From equation (9), ⇣, evaluated at these parameter values, equals ⇣ = 0.044. The weight

function for the “average” factor from equation (8) is then,

x(St) = x(rt�1) =
0.35

0.044

 
0.35(1� 0.12) + 0.12⇥ rt�1⇥

0.35(1� 0.12) + 0.12⇥ rt�1
⇤2

+
⇥
(1� 0.122) · 22

⇤

!
. (15)

The optimal weight x(St) = x(rt�1) is now only a function of past returns. We plot this function

in Figure 1. Because the factor’s unconditional premium is positive, an investor does not switch

between positive and negative weights at zero; it is only if the factor has lost more than 2.6% over

the prior month that the investor would find it prudent to short the factor.

A counterintuitive result that is apparent in Figure 1 is that the weighting program is not

monotone in signal: although the optimal weight initially increases in past return, the optimal

strategy begins to scale back as the past return becomes very high. Similarly, on the short side, the

investor begins to scale back the negative exposure when the factor’s past return is very low. The

reason for the nonmonotone behavior lies in the investor’s objective of minimizing variance for a

given average return. If the value of the signal is very high, the investor could make an aggressive

bet to earn a high expected return; but because the objective is, in e↵ect, to smooth returns, the

investor can a↵ord to invest less in the risky asset to lower the strategy’s riskiness. Ferson and

Siegel (2001, p. 973) describe this intuition as follows:

“By using the nonmonotone portfolio weight function, one could either attain a higher

unconditional expected return for the same standard deviation, or, alternatively, attain

a lower standard deviation for the same expected return. The extra expected return

that might be achieved by buying aggressively when the signal is high leads to additional

risk. In other words, if the objective is to get the smallest unconditional variance for a

given average return, then a signal that the expected return is unusually high presents
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an opportunity to reduce risk by purchasing a smaller amount of the risky asset, while

maintaining the portfolio average return.”

Ferson and Siegel (2001) draw a parallel between the optimal policy function and robust estimation;

how an agent should make decisions when he or she does not fully trust the model (Hansen and

Sargent, 2008). Bekaert and Liu (2004) confirm this conjecture; they show that the Ferson and

Siegel (2001) solution is robust to misspecifications in the conditional moments.

Ferson and Siegel (2001) show that the resulting portfolio earns the target expected return of

µp with a minimized variance of

�2
p = µ2

p

⇣1
⇣
� 1
⌘
. (16)

We can use this formula to compute, in the foregoing example, the improvement in the Sharpe

ratio that an investor can expect to attain by switching from the “standard factor” (that is, holding

the weight constant at x = 1) to the time-series e�cient factor. Let us first set µp equal to the

factor’s unconditional expected return, µp = 0.35%. Because the constant ⇣ from equation (9)

equals ⇣ = 0.044, the average factor’s minimized variance from equation (16) is 2.68. This value

corresponds to a standard deviation of 1.64% which, in turn, implies that the time-series e�cient

factor’s monthly Sharpe ratio is 0.35%
1.64% = 0.214. We thus expect the monthly Sharpe ratio for the

average factor to increase from 0.175 to 0.214, an improvement of 22%.

If we create a time-series e�cient factor that has the same unconditional mean as the original

factor, the improvement in the factor’s Sharpe ratio results purely from the lower variance. The

expected improvement in Sharpe ratio can be expressed as the ratio of the e�cient factor’s Sharpe
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ratio (SR⇤) to that of the original factor (SR),2

SR⇤

SR
=

⇣

1� ⇣
=

vuut1 +
⇣
⇢
SR

⌘2

1� ⇢2
. (17)

Equation (17) has several implications. First, moving from the standard factor to the time-

series e�cient factor, the improvement in the factor’s Sharpe ratio depends on the ratio of the

autocorrelation coe�cient to its original Sharpe ratio. When ⇢ is small, returns become unpre-

dictable, and the ratio in equation (17) converges to one. Because time-series e�ciency is about

exhausting autocorrelations, the gains evaporate when the time-series predictability vanishes. The

potential improvements are the largest for factors that are more autocorrelated, that have lower

Sharpe ratios, or that display both of these properties at the same time.

Second, equation (17) suggests that the improvements in Sharpe ratios may depend on the

frequency of rebalancing. Suppose, for example, that factor autocorrelations at monthly and daily

frequencies are similar; then, because daily Sharpe ratio is 1/
p
21 of the monthly Sharpe ratio,

the improvements in daily Sharpe ratio would be higher. That is, ignoring transaction costs, high-

frequency signals can yield greater improvements in factor e�ciency than low-frequency signals;

whether this happens in the data depends on the behavior of the autocorrelations when we move

across frequencies.

Third, in addition to being able to compute the expected improvement in a factor’s Sharpe

ratio given the factor’s properties—its mean, standard deviation, and autocorrelation—we can also

compute the expected z-statistic for the di↵erence in the e�cient and original factors’ Sharpe ratios.

Following Jobson and Korkie (1981), with the correction from Memmel (2003), the test statistic

2
We derive equation (17) in Appendix A.1 under the assumption that returns follow an AR(1) process, as in

equation (6); that the first-order autocorrelation is not too large, and that returns are homoskedastic.
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for the expected di↵erence in Sharpe ratios is

z =
�oµe � �eµop

✓
, (18)

where ✓ =
1

T

⇣
2�2

e�
2
o � 2�e�o�e,o +

1

2
µ2
e�

2
o +

1

2
µ2
o�

2
e �

µeµo

�e�o
�2
e,o

⌘
. (19)

Here, �e and �o are the standard deviations of the e�cient and original factors, respectively, µs

represent the mean returns, and �2
e,o is the squared covariance between the e�cient and original

factors. In the foregoing example, we set the e�cient factor’s mean equal to that of the original

factor, µe = µo, but the two means can di↵er. Because the variance of the e�cient factor can

be computed from equation (16), the only additional that we need to compute the value of the

z-statistic from equations (18) and (19) is the covariance between the e�cient and original factors.

We derive an approximation for this covariance in Appendix A.2.

The predicted z-value—the expected statistical significance of the potential boost in a factor’s

Sharpe ratio (Jobson and Korkie, 1981)—is a useful tool because Type I and II errors and test power

are intrinsic elements of hypothesis testing. Consider, for example, the task of trying to improve

a factor that earns a large Sharpe ratio and that is weakly autocorrelated. If we implement the

program, we may fail to reject the null hypothesis of no improvement; but only because the large

amount of noise in factor returns masks the economically small improvement. The predicted z-

statistic takes this lack of power into account; it gives us an idea of what might lie ahead.

3 Standard and e�cient five-factor model

3.1 Unconditional returns and time-series predictability

We start with the Fama and French (2015) five-factor model at monthly frequency to illustrate

the properties of time-series e�cient factors. After presenting the main results, we construct time-
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series e�cient factors using factors drawn from other popular asset pricing models and also construct

them for the five factors of the Fama-French model at daily frequency.

The factors in the Fama-French model are the market (MKTRF), size (SMB), value (HML),

profitability (RMW), and investment (CMA) factors. The four non-market factors are constructed

by sorting stocks at the end of each June into six portfolios by size and (i) book-to-market (HML),

(ii) operating profitability (RMW), and (iii) total asset growth (CMA). The breakpoint for size is the

NYSE median and the breakpoints for the other predictors are the 30th and 70th percentiles. Fama

and French compute value-weighted returns for the resulting portfolios and hold these portfolios

for a year until the next rebalancing date.

The value, profitability, and investment factors take long positions in the two high portfolios

(small, high profitability, or low investment) with equal weights and short positions in the two low

portfolios (big, low profitability, or high investment) also with equal weights. The size factor is

an equal-weighted average of three di↵erent long-short size factors. Fama and French (2015) first

compute the average return for the three small portfolios minus the average return for the three

large portfolios using the six portfolios that they create to construct the value factor. This size

strategy is the SMB factor from the original Fama and French (1993) three-factor model. They

then construct similar size factors using the portfolios underneath the profitability and investment

factors; by doing so, they create two slightly di↵erent size strategies. The SMB size factor in the

five-factor model is the average of these three alternative size strategies.

In Panel A of Table 1 we show the average returns and standard deviations for the factors in

the Fama-French five-factor model. The premiums on these factors range from 2.9 percent per year

(SMB) to 6.2 percent per year (MKTRF), and the t-values from 2.04 (SMB) to 3.67 (CMA). Much

of our analysis is about factor mean-variance e�ciency, a concept which relates to factors’ Sharpe

ratios. The Sharpe ratios, which are proportional to the t-values, range from 0.27 (SMB) to 0.49
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Table 1: Fama-French five-factor model: Average returns, standard deviations, and predictability

Panel A reports annualized means, standard deviations, Sharpe ratios, and t-values associated
with the average returns for the five factors of the Fama and French (2015) model. Panel B assigns
factors into terciles based on month t�1 returns and reports average month t returns (and t-values)
for these terciles. “Average” at the bottom of the table is computed by assigning all factors first
into terciles and then computing the average returns for each tercile. A tercile in month t is empty
if no factor gets assigned into it. At least one factor is in the lowest tercile in 586 months, in the
middle tercile in 539 months, and in the highest tercile in 588 months. Autocorrelations, reported
in the rightmost column, are between month t � 1 and t returns. Panel C is similar to Panel B
except that it assigns factors into portfolios based on prior one-year returns (from month t� 12 to
month t � 1) and computes the autocorrelations between the prior one-year and month t returns.
The data are monthly factor returns from July 1963 through December 2018.

Panel A: Factor means and standard deviations
Factor

MKTRF SMB HML RMW CMA
Mean 6.17 2.87 3.91 2.98 3.41
Standard deviation 15.22 10.48 9.70 7.47 6.92
Sharpe ratio 0.41 0.27 0.40 0.40 0.49
t-value 3.02 2.04 3.01 2.97 3.67

Panel B: Time-series predictability using month t� 1 returns
Month t� 1 return tercile Auto-

Factor Low Middle High H�L correlation
MKTRF 0.19 0.61 0.74 0.55 0.07

(0.52) (2.26) (3.32) (1.27) (1.82)

SMB �0.07 �0.02 0.81 0.88 0.06
(�0.35) (�0.10) (3.74) (2.94) (1.55)

HML �0.11 0.19 0.90 1.02 0.17
(�0.61) (1.21) (4.33) (3.64) (4.46)

RMW �0.15 0.11 0.80 0.95 0.16
(�0.92) (1.14) (5.21) (4.18) (4.13)

CMA �0.11 0.25 0.72 0.83 0.12
(�0.89) (2.08) (4.87) (4.26) (3.16)

Average �0.07 0.30 0.77 0.83
(�0.55) (3.65) (7.55) (5.30)

(CMA).

An investor who holds one of the factors of the Fama-French five-factor model earns the returns

characterized by the estimates in Panel A. Factors’ average returns, however, are predictable in the

time series. Ehsani and Linnainmaa (2019) show that most factors are positively autocorrelated:
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Panel C: Time-series predictability using prior one-year returns
Prior one-year return tercile Auto-

Factor Low Middle High H�L correlation
MKTRF 0.24 0.96 0.34 0.09 0.02

(0.67) (4.09) (1.24) (0.21) (0.53)

SMB �0.20 0.29 0.63 0.84 0.09
(�1.09) (1.56) (2.76) (2.82) (2.34)

HML 0.12 0.35 0.51 0.39 0.08
(0.56) (2.05) (2.76) (1.43) (2.19)

RMW 0.02 0.29 0.44 0.42 0.08
(0.11) (2.83) (3.05) (1.83) (2.16)

CMA 0.06 0.28 0.52 0.47 0.08
(0.44) (2.25) (3.48) (2.37) (2.08)

Average �0.06 0.43 0.59 0.65
(�0.50) (5.31) (5.12) (3.99)

the average factor’s return is typically significantly higher, both statistically and economically, after

a year of gains than losses. For example, if big stocks have outperformed small stocks from month

t � 12 to month t � 1, which means that the SMB factor has lost money, then SMB, on average,

typically continues to lose money in month t.

We illustrate this time-series predictability in Panel B by assigning factors into terciles by their

month t � 1 returns. We compute factors’ average returns and t-values associated with those

averages. The estimates show, for example, that when the size factor’s return in month t � 1 is

in the lowest tercile, then its average return in month t is �7 basis points. If, on the other hand,

its return in month t � 1 is in the highest tercile, this average is 81 basis points. The resulting

88-basis point di↵erence is significant with a t-value of 2.94. Di↵erences for four of the five factors in

the Fama-French model are statistically significant at the 5% level; although the di↵erence for the

market factor is 55 basis points, this di↵erence has a t-value of just 1.27. We also report monthly

first-order autocorrelations, ⇢(rft�1, r
f
t ), for the factors in the rightmost column; these estimates

range from 0.06 for the size factor to 0.17 for the value factor.

At the bottom of Panel B we measure the amount of predictability in the average factor of the
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Fama-French model. We first sort the five factors independently into terciles using their month

t� 1 returns and then compute the average returns for each tercile in month t. In one month, one

of the factors might be in the lowest tercile, three of the factors in the middle tercile, and the last

factor in the highest tercile. The average factor’s return, when in the lowest tercile, is �7 basis

points; but when in the highest tercile, it is 77 basis points. The high-minus-low di↵erence of 83

basis points is statistically highly significant with a t-value of 5.30.

The computations in Panel B show that factors’ month t returns are significantly predictable

using month t � 1 returns. This computation does not preclude the possibility that other vari-

ables, such as value spread (Cohen et al., 2003), factor volatility (Moreira and Muir, 2017)3, or

characteristics of net stock issuers (Greenwood and Hanson, 2012), also predict factor returns or

Sharpe ratios. To illustrate, in Panel C of Table 1 we follow Ehsani and Linnainmaa (2019) and use

prior one-year returns (from month t� 12 to t� 1) to predict month t returns. The predictability

estimates are smaller at this horizon but still typically statistically significant; for the five-factor

model’s average factor, the average return di↵erence between the high and low tercile factors is 65

basis points per month. This di↵erence is significant with a t-value of 3.99.

3.2 Time-series e�cient Fama-French five-factor model

We define a time-series e�cient factor as a dynamic version of the standard factor; the condi-

tioning information is either the factor’s prior performance, or both the factor’s and the dominant

factor’s prior performance. Because factors are positively autocorrelated, the e�cient factor places

a higher weight on the standard factor when the factor’s own prior return (or the dominant fac-

tor’s prior return) is high; and it shorts the factor when the factor has lost so much money that

its conditional risk premium turns negative. Figure 1 illustrates how the e�cient factor’s weight

3
See, also, Cederburg et al. (2019) and Liu et al. (2019).
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Figure 2: E�cient HML’s weight on HML. This figure shows time-series e�cient HML’s weight
on the standard HML. A time-series e�cient factor uses past-return information as conditioning
information to predict the standard factor’s return. In this figure, the conditioning information is
HML’s month t � 1 return. The investor is assumed to know the unconditional mean, volatility,
and first-order autocorrelation of the standard HML. The black line is the actual optimal weight
that varies from month to month based on rt�1, x(S̃) from equation (8) with rt�1 as the signal;
the blue line smooths these weights by computing the average over six-month window around each
month. The e�cient factor is set to have the same expected premium as the standard factor. The
data are monthly factor returns from August 1963 through December 2018.

depends on the factor’s prior one-month return.

Figure 2 shows how the e�cient value factor changes its weight on the standard HML over

the sample period from August 1963 through December 2018. In this figure and in Table 2, we

compute the optimal weight from equation (8) using the full-sample estimates for the standard

factor’s average return, volatility, and first-order serial correlation. We make this assumption,

which implies that the trader has perfect information about the full sample properties of the Fama-

French factors, only for illustration purposes. In the subsequent tests we let the trader assume that

all factors share the same parameters and, therefore, uses the same weight function for all of them.

In Section 3.3 we measure the sensitivity of e�cient factor’s Sharpe ratio to estimation uncertainty

in the parameter values.

Because the optimal weight in this analysis derives from HML’s month t�1 return, the optimal

weight often varies considerably from month to month. The e�cient factor’s average weight is 0.30.
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Although the optimal weight could exceed 100% (leverage) or fall below 0% (short), it does so

infrequently because of the nonlinear weighting program; the weight falls out of this range in less

than 25% of the months. In our implementation of time-series e�cient factors, we further bound all

weights: we set negative weights to 0% and those above one to 100%. This bounding can be viewed

as being about the trade-o↵ between maintaining maximum correlation or producing orthogonal

portfolios with respect to the original factor.4 The [0, 1] bounds ensure that the e�cient factor

maintains a high correlation with the original factor and has, at most, the same amount of leverage

as the original factor. A trader whose objective is to increase alpha with respect to the original

factor may let weights to vary without constraints (Ferson, 2019).

Figure 2 shows that the persistence in HML produces persistence in the optimal weight. The

blue line is the e�cient factor’s average weight on HML; in month t, we compute this average over a

window from month t�6 to month t+6. In the late 1990s, for example, when HML underperformed

for a relative long period of time, the optimal factor’s weight on HML first fell to zero and then

became and remained negative.

The purpose of our implementation of the Ferson-Siegel procedure is to improve factors’ Sharpe

ratios. If factor returns are time-series predictable, an investor can earn the same mean but with

lower risk by using past returns to time the factor. In Table 2 we take the five factors of the Fama-

French model and compare the standard factors to two versions of time-series e�cient factors. The

first set of time-series e�cient factors use, as in Section 2, month t � 1 returns as conditioning

information. The second set of time-series e�cient factors maintain the assumption that factor

returns follow AR(1) processes but takes the factor’s average return from month t � 12 to t � 1

as the signal. In Appendix A.3 we derive the optimal weight of the e�cient factor under this

assumption. Here, we assume the trader has correct estimates of factor means, variances, and

4
See Ferson (2019) for a detailed description of optimal orthogonal portfolios, maximum correlation portfolios,

and minimum-variance e�cient portfolios.

19



Table 2: Time-series e�cient five-factor model: Improvements in Sharpe Ratios

This table compares Sharpe ratios of the original factors of the Fama-French five-factor model to
their time-series e�cient counterparts. A time-series e�cient factor uses either month t� 1 return
or the average return from month t� 12 to t� 1 as conditioning information to predict the original
factor’s month t premium. The e�cient factor targets the same expected premium as the original
factor. They are constructed using the original factor’s unconditional means, volatilities, and first-
order autocorrelations. Given beliefs about the original factor’s moments, an investor can compute
predicted Sharpe ratio for the e�cient factor and the predicted z-value for the improvement in the
Sharpe ratio from equations (16) and (18). We display these predictions as definition “Predicted
e�cient factor” when month t� 1 is used as conditioning information. “Realized e�cient factors”
are created using either month t�1 return or the average month t�12 to t�1 return as conditioning
information; the Sharpe ratios and test statistics are computed from the actual factor returns. The
data are monthly factor returns from August 1963 through December 2018.

Factor Factor
definition Statistic MKTRF SMB HML RMW CMA
Original factor Sharpe ratio 0.41 0.27 0.40 0.40 0.49

Predicted e�cient factor Sharpe ratio 0.48 0.34 0.73 0.69 0.65
(Signal: rt�1) �Sharpe ratio 0.07 0.07 0.32 0.29 0.16

z-value 0.99 0.83 2.54 2.34 1.74
p-value 0.32 0.41 0.01 0.02 0.08

Realized e�cient factor Sharpe ratio 0.52 0.38 0.62 0.64 0.62
(Signal: rt�1) �Sharpe ratio 0.12 0.10 0.22 0.24 0.12

z-value 1.62 1.39 2.29 2.30 1.67
p-value 0.11 0.16 0.02 0.02 0.09

Realized e�cient factor Sharpe ratio 0.50 0.35 0.48 0.48 0.52
(Signal: rt�1,t�12) �Sharpe ratio 0.10 0.07 0.08 0.08 0.02

z-value 1.51 1.84 1.66 1.35 0.99
p-value 0.13 0.07 0.10 0.18 0.32

serial correlations at the {1,1} and {12,1} horizons.

We report the Sharpe ratios of the original factors on the first line of Table 2 for reference.

As discussed in Section 2, one of the benefits of the e�ciency framework is that an investor can

compute, ex ante, the expected e�ciency gain that can be attained by timing the factor. Using

Equation (17) and (18), we compute the expected Sharpe ratio of the time-series e�cient factor

(using month t � 1 return) and the expected z-value for the di↵erence between the e�cient and

original factors’ Sharpe ratios. These predicted improvements are based on the original factor’s
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mean, volatility, and first-order autocorrelation. The estimates show that an investor would expect

to obtain economically significant gains by timing all five factors of the Fama-French model. The

Sharpe ratios of the value (HML) and profitability (RMW) factors are expected to improve the

most because they are more autocorrelated than the others (see Panel A of Table 1); the predicted

improvements in these factors’ Sharpe ratios are 0.32 and 0.29.

Table 2 shows that all e�cient factors indeed outperform the original factors when we use month

t� 1 returns as conditioning information. The realized improvements in Sharpe ratios range from

0.10 (for SMB) to 0.24 (to RMW). The z-values for improvements completely align with predictions:

ex-ante, we expect e�cient versions of HML and RMW to deliver Sharpe ratio improvements that

are significant at the 5% level; we expect CMA to realize an improvement that is significant at the

10% level; and we expect MKTRF and SMB to earn improvements that “fail to reject the null of

any improvement” at the 10% level. All five predictions happen in data.

That we fail to statistically detect an e↵ect for MKTRF and SMB should not be interpreted

as the program not producing the intended e↵ect; it can mean that the tests on improvements for

MKTRF and SMB should be assessed at a di↵erent power. We did not expect the latter two to

produce, at the 10% level, statistically significant improvements since the start. Indeed, they both

have met expectations.

At the bottom of the table we examine the performance of e�cient factors that condition on

the factor’s average return from month t � 12 to t � 1. Although the improvements are not as

large as those at the monthly frequency—consistent with the results on time-series predictability

in Panels B and C of Table 1—all five factors still see improvements in their Sharpe ratios. The

improvements in the Sharpe ratios of the size (SMB) and value (HML) factors are statistically

significant at the 10% level.

Table 2 shows that the e�cient factors, constructed using either month t � 1 returns or the
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Table 3: Time-series e�cient five-factor model: Spanning tests

This table reports regressions in which the dependent variable is one of the factors of the e�cient
(Panels A, C, E, and G) or standard (Panels B, D, F, and H) five-factor model and the explanatory
variables are all factors of the other model. We do not report the slope estimates on the five
right-hand-side factors. The e�cient factors are constructed as in Table 2; each time-series e�cient
factor invests in the standard factor with a weight that is a function of either month t� 1 returns
(Panels A and B) or the average returns from month t�12 to t�1 (Panels C and D). The Gibbons
et al. (1989) tests at the bottom of each panel test the null hypothesis that the alphas of the five
factors are jointly zero. The data are monthly factor returns from August 1963 through December
2018.

Panel A: E�cient factors regressed on standard factors, signal: rt�1

Factor
MKTRF SMB HML RMW CMA

Alpha 2.20 1.58 2.09 1.59 0.90
(2.40) (2.67) (3.90) (3.76) (2.64)

F -value p-value
GRS test: ↵s jointly zero 5.38 0.01%

Panel B: Standard factors regressed on e�cient factors, signal: rt�1

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 4.07 0.37 0.10 0.70 0.67

(2.91) (0.45) (0.13) (1.17) (1.54)

F -value p-value
GRS test: ↵s jointly zero 2.74 1.86%

Panel C: E�cient factors regressed on standard factors, signal: rt�1 and r0t�1

Factor
MKTRF SMB HML RMW CMA

Alpha 2.28 1.81 2.08 1.51 0.80
(2.57) (3.11) (3.98) (3.67) (2.36)

F -value p-value
GRS test: ↵s jointly zero 6.12 0.00%

Panel D: Standard factors regressed on e�cient factors, signal: rt�1 and r0t�1

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 3.63 0.00 0.01 0.75 0.64

(2.52) (0.00) (0.01) (1.23) (1.39)

F -value p-value
GRS test: ↵s jointly zero 2.50 2.96%
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Panel E: E�cient factors regressed on standard factors, signal: rt�1,t�12

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 1.65 1.19 1.36 1.06 0.13

(1.86) (2.61) (2.85) (2.68) (0.74)

F -value p-value
GRS test: ↵s jointly zero 3.25 0.65%

Panel F: Standard factors regressed on e�cient factors, signal: rt�1,t�12

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 2.02 �0.46 0.32 0.62 0.27

(1.89) (�0.85) (0.57) (1.19) (1.36)

F -value p-value
GRS test: ↵s jointly zero 1.67 14.00%

Panel G: E�cient factors regressed on standard factors, signal: rt�1,t�12 and r0t�1,t�12

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 1.58 1.12 1.48 1.15 0.17

(1.86) (2.53) (3.10) (2.94) (0.92)

F -value p-value
GRS test: ↵s jointly zero 3.61 0.31%

Panel H: Standard factors regressed on e�cient factors, signal: rt�1,t�12 and r0t�1,t�12

Explanatory Factor
variable MKTRF SMB HML RMW CMA
Alpha 1.69 �0.42 0.25 0.43 0.25

(1.63) (�0.79) (0.45) (0.85) (1.20)

F -value p-value
GRS test: ↵s jointly zero 1.31 25.67%
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average return from month t� 12 to t� 1, earn higher Sharpe ratios than the original factors when

the trader has correct information about each factor’s full-sample properties. In all further tests,

we assume that the trader does not have perfect information; instead, the trader approximates and

uses the same weighting function for all factors,

x(St) = x(rt�1) =
0.35

0.044

 
0.35(1� 0.12) + 0.12⇥ rt�1⇥

0.35(1� 0.12) + 0.12⇥ rt�1
⇤2

+
⇥
(1� 0.122) · 22

⇤

!
. (20)

This weighting function assumes that all means, standard deviations, and autocorrelations are

0.35%, 2.00%, and 0.12. In addition to this specification, we also consider the three alternative

signals described above: (1) the signal is the average return over the prior year (see Appendix A.3);

(2) the signal combines the factor’s own prior month with the dominant factor’s prior month return;

and (4) the signal combines the factor’s own prior one-year return with the dominant factor’s prior

one-year return (see Appendix A.4)

In Table 3 we measure the incremental information contents of the two sets of factors relative

to each other. In Panel A, C, E, and G we regress e�cient factors against the five standard factors;

in Panels B, D, F, and H we regress the standard factors against the e�cient factors. The four

panels correspond to our four signal schemes.

The alphas from these regressions have two interpretations. First, following Barillas and

Shanken (2017), an insignificant alpha would indicate that the left-hand side factor would not

improve the asset pricing model represented by the right-hand side factors. For example, when the

standard SMB’s alpha is insignificant in Panel B’s regression against the e�cient five-factor model,

this finding suggests that the e�cient five-factor model could not be improved by augmenting it

with the standard SMB factor. Second, following Huberman and Kandel (1987), the alpha also

measures a factor’s worth from an investment viewpoint. An insignificant alpha indicates that
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an investor who already optimally trades the right-hand side factors to maximize the portfolio’s

Sharpe ratio would not benefit by adding the left-hand side factor to the investment opportunity

set. Again, in Panel B, the SMB factor’s insignificant alpha indicates that an investor who trades

the e�cient five-factor model would not have earned a statistically significantly higher Sharpe ratio

over the sample period by trading the standard SMB factor as well.

The estimates in Table 3 show that the time-series e�cient factors typically contain all the

information in the standard factors—and more. Panel A shows, consistent with Table 2, that all

time-series e�cient factors are incrementally informative about future returns even when control-

ling for the five-factor model. The Gibbons et al. (1989) test for the joint significance of the alphas

returns a p-value of 0.0001. By contrast, Panel B shows that, except for the market factor (MK-

TRF), the standard factors are not incrementally informative about future returns when controlling

for the e�cient five-factor model. Nevertheless, because of the significance of the market factor

(t-value of 2.91), the GRS test rejects the null that all alphas are jointly zero with a p-value of

1.86%.

Panels C and D of Table 3 show the results for time-series e�cient factors constructed using both

the factor’s own and the dominant factor’s past return. In regressions of the time-series e�cient

factors against the standard factors, alphas are on average larger than those of Panel A, as reflected

in a higher GRS F -value of 6.12. This indicates that the investor can expand the mean-variance

boundary by using both individual factor returns and aggregate factor returns jointly for portfolio

construction. Panel D, by contrast, shows that only MKTRF is informative when the regressions

are reversed. The GRS test for the joint significance of standard factor gives a p-value of 2.96%.

Panels E and F of Table 3, which construct the time-series e�cient factors using last year’s

returns, more starkly delineate between the standard and time-series e�cient factors. In regressions

of the time-series e�cient factors against the standard factors, all alphas are positive, those of the
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size (SMB), value (HML), and profitability (RMW) factors are statistically significant at the 1%

level, and the GRS test shows that these e�cient factors contain information not found in the

standard factors. This test returns a p-value of 0.65%. Panel F, by contrast, shows that all

standard factors are uninformative when the regressions are reversed; by defining the time-series

e�cient factors using prior one-year returns as the conditioning information, none of the standard

factors have any information incremental to that found in the time-series e�cient five-factor model.

The GRS test for the joint significance of the alphas returns a p-value of 0.14. When we form e�cient

factors using both the factor’s own and the dominant factor’s past returns (Panels G and H), the

alphas on the original factors tend even closer to zero. None of the alphas in Panel H are significant

at conventional levels and the p-value from the GRS test is 26%. Put di↵erently, an investor trading

the time-series e�cient factors would not have gained anything by trading the standard factors.

In short, our results suggest the Fama-French factors are, at times, ine�cient: when their

expected returns are low, they carry too much volatility. We can detect this unpriced volatility

ex-ante; using equation (17), we estimate that more than 20% of the time-series volatility of these

portfolios is not priced. The weight function dynamically adjusts exposure to minimize the unpriced

volatility which results in factors with lower risk but the same expected return, that is, “time-series

e�cient factors.” The results in Tables 2 and 3 confirm that all factors benefit from hedging out

the unpriced risk in factor returns. Every individual factor earns a higher Sharpe ratio than its

standard version, and the resulting e�cient five-factor model spans the standard five-factor model.

This improvement is also reflected in ex-post tangency portfolios of the original and e�cient factors.

The squared Sharpe ratio of the five-factor model is 1.16; the squared Sharpe ratios of the e�cient

five-factor models that use either the factor’s prior one-month or prior one-year returns are 1.41

and 1.31; and the squared Sharpe ratios of the models that use both the factor’s own and the

dominant factor’s prior one-month prior one-year returns are 1.51 and 1.38.
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Figure 3: Average returns, first-order autocorrelations, and standard deviations of the

Fama and French (2015) factors. This figure shows 10-year rolling average estimates of average
returns, first-order autocorrelation, and standard deviations for the five factors of the Fama and
French (2015) model. We estimate these parameters separately for each factor and then average
over the five factors. Average returns and standard deviations are reported in percentages per
month. The data are monthly factor returns from July 1963 through December 2018.

3.3 E�cient factors and the sensitivity to estimation errors

An investor or an econometrician constructing time-series e�cient factors needs estimates of

standard factors’ means, standard deviations, and autocorrelations. In Tables 2 and 3 we use

the full-sample estimates for these moments to construct the e�cient factors. Important questions

about e�cient factors relate to implementability and lookahead bias: can investors obtain meaning-

ful e�ciency gains from the Ferson-Siegel procedure without the benefit of hindsight? In Figures 3

and 4 and Table 4 we show that any estimation errors are largely inconsequential: the parameters

are relatively stable in the data; even if an investor makes a large error in the parameter estimates,

he or she still improves the Sharpe ratio substantially; and even if an investor näıvely estimates the

parameters from historical data, the improvements in Sharpe ratios are similar to those in Tables 2.

In Figure 3 we show the average monthly returns, average standard deviations of monthly

returns, and average first-order autocorrelations for the five factors of the Fama-French model. At

the end of every month starting in June 1973, we compute these moments for all five factors using
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ten years of historical data. We then take the averages of these moments over the five factors.

Figure 3 plots the resulting rolling averages.

Although factors’ autocorrelations, for example, vary over time, they remain positive over any

ten-year segment in the data. Up to 1997, the average factor’s first-order autocorrelation was

typically above 0.1; and after a period of lower (but positive) autocorrelations, they again rose

above 0.1 in 2010. The estimates in Figure 3 suggest that investor, in real time, could have made

reasonable inferences about the required moments using historical data alone.

Figure 3 does not address the question of how large estimation errors would be acceptable. That

is, if an investor estimates an autocorrelation of 0.2 when the true autocorrelation is just 0.10, would

the investor, in fact, be worse o↵ by holding the e�cient factor? First, any estimation errors in the

original factor’s mean are largely inconsequential. The problem that the e�cient factors solve is

isomorphic to the mean-variance analysis; if an investor assumes that the standard factor’s mean is

lower than what it truly is, then the investor merely searches for a factor with a lower mean—but

one that still lies on the e�cient frontier. That is, this “wrong” factor will still have the lowest

variance for its mean; although an investor could increase the Sharpe ratio by moving to the right

on the e�cient frontier, those gains would be relatively small.

Estimation errors in the other two parameters, first-order autocorrelation and standard devia-

tion, might, nevertheless, be more important. Figure 4 shows that they are not. In this figure we

assume that the investor uses the same parameters for all five factors of the five-factor model to

generate their e�cient counterparts. We compute these estimates using the full sample of returns

for all factors. Using these same estimates for all factors, for simplicity, the average e�cient factor

earns a Sharpe ratio of 0.64; this is an increase of 0.11 over the Sharpe ratio of the average stan-

dard factor. With these full-sample estimates on hand, we then vary the estimates of the first-order

autocorrelations (Panel A) and standard deviations (Panel B), construct new time-series e�cient
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Figure 4: The sensitivity of the e�cient factor’s Sharpe ratio to estimation errors in the

inputs. An investor constructs a time-series e�cient factor by predicting month t factor returns
with month t � 1 returns. The optimal weight depends on the factor’s mean, standard deviation,
and first-order autocorrelation. We compute these moments using the full sample from July 1963
through December 2018 for the five-factors of the Fama and French (2015) model. The average
original factor’s Sharpe ratio is 0.53 and, using these same sample moments to generate e�cient
versions of all five factors, the average e�cient factor’s Sharpe ratio is 0.64. Panel A shows the
e�cient factor’s Sharpe ratio as a function of the first-order autocorrelation estimate: what if,
instead of setting ⇢̂ = 0.12, which is the average across the five factors, we construct the e�cient
factor using some other value? Panel B is similar to Panel A except that it varies the estimate of
the factor’s standard deviation; the average volatility across the five factors is 2.9% per month.

factors, and compute the Sharpe ratios of the resulting not-quite-as-e�cient factors.

Figure 4 shows that even large estimation errors in the inputs do not have a meaningful e↵ect

on the average e�cient factor’s Sharpe ratios. In terms of autocorrelations, Panel A shows that the

e�ciency gains would evaporate only if the investor would believe that the factors are not positively
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Table 4: Real-time time-series e�cient factors

This table compares Sharpe ratios of standard factors in the Fama-French five-factor model to
time-series e�cient versions of these factors. A time-series e�cient factor uses month t� 1 return
as conditioning information to predict the original factor’s premium. The e�cient factor is set to
have the same expected premium as the standard factor. This table is similar to Table 2 except that
in this table the factors’ means, volatilities, and first-order autocorrelations are estimated using a
backward-looking ten-year rolling window. Because of the use of the ten-year window, the sample
begins in July 1973 and ends in December 2018.

Factor Factor
definition Statistic MKTRF SMB HML RMW CMA
Original factor Average return 6.17 2.87 3.91 2.98 3.41

Standard deviation 15.22 10.48 9.70 7.47 6.92
Sharpe ratio 0.41 0.27 0.40 0.40 0.49

E�cient factor Average return 4.19 2.06 4.34 3.22 2.80
(Signal: rt�1) Standard deviation 9.73 7.24 6.83 5.14 5.15

Sharpe ratio 0.43 0.29 0.64 0.63 0.54
� Sharpe ratio 0.02 0.01 0.23 0.23 0.05
z-value 0.26 0.14 3.03 2.74 0.77
p-value 0.80 0.89 0.00 0.01 0.44

autocorrelated. If the investor were to believe that the autocorrelation is far higher than what it is

in the data, that would not matter; it would just mean that the investor would hold a bit more of

the factor after it has earned positive returns and be more quick to short the factor when its past

return is negative. But, by behaving so, the investor does not lose much relative to the optimal

solution computed using the average in-sample correlation of approximately 0.1.

Panel B shows that the same is true for volatility. In fact, in terms of realized Sharpe ratios,

an investor would have been better o↵ by operating under the assumption that the average factor

is less volatile than what it actually was; and even if the investor had overestimated the riskiness

of the factors by more than 50%, the investor would have still created a set of e�cient factors with

an average Sharpe ratio of 0.6

Figures 3 and 4 suggest, first, that investor could have estimated the necessary parameters from

the data and, second, even if the investor had faced significant estimation errors, he or she would

still have observed economically significant improvements over the original factors. In Table 4 we
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consider a näıve investor who, at the end of each month, estimates the required parameters—

unconditional means, standard deviations, and first-order autocorrelations—using past ten years of

monthly data. This analysis plausibly sets a lower bound for the e�ciency gains that an investor

might have attained in real-time by using past return information to time the factors.

Similar to Table 2, we show the Sharpe ratios of the original five factors of the Fama-French

model and, in this case, the e�cient real-time counterparts of these factors. As before, and con-

sistent with Figures 3 and 4, the Sharpe ratios of all e�cient factors exceed those of the original

factors. The gains are small for the market and size factors but economically and statistically

highly significant for the value and profitability factors. The Sharpe ratios of the latter two factors

both increase by 0.23. These increases are almost the same as those reported in Table 2, 0.22 and

0.24, even though in that case the investor was endowed with the full-sample estimates of required

parameters.

4 Momentum and the standard and e�cient Fama and French

(2015) five-factor model

Jegadeesh and Titman (1993) show that a strategy that buys stocks that have earned higher

returns relative to other stocks over the past year continue to outperform stocks that have earned

relatively low returns. Asness et al. (2013) show that this momentum e↵ect is not specific to just

the cross section of equities; the same e↵ect exists also in, for example, fixed income, currency,

and commodity markets. Ehsani and Linnainmaa (2019) suggest that momentum is inextricably

linked to factors; they find that a factor momentum strategy—a strategy that is long factors that

have performed well and short those that have done poorly—explains all forms of individual stock

momentum. Their explanation is that cross-sectional momentum strategies implicitly time factors
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using their past returns: a group of stocks with high past returns, for example, must have factor

loadings such that the factors’ high and low returns transmit into stock returns. A strategy that

buys winning stocks and shorts losing stocks, in e↵ect, makes the bet that factors are autocorrelated.

Time-series e�cient factors redefine standard factors to push factor momentum back into the

individual factors. For example, using the average month t� 12 to t� 1 return as the conditioning

information, the average Fama-French factor’s one-year autocorrelation, ⇢(rt, rt�1,t�12), decreases

from 0.063 to �0.005. If cross-sectional momentum strategies indeed profit from the time-series

predictability found in the original factors, then the time-series e�cient factors should explain at

least a part of momentum profits; the point of the e�cient factors is that they already try to

exhaust such momentum profits.

In Table 5 we examine the connection between momentum and the standard and time-series

e�cient factors. In the first three regressions the dependent variable is the return on Carhart’s

(1997) momentum factor, UMD. Similar to, e.g., HML, this factor sorts stocks into six portfolios by

the market value of equity (using the NYSE median as the breakpoint) and stocks’ prior one-year

returns skipping a month (using the 30th and 70th NYSE percentiles as the breakpoints). The first

column shows that this factor earns a CAPM alpha of 73 basis points (t-value of 4.48) over the 1964

through 2018 sample period. Fama and French (2016) find, similar to their three-factor factor, that

no combination of the factors of the five-factor model can explain the momentum profits. Indeed,

our second regression shows that UMD’s five-factor model alpha is 72 basis points (t-value of 4.44).

In the third regression we explain momentum profits using the time-series e�cient five-factor

model. The alpha decreases by two-thirds to 25 basis points per month, and this estimate asso-

ciates with a t-value of just 1.60. The e�cient five-factor model’s ability to explain momentum

is perhaps surprising; according to the Ehsani and Linnainmaa (2019) mechanism, momentum is

the aggregation of the autocorrelations found in all factors. Therefore, even if that mechanism
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Table 5: Momentum and the standard versus e�cient Fama and French (2015) five-factor model

This table reports estimates from time-series regressions that measure the association between
momentum and the standard and e�cient versions of the Fama and French (2015) five-factor model.
In the first three models the dependent variable is Carhart’s (1997) momentum factor, which is
constructed by sorting stocks into six portfolios by firm size and their prior one-year return, skipping
a month. In the other three models, the dependent variable is a time-series momentum strategy that
trades the five factors of the Fama-French model. This strategy is long those factors in month t that
earned a positive average return from month t� 12 to t� 1, and short the factors that lost money.
The asset pricing model is the Sharpe (1964)-Lintner (1965) CAPM, the standard Fama-French
model, and an e�cient version of this model. A time-series e�cient factor uses month t� 1 return
as conditioning information to predict the standard factor’s return. The e�cient factor targets
the same expected premium as the standard factor; the weight is based on the original factors’
unconditional means, volatilities, and first-order autocorrelations. The sample period begins in
August 1964 and ends in December 2018.

Dependent variable
UMD FF5 Factor Momentum

Independent Fama-French FF5 Fama-French FF5
variable CAPM Standard E�cient CAPM Standard E�cient
Alpha 0.73 0.72 0.25 0.30 0.24 �0.01

(4.48) (4.44) (1.60) (4.52) (3.63) (�0.25)

MKTRF �0.12 �0.13 0.19 0.02 0.02 0.20
(�3.33) (�3.24) (3.96) (1.04) (1.01) (12.07)

SMB 0.07 0.22 0.10 0.19
(1.16) (3.52) (4.45) (8.56)

HML �0.51 �0.14 �0.04 0.18
(�6.60) (�1.53) (�1.33) (5.57)

RMW 0.24 0.92 �0.02 0.29
(3.09) (9.55) (�0.50) (8.53)

CMA 0.35 0.35 0.17 0.18
(3.05) (2.90) (3.56) (4.27)

N 665 665 665 665 665 665
Adjusted R2 1.5% 8.3% 13.3% 0.0% 5.1% 35.4%

holds in the data, there is no a priori reason for why the momentums present in the five factors

of the Fama-French model should exhaust the majority of the cross-sectional momentum profits.

Nevertheless, in the data, they do.

The other three columns in Table 5 have the return on the five-factor model factor momentum

strategy as the dependent variable. This strategy takes long and short positions in the five factors
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based on their average returns from month t�12 to t�1. Similar to the UMD factor, this strategy

rebalances monthly. If, for example, market has lost money but the other four factors are up, then

this time-series factor momentum strategy is short the market and long the other four factors.

Because all factors are zero-investment strategies, also the time-series factor momentum strategy

is self-financing. A strategy that rotates the five factors of the Fama-French model is profitable: it

earns a CAPM alpha 30 basis points per month (t-value = 4.52). Moreover, because this strategy

times factors based on their past returns, five-factor model itself cannot explain these profits; its

five-factor model alpha is 24 basis points (t-value = 3.63). The part of the alpha that the five-

factor model explains relates to the time-series momentum strategy’s net long investment in factors

(Goyal and Jegadeesh, 2017). The factor momentum strategy is more exposed to factors with

higher means, and the five-factor model regression removes this “static” component of the trading

profits.

Because the time-series factor momentum strategy relies on the same feature as time-series

e�cient factors, this strategy’s alpha in the time-series e�cient five-factor model is close to zero:

�1 basis point per month (t-value = �0.25). Taking the investment perspective, this result implies

that an investor who trades the time-series e�cient factors would find the factor momentum strategy

redundant; the time-series e�cient factors already reap the same predictable time variation in factor

premiums that the factor momentum strategy targets.

Five-factor model’s ability to price momentum is important from the model building perspective.

Starting with Fama and French (1996), the dual objective of new asset pricing models has been,

first, to capture cross-sectional variation in asset returns and, second, to do so by presenting the

most parsimonious model. The ideal is to have a model that does not include a separate factor for

each new anomaly discovered in the data. The spanning results in Table 5 represent a step towards

parsimony: instead of augmenting the five-factor model with a distinct momentum factor—either
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with UMD or, as in Ehsani and Linnainmaa (2019), with a time-series factor momentum strategy—

the original factors can be replaced with their time-series e�cient counterparts to capture most of

the momentum profits. The results in Table 5 do not suggest that the time-series e�cient five-factor

model captures all forms of momentum. It almost certainly does not: there are additional factors

unrelated to the five-factor model, those factors autocorrelate as well, and the e�cient five-factor

model, by definition, cannot price strategies that trade momentum in those omitted factors. At the

same time, the same argument about time-series e�ciency applies: instead of creating a separate

momentum factor, we can instead put momentum back into the original factors.

5 Are the results specific to the Fama and French (2015) model

and monthly returns?

5.1 Other factor models

In Table 6 we show that the results on time-series e�cient factors are not specific to the five-

factor model. We consider the following models:

1. The Daniel et al. (2019) hedged-factor model. The factors in this model are the same

as those in Fama and French (2015). Daniel et al. (2019) extend the characteristics-versus-

covariances result of Daniel and Titman (1997): holding characteristics fixed, factor loadings

do not meaningfully predict the cross section of stock returns. They construct a “hedge

portfolio” for each factor by using stocks’ predicted factor loadings. Their method seeks

portfolios that have net-zero characteristics but that maximally correlate with the original

characteristics-based factors. The five factors in their model are equal to the returns on the

original Fama-French factors minus the returns on these hedge portfolios.

2. The Stambaugh and Yuan (2017) four-factor mispricing model. The factors in this
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Table 6: Other factor models: Standard versus time-series e�cient factors

This table compares Sharpe ratios of standard factors to their time-series e�cient counterparts. A time-series
e�cient factor uses past returns as signals to remove unpriced volatility from the factor’s return. The signal
is, alternatively, (1) the factor’s own month t � 1 return, (2) the factor’s own month t � 1 return and the
average month t� 1 return of all other factors, (3) the factor’s own prior one-year return, or (4) the factor’s
own prior-one year return and the average prior one-year return of all other factors. SR(1) is the Sharpe
ratio for an e�cient factor that uses a single signal, its own past return, and SR(2) is the Sharpe ratio for an
e�cient factor that uses both signals. The e�cient factor is set to have the same expected premium as the
standard factor; for each of the four signal types, e�cient factors of all factors are created using the same
function. The asset pricing models are: (1) the Daniel et al. (2019) factors are loadings-hedged versions of
the Fama-French factors; (2) the Stambaugh and Yuan (2017) factors cluster 11 prominent anomalies into
two clusters; (3) the Hou et al. (2015) model is similar to the Fama-French model except that it rebalances
the profitability (ROE) factor monthly using quarterly Compustat data and drops the value (HML) factor;
(4) industry-neutral factors are the four non-market factors from the Fama-French model; stocks are sorted
into portfolios using characteristics demeaned by industry and industry exposures are hedged: if the factor
invests wi in stock i, it also invests �wi in the value-weighted industry portfolio into which i belongs; and
(5) the Novy-Marx (2013) factors are industry-neutral versions of the gross profitability factor and Carhart’s
(1997) UMD. The data are monthly factor returns from August 1963 through December 2018, except for
the Novy-Marx (2013) factors, for which the data end in December 2012.

Standard Signal(s): last month returns Signal(s): last year returns

Model factor SR SR(1) z-stat SR(2) z-stat SR(1) z-stat SR(2) z-stat
Daniel et al. (2019) MKTRF 0.56 0.90 3.68 0.85 3.18 0.92 4.50 0.89 4.27
loadings-hedged model SMB 0.41 0.46 0.69 0.47 0.84 0.46 1.50 0.47 1.59

HML 0.54 0.69 2.60 0.70 2.63 0.59 1.80 0.59 1.99
RMW 0.47 0.55 1.14 0.56 1.22 0.49 0.62 0.50 0.75
CMA 0.64 0.66 0.44 0.68 0.71 0.65 0.46 0.65 0.40

Stambaugh and Yuan (2017) MGMT 0.71 0.77 0.91 0.78 1.06 0.74 0.84 0.75 1.10
four-factor mispricing model PERF 0.62 0.71 1.10 0.69 0.87 0.61 -0.42 0.61 -0.49

SMB 0.54 0.59 0.67 0.59 0.58 0.59 1.07 0.59 1.12

Hou et al. (2015) ME 0.32 0.39 0.87 0.38 0.69 0.37 1.10 0.37 1.05
q-factor model I/A 0.70 0.76 0.88 0.78 1.09 0.73 0.81 0.74 1.16

ROE 0.75 0.92 1.92 0.89 1.62 0.77 0.51 0.78 0.76

Industry-neutral SMB 0.24 0.31 0.76 0.30 0.65 0.33 1.94 0.33 1.84
five-factor model HML 0.79 0.93 2.32 0.93 2.17 0.85 1.97 0.85 1.85

RMW 0.55 0.61 1.10 0.61 0.99 0.65 2.50 0.65 2.46
CMA 0.78 0.86 1.70 0.87 1.64 0.81 1.67 0.81 1.74

Novy-Marx (2013) PMU 0.68 0.73 0.98 0.73 0.78 0.70 1.07 0.71 1.50
four-factor model UMD 0.64 0.73 0.98 0.70 0.66 0.66 0.70 0.67 0.91

AVE. 0.58 0.68 1.34 0.68 1.26 0.64 1.33 0.64 1.41

model are the market and size factors and two clusters formed from 11 anomalies of Novy-

Marx (2013). Stambaugh and Yuan (2017) interpret the first cluster, MGMT, as containing

factors related to management actions and the second cluster, PERF, as containing factors
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related to firm performance.

3. Hou et al. (2015) q-factor model. The factors in this model are the market (MKT), size

(ME), profitability (ROE), and investment (I/A). The market, size, and investment factors are

the same as those in the Fama and French (2015) five-factor model except for some di↵erences

in sample restrictions and the definition of the universe of stocks. The profitability factor is

di↵erent. Hou et al. (2015) construct this factor by sorting stocks into six portfolios monthly

by firm size and the income-to-book value of equity computed from the quarterly Compustat

database.5 Novy-Marx (2015) suggests that this profitability factor, rather than presenting

pure profitability, performs well because it captures momentum in firm fundamentals. That

is, it derives its profits, in part, from the post-earnings announcement drift (Ball and Brown,

1968).

4. Industry-neutral five-factor model. We follow Novy-Marx (2013) and construct industry-

neutral versions of the four non-market factors of the Fama-French model using a two-step

process. The first step takes the 49 Fama-French industries and demeans each character-

istic within the industry before sorting stocks into portfolios. The second step creates an

industry hedge: if stock i’s weight in a portfolio is wi, the industry-hedge portfolio invests

�wi in the value-weighted industry portfolio into which stock i belongs. Industry neutral

factors are approximately balanced across industries in their long and short legs; and because

of the industry hedge component, industry-wide return shocks leave factors’ return largely

unchanged.

5. Novy-Marx (2013) four-factor model. The factors in this model are the market (MK-

TRF), size (SMB), profitability (PMU), and momentum (UMD) factors. The profitability

5
Hou et al. (2015) define income-to-book value of equity as the most recent quarter’s income before extraordinary

items to previous quarter’s book value of equity. They define a firm’s book value of equity as the quarterly version

of Fama and French’s book value of equity (Hou et al., 2015, p. 10).
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factor is constructed similar to that in the five-factor model except that, instead of being

defined as operating profits-to-book value of equity, Novy-Marx defines the signal as gross

profits-to-total assets. The size, profitability, and momentum factors are industry-neutral;

the two-step procedure is the same as that described above.

We create time-series e�cient versions of those factors that are unique to each model. For

example, although the Stambaugh and Yuan (2017) and Hou et al. (2015) include the market

factor, this factor was already in the five-factor model, and we therefore do not list it in Table 6.

Similar to Table 2, we construct time-series e�cient factors by using month t� 1 returns as the

only conditioning information, and compare the Sharpe ratios of the original and e�cient factors.

Table 6 shows that the Ferson-Siegel procedure consistently improves factor e�ciency: the Sharpe

ratios of all 17 factors improve. Although some improvements are economically and statistically

modest, this consistency across all factors stands out. The average improvement of 0.10 units

(from 0.58 to 0.68) or 17.2% is just below the 22% improved predicted by equation (17) under the

assumption that the agent has perfect information on the factor’s distribution properties. Instead,

the results in the second column of Table 2 are from a näıve strategy that uses the function in

equation (15) for all factors. E�cient factors constructed using other signals, like those that we

construct using last month returns, all earn higher Sharpe ratios with an exception of PERF whose

Sharpe ratio falls by 0.01 unit when we use past-year data as the signal.

The results in Table 6 show that time-series e�ciency, as a method for improving factor’s Sharpe

ratios, is distinct from and complementary to other improvement protocols. The Daniel et al. (2019)

factors, for example, are improved versions of the factors in the five-factor model: they enhance

Sharpe ratios by hedging out risk that appears not to be compensated in the cross section of stock

returns. Whereas the standard market factor’s Sharpe ratio, for example, is 0.41 (see Table 2),

the market factor in the DRMS model has a Sharpe ratio of 0.56. However, because the Daniel
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et al. (2019) procedure does not address time-series predictability in factor premiums, time-series

e�ciency generates additional improvements. The Sharpe ratio of the time-series e�cient DRMS

market factor, for example, is 0.87, and the di↵erence in the Sharpe ratios is significant with a

t-value of 3.67, the highest in Table 6. Although DRMS factors are cross-sectionally e�cient,

they are not time-series e�cient; the gains in Table 6 result from hedging out unpriced variation

in factor returns. Similarly, while Novy-Marx’s industry neutral HML outperforms the standard

HML—these two factors’ Sharpe ratios are 0.79 and 0.40—time-series e�ciency further increases

this factor’s Sharpe ratio to 0.94.

5.2 Daily data

In the analyses in Section 3 we constructed time-series e�cient versions of the five factors of the

Fama-French model at monthly frequency. We used either prior month or prior one-year returns

as conditioning information. Factor returns are time-series predictable at other frequencies as well.

We illustrate this result in Table 7 by constructing time-series e�cient Fama-French factors at daily

frequency.

Panel A of Table 7 shows that factors returns are significantly positively autocorrelated at the

daily frequency. The average daily return on the market factor, for example, varies from �8 basis

points to 12 basis points depending on whether this factor’s return was in the top or bottom tercile

the prior day. The 20-basis point di↵erence in the averages between the top and bottom terciles

is significant with a t-value of 8.96. The market factor is not an aberration. The average factor,

constructed by sorting all factors independently into terciles based on their day d�1 returns, earns

an average return of �5 points when in the bottom tercile, a return of 8 basis points when in the

top decile, and the di↵erence between the two has a t-value of 19.42. The daily autocorrelations,

shown in the rightmost column, are consistent with these tercile sorts. The value, profitability,
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Table 7: Daily Fama-French five-factor model: Time-series predictability and standard versus
e�cient factors

Panel A assigns Fama-French factors into terciles based on day d � 1 returns and reports average
day d returns (and t-values) for these terciles. “Average” at the bottom of the table is computed
by assigning all factors first into terciles and then computing the average returns for each tercile.
Autocorrelation, reported in the rightmost column is between day d � 1 and d returns. Panel B
compares annualized Sharpe ratios of standard time-series e�cient factors. A time-series e�cient
factor uses day d � 1 return as conditioning information to predict the original factor’s return.
The e�cient factor is set to have the same expected premium as the original factor; it uses the
unconditional mean, volatility, and first-order autocorrelation of the original factor. The data are
daily factor returns from July 1963 through December 2018.

Panel A: Daily time-series predictability
Day d� 1 return tercile Auto-

Factor Low Middle High H�L correlation
MKTRF �0.08 0.03 0.12 0.20 0.05

(�4.46) (2.62) (8.73) (8.96) (6.08)

SMB �0.03 0.00 0.05 0.08 0.04
(�3.75) (0.17) (6.43) (7.24) (5.30)

HML �0.06 0.01 0.10 0.16 0.12
(�7.50) (2.01) (11.52) (13.57) (14.31)

RMW �0.03 0.01 0.06 0.09 0.15
(�5.80) (3.03) (9.54) (11.06) (17.77)

CMA �0.04 0.01 0.08 0.12 0.14
(�7.60) (1.44) (12.39) (14.34) (17.04)

Average �0.05 0.01 0.08 0.13
(�10.55) (4.26) (17.24) (19.42)

Panel B: Sharpe ratios of standard and time-series e�cient factors
Factor Factor
definition Statistic MKTRF SMB HML RMW CMA
Original factor Sharpe ratio 0.40 0.24 0.51 0.56 0.59

E�cient factor Sharpe ratio 1.09 0.60 1.12 1.08 1.26
(Signal: rd�1) � Sharpe ratio 0.70 0.36 0.61 0.52 0.67

z-value 6.01 3.10 5.12 4.47 5.86
p-value 0.00 0.00 0.00 0.00 0.00

and investment factors, in particular, are significantly positively autocorrelated. These factors’

first-order autocorrelations range from 0.12 to 0.15.

Panel B of Table 7 constructs time-series e�cient factors by using this daily predictability in
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factor premiums to time each factor. Given the amount of predictability, all five e�cient versions

of the factors significantly outperform their standard counterparts. The annualized Sharpe ratio

of the market increases from 0.40 to 1.09; that of the size factor from 0.24 to 0.60; and so forth.6

The large improvements at the daily frequency are consistent with the prediction of equation (17):

because daily and monthly autocorrelations are very similar, but the daily Sharpe ratios are much

lower, the attainable gains in Sharpe ratios are significantly larger.

We caution against interpreting the results in Table 7 as suggesting that an investor can increase

his or her portfolio’s Sharpe ratio from 0.40 to 1.09 by switching from the market factor to the

time-series e�cient market factor. While an investor can earn the Sharpe ratio of 0.40 by following

a passive, near-buy and hold7 investment strategy, the time-series e�cient market factor calls

for daily rebalancing; the costs of daily rebalancing can easily negate all of the “paper e�ciency

gains.” At the same time, as we discuss in Section 7, the e�cient factors, despite any transaction

costs, serve a vital function: if a researcher benchmarks new factors against a model consisting of

ine�cient factors, these new factors may seem valuable—but only because they correlate with the

ine�ciencies found in the original factors. The daily time-series e�cient five-factor model raises

the bar for new factors by increasing the squared Sharpe ratio of the ex-post optimal portfolio to

4.
6
The Sharpe ratios of the standard factors in Panel B of Table 7 di↵er from those reported in Table 2 because

of the sampling frequency. In Table 2 a factor’s Sharpe ratio is its average monthly return divided by the standard

deviation of its monthly returns. In Table 7 it is the factor’s average daily return divided by the standard deviations

of its daily returns. The Sharpe ratios di↵er because of compounding and, more importantly, because factor returns

are autocorrelated; that is, the di↵erences in the Sharpe ratios of the daily and monthly factors in itself indicates that

the factors significantly autocorrelate at the daily frequency. A comparison of Sharpe ratios at di↵erent frequencies

is akin to the variance-ratio test of Lo and MacKinlay (1988).
7
Pedersen (2018) suggests that some caveats apply: an investor who wants to track the market needs to trade as

well because the “market” changes with the entry of new and the disappearance of old companies and when existing

firms issue new and repurchase old shares.
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Table 8: Are time-series e�cient factors more systematic?

This table reports estimates from time-series regressions in which the dependent variable is the
first principal component extracted from the long and short legs of the Novy-Marx and Velikov
(2015) anomalies. The first model is the standard Fama and French (2015) five-factor model; the
second model is the time-series e�cient five-factor model; and the third model is the union of these
two models. For each model we run two regressions, an unconstrained OLS and a constrained
regression (CSR) of the form b � 0. The time-series e�cient factors use the prior one-year return
as the conditioning information to predict the standard factor’s return. The e�cient factor targets
to earn the same expected premium as the standard factor; the e�cient factors use the full-sample
means, volatilities, and first-order autocorrelations of the standard factors. The two F -values at
the bottom of the table test the null hypothesis that the slopes on all standard factors or all e�cient
factors are jointly zero. In the first two models, these test statistics are distributed F (5, 599); in
the last model, both are distributed F (5, 594). The data are monthly factor returns from August
1963 through December 2018.

Model
(1) (2) (3) (4) (5) (6)

Model Factor OLS CSR OLS CSR OLS CSR
Standard FF5 MKTRF -0.03 0.00 -0.08 0.00

-2.92 0.00 -4.99 0.00
SMB 0.29 0.29 0.05 0.04

19.64 21.22 1.69 1.13
HML 0.25 0.24 0.06 0.00

11.98 11.67 1.32 0.00
RMW -0.05 0.00 -0.06 0.00

-2.22 0.00 -1.50 0.00
CMA 0.41 0.44 0.32 0.35

13.21 15.29 3.18 3.88

E�cient FF5 MKTRF 0.01 0.01 0.09 0.01
0.48 0.48 4.82 1.26

SMB 0.34 0.34 0.28 0.30
23.07 23.07 7.44 8.07

HML 0.35 0.35 0.30 0.35
15.88 15.88 6.39 16.38

RMW 0.03 0.03 0.09 0.05
1.21 1.21 1.69 1.98

CMA 0.46 0.46 0.06 0.07
16.29 16.29 0.57 0.72

N 605 605 605 605 605 605
adj. R2 71.6% 71.2% 78.0% 78.0% 79.3% 78.5%

F-test: Standard 305.6 7.7
F-test: E�cient 444.9 49.1
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6 Are time-series e�cient factors more systematic?

Kozak et al. (2018) consider an economy in which factor premiums are disjointed from the

underlying risks in the economy. In their model sentiment-driven investors induce mispricing, and

rational arbitrageurs trade against these mispricings for profit. The point of Kozak et al. (2018)

is that when the mispricings happen to align with high-eigenvalue principal components (PCs),

arbitrageurs face risk: they are unwilling to trade so aggressively as to eliminate all mispricings. As a

consequence, the largest factor premiums associate with the most “systematic” factors even though

the premiums do not stem from the risks themselves. Kozak et al. (2018) measure how “systematic”

di↵erent factors are by taking the long and short legs of the Novy-Marx and Velikov (2015) anomalies

and extracting the principal components from this set. Ordered by their corresponding eigenvalues,

the first PC captures most of the variation in anomaly returns; the second PC the second most;

and so forth.

We follow Kozak et al. (2018) and start with the same Novy-Marx and Velikov (2015) anomaly

data at the monthly frequency. We extract the first principal component and measure the extent to

which this component aligns with the original and the time-series e�cient five-factor models. Be-

cause all factors are designed to earn positive premiums, the first PC is (almost) equally increasing

in the returns on most factors; this PC can therefore also be viewed as the average risk premium in

the economy. The time-series e�cient five-factor model that we consider is the one that uses month

t� 12 returns as the conditioning information. In Table 8 we report estimates from regressions in

which the dependent variable is the first principal component and the model is either the standard

or e�cient five-factor model, or both models at the same time. We estimate these regressions both

as unconstrained regressions as well as constrained regressions with the restriction that the slopes

are nonnegative, b � 0.

An important “true” factor’s premium should correlate positively with the aggregate factor
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premia. Consider an extreme case when all returns are driven by a single factor. In this economy,

the correlation between the first principal component of the cross-section of returns and the factor

will be close to one. This is the idea for imposing restriction on the slope coe�cients.

The first column of Table 8 shows that the original five factors of the Fama-French model explain

71.6% of the time-series variation in the first principal component. The loadings on the size, value,

and investment factors stand out; each of these factors is significant with a t-value above ten; and a

test for the joint significance of the five factors returns an F -value of 305.6. The second column of

Table 8 shows that the restricted regression explains almost as much variation in PC1 as the OLS

regression. This is consistent with the conjecture that PC1 is increasing in the main factors and

excluding others has little to no impact on the model: excluding MKTRF and RMW does almost

nothing to the model’s explanatory power.8

The third column of Table 8 shows that the e�cient version of the same model performs at

least as well: the explanatory power increases to 78.6% and both the slopes and t-values of all

factors increase from those in the first column. The test statistic for the joint significance of the

five e�cient factors is now 444.9. Because all slopes in the unconstrained model are positive, the

estimates from the constrained model are identical to those from the unconstrained model.

Having set the stage, the fifth column runs a horse-race regression between the two models. How

informative are the standard factors of the five-factor model when we control for the e�cient factors,

or vice versa? Although the factors in the two models, by construction, correlate significantly, the

results clearly favor the e�cient five-factor model. Only one of the slopes on the original factors,

the investment factor (CMA), is positive and statistically significant, and that on the market is

negative and statistically significantly with a t-value of �4.88. All slopes on the time-series e�cient

factors, by contrast, are positive and three of them are statistically significant. The F -values of 7.7

8
The lack of significance for MKTRF goes back to the choice of the 15 long-short anomalies used to extract PC1.

The anomalies are designed to be market-neutral, thus rendering the market factor less important.

44



(standard factors) and 49.1 (e�cient factors) also indicate that it is the e�cient factors that do

most of the work in the combined model.

The sixth model excludes the standard MKTRF, HML, and RMW; the only relevant factor

from the standard FF5 is CMA with a coe�cient of 0.35 that is significant with a t-stat of 3.88.

Excluding almost all but CMA from the standard FF5 set has minimal impact on the regression’s

R2. The slopes on all e�cient factors remain positive and highly significant for SMB and HML,

and marginally significant for RMW. A comparison of the three models’ explanatory powers puts

this result into perspective: adding the e�cient factors on top of the standard model increases the

model’s explanatory power by 8.1 percentage points; but adding the standard factors on top of the

e�cient model increases the power by just 1.1 percentage points. Further, if we require our factors

to correlate positively with aggregate factor premium, we will be left with the e�cient five-factor

model with a tilt towards the standard CMA.

If we interpret the first PC as being the most important part of the economy’s SDF (Kozak

et al., 2018), then the results in Table 8 suggest that the e�cient five-factor model aligns more

closely with the true SDF than the standard five-factor model.

7 Conclusions

Asset pricing factors are positively autocorrelated. This autocorrelation appears to manifest as

momentum in the cross section of stock returns. Because di↵erent assets have di↵erent loadings on

the underlying factors, the momentum in the factors transmits into individual stock returns. One

way for an investor to exploit the time-series predictability in factor returns is to trade momentum

as a separate factor. In this paper, we show that, instead of doing so, an investor (or an asset pricer)

can instead redefine the factors to push the autocorrelations back into the factors themselves. We

call factors that exhaust their own time-series predictability time-series e�cient factors.
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We show that time-series e�cient factors outperform their original counterparts. In the Fama

and French (2015) five-factor model, all e�cient factors earn higher Sharpe ratios than the original

factors, and the time-series e�cient factors contain most—or all, depending on the definition of

the conditioning information—of the information found in the original factors. This result is not

specific to the five-factor model: time-series e�ciency improves Sharpe ratios of the factors in all

popular asset pricing models. Although some of the improvements in Sharpe ratios are modest,

many are both economically and statistically highly significant. Importantly, given an investor’s

beliefs about the original factor’s moments, an investor can compute ex ante the expected e�ciency

gain; if a factor’s premium is not time-series predictable, no gains can be expected, and there is

no need to bother. Because time-series e�ciency gains and momentum profits stem from the same

source, factor autocorrelations, the momentum factor becomes redundant when an investor or a

builder of asset pricing models switches from the original factors to time-series e�cient factors.

Our results are important from both investing and asset pricing perspectives. Because factor

autocorrelations are persistent, the increases in Sharpe ratios at the monthly frequency can cover

any trading costs. A reference to the cross-sectional momentum e↵ect buttresses this point: if

standard momentum strategies are profitable net of trading costs (Asness et al., 2014), then time-

series e�ciency must be profitable as well—the two e↵ects stem from the same source.

Moreover, from the perspective of Cochrane’s (2011) factor zoo, time-series e�cient factors serve

a vital purpose no matter what their transaction costs are. The time-series predictability present

in the original factors implies that the original factors are ine�cient; and that, without introducing

additional factors, these factors can be greatly improved. The corollary to this point is that when

researchers use the original factors as the benchmarks, they may easily mistake indirect e�ciency

gains for novel anomalies. An additional factor that they propose may seem to yield Sharpe ratio

improvements—but only because it correlates with the ine�ciencies present in the original factors.
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By using time-series e�cient factors in the asset pricing models, we can ensure that any proposed

factor serve a purpose other than extracting such indirect e�ciency gains.
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A Appendix

A.1 Deriving ⇣ and the optimal-to-original Sharpe ratio in equation (17)

Constant ⇣ is required for computing the optimal weight in the Ferson-Siegel procedure. In this

appendix we derive ⇣ of the weight function of the portfolio when the portfolio’s past return is used

to forecast future returns: R̃ = µ(S̃)+ ✏̃, in which µ(S̃) = µ+ ⇢R̃t�1. The portfolio’s unconditional

expected return is µp =
µ

1�⇢ . This portfolio’s Sharpe ratio is

SR =
µpq

�2
µ(S̃)

+ �2
✏(S̃)

. (A-1)

Because returns follow an AR(1) process, we can write

�2
µ(S̃)

�2
µ(S̃)

+ �2
✏(S̃)

= ⇢2. (A-2)

This ratio can be interpreted as the R2 from a regression of returns on past returns. In a univari-

ate regression R2 is the squared the correlation coe�cient, which in this case is also the AR(1)

coe�cient, ⇢. Rearranging and assuming homoskedasticity, �2
✏ (S̃) = �2

✏ , we have

�2
✏ =

✓
1

⇢2
� 1

◆
�2
µ(S̃)

. (A-3)
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We can now compute ⇣ as follows:

⇣ = E


µ2(S̃)

µ2(S̃) + �2
✏

�
= E


1� �2

✏

µ2(S̃) + �2
✏

�
= 1� �2

✏ E


1

µ2(S̃) + �2
✏

�
(A-4)

= 1� �2
✏

E
⇥
µ2(S̃) + �2

✏

⇤ +
var[µ2(S̃) + �2

✏

⇤

E[µ2(S̃) + �2
✏

⇤3 ⇡ 1� �2
✏

E
⇥
µ2(S̃)

⇤
+ �2

✏

= 1� �2
✏

µ2 + �2
µ(S) + �2

✏
= 1� �2

✏

SR2[�2
µ(S) + �2

✏ ] + �2
µ(S) + �2

✏

=
SR2 + ⇢2

SR2 + 1
.

The approximation on the second line uses Taylor series expansion and homoskedasticity in returns,

and the final result uses equation (A-3) to remove variances from the identity.9

We now derive equation (17). The mean and variance of the Ferson-Siegel portfolio are µp and

µ2
p(

1
⇣ � 1). The Sharpe ratio squared becomes:

SR⇤2 =
µ2
p

µ2
p(

1
⇣ � 1)

=
1

1
⇣ � 1

=
⇣

1� ⇣
=

SR2+⇢2

SR2+1

1� SR2+⇢2

SR2+1

=
SR2 + ⇢2

1� ⇢2
=

SR2(1 + ( ⇢
SR)

2)

1� ⇢2
. (A-5)

We can therefore write the ratio of the e�cient factor’s Sharpe ratio to the original factor’s Sharpe

ratio as

SR⇤

SR
=

s
1 + ( ⇢

SR)
2

1� ⇢2
, (A-6)

which is equation (17).

9
Using the Taylor series expansion around E[X] we have:

E

1

X

�
⇡ E


1

E[X]
� 1

E[X]2

�
X � E[X]

�
+

1

E[X]3

�
X � E[X]

�2
�
=

1

E[X]
+

var[X]

E[X]3

In our framework, the variance of X is the “vol of vol,” which is negligible under the homoskedasticity assumption.
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A.2 Covariance between the e�cient and original factors

Equations (18) and (19) give the test statistic z for the expected di↵erence in the Sharpe ratios

between the e�cient and original factors. In addition to the means and standard deviations, this

test statistic also depends on the covariance between the e�cient and original factors. We derive

an approximation for this covariance in this appendix.

Omitting subscripts, we let R denote the return to the original factor and x the e�cient factor’s

weight on the original factor. The return on the e�cient factor is thus xR and the covariance that

we need to compute is cov(xR,R). This covariance can be expressed as:

cov(xR,R) = E[xR2]� E[xR]E[R] (A-7)

= E[xR2]� E[R]
⇥
cov(x,R) + E[x]E[R]

⇤

= E[xR2]� E[R]cov(x,R)� E[R]2E[x].

We therefore have to compute E[R] = µp, E[x], cov(x,R), and E[xR2]. We start by computing

E[x]:

E[x] =
µp

⇣
E


µ(S̃)

µ(S̃)2 + �2
✏

�
(A-8)

=
µp

⇣


E[µ(S̃)] · E[ 1

µ(S̃)2 + �2
✏

] + cov
�
µ(S̃),

1

µ(S̃)2 + �2
✏

��

⇡ µp

⇣


µp

µ2 + �2
µ(S) + �2

✏

�
=

µp

⇣


µp

(�2
µ + �2

✏ )(1 + SR2)

�

=
SR2

1 + SR2
· 1
⇣
=

SR2

1 + SR2
· SR2 + 1

SR2 + ⇢2
=

SR2

SR2 + ⇢2
.

Equation (A-8) suggests that the e�cient factor’s average time-series exposure to a factor decreases

as the factor’s autocorrelation coe�cient increases. In other words, the strategy “trusts” the signal

(past returns) more than the unconditional factor’s Sharpe ratio when the autocorrelation coe�cient
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is high. By contrast, when the autocorrelation is low, the strategy prefers to invest less in the signal

and more in the factor to secure the unconditional Sharpe ratio provided by the factor.

We next compute cov(x,R):

cov(x,R) = cov

✓
µp

⇣

µ(S̃)

µ(S̃)2 + �2
✏

, µ(S̃) + ✏̃

◆
= cov

✓
µp

⇣

µ+ ⇢R̃t�1

µ(S̃)2 + �2
✏

, µ+ ⇢R̃t�1 + ✏̃

◆
(A-9)

=
µp

⇣
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✏
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=
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⇣
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✏ ) · E[
1
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✏

]

=
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⇢2(�2
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SR2 + 1

SR2 + ⇢2
· ⇢2 · 1

(1 + SR2)
=
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SR2 + ⇢2
.

The term E[xR2] can be computed as follows:

E[xR2] = E[x] · E[R2] + cov(x,R2) =
SR2

SR2 + ⇢2
· (µ2

p + �2
µ(S̃)

+ �2
✏(S̃)

) + 0 (A-10)
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.

Putting it all together, we can compute cov(xR,R) as follows:

cov(xR,R) = E[xR2]� E[R]cov(x,R)� E[R]2E[x] (A-11)

= µ2
p ·

SR2 + 1

SR2 + ⇢2
� µp ·

µp · ⇢2

SR2 + ⇢2
� µ2

p ·
SR2

SR2 + ⇢2

=
µ2
p(SR

2 + 1� ⇢2 � SR2)

SR2 + ⇢2
=

µ2
p(1� ⇢2)

SR2 + ⇢2
.

We use this covariance between the e�cient and original factors to compute the z-value for the

predicted improvement in Sharpe ratios.
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A.3 Time-series e�cient factor when the signal is the average of past n month

returns

In Section 2 we use the Ferson-Siegel method to create e�cient factors when the conditioning

information is the factor’s month t� 1 return. In this appendix we extend this framework. We use

the factor’s average return over the past n months as the signal. We maintain the assumption that

returns follow an AR(1) process,

E[Rt|St,n] = E[Rt|Rt�n,t�1] = �0 + �nR̃t�n,t�1. (A-12)

In Section 2 we used the same approach but only for the first lag; in this case, the expectation

simplifies to

E[Rt|Rt�1] = �0 + �1R̃t�1 = µ+ ⇢Rt�1. (A-13)

Under the AR(1) assumption, a factor’s return at time t can be described as a function of the other

lags using a recursive expansion:

R̃t = µ+ ⇢R̃t�1 + ✏t (A-14)

= µ+ ⇢(µ+ ⇢R̃t�2 + ✏t�1) + ✏t

= µ(1 + ⇢) + ⇢2R̃t�2 + ⇢✏t�1 + ✏t

= µ(1 + ⇢+ ⇢2) + ⇢3R̃t�3 + ⇢2✏t�2 + ⇢✏t�1 + ✏t

= · · · = µ
n�1X

k=0

⇢k + ⇢nR̃t�n +
n�1X

k=0

⇢k✏t�k.
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For an AR(1) process, the moments that we need are:

E[R̃t] =
µ

1� ⇢
, (A-15)

�2
R =

�2
✏

1� ⇢2
, (A-16)

cov(R̃t, ˜Rt�k) = ⇢k
�2
✏

1� ⇢2
. (A-17)

We define the signal as the average of the past n months of returns:

S̃t,n =
1

n

nX

k=1

˜Rt�k =
1

n

�
R̃t�1 + R̃t�2 + · · ·+ R̃t�n

�
. (A-18)

Our objective is to modify the factor weighting program to accommodate the signal of this average-

return form. We compute the expected value of the signal, its variance, and its covariance with

expected returns:

E[S̃t,n] =
1

n

�
n

µ

1� ⇢

�
=

µ

1� ⇢
, (A-19)

var(S̃t,n) =
1

n2


n

�2
✏

1� ⇢2
+

nX

i=1

nX

j=1
i 6=j

cov(R̃t�i, R̃t�j)

�

=
1

n2


n

�2
✏

1� ⇢2
+ 2

nX
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(n� k)⇢k
�2
✏

1� ⇢2

�
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=
�2
✏

n(1� ⇢2)


1 +

2

n

nX

k=1

(n� k)⇢k
�
,

cov(R̃t, S̃t,n) = cov

✓
R̃t,

1

n

�
R̃t�1 + R̃t�2 + · · ·+ R̃t�n

�◆
=

1

n

nX

k=1

⇢k
�2
✏

1� ⇢2
(A-21)

=
�2
✏

n(1� ⇢2)

nX

k=1

⇢k.
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The slope coe�cient from a regression of Rt on the signal, the average of past n months of returns,

is:

�n =
cov(R̃t, S̃t,n)

var(S̃t,n)
=

�2
✏

n(1�⇢2)

nP
k=1

⇢k

�2
✏

n(1�⇢2)


1 + 2

n

nP
k=1

(n� k)⇢k
� =

nP
k=1

⇢k

1 + 2
n

nP
k=1

(n� k)⇢k
. (A-22)

When the value of ⇢ is not too large, this expression is approximately equal to ⇢. This result means

that, regardless of the choice of lag, we can write:

E[Rt|St,n] = E[Rt|Rt�n,t�1] = �0 + �nR̃t�n,t�1 ⇠ µ+ ⇢Rt�n,t�1. (A-23)

The correlation coe�cient between the return Rt and the signal St,n equals,

⇢n =
cov(R̃t, S̃t,n)q
var(S̃t,n)

q
�2
R

=

�2
✏

n(1�⇢2)

nP
k=1

⇢k

s
�2
✏

n(1�⇢2)


1 + 2

n

nP
k=1

(n� k)⇢k
�q

�2
✏

1�⇢2

=

1p
n

nP
k=1

⇢k

s
1 + 2

n

nP
k=1

(n� k)⇢k
� .

(A-24)

The value of ⇢n decreases rapidly in the number of lags. This decrease, in turn, implies that

we should expect to be able to explain a smaller share of the variation in expected returns as we

increase the lag. That is, under the assumption of the AR(1) process, our ability to improve factors’

Sharpe ratios should weaken. In the data, however, factor returns do not appear to follow AR(1)

processes. Panel C of Table 1 shows that the prior one-year return correlates more with month t

returns than what Panel B together with an AR(1) assumption would suggest. In the data factor

premiums therefore seem “stickier” than what they should be under the AR(1) assumption.

We can compute the expected factor return conditional on the signal (the average past return),

and the correlation between the factor’s return and signal. This correlation, as before, is also the

R2 from a regression of the expected return on the signal. The e�cient factor’s time-t weight to
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the minimum-variance e�cient factor, conditional on average past n-month return, becomes:

x(St) =
µp

⇣

⇣ µ(St)

µ(St)2 + �2
✏

⌘
, (A-25)

⇣ =
SR2 + ⇢2n
SR2 + 1

, (A-26)

µ(St) = µp (1� ⇢) + �nRt�n,t�1. (A-27)

Compared to equation (8), ⇣ is smaller because ⇢n decreases rapidly in n. A smaller ⇣ is undesirable

from the e�ciency viewpoint because the expected reduction in variance is its function; thus, our

ability to improve Sharpe ratios falls. Put di↵erently, if factor returns indeed follow AR(1) processes,

the trader should use only the most recent returns to generate time-series e�cient factors; adding

more lags will reduce the explanatory power.

The average factor in the sample has unconditional sample moments of about ⇢ = 0.10. We

derive in equation (A-24) and equation (A-22) the correlation (between return at time t and average

past T month returns) as a function of the lag length, assuming returns are AR(1). However, studies

such as Arnott et al. (2019) and Ehsani and Linnainmaa (2019) find that factor returns exhibit

autocorrelation at every lag between 1 and 12, followed by reversal from lag 13 and after. according

to equation (A-24), AR(1) monthly returns with an autocorrelation coe�cient of 0.10 should result

in a correlation of less than 0.03 between month t and average return between t � 12 and t � 1.

But in data, this correlation is 0.09, almost as high as the AR(1) estimate, consistent with positive

serial-correlation at lags beyond 1, and the profitability of momentum strategies that use returns

over the {t�12, t�1} period as their signal. For this estimate to be consistent with a simple AR(1)

process, the AR(1) coe�cient should be as high as 0.30. We use the following weight program,

which assume some correlation beyond lag 1 for the program:10

10
Slightly more aggressive weighting schedules than the one used here give stronger results for the mean-variance

investor that uses last year return as her trading signal.
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x(St) = 8.01

 
0.28 + 0.173Rt�12,t�1

[0.28 + 0.173Rt�12,t�1]
2 + 3.99

!
. (A-28)

A.4 Time-series e�cient factors when a dominant factor is informative about

individual factor returns

We extend the model to accommodate information in a dominant factor’s prior return, that

is, in the first “level” principal component. This extension is motivated by Kozak et al. (2018),

who find that only the first few principal component obtained by long short anomaly portfolios are

informative about the cross section of returns out-of-sample. In this section we create time-series

e�cient factors under the assumption that individual factor returns are linear in their own past

returns and that of the dominant factor.

A factor return is described by the following model:11

R̃f,t = µ+ ⇢R̃f,t�1 + ⇢0R̃0
t�1 + ✏t, (A-29)

where R̃0
t�1 is the dominant factor’s past period return. We assume that R̃f,t and 0R̃0

t are not

correlated for analytical convenience. The investor’s signal in this case is a function of the factor’s

own past return and that of the dominant factor, µ(St) = µ+ ⇢R̃f,t�1 + ⇢0R̃0
t�1.

To compute Ferson-Siegel weights, we need factor means, variances, and the estimate of zeta.

Assuming that all factors’ unconditional returns are equal, unconditional expected return to factors

equals E[R̃t] = µ
1�⇢�⇢0 . If factors are uncorrelated with similar volatilities (�2

Rf
= �2

R), �2
R0 =

1
K

NP
f=1

�2
Rf

=
�2
R
N , and factor variances become �2

R = �2
✏

1�⇢2� ⇢02
N

.

We compute the ratio of the variance in expected returns explained by the signal. Previously,

11
This model can also be interpreted as a Spatial Autoregressive Model (SAR) in which a “neighbor” signal impacts

future levels of the factor.
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under AR(1) returns, this ratio was the squared autocorrelation coe�cient. If we estimate the

following regression for factor f ,

R̃f,t = a+ b1R̃f,t�1 + b2R̃0
t�1 + ✏t, (A-30)

then the ratio of
cov(b̂1R̃f,t�1, ˜Rf,t)

var( ˜Rf,t)
is the variation in factor returns explained by its past returns.

Moreover, the ratio of
cov(b̂2R̃0

t�1, ˜Rf,t)

var( ˜Rf,t)
is the variation in factor returns explained by the dominant

factor,

R2 =
cov(b̂1R̃f,t�1, R̃f,t) + cov(b̂2R̃0

t�1, R̃f,t)

var(R̃f,t)
. (A-31)

When the signal uses last month’s returns, b̂1 = ⇢ and b̂2 = ⇢0, and the R2 of the regression becomes:

R2 =
⇢cov(R̃f,t�1, R̃f,t) + ⇢0cov(R̃0

t�1, R̃f,t)

�2
R

=
⇢2�2

R + ⇢02�R�R0

�2
R

, (A-32)

where �R0 is the standard deviation of the dominant factor represented by the average return to all

uncorrelated factors with similar standard deviations (�R). Since we do not directly observe the

dominant factor, in our empirical analysis, we compute the dominant factor as the average return

of all factors excluding the factor that is being modeled. If the number of factors used to calculate

the dominant factor is N � 1, we can further simplify R2,

R2 =
⇢2�2

R + ⇢02
�2
Rp

N�1

�2
R

= ⇢2 +
⇢02p
N � 1

. (A-33)

In the five-factor model, for example, N � 1 is always four. It is reasonable to assume that using

more factors in computing the dominant factor creates a cleaner proxy, increasing the correlation

between the dominant factor and future individual factor returns—increasing N increases ⇢0. Also

given that we assumed factors are uncorrelated, the dominant factor’s volatility is decreasing in N ,
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which is reflected in the apparently negative relationship between R2 and number of factors used

in calculating the dominant factor. These two e↵ects—the increase in ⇢02 and the decrease in the

dominant factor’s volatility as N increases—may o↵set each other so that the regression’s R2 is

insensitive to the choice of the number of factors used to estimate the dominant factor. We thus

assume that this term is constant regardless of the number of the factors used; we conjecture that

there exists a ⇢00 that satisfies

⇢0(N)2 =
p
N � 1⇢002. (A-34)

This assumption means that R2 of the regression of an individual factor return on the lagged

dominant factor is always constant regardless of the choice of the factors used in creating the

dominant factor. We have

R2 = ⇢2 + ⇢002. (A-35)

According to equation (A-35), if returns follow the process in equation (A-30), adding the

dominant factor to the regression increases the R2 by an amount equal to the squared cross-serial

correlation between the dominant factor and the individual factor. With the new signal that

contains two components, µ(St) = µ+ ⇢R̃f,t�1 + ⇢00R̃0
t�1, we have

�2
✏ =

✓
1

⇢2 + ⇢002
� 1

◆
�2
µ(S̃)

. (A-36)

We can now compute ⇣:

⇣ = E


µ2(S̃)

µ2(S̃) + �2
✏

�
=

SR2 + ⇢2 + ⇢002

SR2 + 1
. (A-37)

where derivation is the same as before. The expected ratio of the e�cient factor’s Sharpe ratio to
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the original factor’s Sharpe ratio becomes

SR⇤

SR
=

s
1 +

�⇢+⇢00

SR

�2

1� ⇢2 � ⇢002
. (A-38)

What is a plausible value for ⇢002? In the data, when the signals use last month’s returns, the

estimates for this parameter range from 0.1% to 0.5% depending on the choice of factors; ⇢00,

therefore, typically lies between 0.03 and 0.07. An exception is the market factor, which always

negatively relates to past and future returns of all other factors.

Using equation (A-37), the investor’s optimal weight on the risky asset in this new setting is

x(St) =
µp

⇣

✓
µ(St)

µ(St)2 + �2
✏

◆
, (A-39)

where the constant ⇣ and the conditional expected return are

⇣ =
SR2 + ⇢2 + ⇢002

SR2 + 1
, (A-40)

µ(St) = µp (1� ⇢) + ⇢R̃f,t�1 + ⇢00R̃0
t�1. (A-41)

The only new required parameter for estimating the weight under this return process is ⇢00.

Similar to the results in Section 3.3, an investor does not need to know the exact parameter value

to use the information embedded in the dominant factor’s past returns; an investor who considers a

positive ⇢00 that is not too large can improve the typical factor’s Sharpe ratio. In our implementation,

for simplicity, we assume that ⇢00 = ⇢
2 .
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