Fearing the Fed: How Wall Street Reads Main Street

Tzuo-Hann Law† Dongho Song‡ Amir Yaron§

November 30, 2019

Abstract

We document a countercyclical sensitivity of the stock market to major macroeconomic news announcements. Stock prices react more to (either good or bad) announcement surprises when the economy is below its potential trend with the expectation of easing policy. Based on comprehensive regression analyses and a no-arbitrage asset pricing model with state-dependent dynamics of cash flows (dividends), interest rates (monetary policy), and risk premium (market price of risk), we argue that this cyclical pattern is driven by the procyclical nature of monetary policy expectation and countercyclical nature of market price of risk.

JEL Classification: G12, E30, E40, E50.

Keywords: Macroeconomic news announcements, cyclical return variation, monetary policy expectations, business cycle, news decomposition, risk premium.

*First draft: November 2016. We are grateful to Yakov Amihud, Susanto Basu, Anna Cieslak, Mikhail Chernov, Richard Crump, Taeyoung Doh, Greg Duffee, Jesus Fernandez-Villaverde, Peter Ireland, John Leahy, Sophia Li, David Lucca, Alberto Plazzi, Carolin Pflueger, Eric Swanson, Jenny Tang, Stijn Van Nieuwerburgh, Peter Van Tassel, and Jonathan Wright for insightful comments that improved the paper significantly. We thank participants at many seminars and conferences for helpful comments and discussions. Yaron thanks financial support from the Rodney White and Jacobs Levy centers. The views expressed in this paper are those of the authors’ and do not necessarily reflect the position of the Bank of Israel.

†Boston College; tzuo.law@bc.edu
‡Carey Business School, Johns Hopkins University; dongho.song@jhu.edu
§Bank of Israel & Wharton School, University of Pennsylvania; yarona@wharton.upenn.edu
1 Introduction

Stock investors can be nervous when macroeconomic news announcements (MNAs) suggest a strengthening economy. This happens when investors expect interest rate hike(s) accompanying better-than-expected MNAs. Conversely, investors may cheer bad news that causes the Federal Reserve (Fed) to conduct expansionary monetary policy. These are phenomena that might be explained by revision in expectations for interest rate offsetting cash flow news. However, explanations involving interest rate and cash flows alone do not always seem sufficient. For example, even when investors expect easing, bad news is sometimes bemoaned. An upward revision of investors’ expectation of risk premium, which is the third component in the trifecta of stock price drivers, might play an important role for this case. Important questions remain in the literature as to how strong this effect is, what the stylized facts are, and most importantly, how cash flows, interest rate, and risk premium channels affect prices in different economic states. We answer these questions in this paper.

We first establish stylized facts about the reaction of the stock market to major MNAs. Using nonlinear regressions of high-frequency stock returns on survey expectations of major MNAs from 1998 to 2017, we find a strong cyclical component in the sensitivity of stock prices to MNAs. Notable cyclical variations take place within expansions: The sensitivity is largest early in the expansion and essentially zero late in the expansion. Through various regression exercises, we argue that the cyclical reaction of the stock market should be understood in relation to where the economy is located relative to the trend, and how the market expects monetary policy. Our finding that stocks do not respond to MNAs when the economy is above its potential trend is broadly consistent with reports in the financial press. What is novel is that the stock return sensitivity to news can increase by a factor greater than two when the economy is below trend: good (bad) news for the economy is really good (bad) news for stock investors. With the established facts, we turn to the information content of MNA news.

1 We refer to the articles in the NY times released on July 11, 2019 or USA Today on Feb 2, 2018.
2 This is argued by a number of studies in the literature: good news lowers stock prices in expansions, but raises prices during recessions as the Fed becomes more reactive in expansions (see McQueen and Roley (1993), Flannery and Protopapadakis (2002), Boyd, Hu, and Jagannathan (2005), Andersen, Bollerslev, Diebold, and Vega (2007) among others).
3 We refer to CNN Money released in June 1, 2011 for details.
4 We estimate the time-varying sensitivity of intra-day stock futures returns to major MNA surprises from January 1998 to December 2017 using the nonlinear regression in Swanson and Williams (2014).
We decompose the sensitivity of stock returns to components attributable to cash flows, interest rate, and risk premia following Campbell and Shiller (1988) and Campbell (1991). We find that news about cash flows accounts for roughly 40% of the cyclicality of price responses. News about interest rate and risk premia combined explain about 60% of the cyclicality, and crucially, their relative importance depends on the phase of business cycle. Considering that we are measuring stock price responses around MNA releases which contain information about the cash flows of the economy, it is interesting to find interest rate and risk premia news featuring so prominently. We show that relative to one another, interest rate news dominate when the economy is above trend while risk premium plays a larger role when economy is below trend. Our results highlight potential state dependence of monetary policy and compensation for risk in the economy.

To help the reader interpret our empirical findings, we propose a no-arbitrage asset pricing model with state dependent dynamics of cash flows (dividends), interest rates (monetary policy), and market price of risk (risk premium). We assume that the dynamics of dividends is forward looking, which is similar to a standard New Keynesian IS curve, where a higher (lower) real rate, controlled by the Fed, lowers (increases) dividends through expectation. We allow the level of dividends, the target level of real rate, and the strength with which the Fed tries to pursue its goal—a stabilization policy coefficient—to differ across economic states. This way, the dynamics of cash flows and interest rates are interrelated and how much the Fed influences cash flow dynamics depends on economic states. The log pricing kernel is affine conditional on state with regime-switching market price of risk dynamics to model different levels of compensation for risks across states.

Having established the framework, we tie the analysis to the main types of news that arise in asset pricing models: news about cash flows, interest rate, and risk premium. Our model allows us to compute the revisions in expectations in a fully dynamic way. Thus, we can show how beliefs about transitioning into and out of various economic states can generate cyclicality in the response of the stock market. To achieve a certain level of sophistication yet maintaining parsimony, we assume that the economy evolves according

5We impose that the stock return sensitivity is the sum of the sensitivities associated with cash flows, interest rate, and risk premium with the latter two entering with a negative sign. For this, we re-estimate the benchmark nonlinear equation for stock futures returns jointly with the intra-day Eurodollar futures returns and changes in VIX index, which serve as empirical proxies for capturing news about interest rate and risk premium, respectively.

6Bikbov and Chernov (2013) consider a similar regime-switching no-arbitrage framework to study the Treasury bond yields.
to a four-state Markov chain, with each state paired with different levels of dividends, stance (aggressiveness) of monetary policy, and market price of risk. Specifically, the states are labeled as the “above trend & tightening (AT),” “above trend & neutral (AN),” “near trend & neutral (NN),” and “below trend & easing (BE),” respectively. The first letter indicates the phase of business cycle and the second letter denotes the stance of monetary policy. The economy usually stays in the NN state. We parameterize the dividend levels and monetary policy in each state to be consistent with our labels.\(^7\) We assume that the market price of risk is largest in the BE state, which is effectively a disaster state in our model, and smallest in the AN state.

In our calibrated model, expectations for monetary policy stabilization mitigate economic shocks in all states. The degree of mitigation will be larger if there is an immediate monetary tightening or easing expectation. The model also implies a negative comovement between news about cash flows and risk premium. For example, a positive dividend shock leads to an increase in news about cash flows and a decrease in news about risk premium. The larger the market price of risk is, the more volatile the swings in news about risk premium are. Thus, even in the presence of monetary policy stabilization expectation (interest rate news partly offsetting cash flows news), stock prices still strongly react to the dividend shock due to substantial movements in risk premium news, which mostly occurs in the below trend state. This effect does not materialize during the above trend state due to much smaller market price of risk. The model yields muted stock return response as a consequence of the Fed’s stabilization effect. In short, we believe that our model produces both the compositional shifts in news primitives and their effects on prices, as documented in the data.

We conduct counterfactual experiments to better understand the model’s mechanism, particularly the role of monetary policy stabilization in relation to risk premium. We first fix the real rate constant, removing interest rate news variation while keeping all else identical. Since monetary policy does not smooth out cash flows fluctuations any more, the same economic shock leads to a substantially larger negative comovement between

\(^7\)We impose the highest dividends level in the above trend state, during which monetary policy can be tightening or neutral. It is lower in the near trend with neutral policy state. Finally, dividends level is negative in the below trend state which is accompanied with easing monetary policy. The target level of real rate is largest for the AT state. We impose identical target rate for the remaining states. We normalize the policy reaction coefficient to zero to indicate that the neutral monetary policy neither stimulates nor restrains growth. The policy reaction is more aggressive during the BE state compared with the AT state (larger easing than tightening action). The asymmetric response of the Federal Reserve, e.g., more aggressive stimulation policy, is motivated by Cieslak and Vissing-Jorgensen (2017).
cash flows news and risk premium news even in the above trend state where the market price of risk is small. Therefore, the reaction of the stock return is counterfactually very large both during the above and below trend states. This experiment highlights the link between monetary policy, economic states, and compensation for risk.\footnote{See Drechsler, Savov, and Schnabl (2018) for a model in which monetary policy affects the risk premia.} Next, we fix the market price of risk while keeping all else identical to isolate its contribution to the overall return variations. It is important to understand that the monetary policy stabilization channel remains intact. We find that the reaction of stock returns to economic shocks are muted due to monetary policy stabilization effect in all states. The model does not generate meaningful variations in risk premium news in this case. Again, the implication is inconsistent with the return response that we document in the data (especially when the economy is below trend). This finding implies that the level of compensation for risks needs to be larger in the below trend state, which is a crucial element in reconciling the data pattern.

Our work builds on existing papers that argue the stock market’s reactions to announcement surprises may depend on the state of the economy. McQueen and Roley (1993) first demonstrate that the link between MNAs and stock prices is much stronger after accounting for different stages of the business cycle. Boyd, Hu, and Jagannathan (2005) use model-based forecasts of the unemployment rate and Andersen, Bollerslev, Diebold, and Vega (2007) rely on survey forecasts of major MNAs to emphasize the importance of measuring the impact of MNAs on stock prices over different phases of the business cycle.\footnote{We refer to the appendix A.5 for detailed comparisons with Boyd, Hu, and Jagannathan (2005).} While insightful, the findings of the previous literature were concentrated on comparing the stock market’s reactions in recessions to those in expansions.

Our paper is distinct from the existing works along three important dimensions. First, from a technical point of view, we substantially improve on the measurement and characterization of time-varying stock market response to news using a broader set of MNAs and high-frequency returns. Second, we provide new evidence that both cash flows and discount rate news contribute similarly to (high-frequency) return variations, and there are important compositional shifts within discount rate news across business cycles. The role of news about interest rate is elevated when the economy is above its potential trend while news about risk premium becomes more important during below trend periods. Third, the new stylized facts that we establish are tied to an overarching theoretical narrative,
i.e., our dynamic asset pricing model with state dependent dynamics of cash flows, interest rate, and market price of risk, facilitating interpretation of the facts.

We are also related to a literature exploring the relationship between various news announcements including the FOMC announcements and asset prices. Faust and Wright (2018) and Savor and Wilson (2013) find positive risk premia in bond markets for macroeconomic announcements. Lucca and Moench (2015) find the stock market on average does extremely well during the 24 hours before the FOMC announcement. Ai and Bansal (2018) explore the macro announcement premium in the context of generalized risk preferences.

Broadly speaking, our paper can be linked to a large literature that studies asset market and monetary policy, for example, Pearce and Roley (1985), Thorbecke (1997), Cochrane and Piazzesi (2002), Rigobon and Sack (2004), Bernanke and Kuttner (2005), Gurkaynak, Sack, and Swanson (2005a), Bekaert, Hoerova, and Lo Duca (2013), Neuhierl and Weber (2016), and Tang (2017) among others. Recently, Cieslak and Vissing-Jorgensen (2017) focus on a related and complementary channel by relating stock market movements to subsequent monetary policy action by the Fed. Nakamura and Steinsson (2017) estimate monetary non-neutrality based on evidence from yield curve and claim the FOMC announcements affect beliefs not only about monetary policy but also about other economic fundamentals. Paul (2019) estimates the time-varying responses of stock and house prices to changes in monetary policy and finds that asset prices have been less responsive to monetary policy shocks during periods of high and rising asset prices.

Lastly, we are related to papers that analyze the relative importance of cash flows versus discount rates. Campbell and Shiller (1988), Campbell (1991), Campbell and Ammer (1993), Cochrane (2011) among others claim variations in discount rate news account for most of the variations in asset prices. Other papers ascribe a significant role to cash flows news in variations of asset prices, such as Bansal and Yaron (2004), Bansal, Dittmar, and Lundblad (2005), Lettau and Ludvigson (2005), Hansen, Heaton, and Li (2008), Schorfheide, Song, and Yaron (2018) among others. A recent paper by Diercks and Waller (2017) provide complementary evidence to our findings that the Fed plays a key role in how equity markets interpret news about cash flows and discount rate, but their focus is on the effect of changes in personal taxes.
2 The Reaction of the Stock Market to News

2.1 Data

Macroeconomic news announcements (MNAs). MNAs are officially released by government bodies and private institutions at regular prescheduled intervals. In this paper, we use the MNAs from the Bureau of Labor Statistics, Bureau of the Census, Bureau of Economic Analysis, Federal Reserve Board, Conference Board, Employment and Training Administration, and Institute for Supply Management. We use the MNAs as tabulated by Bloomberg Financial Services. Bloomberg also surveys professional economists on their expectations of these macroeconomic announcements. Forecasters can submit or update their predictions up to the night before the official release of the MNAs. Thus, Bloomberg forecasts could in principle reflect all available information until the publication of the MNAs. Most announcements are monthly except initial jobless claims (weekly) and GDP annualized QoQ (quarterly). With the exception of industrial production MoM which is released at 9:15am, all announcements are released at either 8:30am or 10:00am. We consider all announcements released in between January 1998 to December 2017. Details are provided in the appendix. For robustness, we also consider Money Market Services (MMS) real-time data on expected U.S. macroeconomic fundamentals to measure MNA surprises. None of our results are affected.

Standardization of the MNA surprises. Denote MNA i at time t by MNA_{i,t} and let $E_{t-\Delta}(MNA_{i,t})$ be proxied by median surveyed forecast made at time $t-\Delta$. The individual MNA surprises (after normalization) are collected in a vector X_t whose ith component is

$$x_{i,t} = \frac{MNA_{i,t} - E_{t-\Delta}(MNA_{i,t})}{\text{Normalization}}.$$

The units of measurement differ across macroeconomic indicators. To allow for meaningful comparisons of the estimated surprise response coefficients, we consider two normalizations. The first normalization scales the individual MNA surprise by the cross-sectional standard deviation of the individual forecasters’ forecasts for each announcement. The key feature of this standardization is that the normalization constant differs across time for each MNA surprise. The second normalization scales each MNA surprise by its standard deviation taken over the entire sample period.\(^{10}\) The key feature of the second approach

\(^{10}\)This standardization was proposed by Balduzzi, Elton, and Green (2001) and is widely used in the
is that for each MNA surprise, the normalization constant is identical across time. Thus, this normalization cannot affect the statistical significance of sensitivity coefficient. We find that the two different approaches yield highly correlated surprise measures. We use the first normalization as our benchmark approach because it scales the surprises by the disagreement making them economically interpretable. Our results are robust across both methods. Details are provided in the appendix.

Financial data. We consider futures contracts for the asset prices in our analysis: S&P 500 E-Mini Futures (ES), S&P 500 Futures (SP), and Eurodollar futures (ED). Futures contracts allow us to capture the effect of announcements that take place at 8:30am Eastern time before the equity market opens. This exercise would not be possible if we relied solely on assets traded during regular trading hours. We use the first transaction in each minute as our measure of price and fill forward if there is no transaction in an entire minute. We also consider SPDR S&P 500 Exchange Traded Funds (SPY) to examine robustness of our findings. Asset prices are obtained from TickData. We use S&P 500 Volatility (VIX) index from the Chicago Board Options Exchange (CBOE). We use survey forecasts from the Blue Chip Financial Forecasts. We take the price-to-dividend ratio from Robert Shiller’s webpage.

Macroeconomic data. All macroeconomic data are from the Federal Reserve Bank of St. Louis. We also use survey forecasts from the Survey of Professional Forecasters. For the purpose of capturing the episodes in which the economy is significantly above (below) its potential level, we use the real-time civilian unemployment rate and natural rate of unemployment (NROU) data from Federal Reserve Bank of St. Louis and Federal Reserve Bank of Philadelphia to construct unemployment rate gap. We also use the Baker-Bloom-Davis Economic Policy Uncertainty Index.

2.2 Estimating the time-varying sensitivity of returns to news

To measure the effect of the MNA surprises on stock prices, we take the intra-day future prices and compute returns r_t in a Δ-minute window around the release time. For our benchmark results, we use the ES contract to measure stock returns because it is most actively traded during the MNA release times. To determine which MNAs impact returns,
we estimate the following nonlinear regression over τ-subperiod suggested by Swanson and Williams (2014)

$$r_{t-\Delta t}^{t+\Delta h} = \alpha^\tau + \beta^\tau \gamma' X_t + \epsilon_t$$

(1)

where the vector X_t contains various MNA surprises; γ measures the sample average responses; ϵ_t is a residual representing the influence of other factors on stock returns at time t; and α^τ and β^τ are scalars that capture the variation in the return response to announcement during subperiod τ. For the empirical analysis, τ indexes the calendar year. As discussed in Swanson and Williams (2014), the primary advantage of this approach is that it substantially reduces the small sample problem by bringing more data into the estimation of β^τ. The underlying assumption is that while the relative magnitude of γ is constant, the return responsiveness to all MNA surprises shifts by a proportionate amount over the τ subperiod. The identification restriction is that β^τ is on average equal to one. This implies that the sample average of $\beta^\tau \gamma' X_t$ is identical to $\gamma' X_t$. When β^τ is always one, then (1) becomes the OLS regression motivated by Gurkaynak, Sack, and Swanson (2005b) and others.

We proceed by first determining the most impactful announcements across various window intervals, selecting the return window, and then focusing on the cyclicality of the return response.

Selection of the MNA surprises and return window interval. We now turn to the selection of the MNAs. We find that change in nonfarm payrolls, initial jobless claims, ISM manufacturing, and consumer confidence index are, broadly speaking, the most influential MNAs for the stock market.\(^{11}\) This choice of four announcements is consistent with findings in the literature.\(^{12}\) The details are explained in the appendix.

As our results can depend on the size of the return window, we consider all combinations of Δ_t and Δ_h between 10 minutes and 90 minutes in the increments of 10 minutes (81 re-
Figure 1: The time-variation in the stock return sensitivity to macroeconomic news

Notes: The benchmark MNAs are change in nonfarm payrolls (CNP), initial jobless claims (IJC), ISM manufacturing (ISM), and consumer confidence index (CCI). We set $\Delta = 30\text{min}$. We impose that β^τ (black-solid line) in (1) averages one. We provide ± 2-standard-error bands (light-shaded area) around β^τ. The shape is robust to all possible combinations (light-gray-solid lines) of the next eight influential MNAs. We overlay the NBER recession bars. The individual estimates and standard errors (in parenthesis) for γ are below

<table>
<thead>
<tr>
<th></th>
<th>CNP</th>
<th>IJC</th>
<th>ISM</th>
<th>CCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.088</td>
<td>-0.021</td>
<td>0.070</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.003)</td>
<td>(0.011)</td>
<td>(0.008)</td>
</tr>
</tbody>
</table>

The sample period is from January 1998 through December 2017.

gressions in total) and find that results are robust across various return window intervals.13 For ease of exposition, we present the regression results with $\Delta = \Delta_l = \Delta_h = 30\text{min}$ in the main body of the paper. Having fixed $\Delta = 30\text{min}$ and restricted the set of MNAs to the top four most influential MNAs, we now turn our attention to measuring the time-varying sensitivity of the returns to macroeconomic announcements.

Cyclicality of the return response. Figure 1 provides the main focus of our study, that is, the estimate of the time-varying sensitivity coefficient $\hat{\beta^\tau}$ (black-solid line) in (1). The coefficients that measure the average sensitivity, i.e., $\hat{\gamma}$, are significant at the 1\% level, which are reported in the footnote of Figure 1. We find strong evidence of persistent

13Bollerslev, Law, and Tauchen (2008) show that sampling too finely introduces micro-structure noise while sampling too infrequently confounds the effects of the MNA surprise with all other factors aggregated into stock prices over the time interval.
cyclical variation in the stock market’s responses to the MNAs. The evidence suggests that the sensitivity of stock returns to the MNAs can increase by a factor greater than two coming out of recessions and remains above average for about one to two years. It is important to understand that the peak is obtained at the early stage of expansions. We find that the stock market’s prolonged above-average reaction (three to four years) is unique to the recovery from the Great Recession during which interest rates were bounded. The reaction of stock returns gradually attenuates as the economy expands and it takes about four years to move from peak to trough sensitivity. During these periods, stock returns hardly reacted to news.

This evidence is consistent with existing papers that argue stock market’s reactions to announcement surprises may depend on the state of the economy (e.g., McQueen and Roley (1993), Boyd, Hu, and Jagannathan (2005), and Andersen, Bollerslev, Diebold, and Vega (2007)). While insightful, the findings of the previous literature were concentrated on comparing the stock market’s reactions in recessions to those in expansions. Our evidence provides a new perspective to the literature because it clearly presents the cyclical nature of the responses of the stock market to macroeconomic announcements.

Robustness. Before we provide any interpretation, we want to be sure that our results survive a variety of robustness checks. To save space, we select a few and briefly explain what we did here. We refer to the appendix A.6 for detailed discussions.

We first consider the possibility that the changing sensitivity of the stock return is merely tracking volatility changes because the magnitudes of news surprises can be larger during downturns. We do not find any supporting evidence for this claim. We create two dummy variables locating the below trend and above trend periods and regress the raw and absolute MNA surprises on these dummy variables. We find that coefficients for these two dummy variables are largely insignificant. To be fully robust, we estimate (1) by using the residuals from this regression as “clean” measure of surprises. We find that the estimated time-varying sensitivity of the stock return did not change much from Figure 1.

Next, we check if our results persist when we extend the analysis to early 1990s which encompass last three business cycle troughs. Because we are investigating the cyclical variation of the responses of stock returns to MNAs, it is important to confirm results

14 For robustness, we also plot the results from additionally including every possible combination of the next eight influential MNAs. All these regressions yield the light-gray-solid lines that are very close to each other and hence, appear as a gray band when viewed from a distance.
from a longer span of data. For this exercise, we estimate (1) with daily returns. This choice is inevitable considering the illiquidity in the futures market in the 1990s. The bright side of this exercise is that we can find out if the impact of the MNAs on the stock market is not short-lived and economically important. The estimate of the time-varying sensitivity coefficient looks qualitatively similar which is estimated with larger standard errors as expected.

2.3 Identifying the economic drivers

Having confirmed the robustness of the evidence, we aim to identify the economic drivers behind the cyclicality of the responses of the stock market. We rely on the same regression (1) as before but with the following parametric assumption on the sensitivity coefficient

\[r_{t-\Delta}^{\pm} = \alpha + \beta \gamma' X_t + \epsilon_t, \quad \beta = \beta_0 + \beta' Z_{t-1}. \]

(2)

We examine if the time variation in the stock return sensitivity, \(\beta^\tau \), can be explained by key economic observables, \(Z_{t-1} \). We consider unemployment rate gap, inflation, interest rates, price-dividend (PD) ratio, VIX, and uncertainty index (collected by Scott Baker, Nicholas Bloom and Steven J. Davis) as potential predictors of the stock return sensitivity under the assumption that cyclical return variations are rooted in economic fundamentals. We also consider the NBER recession dummy variable as one of the potential predictors.

Note that we set \(\tau \) to index a quarter to bring more data into the estimation which alleviates the short sample problem substantially. We avoid the endogeneity problem by lagging the predictor variables by a quarter. By standardizing the predictor vector \(Z_{t-1} \) and assuming \(\beta_0 = 1 \), we maintain the identification restriction, i.e., \(E(\beta^\tau) = 1 \).

The estimation results are provided in Table 1. Consistent with the previous results, all MNAs are significant at 1% level, i.e., \(\hat{\gamma} \)s are estimated to be statistically significant which are not reported here to save space. We rather discuss the estimation results regarding the stock return sensitivity \(\hat{\beta}_1 \). We first discuss the results from a univariate specification which are summarized in Panel (A). We document that an increase in each of interest rate (either level or annual change) and PD ratio significantly predicts lower stock return sensitivity. On the other hand, unemployment rate gap, VIX index, and recession indicators significantly predict larger stock return sensitivity. It is only inflation that turns out to be insignificant in this regression. In sum, our interpretation of the results is that
Table 1: The economic drivers behind the cyclicality of the return responses

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Univariate regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrate gap</td>
<td>0.67***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td>-0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFR</td>
<td>-0.40***</td>
<td>-0.65***</td>
<td>-0.39***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆FFR</td>
<td></td>
<td></td>
<td></td>
<td>-0.59***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-bond (5y)</td>
<td></td>
<td></td>
<td>-0.39***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆T-bond (5y)</td>
<td></td>
<td></td>
<td></td>
<td>-0.59***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.40***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.69***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 adjusted</td>
<td>0.12</td>
<td>0.08</td>
<td>0.09</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(B) Multivariate regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrate gap</td>
<td>0.73***</td>
<td>1.40***</td>
<td>1.28***</td>
<td>1.37***</td>
<td>0.86***</td>
<td>0.96***</td>
<td>1.23***</td>
<td>1.37***</td>
<td>1.26**</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.46)</td>
<td>(0.39)</td>
<td>(0.44)</td>
<td>(0.28)</td>
<td>(0.35)</td>
<td>(0.43)</td>
<td>(0.49)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.16</td>
<td>0.51*</td>
<td>0.33</td>
<td>0.49*</td>
<td>0.24</td>
<td>0.30</td>
<td>0.43*</td>
<td>0.50*</td>
<td>0.43*</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.26)</td>
<td>(0.23)</td>
<td>(0.25)</td>
<td>(0.18)</td>
<td>(0.20)</td>
<td>(0.25)</td>
<td>(0.26)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>FFR</td>
<td>0.73**</td>
<td>0.99*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.53)</td>
<td>(0.55)</td>
<td>(0.57)</td>
<td>(0.61)</td>
<td>(0.55)</td>
<td>(0.57)</td>
<td>(0.61)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>∆FFR</td>
<td>-0.81***</td>
<td>-0.88***</td>
<td>-0.64**</td>
<td>-0.85***</td>
<td>-0.66**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.25)</td>
<td>(0.27)</td>
<td>(0.32)</td>
<td>(0.29)</td>
<td>(0.33)</td>
<td>(0.32)</td>
<td>(0.29)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>T-bond (5y)</td>
<td>0.50*</td>
<td>-0.30</td>
<td>-0.28</td>
<td>-0.32</td>
<td>-0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.46)</td>
<td>(0.49)</td>
<td>(0.54)</td>
<td>(0.69)</td>
<td>(0.31)</td>
<td>(0.46)</td>
<td>(0.49)</td>
<td>(0.54)</td>
</tr>
<tr>
<td>∆T-bond (5y)</td>
<td>-0.46**</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>PD ratio</td>
<td>0.31</td>
<td>0.31</td>
<td>0.14</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.23)</td>
<td>(0.28)</td>
<td>(0.36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recession</td>
<td>0.71***</td>
<td>0.67***</td>
<td>0.35</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.22)</td>
<td>(0.27)</td>
<td>(0.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIX</td>
<td>0.19</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.22)</td>
<td>(0.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPU index</td>
<td>-0.09</td>
<td>-0.03</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.32)</td>
<td>(0.35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 adjusted</td>
<td>0.11</td>
<td>0.14</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Notes: The estimation sample period is from 1998 to 2017. We only report the estimates associated with β in the regression. Unemployment rate gap is the difference between the actual unemployment rate and the natural rate of unemployment rate. Inflation is GDP deflator and FFR is the effective federal funds rate. We also consider the 5-year Treasury yields. PD ratio is the price to dividend ratio and VIX is CBOE volatility index. Economic Policy Uncertainty (EPU) index is collected by Scott Baker, Nicholas Bloom and Steven J. Davis. All variables are standardized. “∆” indicates annual change. These predictor variables are lagged one quarter. We use the benchmark macroeconomic announcements. We report the Newey-West adjusted standard errors. Notation: ***p < 0.01, **p < 0.05, *p < 0.1.
stock returns respond more aggressively when there is a greater slack in the economy and interest rate has been previously low or decreasing.

Panel (B) of Table 1 provides the estimation results from multivariate specifications of the stock return sensitivity. In particular, we estimate various versions in which empirical approximation of monetary policy rules are considered. The idea is to test if the cyclical return variations are rooted in variables recognized as connected to monetary policy. Column (1) examines the simplest case where unemployment rate gap and inflation are included. We find that the coefficient associated with unemployment rate gap is estimated to be significantly positive while that associated with inflation turns out to be insignificant and changed sign from negative to positive. Column (2) to (4) provide the results when interest rates in various forms are additionally included. This is because interest rates cannot be fully spanned by unemployment rate gap and inflation series, for example, due to the presence of monetary policy shocks. We also include a longer maturity interest rate (5-year Treasury yields) to proxy the market’s expectation of the future short rate that is not contained in the short-term interest rate. Across various permutations, we find that the estimates for unemployment rate gap and annual change in the FF rate are always statistically significant and have signs consistent with Panel (A). The estimate for inflation, on the other hand, is positive and marginally significant. Column (5) to (9) additionally include financial variables and recession indicators. It is interesting to see that they lose significance after controlling for monetary policy-related variables, which are shown in column (7), (8), and (9). We highlight that the fitted $\hat{\beta}_s$ based on the estimates in Panel (B) look very similar to our benchmark stock return sensitivity estimate in Figure 1. This indirect evidence suggests that the cyclical return variations are indeed rooted in monetary-policy related variables.

One may argue that our analysis thus far is limited because it does not explicitly account for forward-looking expectations of key variables. To address this, we repeat the regression exercise by relying on survey forecasts of unemployment rate and the FF rate. We create dummy observations based on these surveys for ease of interpretation. First, we subtract the current FF rate and the real-time natural rate of unemployment from the one-quarter ahead survey mean forecast of the FF rate and unemployment rate, respectively. Both measures the expected direction of the next quarter interest rate and unemployment rate relative to the current (potential) level. Second, we set the threshold to the fourth (first) quintile and define the expected tightening (above trend) period if the FF (unemployment
Table 2: The role of expectations in the cyclicality of the return responses

<table>
<thead>
<tr>
<th>Periods</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.09***</td>
<td>0.97***</td>
<td>0.93***</td>
<td>1.12*</td>
<td>0.84***</td>
<td>0.96*</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Expected tightening</td>
<td>-1.22***</td>
<td>-0.91***</td>
<td>-0.65**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neutral</td>
<td>0.16</td>
<td>(0.28)</td>
<td>(0.29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected easing</td>
<td>0.99*</td>
<td>0.95*</td>
<td>1.04**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.49)</td>
<td>(0.45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected above trend</td>
<td>-0.78**</td>
<td>-0.94***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>below trend</td>
<td>1.30**</td>
<td>1.08**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(R^2\) adjusted

| | 0.09 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 |

Notes: We construct dummy variables as follows. First, we subtract the current federal funds (FF) rate and the real-time natural rate of unemployment from the one-quarter ahead survey mean forecast of the FF rate and unemployment rate, respectively. Both measures the expected direction of the next quarter interest rate and unemployment rate relative to the current (potential) level. Second, we set the threshold to the fourth (first) quintile and define the expected tightening (above trend) period if the FF (unemployment rate gap) direction is above (below) that threshold. The expected easing (below trend) period is when the FF (unemployment rate gap) direction is below (above) the first (fourth) quintile. The expected neutral (near trend) periods are the remaining case. The results are not sensitive to the choices of the cutoff points. The estimation sample period is from 1998 to 2017. We only report the estimates associated with \(\beta\) in the regression. We report the Newey-West adjusted standard errors. Notation: *** \(p < 0.01\), ** \(p < 0.05\), * \(p < 0.1\).

We rely on the estimation specification in (2), but assume that \(Z_{t-1}\) are comprised of dummy observations. Table 2 provides the estimation results. We show in column (4) that when the economy is expected to be above trend with tightening expectation, the stock returns’ response to news is close to zero (marginally negative). In contrast, in column (5) we find that when the economy is expected to be below trend, and at the same time, there is an easing expectation, the stock returns’ response to news is about three
times greater than the average response. Taken together, our evidence strongly suggests that expectations about the phase of the business cycle and future interest rate are key determinants of the cyclicality of the response of the stock market.

3 Assessing the Informational Content of News

To shed light on the mechanism at work, we assess the informational content of the MNAs and decompose the stock market sensitivity to components attributable to news about cash flows (CF), risk-free rate (RF), and risk premium (RP) following Campbell and Shiller (1988) and Campbell (1991). This is of interest in its own right in terms of understanding the contribution of the news components to the sensitivity of the return response at the impact of the announcement. Furthermore, such decomposition has a long tradition in the finance literature and our analysis provides a new perspective using high-frequency data around announcements.

For this exercise, we rely on the 12-month Eurodollar futures (ED) and VIX index (VX) as empirical proxies for capturing news about risk-free rate and risk premium, respectively. We show in the appendix A.2 how these proxies move around announcement times. As explained in Swanson and Williams (2014), Eurodollar futures are the most heavily traded futures contracts that are known to be closely related to market expectations about the FF rate. VIX index provides a measure of market risk. Our results will obviously depend on how valid and informative the empirical proxies are with respect to news about risk-free rate and risk premium. We acknowledge the shortcomings of our proxies since they do not reflect changes in expectations over long-run horizons. For example, VIX index only measures the market’s expectation of 30-day volatility. But more importantly, VIX index might not be adequately representing risk premium.\(^\text{15}\) Similarly, while we believe that news about risk-free rate can only be reflected in Eurodollar (or FF) future contracts with much longer maturity dates, these contracts suffer from liquidity problems and are only available for relatively short period of time. In addition, there is very little fluctuation in short-maturity Eurodollar futures return during the zero-lower bound periods which

\(^{15}\) One could rely on a measure of variance risk premium (VRP) if it is available at a higher frequency than daily. However, it can be shown that without updating the conditional expectation, relying on a measure of intra-day VRP is equivalent to using intra-day VIX index.
contrasts starkly with the pre-crisis periods. With these caveats in mind, we proceed with discussion of the evidence.

3.1 Decomposing the cyclicality of the return response

We verify that there are indeed substantial variations in Eurodollar futures and VIX Index around the announcement events. Here, we use them as instruments for decomposing the stock return sensitivity coefficient, our object of interest. To be specific, we jointly estimate the following three equation system

\[
\begin{bmatrix}
 \Delta r_t + \Delta t \\
 \Delta r_t + \Delta ED \\
 \Delta r_t + \Delta VX
\end{bmatrix}
=
\begin{bmatrix}
 \alpha^T \\
 \alpha^T ED \\
 \alpha^T VX
\end{bmatrix}
+
\begin{bmatrix}
 (\beta^T CF - \beta^T RF - \beta^T RP)(\gamma' X_t) \\
 \beta^T RF(\gamma' ED X_t) \\
 \beta^T RP(\gamma' VX X_t)
\end{bmatrix}
+
\begin{bmatrix}
 \epsilon_t \\
 \epsilon_{t, ED} \\
 \epsilon_{t, VX}
\end{bmatrix}
\]

where we have the following identity

\[
\beta^T = \beta^T CF - \beta^T RF - \beta^T RP. \tag{4}
\]

Note that the top equation in (3) is identical to our benchmark regression of (1). The purpose of the joint estimation is to separately identify $\beta^T CF$, $\beta^T RF$, and $\beta^T RP$ by bringing in more observations. The identification assumption is that each of $\beta^T CF - \beta^T RF - \beta^T RP$, $\beta^T RF$, and $\beta^T RP$ average to one.

We provide the sensitivity estimates in panel (A)-(C) of Figure 2, which are plotted against the benchmark stock return sensitivity estimate $\hat{\beta}^T = \hat{\beta}^T CF - \hat{\beta}^T RF - \hat{\beta}^T RP$. Note that $E(\hat{\beta}^T CF - \hat{\beta}^T RF - \hat{\beta}^T RP) = E(\hat{\beta}^T RF) = E(\hat{\beta}^T RP) = 1$ imply $E(\hat{\beta}^T CF) = 3$. Since there is an important level difference amongst the sensitivity estimates, we provide $\hat{\beta}^T CF - 2$ instead of $\hat{\beta}^T CF$ for ease of comparison across other estimates.

We find that our results are broadly consistent with other existing evidence. For example, in periods of tightening expectation, say from mid-2004 to mid-2006 during which the Fed increased the FF rate by more than 4 percentage points, the role of news about risk-free rate was much elevated. At that time, news about risk premiums hardly moved. Similar to Swanson and Williams (2014), we find that news about risk-free rate were

\[16\text{In the appendix, we show that our results are robust to using the 5-year T-Note futures (FV).}\]
Figure 2: Decomposing stock return sensitivity

Notes: We focus on the macroeconomic announcements released at 10am, which are consumer confidence index (CCI), durable goods orders (DGO), and ISM manufacturing (ISM). This is because we do not have intraday VIX index before the trading hours. The identification assumption is that the individual average of $\hat{\beta}_CF - \hat{\beta}_RF - \hat{\beta}_RP$ and $\hat{\beta}_RF$ and $\hat{\beta}_RP$ is equal to one. We provide the 1-standard-error bands (light-shaded area) around the mean estimates. Because we are estimating a large number of parameters, we do not allow for time variation in α_{γ} in the estimation. For ease of comparison, we provide the benchmark return sensitivity estimate $\hat{\beta}_{\gamma}$ (black-circled lines). The individual estimates for γ are

<table>
<thead>
<tr>
<th>S&P 500 E-mini</th>
<th>Eurodollar 12m</th>
<th>VIX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCI</td>
<td>DGO</td>
</tr>
<tr>
<td>$\hat{\gamma}$</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>(s.e.)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

The sample period is from January 1998 through December 2016.

nearly zero during the ZLB periods. Most of the discount rate variations are accounted for by variations in news about risk premiums during the ZLB periods.

We compute the contribution of each sensitivity estimate to the overall sensitivity estimate by taking the ratio of the absolute value of individual estimate over the sum of all absolute sensitivity estimates. According to our decomposition, about 60% of the variations in the return sensitivity is associated with variations in discount rates (risk-free rates and risk premium). There are important compositional shifts in the discount rate variations across different phases of business cycle. To provide concrete numbers to the statement, we find that variations in risk-free rates and risk premium contribute about 39% and 19% in the above trend periods while 18% and 42% in the below trend periods.
4 A Model with Regime-Switching Monetary Policy

In the previous section, through various regression exercises, we established that the cyclicality in the return response is due to the expectations regarding business cycle phase and monetary policy. Yet, the evidence is suggestive since the regression methods cannot fully tease out the confounding effects.

In this section, to address the concern, we propose a no-arbitrage framework that jointly models the dynamics of cash flows (dividends), interest rates (monetary policy), and risk premia enabling both qualitative and quantitative assessment of the framework specifically tailored to help the reader interpret our empirical findings.

4.1 Framework

Real dividends and monetary policy. We first assume that dividends, d_t, dynamics resemble the standard New Keynesian IS curve (see Gali (2008) for textbook treatment). That is, dividends dynamics are forward looking, which are affected by the real rate (a higher rate lowers dividends). Next, we assume that the Fed directly controls the real rate, r_t, by choosing to respond to dividend gap, $d_t - d_t^*$. Here, d_t^* indicates the potential level of dividends in the economy, which follows a random walk with drift. Put together,

$$
\begin{align*}
 d_t &= \bar{d}(S_t) + \gamma d_{t-1} + (1 - \gamma)E_t d_{t+1} - \xi r_t + u_{d,t} \\
 i_t - E_t \bar{\pi}_{t+1} &= r(S_t) + \phi(S_t)(d_t - d_t^*) \\
 d_t^* &= \mu + d_{t-1} + u_{\tau,t}, \quad u_{\tau,t} \sim N(0, \sigma_{\tau}^2).
\end{align*}
$$

Note that we are introducing two shocks in this economy. One is real dividends shock, $u_{d,t}$, and the other is trend shock, $u_{\tau,t}$, both of which follow an AR(1) process, respectively

$$
\begin{align*}
 u_{l,t+1} &= \rho_l u_{l,t} + \sigma_l \epsilon_{l,t+1}, \quad \epsilon_{l,t+1} \sim N(0, 1), \quad l \in \{d, \tau\}.
\end{align*}
$$

\footnote{The underlying assumption from the perspective of the New Keynesian model is that prices are infinitely sticky and thus changing the nominal rate is equivalent to changing the real rate. See Nakamura and Steinsson (2017) for similar representation. We make this assumption because we find that inflation does not have a first-order impact at least in the last two decades. Moreover, both the realized inflation and expected inflation were stable during the periods.}
For ease of exposition, we described them with a VAR(1) process

\[u_t = \Phi u_{t-1} + \Sigma \varepsilon_t, \quad \varepsilon \sim N(0, I_2). \]

(7)

According to our model, since dividends do not react directly to the trend shock, we take the stance of interpreting the macroeconomic news announcement surprise as \(\epsilon_{d,t+1} \).

Finally, certain coefficients are allowed to switch over time. For example, the level of dividends, \(\bar{d}(S_t) \), and the target interest rate, \(\bar{r}(S_t) \), depend on the state and the strength with which the Federal Reserve tries to pursue its goal—a stabilization policy—also changes over time. The stabilization policy is “aggressive” or “loose” depending on its responsiveness. We capture this time variation with a regime-switching policy coefficient, \(\phi(S_t) \). Here, \(S_t \) denotes the state (regime) indicator variable \(S_t \in \{1, ..., K\} \). We define the Markov transition probability \(p_{ij} \), i.e., the probability of changing from regime \(i \) to regime \(j \), \(\forall i, j \in \{1, ..., K\} \). We refer to \(\Pi \) as the transition probability matrix.

Solution. We can re-express (5) in terms of deviation from potential level, i.e., \(\hat{r}_t = r_t - \bar{r}(S_t) \) and \(\hat{d}_t = d_t - d^*_t \),

\[
\begin{align*}
\hat{d}_t &= c(S_t) + \gamma \hat{d}_{t-1} + (1 - \gamma) E_t \hat{d}_{t+1} - \xi \hat{r}_t - \gamma u_{r,t} + u_{d,t} \\
\hat{r}_t &= \phi(S_t) \hat{d}_t
\end{align*}
\]

(8)

where we conveniently re-express \(c(S_t) = \bar{d}(S_t) - \xi \bar{r}(S_t) + (1 - 2\gamma)\mu \). By plugging the second equation to the first equation in (8), the system reduces to a single regime-dependent equation

\[
\chi(S_t) \hat{d}_t = c(S_t) + \gamma \hat{d}_{t-1} + (1 - \gamma) E_t \hat{d}_{t+1} + \omega'u_t
\]

(9)

where \(\chi(S_t) = 1 + \xi \phi(S_t) \) and \(\omega = [1, -\gamma]' \). There exists a regime-dependent linear solution of the form (see Davig and Leeper (2007) and Song (2017) for discussion)

\[
\hat{d}_t = \psi_0(S_t) + \psi_1(S_t) \hat{d}_{t-1} + \psi_2(S_t)'u_t
\]

(10)

for \(p_{ij} \in [0, 1) \). We refer to the appendix B for details.

Expected dividend growth. Having derived the expression for dividends, we are now in a position to understand the model-implied expected dividend growth dynamics, which is
a key element in asset pricing. Similar to (10), we can express the expected n-period-ahead dividend growth rate by

$$E_t \Delta d_{t+n} = \psi_{n,0}^e(S_t) + \psi_{n,1}^e(S_t)\hat{d}_{t-1} + \psi_{n,2}^e(S_t)'u_t.$$ (11)

The details of the expression are provided in the appendix.18 We emphasize that these coefficients depend on the transition paths of business cycle and monetary policy states. Therefore, beliefs about future economic states shape the expected dividend growth dynamics.

Stochastic discount factor, market return, and price to dividend ratio. The log pricing kernel is assumed as

$$m_{t+1} = -r_t - \frac{1}{2} \lambda(S_t)'\Sigma\lambda(S_t) - \lambda(S_t)'\Sigma\varepsilon_{t+1}$$ (12)

where the market price of risk $\lambda(S_t)$ follows a Markov process similar to (10)

$$\lambda(S_t) = \lambda_0(S_t) + \lambda_1(S_t)\hat{d}_t + \lambda_2(S_t)'u_t.$$ (13)

Note that the real rate r_t is given in (5). In our empirical illustration, we impose that $\lambda_1(S_t) = 0$ and $\lambda_2(S_t) = 0$ to be conservative. The conditional covariance of the one-period pricing kernel and the state (S_{t+1}) is zero, so there is no one-period risk premium associated with regime shift. Their multi-period counterparts covary, thereby generating risk premiums.

We now introduce market return. We rely on Campbell-Shiller log-linear approximation to preserve (conditionally) linear log market return dynamics

$$r_{d,t+1} = \kappa_0 + \kappa_1z_{t+1} - z_t + \Delta d_{t+1}.$$ (14)

18Since our model in (5) imposes stationarity in dividends level, one might conjecture that a positive shock to the level of dividends $u_{d,t}$ is associated with a decrease in the growth rate going forward. When there is no backward-looking term in (5), this is going to be true (lim$_{\gamma \to 0} \psi_{n,2,d}(\gamma) < 0$). To the contrary, when there is no forward-looking term, a positive shock to the level of dividends $u_{d,t}$ can also increase expected growth rates (lim$_{\gamma \to 1} \psi_{n,2,d}(\gamma) > 0$). For the empirical exercise, we select $\gamma = 0.99$ so that we have both backward- and forward-looking terms in (5) and that expected growth rates increase upon a positive level shock.
We conjecture that the log price to dividend ratio has the following expression

\[z_t = z_0(S_t) + z_1(S_t)\hat{d}_{t-1} + z_2(S_t)u_t. \]

(15)

We then solve for \(z_0(S_t), z_1(S_t), \) and \(z_2(S_t) \) from combining (12) and (14) below

\[E\left[E(m_{t+1} + r_{d,t+1}|S_{t+1}) + \frac{1}{2} Var(m_{t+1} + r_{d,t+1}|S_{t+1})|S_t \right] = 0. \]

(16)

This is based on the approximate analytical solution proposed by Bansal and Zhou (2002).

News decomposition. Our model links the stock market to both the state of the economy and to the Fed’s reaction function. We now tie the analysis to the main types of news that arise in asset pricing models. We denote the unexpected stock return by sum of news about cash flows, risk-free rate, and risk premium:

\[r_{d,t+1} - E_t r_{d,t+1} = N_{CF,t+1} - N_{RF,t+1} - N_{RP,t+1} \]

(17)

where

\[N_{CF,t+1} = (E_{t+1} - E_t) \left(\sum_{j=0}^{\infty} \kappa_1^j \Delta d_{t+1+j} \right) \]

\[N_{RF,t+1} = (E_{t+1} - E_t) \left(\sum_{j=1}^{\infty} \kappa_1^j r_{t+1+j} \right) \]

\[N_{RP,t+1} = (E_{t+1} - E_t) \left(\sum_{j=1}^{\infty} \kappa_1^j (r_{d,t+1+j} - r_{t+1+j}) \right). \]

Note that the model implies coefficients for the expression (with abuse of notation) \(N_{g,t+1} = \sum_{j=0}^{\infty} \left(N_{g,j,0} + N_{g,j,1} \hat{d}_{t-1} + (N_{g,j,2})'u_t + (N_{g,j,3})'\Sigma \epsilon_{t+1} \right) \) for \(g \in \{CF, RF, RP\} \) where the details are referred to the appendix B.\(^{19}\) It is important to understand that when regime switching is not allowed, \(N_{g,t+1} \) is only function of innovation \(\Sigma \epsilon_{t+1} \). The key takeaway is that regime switching enables richer characterization of news decomposition. Because of the regime-switching feature of our model, the relative magnitudes of news about cash flows, risk-free rate, and risk premiums critically depend on the perceived transition paths of business cycle and monetary policy states.

\(^{19}\)Note that \(N_{j,0}, N_{j,1}, N_{j,2}, N_{j,3} \) depend on the location of current state and the location of possible transition in the future for each \(j \). We omit those notations for simplicity. We truncate the infinite sum.
Table 3: Parameters

<table>
<thead>
<tr>
<th>Interest rate</th>
<th>Dividends</th>
<th>Market price of risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{r}(AT)$</td>
<td>0.0024</td>
<td>$\bar{d}(AT)$ 0.0052</td>
</tr>
<tr>
<td>$\bar{r}(AN)$</td>
<td>0.0009</td>
<td>$\bar{d}(AN)$ 0.0052</td>
</tr>
<tr>
<td>$\bar{r}(NN)$</td>
<td>0.0009</td>
<td>$\bar{d}(NN)$ 0.0033</td>
</tr>
<tr>
<td>$\bar{r}(BE)$</td>
<td>0.0009</td>
<td>$\bar{d}(BE)$ -0.0042</td>
</tr>
<tr>
<td>$\phi(AT)$</td>
<td>0.0140</td>
<td>σ_d 0.00015</td>
</tr>
<tr>
<td>$\phi(AN)$</td>
<td>0</td>
<td>σ_τ 0.0190</td>
</tr>
<tr>
<td>$\phi(NN)$</td>
<td>0</td>
<td>ρ 0.9816</td>
</tr>
<tr>
<td>$\phi(BE)$</td>
<td>0.0561</td>
<td>γ 0.99</td>
</tr>
<tr>
<td>ξ</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notes: We assume that the economy evolves according to a four-state Markov chain, which is denoted by “above trend & tightening, above trend & neutral, near trend & neutral, below trend & easing” regime, respectively. The transition probability matrix is given by

$$
\Pi = \begin{bmatrix}
0.68 & 0.02 & 0.20 & 0.10 \\
0.35 & 0.40 & 0.15 & 0.10 \\
0.02 & 0.08 & 0.82 & 0.08 \\
0.00 & 0.00 & 0.60 & 0.40
\end{bmatrix}
$$

where each row sums to one. While we allow for any transition into the “below trend & easing” state, we prohibit the transition from the “below trend & easing” state to “above trend & neutral” or “above trend & tightening” state directly.

4.2 Identification of states and calibration of parameters

Identification of states. In order to achieve flexibility while maintaining parsimony, we assume that the economy evolves according to a four-state Markov chain. We label the states by the “above trend & tightening (AT),” “above trend & neutral (AN),” “near trend & neutral (NN),” and “below trend & easing (BE),” respectively. Here, monetary policy is usually “neutral” in that it neither stimulates nor restrains growth. It only does so when the economy is either below or above trend.

Calibration. We report the calibrated parameters in Table 3. The transition matrix is calibrated to imply the following ergodic probabilities 0.14, 0.09, 0.65, and 0.12 for the AT, AN, NN, and BE regime, respectively. The number suggests that the economy stays in the NN regime 65% of the time and there is 12% of chance the economy falls into the at a large finite value.
BE regime, which is considered the worst state in our economy. Once in the above trend regime, it is more likely to be accompanied with tightening monetary than neutral policy.

The rest of model parameters are calibrated to match the U.S. data moments for dividend growth, risk-free rate, and market equity premium unconditionally. The model implies the average dividend growth rate of 3%, risk-free rate of 1%, expected excess return of 6%. We do so by imposing the following normalization to be consistent with our labeling of regimes. First, we impose that the constant term associated with dividends follows

$$\bar{d}(AT) = \bar{d}(AN) > \bar{d}(NN) > 0 > \bar{d}(BE). \quad (19)$$

This implies that dividends level is largest in the above trend state, during which monetary policy can be tightening or neutral. It is lower in the near trend with neutral policy state. It is actually negative during the below trend state which is accompanied with easing policy.

The monetary policy parameters are restricted to be

$$\bar{r}(AT) > \bar{r}(AN) = \bar{r}(NN) = \bar{r}(BE) \quad (20)$$

$$\phi(BE) > \phi(AT) > \phi(AN) = \phi(NN) = 0.$$

We allow for minimalistic variation across states for parsimony. Note that the target interest rate levels are identical across states except for the above trend & tightening state which is higher. The policy reaction to business cycle gap is more aggressive during the below trend & easing state compared with the above trend & tightening state. The asymmetric response of the Federal Reserve, e.g., more aggressive stimulation policy, is motivated by Cieslak and Vissing-Jorgensen (2017). We normalize the reaction coefficient to zero during the neutral policy state which occurs either in the above trend or near trend state.

Finally, we impose that the ranking of the market price of risk follows

$$\lambda(BE) > \lambda(NN) > \lambda(AT) > \lambda(AN). \quad (21)$$

It is reasonable to think that the value is largest (smallest) during the below (above) trend states. We allow for the possibility that the market price of risk can be higher with the tightening policy than the neutral policy within the above trend state.
4.3 Model implication

We now discuss the model-implied expected dynamics of various components below.

Expected dynamics. Figure 3 provides the expected dynamics of dividend growth, risk-free rate, and log return in excess of risk-free rate up to the horizon of one year. Because the persistence of transition matrix is not high, the speed of mean reversion is quite fast. That being said, there is a large variation in the expected dynamics at shorter horizons. For example, our model can generate a downward-sloping, flat, or upward-sloping term structure of expected dividend growth rates and expected excess return.\(^{20}\)

In our model, a upward-sloping term structure of expected dividend growth rates is intimately related to the downward-sloping term structure of expected excess return.\(^{21}\) Intuitively, the short-term risk shoots up in the BE regime due to negative growth and largest market price of risk but starts to decline going forward due to mean reversion. The other extreme case is the AN regime during which the short-term risk is lowest initially but climbs up due to the risk of falling into the BE regime.

Note that the slopes of the term structure of expected dividend growth and excess return would have been steeper if it weren’t for monetary policy. Here, monetary policy plays the role of smoothing out business cycle fluctuations, thus narrowing the gap between two extreme states, i.e., above trend and below trend states. One way to see this is to look at the expected dividend growth rates under the AT regime which are uniformly lower than those under the AN regime. If we were to counterfactually allow for the below trend & neutral regime, the corresponding expected dividend growth rates would be disastrous (much more negative relative to the BE regime).

Decomposing stock returns. We now move to the main part of the empirical exercise. We aim to understand how the perceived transition into and out of these economic states would lead to movements in stock returns. We design particular transition paths in Figure 4 to highlight the role of business cycle and monetary policy expectations in shaping return fluctuations. The boxes in the first row indicate the regime in the previous period and the boxes in the second row indicate the current regime. For ease of illustration, imagine that

\(^{20}\)Note that we show the log expected excess return without accounting for the half variance term.

\(^{21}\)Bansal, Miller, Song, and Yaron (2019) explore a similar regime-switching asset pricing model for studying the term structure of equity risk premia.
Figure 3: Expected dividend growth, risk-free rate, and excess return

(A) Exp. dividend growth (B) Exp. risk-free rate (C) Exp. excess return

Notes: We assume that the economy evolves according to a four-state Markov chain, which is denoted by AT (above trend & tightening), AN (above trend & neutral), NN (near trend & neutral), BE (below trend & easing) regime, respectively. y-axis is expressed in annualized percentage terms.

transition of regimes occur after realization of large positive (negative) economic shocks which is referred to as “good (bad)” news.22

For example, suppose that the economy was previously in the AN regime, which is the best state in our economy, e.g., highest short-horizon dividend growth expectation and lowest risk premium. The expected transition out of the AN regime assigns 35% to the AT regime, 40% to the AN regime, 15% to the NN regime, and 10% to the BE regime, which is based on the transition matrix (18). For this case, note that our transition matrix implies a higher change of expecting tightening than easing monetary policy next period. Among them, Figure 4 considers two realizations of regimes. Upon good news, the economy transits to the AT regime in which the short-horizon expected risk-free rate is largest. This is the “fearing the Fed” state where the rate hike is materialized. But, the economy remains in the above trend state. We label this example by “AN-G.” The first letter indicates the starting state and the second letter denotes the type of news that signals state transition. Alternatively, upon bad news, the economy transits to the NN regime in which the short-horizon dividend growth expectation is lower than before with slightly larger risk premium, but policy does not immediately respond. This implies that the pace of economic growth cooled a bit, yet recession is not likely to be around the

22This interpretation is only for the narrative purpose since the regime transition is exogenously specified in the model. The expected transition from the previous state to the current one is based on the transition matrix (18). In order to contrast with the expected value, we pick a certain realization of state today. The difference between realized returns and expected returns is our object of interest. While doing that, we are only considering either one of good or bad dividends shock for news decomposition.
Figure 4: An illustration of possible transition paths

```
<table>
<thead>
<tr>
<th>Above trend &amp; Neutral policy</th>
<th>Below trend &amp; Easing policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good news</td>
<td>Bad news</td>
</tr>
<tr>
<td>Above trend &amp; Tightening policy</td>
<td>Near trend &amp; Neutral policy</td>
</tr>
<tr>
<td>Bad news</td>
<td>Good news</td>
</tr>
</tbody>
</table>
```

Notes: We assume that the economy evolves according to a four-state Markov chain, which is denoted by “above trend & tightening, above trend & neutral, near trend & neutral, below trend & easing” regime, respectively. The boxes in the first (second) row indicate the regime in the previous (current) period. We consider two different starting conditions. We provide two realizations of regimes for each case.

corner. We labeled this example by “AN-B.”

On the other end of spectrum, consider that the economy was in the BE regime, which is the worst state in our economy with lowest short-horizon dividend growth expectation and highest risk premium. The expected transition path is 60% for the NN regime and 40% for the BE regime. It is important to understand that there will be no immediate tightening expectation in this case. Upon good news, the economy transits to the NN regime with considerably higher dividend growth expectation and lower risk premium. Because the economy departs from the easing to neutral policy state, this can lead to higher interest rate expectation going forward (even though policy does not respond this period). We label this example by “BE-G.” Lastly, upon bad news, the economy failed to escape from the worst state and remains in the BE regime state. This is referred to as “BE-B.”

We can compute the expected return (based on the transition matrix) and subtract it from the realized value and further decompose the unexpected return component into various news components to complete the exercise. We provide the model-implied news about cash flows, risk-free rate, and risk premium expressed in (17) under these four scenarios. Each news component is history-dependent according to our model since it depends on \(\hat{d}_{t-1} \) and \(u_t \). Therefore, our model can generate extremely rich news variations. However, because we want to be conservative in explaining our findings and for ease of illustration, we assume that \(\hat{d}_{t-1} = 0 \) and \(u_t = 0 \).\(^{23}\) We now present our findings in

\(^{23}\)This assumption is innocuous since their roles are not of first order importance.
Figure 5: News decomposition of returns

AN-G
(AN regime → AT regime)

AN-B
(AN regime → NN regime)

BE-G
(BE regime → NN regime)

BE-B
(BE regime → BE regime)

Notes: We consider the following four cases: Transitioning out from the above trend & neutral policy state, entering into the above trend & tightening state (AN-G) and into the near trend & neutral state (AN-B); Transitioning out from the below trend & easing policy state, entering into the near trend & neutral state (BE-G) and into the below trend & easing state (BE-B). The first letter indicates the starting state and the second letter denotes the type of news that signals state transition. We are computing the component of \(r_{d,t+1} - E[r_{d,t+1}] = N_{CF,t+1} - N_{RF,t+1} - N_{RP,t+1} \). We are conditioning on \(d_{t-1} = 0 \) and \(u_t = 0 \). Numbers are in annualized percentage terms.

Perhaps, it is interesting to explain the BE-B case first. Because the economy failed to escape from the worst state, news about cash flows is significantly negative. But, monetary easing leads to negative news about risk-free rate, thereby canceling most of negative cash flows news. However, news about risk premium remains high leading to a significantly negative return response. This is reversed in the BE-G case. There is significant reduction in risk premium news because the economy escapes the worst state. News about risk-free rate does not fully nullify positive news about cash flows because the good news does not lead to an immediate monetary tightening. The overall return variations are above ±10%
Table 4: News decomposition of returns: Counterfactual experiments

| | $N_{CF} - N_{RF} - N_{RP}$ | N_{CF} | N_{RF} | N_{RP} | $\frac{|N_{CF}|}{\sum |N_j|}$ | $\frac{|N_{RF}|}{\sum |N_j|}$ | $\frac{|N_{RP}|}{\sum |N_j|}$ |
|------------------|-----------------------------|----------|----------|----------|-----------------------------|-----------------------------|-----------------------------|
| **Panel A: The benchmark case** | | | | | | | |
| AN-G | 0.8 | 6.1 | 5.8 | -0.5 | 0.49 | 0.47 | 0.04 |
| AN-B | -0.6 | -6.2 | -5.9 | 0.3 | 0.50 | 0.47 | 0.03 |
| BE-G | 12.8 | 10.6 | 3.7 | -6.0 | 0.52 | 0.18 | 0.30 |
| BE-B | -11.6 | -11.5 | -8.9 | 8.9 | 0.39 | 0.30 | 0.31 |
| **Panel B: A constant risk-free rate case** | | | | | | | |
| AN-G | 21.2 | 8.7 | 0.0 | -12.5 | 0.41 | 0.00 | 0.59 |
| AN-B | -14.6 | -8.5 | 0.0 | 6.0 | 0.59 | 0.00 | 0.41 |
| BE-G | 59.0 | 12.0 | 0.0 | -47.0 | 0.20 | 0.00 | 0.80 |
| BE-B | -85.9 | -14.9 | 0.0 | 71.0 | 0.17 | 0.00 | 0.83 |
| **Panel C: A constant market price of risk case** | | | | | | | |
| AN-G | -0.9 | 6.1 | 5.8 | 1.2 | 0.47 | 0.44 | 0.09 |
| AN-B | 0.2 | -6.2 | -5.9 | -0.5 | 0.49 | 0.47 | 0.04 |
| BE-G | 6.6 | 10.6 | 3.7 | 0.2 | 0.72 | 0.26 | 0.02 |
| BE-B | -2.2 | -11.5 | -8.9 | -0.4 | 0.55 | 0.43 | 0.02 |

Notes: We consider the following four cases: Transitioning out from the above trend & neutral policy state, entering into the above trend & tightening state (AN-G) and into the near trend & neutral state (AN-B); Transitioning out from the below trend & easing policy state, entering into the near trend & neutral state (BE-G) and into the below trend & easing state (BE-B). The first letter indicates the starting state and the second letter denotes the type of news that signals state transition. We are computing $r_{d,t+1} - E_t r_{d,t+1} = N_{CF,t+1} - N_{RF,t+1} - N_{RP,t+1}$. We are conditioning on $d_{t-1} = 0$ and $u_t = 0$. Numbers are in annualized percentage terms.

In contrast, when the economy was in the AN regime, the patterns look quite different. The overall return variations are close to zero for both AN-G and AN-B cases. Note that news about risk premium hardly plays any role. Most of return variations are explained by news about cash flows and risk-free rate. Interestingly, news about cash flows are nearly offset by news about risk-free rate for both cases.

Panel (A) of Table 4 summarizes the results. There are two key takeaways from this exercise. First, we find that the presence of monetary policy stabilization can reduce or even nullify economic shocks. This is happening commonly across different economic states. Second, there is large swings in risk premium news mostly during bad times which accounts for 30% of the return variations. The role of news about risk premium...
is significantly reduced during good times.24 Overall, our model provides novel return decomposition and produces a high degree of realism when we compare with the evidence in Figure 2.

In our model, monetary policy stabilization affects news about cash flows and risk premiums as well. In order to cleanly understand the role played by monetary policy, we fix the interest rate to be constant and repeat the same exercise keeping all else identical to before. This is shown in Panel (B) of Table 4. By construction, news about risk-free rate is zero. What is interesting to observe is that removing policy stabilization effect amplifies economic shocks substantially. Notable examples are AN-G and AN-B where we find substantial movements in both news about cash flows and risk premium. The combined effect leads to not less than ±15% (annualized) stock return variations, which are counterfactual and inconsistent with our previous evidence.

In Panel (C) of Table 4, we instead fix the market price of risk to be constant while keeping all else identical. This time, we seek to understand the role of risk premium news by reducing their variations. Note that even when the market price of risk is identical across regimes, news about risk premium fluctuates (albeit small magnitude) due to the regime-switching feature of the model. A notable example is BE-B where we find inconsequential movements in returns due to monetary policy stabilization effect, which essentially nullifies negative cash flow news. Again, this is inconsistent with our evidence in the previous section. Another finding to note is that the sign of risk premium news turns opposite compared to the benchmark case in Panel (A), which appears to be counterfactual.

\section{Conclusion}

This paper examines the cyclicality in the reaction of the stock market to macroeconomic news announcements. We establish that the cyclical response of stock returns to news is consistently documented across a wide range of macroeconomic news announcements. We argue that this pattern is driven by the procyclical nature of monetary policy expectation and countercyclical nature of market price of risk (risk premium). Our interpretation is based on comprehensive regression analyses and a no-arbitrage framework that allows

24This is consistent with the explanation in Cochrane (2007). There are many papers providing evidence that stock returns are highly predictable (unpredictable) during bad (good) times, e.g., Rapach, Strass, and Zhou (2010) and Henkel, Martín, and Nardari (2011) among others.
state-dependent dynamics of cash flows (dividends), interest rates (monetary policy), and risk premia enabling both qualitative and quantitative assessment of the framework. Our study highlights the importance of understanding the interplay between economic conditions, the expectations about monetary policy given these conditions, and their joint effect on the stock market.

References

Appendix

Fearing the Fed: How Wall Street Reads Main Street

Tzuo-Hann Law, Dongho Song, Amir Yaron

A High-Frequency Analyses

A.1 Data

Table A.1: Macroeconomic news announcements

<table>
<thead>
<tr>
<th>Name</th>
<th>Obs.</th>
<th>Release Time</th>
<th>Source</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Nonfarm Payrolls</td>
<td>236</td>
<td>8:30</td>
<td>BLS</td>
<td>05-Jun-1998</td>
<td>08-Dec-2017</td>
</tr>
<tr>
<td>Construction Spending MoM</td>
<td>220</td>
<td>10:00</td>
<td>BC</td>
<td>02-Nov-1998</td>
<td>01-Dec-2017</td>
</tr>
<tr>
<td>Consumer Confidence Index</td>
<td>233</td>
<td>10:00</td>
<td>CB</td>
<td>30-Jun-1998</td>
<td>27-Dec-2017</td>
</tr>
<tr>
<td>CPI MoM</td>
<td>234</td>
<td>8:30</td>
<td>BLS</td>
<td>16-Jun-1998</td>
<td>13-Dec-2017</td>
</tr>
<tr>
<td>Factory Orders</td>
<td>231</td>
<td>10:00</td>
<td>BC</td>
<td>04-Jun-1998</td>
<td>04-Dec-2017</td>
</tr>
<tr>
<td>GDP Annualized QoQ</td>
<td>237</td>
<td>8:30</td>
<td>BEA</td>
<td>26-Mar-1998</td>
<td>21-Dec-2017</td>
</tr>
<tr>
<td>Housing Starts</td>
<td>231</td>
<td>8:30</td>
<td>BC</td>
<td>16-Jun-1998</td>
<td>19-Dec-2017</td>
</tr>
<tr>
<td>Initial Jobless Claims</td>
<td>1006</td>
<td>8:30</td>
<td>ETA</td>
<td>04-Jun-1998</td>
<td>28-Dec-2017</td>
</tr>
<tr>
<td>ISM Manufacturing</td>
<td>233</td>
<td>10:00</td>
<td>ISM</td>
<td>01-Jun-1998</td>
<td>01-Dec-2017</td>
</tr>
<tr>
<td>ISM Non-Manf. Composite</td>
<td>223</td>
<td>10:00</td>
<td>ISM</td>
<td>05-Apr-1999</td>
<td>05-Dec-2017</td>
</tr>
<tr>
<td>Leading Index</td>
<td>233</td>
<td>10:00</td>
<td>CB</td>
<td>02-Jun-1998</td>
<td>21-Dec-2017</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>232</td>
<td>10:00</td>
<td>BC</td>
<td>02-Jun-1998</td>
<td>22-Dec-2017</td>
</tr>
<tr>
<td>Personal Income</td>
<td>235</td>
<td>8:30</td>
<td>BEA</td>
<td>26-Jun-1998</td>
<td>22-Dec-2017</td>
</tr>
<tr>
<td>PPI Final Demand MoM</td>
<td>233</td>
<td>8:30</td>
<td>BLS</td>
<td>12-Jun-1998</td>
<td>12-Dec-2017</td>
</tr>
<tr>
<td>Retail Sales Advance MoM</td>
<td>231</td>
<td>8:30</td>
<td>BC</td>
<td>14-Jul-1998</td>
<td>14-Dec-2017</td>
</tr>
<tr>
<td>Trade Balance</td>
<td>233</td>
<td>8:30</td>
<td>BEA</td>
<td>18-Jun-1998</td>
<td>05-Dec-2017</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>235</td>
<td>8:30</td>
<td>BLS</td>
<td>02-Jul-1998</td>
<td>08-Dec-2017</td>
</tr>
</tbody>
</table>

Notes: Bureau of Labor Statistics (BLS), Bureau of the Census (BC), Bureau of Economic Analysis (BEA), Federal Reserve Board (FRB), Conference Board (CB), Employment and Training Administration (ETA), Institute for Supply Management (ISM), National Association of Realtors (NAR). We use the most up-to-date names for the series, e.g., GDP Price Index was previously known as GDP Price Deflator, Construction Spending MoM was previously labeled as Construction Spending, PPI Final Demand MoM was labeled as PPI MoM, Retail Sales Advance MoM was labeled as Advance Retail Sales, ISM Non-Man. Composite was labeled as ISM Non-Manufacturing. Observations (across all the MNAs) with nonstandard release times were dropped.
Table A.2: Descriptive statistics for the standardized MNA surprises

<table>
<thead>
<tr>
<th>MNAs</th>
<th>(1) Across Surveys</th>
<th>(2) Across Time</th>
<th>Correlation b/w (1) and (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Nonfarm Payrolls</td>
<td>-0.46</td>
<td>2.45</td>
<td>-0.20</td>
</tr>
<tr>
<td>Consumer Confidence Index</td>
<td>0.00</td>
<td>3.16</td>
<td>0.00</td>
</tr>
<tr>
<td>Initial Jobless Claims</td>
<td>0.08</td>
<td>2.44</td>
<td>0.04</td>
</tr>
<tr>
<td>ISM Manufacturing</td>
<td>0.12</td>
<td>2.28</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Notes: We divide the individual surprise by a normalization factor. Normalization factor (1, “Across Surveys”) is the standard deviation of all analyst forecasts for a particular MNA at a point in time. Normalization factor (2, “Across Time”) is the standard deviation of all the raw surprises in the sample for a particular macroeconomic announcement.

Figure A.1: Unemployment rate gap

Notes: We use the real-time civilian unemployment rate and natural rate of unemployment (NROU) data from Federal Reserve Bank of St. Louis and Federal Reserve Bank of Philadelphia to construct unemployment rate gap. Because of the apparent asymmetry in the data, we set the threshold to 75% (25%) of negative (positive) unemployment rate gap and define the “above trend (below trend)” periods whenever unemployment rate gap is below (above) that threshold.
A.2 Event studies

Figure A.2: The cumulative stock returns around the benchmark announcements

(A) Stock returns (ES)

(B) Bond returns (FV)

(C) Eurodollar returns (ED)

Notes: We plot the average cumulative returns in percentage points around scheduled announcements. Macroeconomic announcements are change in nonfarm payrolls, consumer confidence index, ISM manufacturing, and initial jobless claims. The black solid lines are the average cumulative return on E-mini S&P 500 futures (ES), US 5-Year T-Note Futures (FV), and Eurodollar Futures CME (ED) of maturity 12 month 60 minutes prior to scheduled announcements to 60 minutes after scheduled announcements. The light-gray shaded areas are ±2-standard-error bands around the average returns. The sample period is from January 1998 through December 2017. The vertical line indicates the time at which announcements are released in this sample period. y-axis expressed in percentage terms.
Figure A.3: The cumulative stock returns around the 10am announcements (CCI, ISM)

(A) Stock returns

Below trend	Recessions	Above trend	Expansions

(B) Bond returns (5y)

Below trend	Recessions	Above trend	Expansions

(C) VIX returns

Below trend	Recessions	Above trend	Expansions

Notes: We plot the average cumulative returns in percentage points around scheduled announcements. Macroeconomic announcements are consumer confidence index and ISM manufacturing both of which are released at 10am. The black solid lines are the average cumulative return on E-mini S&P 500 futures (ES), US 5-Year T-Note Futures (FV), and CBOE VIX Index (VIX) 20 minutes prior to scheduled announcements to 20 minutes after scheduled announcements. The light-gray shaded areas are ±2-standard-error bands around the average returns. The sample period is from January 1998 through December 2017. The vertical line indicates the time at which announcements are released in this sample period. y-axis expressed in percentage terms.
Figure A.4: The cumulative Eurodollar returns around the 10am announcements

(A) Below trend

(B) Above trend

Notes: We plot the average cumulative returns in percentage points around scheduled announcements. Macroeconomic announcements are consumer confidence index, durable goods orders, and ISM manufacturing which are released at 10am. The black solid lines are the average cumulative return on the Eurodollar futures of maturity 3, 6, 9, 12 months 20 minutes prior to scheduled announcements to 20 minutes after scheduled announcements. The light-gray shaded areas are ±2-standard-error bands around the average returns. The sample period is from January 1998 through December 2017. The vertical line indicates the time at which announcements are released in this sample period. y-axis expressed in percentage terms.
A.3 Nonlinear regression in Swanson and Williams (2014)

For macroeconomic indicator $y_{i,t}$, the standardized news variable at time t is

$$X_{i,t} = \frac{y_{i,t} - E_{t-\Delta}(y_{i,t})}{\sigma(y_{i,t} - E_{t-\Delta}(y_{i,t}))}$$

where $E_{t-\Delta}(y_{i,t})$ is the mean survey expectation which was taken at $t-\Delta$. For illustrative purpose, assume (1) two macroeconomic variables; (2) quarterly announcements (4 per a year); (3) 3 years of announcement data. We represent the quarterly time subscript t as $t = 12(a - 1) + q$, where $q = 1, ..., 4$. We consider the following nonlinear least squares specification

$$R_{a,q} = \alpha_a + \beta_a \left(\gamma_1 X_{1,a,q} + \gamma_2 X_{2,a,q} \right) + \epsilon_{a,q},$$

where q is the quarterly time subscript and a the annual time subscript. This nonlinear regression can be expressed as

$$
\begin{bmatrix}
R_{1,1} \\
R_{1,2} \\
R_{1,3} \\
R_{1,4} \\
R_{2,1} \\
R_{2,2} \\
R_{2,3} \\
R_{2,4} \\
R_{3,1} \\
R_{3,2} \\
R_{3,3} \\
R_{3,4}
\end{bmatrix}
=
\begin{bmatrix}
X_{1,1,1} & X_{2,1,1} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
X_{1,1,2} & X_{2,1,2} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
X_{1,1,3} & X_{2,1,3} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
X_{1,1,4} & X_{2,1,4} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & X_{1,2,1} & X_{2,2,1} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & X_{1,2,2} & X_{2,2,2} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & X_{1,2,3} & X_{2,2,3} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & X_{1,2,4} & X_{2,2,4} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & X_{1,3,1} & X_{2,3,1} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & X_{1,3,2} & X_{2,3,2} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & X_{1,3,3} & X_{2,3,3} & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & X_{1,3,4} & X_{2,3,4} & 0 & 0 & 1
\end{bmatrix}
+
\begin{bmatrix}
\beta_1 \gamma_1 \\
\beta_1 \gamma_2 \\
\beta_2 \gamma_1 \\
\beta_2 \gamma_2 \\
\beta_3 \gamma_1 \\
\beta_3 \gamma_2 \\
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\epsilon_{1,1} \\
\epsilon_{1,2} \\
\epsilon_{1,3} \\
\epsilon_{1,4} \\
\epsilon_{2,1} \\
\epsilon_{2,2} \\
\epsilon_{2,3} \\
\epsilon_{2,4} \\
\epsilon_{3,1} \\
\epsilon_{3,2} \\
\epsilon_{3,3} \\
\epsilon_{3,4}
\end{bmatrix}.
Table A.3: Selection of the MNA surprises based on average p-values

<table>
<thead>
<tr>
<th>MNAs</th>
<th>Percent</th>
<th>p-val</th>
<th>Percent</th>
<th>p-val</th>
<th>Percent</th>
<th>p-val</th>
<th>Percent</th>
<th>p-val</th>
<th>Daily return p-val</th>
<th>p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Nonfarm Payrolls</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>0.5073</td>
<td>0.6077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Manufacturing</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>0.3299</td>
<td>0.4333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Confidence Index</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>0.3607</td>
<td>0.3703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Jobless Claims</td>
<td>100.0%</td>
<td>0.0005</td>
<td>100.0%</td>
<td>0.0000</td>
<td>100.0%</td>
<td>0.0000</td>
<td>0.0927</td>
<td>0.0693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durable Goods Orders</td>
<td>98.8%</td>
<td>0.0011</td>
<td>81.5%</td>
<td>0.0138</td>
<td>100.0%</td>
<td>0.0000</td>
<td>0.4124</td>
<td>0.4032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail Sales Advance MoM</td>
<td>100.0%</td>
<td>0.0011</td>
<td>79.0%</td>
<td>0.0164</td>
<td>77.8%</td>
<td>0.0161</td>
<td>0.1476</td>
<td>0.1239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>82.7%</td>
<td>0.0226</td>
<td>23.5%</td>
<td>0.1797</td>
<td>0.0%</td>
<td>0.4359</td>
<td>0.8033</td>
<td>0.8817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Spending MoM</td>
<td>34.6%</td>
<td>0.0359</td>
<td>9.9%</td>
<td>0.1215</td>
<td>0.0%</td>
<td>0.3129</td>
<td>0.2155</td>
<td>0.2605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP Annualized QoQ</td>
<td>76.5%</td>
<td>0.0477</td>
<td>72.8%</td>
<td>0.0417</td>
<td>77.8%</td>
<td>0.0203</td>
<td>0.3387</td>
<td>0.4266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Production MoM</td>
<td>16.0%</td>
<td>0.0856</td>
<td>33.3%</td>
<td>0.1855</td>
<td>45.7%</td>
<td>0.0497</td>
<td>0.8363</td>
<td>0.9288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Non-Manf. Composite</td>
<td>44.4%</td>
<td>0.1076</td>
<td>56.8%</td>
<td>0.0553</td>
<td>42.0%</td>
<td>0.1189</td>
<td>0.0117</td>
<td>0.0214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing Starts</td>
<td>32.1%</td>
<td>0.1678</td>
<td>1.2%</td>
<td>0.5879</td>
<td>7.4%</td>
<td>0.4324</td>
<td>0.8247</td>
<td>0.9425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI MoM</td>
<td>9.9%</td>
<td>0.2206</td>
<td>100.0%</td>
<td>0.0002</td>
<td>100.0%</td>
<td>0.0006</td>
<td>0.2051</td>
<td>0.2228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Home Sales</td>
<td>27.2%</td>
<td>0.2221</td>
<td>2.5%</td>
<td>0.5660</td>
<td>1.2%</td>
<td>0.5946</td>
<td>0.9259</td>
<td>0.9442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Income</td>
<td>2.5%</td>
<td>0.2744</td>
<td>0.0%</td>
<td>0.6717</td>
<td>0.0%</td>
<td>0.5386</td>
<td>0.5103</td>
<td>0.5654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leading Index</td>
<td>0.0%</td>
<td>0.3226</td>
<td>0.0%</td>
<td>0.7019</td>
<td>0.0%</td>
<td>0.7393</td>
<td>0.4113</td>
<td>0.5079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Balance</td>
<td>0.0%</td>
<td>0.4007</td>
<td>0.0%</td>
<td>0.1987</td>
<td>4.9%</td>
<td>0.1718</td>
<td>0.0153</td>
<td>0.0125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory Orders</td>
<td>1.2%</td>
<td>0.4563</td>
<td>1.2%</td>
<td>0.2858</td>
<td>0.0%</td>
<td>0.3721</td>
<td>0.0939</td>
<td>0.0923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>0.0%</td>
<td>0.6591</td>
<td>0.0%</td>
<td>0.6113</td>
<td>14.8%</td>
<td>0.1244</td>
<td>0.7658</td>
<td>0.8442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI Final Demand MoM</td>
<td>0.0%</td>
<td>0.7860</td>
<td>0.0%</td>
<td>0.2763</td>
<td>0.0%</td>
<td>0.2911</td>
<td>0.4420</td>
<td>0.3245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear regression</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate regression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univariate regression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The sample is from January 1998 to December 2017 for the 81 regressions described in the main text. “Percent” refers to the percentage (number significant/81) of regressions in which returns significantly respond the MNA at the 99% confidence interval. Average p-value is the average two-sided p-value across all 81 regressions. We consider “multivariate” and “univariate” regressions. Daily return refers to using returns from 8am to 3.30pm. It is important to note that we remove all the days when there are the FOMC related news in constructing daily returns. We refer to the non-linear regression when β^τ is estimated; all the rest assume β^τ is set to one.

A.4 Selection of the MNA surprises and return window interval

We estimate various versions of (A.1)

$$r_{t+\Delta h}^{t+\Delta l} = \alpha^\tau + \beta^\tau \gamma' X_t + \epsilon_t$$ \hspace{1cm} (A.1)

by considering all combinations of Δ_l and Δ_h between 10 minutes and 90 minutes in the increments of 10 minutes (81 regressions in total). We use many combinations of the return window precisely because the significance of the MNAs depends on the size of
Table A.4: Selection of the MNA surprises based on the magnitude of coefficient

<table>
<thead>
<tr>
<th>MNAs</th>
<th>Intra-day return</th>
<th>Daily return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Nonfarm Payrolls</td>
<td>25.64</td>
<td>10.49</td>
</tr>
<tr>
<td>Initial Jobless Claims</td>
<td>23.58</td>
<td>16.05</td>
</tr>
<tr>
<td>ISM Manufacturing</td>
<td>21.75</td>
<td>10.77</td>
</tr>
<tr>
<td>Consumer Confidence Index</td>
<td>14.44</td>
<td>7.13</td>
</tr>
<tr>
<td>Retail Sales Advance MoM</td>
<td>14.13</td>
<td>5.45</td>
</tr>
<tr>
<td>Industrial Production MoM</td>
<td>10.99</td>
<td>6.07</td>
</tr>
<tr>
<td>Durable Goods Orders</td>
<td>9.71</td>
<td>4.70</td>
</tr>
<tr>
<td>GDP Annualized QoQ</td>
<td>8.52</td>
<td>6.11</td>
</tr>
<tr>
<td>Leading Index</td>
<td>8.13</td>
<td>1.30</td>
</tr>
<tr>
<td>CPI MoM</td>
<td>7.20</td>
<td>10.57</td>
</tr>
<tr>
<td>ISM Non-Manf. Composite</td>
<td>6.84</td>
<td>4.16</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>6.72</td>
<td>2.59</td>
</tr>
<tr>
<td>Construction Spending MoM</td>
<td>6.42</td>
<td>2.39</td>
</tr>
<tr>
<td>Factory Orders</td>
<td>4.13</td>
<td>3.85</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>3.71</td>
<td>0.78</td>
</tr>
<tr>
<td>Personal Income</td>
<td>3.07</td>
<td>1.12</td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>2.99</td>
<td>1.71</td>
</tr>
<tr>
<td>Housing Starts</td>
<td>2.53</td>
<td>0.77</td>
</tr>
<tr>
<td>Trade Balance</td>
<td>2.30</td>
<td>2.07</td>
</tr>
<tr>
<td>PPI Final Demand MoM</td>
<td>0.66</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Nonlinear regression ✓
Multivariate regression ✓ ✓ ✓
Univariate regression ✓ ✓ ✓

Notes: The sample is from January 1998 to December 2017 for the 81 intra-day regressions described in the main text. We consider multivariate and univariate OLS regressions with both daily and intra-day returns. Daily return refers to using returns from 8am to 3.30pm. We exclude all the days containing FOMC related news in constructing daily returns. In the non-linear regression, β^τ is estimated; all the rest assume β^τ is set to one. We sort the macro announcements by how much an individual MNA explains variation in stock market returns. More precisely, we compute $100 \times |\hat{\gamma}_i\#_i|/ \sum_i |\hat{\gamma}_i\#_i|$ where $\#_i$ is the number of observations where MNA_i features in the regression (Column 2 in Table A.1) for each regression specification. Since our measure of surprises are normalized by either variation in time, or variation in the prediction of forecasters, this statistic will measure the relative importance of MNAs in a manner comparable across different regressions. When the regression is multivariate, $\hat{\gamma}_i$ refers to the i^{th} entry of vector $\hat{\gamma}$. When the regression is univariate, $\hat{\gamma}_i$ is the factor loading on MNA_i from the i^{th} regression. We average this statistic across all 81 intra-day regressions for the first 3 columns.

the return window, see for example, Andersen, Bollerslev, Diebold, and Vega (2003) and Bartolini, Goldberg, and Sacarny (2008). For robustness, we also examine both cases of multivariate and univariate regressions in which β^τ is fixed at one. Table A.3 tabulates the number of regressions in which stock returns significantly respond to a specific MNA at the 1% significance level. We can also order the MNAs by their economic impact instead of statistical significance. More precisely, we compute $100 \times |\hat{\gamma}_i\#_i|/ \sum_i |\hat{\gamma}_i\#_i|$ where $\#_i$ is the number of observations for MNA_i. The results are provided in Table A.4. By and
large, the ordering is similar to Table A.3. In sum, based on two approaches we select the top fours MNAs as our benchmark MNAs. We find that the range of R^2 values from these regressions are from 5% to 20%. For ease of presentation, we set $\Delta_l = \Delta_h = 30\text{min}$ (which yields an R^2 value of 0.13 which is representative of the distribution) for the remaining empirical exercises.

A.5 Revisiting Boyd, Hu, and Jagannathan (2005)

Our work is closely related to Boyd, Hu, and Jagannathan (2005) (BHJ) in many ways. Here, we explain the similarities and key differences between the two papers. For ease of exposition, we first summarize BHJ and explain our differences below.

BHJ investigates the short-run response of stock prices to the arrival of macro news (unemployment rate). To do this, they measure the anticipated and unanticipated component of unemployment rate using regressions with the change in the unemployment rate, monthly industrial production, and the 3-month T-bill rate, the change in the default yield spread between Baa and Aaa corporate bonds as predictor variables for the current unemployment rate. Then, they regress daily returns on bonds and stocks on the unanticipated component of unemployment rate. They find that stock market’s response depends on whether the economy is expanding or contracting. To summarize, rising unemployment rate (bad news) is good (bad) for stock market during expansions (recessions); and because the economy is usually in expansions, rising unemployment rate is good for stock market.

BHJ examine the informational content of unemployment rate announcement. If unemployment rate news has an effect on stock prices, it must be because it conveys information about cash flows, interest rate, and risk premium. To understand how these three primitive factors influence stock prices, they consider the Gordon growth constant model for conceptual device of security valuation. For it to have information about future interest rates, stock and bond prices would respond in the same way. They don’t. Instead, they find that stock prices react negatively to rising unemployment rate in recessions, but bond prices do not react. Therefore, unemployment rate news is about cash flows or risk premiums in recessions. They provide the evidence that rising unemployment rate is always followed by slower growth especially during recessions. In contrast, both stock and bond prices rise on rising unemployment rate during expansions. This suggests that bad labor news leads to decline in future interest rate expectation. Also, they find evidence that an
unanticipated increase in unemployment rate (bad news) may lead to an increase in the risk premium during expansions, but not during recessions.

From a technical point of view, our work extends BHJ by exploring a broader set of macroeconomic announcements with survey-based measure of announcement surprises and high-frequency returns. Our comprehensive data allow us to investigate how the “unanticipated surprises” of most influential announcements impact various financial market returns including stocks and bonds. Figure A.2 summarizes our findings. Consistent with BHJ, in Panel (A) we find that bad news, i.e., negative CNP, CCI, ISM and positive IJC surprises, significantly lowers stock returns during the below trend periods, but not during the above trend periods (for ease of comparison with BHJ, we also partition the sample with respect to the NBER recessions and expansions). However, we find that the same bad news leads to significant increase in bond futures returns during the below trend periods (indicating lower interest rates) in Panel (B) and (C). In addition, the magnitudes of increase in bond futures returns upon bad news are similar across the below and above trend periods. This is clearly different from BHJ.

To precisely investigate the informational content, we focus on the announcements released during trading hours (CCI and ISM released at 10am), which allows us to use the intra-day VIX Index as our empirical proxy for risk premium. Figure A.3 provides the cumulative returns of stocks, bonds, and VIX Index around the 10am announcements. The reactions of both stock and bond returns are similar to Figure A.2. What is interesting is the reaction of the VIX returns. We find an opposite conclusion from BHJ that bad news, i.e., negative CCI and ISM surprises, leads to a significant increase in the risk premium during the below trend periods, but not during the above trend periods. We expect our new stylized facts to be valuable to the readers because our evidence leads to a different characterization of the informational content of announcement surprises.

We provide a framework that models the dynamics of cash flows, interest rate (monetary policy), and risk premium jointly enabling both qualitative and quantitative assessment of the framework specifically tailored to help the reader interpret our empirical findings. There are two key takeaways from our model. First, we find that the presence of monetary policy stabilization can reduce or even nullify economic shocks. This is commonly happening across different phases of business cycles. Second, there is large swings in risk premium news mostly during the below trend periods which serves as an important factor understanding return variations. The role of news about risk premium is marginal during
Figure A.5: The stock return sensitivity before and after the news announcements

\[
\hat{\beta}^\tau(t - 30m \rightarrow t - 5m)
\]

\[
\hat{\beta}^\tau(t - 5m \rightarrow t)
\]

\[
\hat{\beta}^\tau(t \rightarrow t + 5m)
\]

\[
\hat{\beta}^\tau(t + 5m \rightarrow t + 30m)
\]

Notes: The individual \(\hat{\beta}^\tau(t - \Delta_l \rightarrow t + \Delta_h)\) are shown with \(\pm 2\) standard-error bands. Here, we do not impose the restriction that the average of \(\hat{\beta}^\tau(t - \Delta_l \rightarrow t + \Delta_h)\) is equal to one. This is because the regressor is already restricted to \(\hat{X}_t\). By construction, the sum of individual \(\hat{\beta}^\tau(t - \Delta_l \rightarrow t + \Delta_h)\) equals \(\hat{\beta}^\tau\) shown in Figure 1.

the above trend periods. Put together, we believe the new empirical stylized facts as well as the modeling framework are our two fundamental contributions which goes beyond the existing works including BHJ.

A.6 Robustness checks

Stock return sensitivity before and after the announcements. To better understand how information contained in the MNAs is conveyed in the stock market, we decompose \(\hat{\beta}^\tau\) to sensitivity attributable to periods before and after the announcements.

To recap, the estimates from the benchmark regression are provided below

\[
\hat{r}_t^{t+30m} = \hat{\alpha}^\tau + \hat{\beta}^\tau(\hat{\gamma}'X_t) = \hat{\alpha}^\tau + \hat{\beta}^\tau\hat{X}_t. \tag{A.2}
\]
Figure A.6: The stock return sensitivity: Evidence from lower-frequency data

\[\hat{\beta}_t (t - 1h \rightarrow t + 1h) \quad \hat{\beta}_t (t - 3h \rightarrow t + 3h) \quad \hat{\beta}_t (8am \rightarrow 3:30pm) \]

Notes: The individual \(\hat{\beta}_t (t - \Delta_l \rightarrow t + \Delta_h) \) are shown with \(\pm 2 \) standard-error bands. Here, we do not impose the restriction that the average of \(\hat{\beta}_t (t - \Delta_l \rightarrow t + \Delta_h) \) is equal to one. This is because the regressor is already restricted to \(\hat{X}_t \).

We estimate the modified (restricted) regression in which we regress return \(r_{t-\Delta_l}^{t+\Delta_h} \) on \(\hat{X}_t \)

\[r_{t-\Delta_l}^{t+\Delta_h} = \alpha_t + \beta_t \hat{X}_t + \epsilon_t \]

and obtain estimate of \(\hat{\beta}_t \) for each combination of \((\Delta_h, \Delta_l) \in \{-5m, 0m, 5m, 30m\} \), which we denote by \(\hat{\beta}_t (t - \Delta_l \rightarrow t + \Delta_h) \). See Figure A.5. It follows that \(\hat{\beta}_t \) in (A.2) by construction equals

\[\hat{\beta}_t (t - 30m \rightarrow t + 30m) = \hat{\beta}_t (t - 30m \rightarrow t - 5m) + \hat{\beta}_t (t - 5m \rightarrow t) + \hat{\beta}_t (t \rightarrow t + 5m) + \hat{\beta}_t (t + 5m \rightarrow t + 30m). \]

The sensitivity is with respect to the linearly transformed MNA surprises, \(\hat{X}_t \). Since \(\hat{X}_t \) is a generated regressor from (A.2), asymptotic standard errors are constructed using generalized methods of moments.

We do not find any evidence of pre-announcement phenomenon which is different from Lucca and Moench (2015); stock prices on impact react significantly to the MNA surprises, but there is no statistically significant movement five minutes after the announcements. This is important as it shows there is no immediate mean reversion in the reaction of the stock market. We extend our analysis to daily data and further confirm that the market
Figure A.7: The stock return sensitivity to good and bad surprises

Notes: We decompose the macroeconomic news announcements into “good” (better-than-expected or positive) and “bad” (worse-than-expected or negative) announcements. Macroeconomic announcements are Change in Nonfarm Payrolls, Consumer Confidence Index, Initial Jobless Claims, and ISM Manufacturing. We flip the sign of Initial Jobless Claims surprises for ease of comparison across other “good” surprises. We set $\Delta = 30$ min. We impose that β_j is on average equal to one. We provide ± 2-standard-error bands around β_j, $j \in \{\text{good, bad}\}$.

Reactions are not reflecting temporary noise.

Stock return sensitivity with lower-frequency data. To show that the impact of the MNA surprises on the stock market is not short-lived, we estimate the restricted regression (A.3) with larger window intervals in Figure A.6. Since we aim to compare the precision of the sensitivity coefficient estimates when we replace the dependent variable with lower-frequency returns, we fix the unconditional impact of the MNA surprises to be *ex ante* identical across various cases. Thus, the coefficient $\beta^*(t - \Delta_l \rightarrow t + \Delta_h)$ can only be interpreted with respect to \hat{X}_t. It is important to note that we remove all the days when there are the FOMC related news in constructing daily returns. We find that the mean estimates are broadly similar across various window intervals. As expected, the standard-error bands increase moving from the case of hourly returns to daily returns. We emphasize that the results from the unrestricted regression are qualitatively similar.

Evidence for asymmetry. We decompose the macroeconomic news announcements into “good” (better-than-expected or positive) and “bad” (worse-than-expected or negative) announcements and examine if the stock return responses to good and bad MNA surprises are different from each other.\(^{25}\) Here, we flip the sign of Initial Jobless Claim surprises for

\(^{25}\)We also repeat this exercise using only the better half of good news (the most positive) and the worse half of bad news (the most negative) and find that the results do not change.
Table A.5: Distributions of the MNA surprises: Kolmogorov-Smirnov test

<table>
<thead>
<tr>
<th>Surprises pair</th>
<th>CNP</th>
<th>CCI</th>
<th>IJC</th>
<th>ISM</th>
<th>RSA</th>
<th>DGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(above trend, near trend)</td>
<td>0.997</td>
<td>0.953</td>
<td>0.233</td>
<td>0.707</td>
<td>1.000</td>
<td>0.546</td>
</tr>
<tr>
<td>(near trend, below trend)</td>
<td>0.734</td>
<td>0.125</td>
<td>0.920</td>
<td>0.479</td>
<td>0.519</td>
<td>0.752</td>
</tr>
<tr>
<td>(above trend, below trend)</td>
<td>0.912</td>
<td>0.081</td>
<td>0.050</td>
<td>0.063</td>
<td>0.900</td>
<td>0.473</td>
</tr>
</tbody>
</table>

Notes: We consider change in nonfarm payrolls (CNP), initial jobless claims (IJC), ISM manufacturing (ISM), consumer confidence index (CCI), retail sales advance (RSA), and durable goods orders (DGO). We partition the MNA surprise into three different subsamples and compute a test decision for the null hypothesis that the surprises in different subsamples are from the same distribution. We report the corresponding asymptotic p-values.

Table A.6: Distributions of the MNA surprises: Regression test

<table>
<thead>
<tr>
<th>MNA surprises (level)</th>
<th>CNP</th>
<th>CCI</th>
<th>IJC</th>
<th>ISM-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-0.12</td>
<td>0.01</td>
<td>-0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(-1.11)</td>
<td>(0.04)</td>
<td>(-1.54)</td>
<td>(0.66)</td>
</tr>
<tr>
<td>dummy aboveT</td>
<td>-0.15</td>
<td>0.13</td>
<td>0.07</td>
<td>-0.13</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(-0.84)</td>
<td>(0.78)</td>
<td>(0.84)</td>
<td>(-0.78)</td>
</tr>
<tr>
<td>dummy belowT</td>
<td>-0.07</td>
<td>-0.01</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(-0.48)</td>
<td>(-0.04)</td>
<td>(2.24)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>R2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MNA surprises (absolute level)</th>
<th>CNP</th>
<th>CCI</th>
<th>IJC</th>
<th>ISM-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.70</td>
<td>0.90</td>
<td>0.72</td>
<td>0.74</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(11.58)</td>
<td>(11.85)</td>
<td>(16.64)</td>
<td>(8.28)</td>
</tr>
<tr>
<td>dummy aboveT</td>
<td>0.15</td>
<td>-0.29</td>
<td>-0.08</td>
<td>-0.01</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(1.39)</td>
<td>(-3.04)</td>
<td>(-1.47)</td>
<td>(-0.10)</td>
</tr>
<tr>
<td>dummy belowT</td>
<td>0.03</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(0.29)</td>
<td>(-0.58)</td>
<td>(0.99)</td>
<td>(0.70)</td>
</tr>
<tr>
<td>R2</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: The benchmark MNAs are change in nonfarm payrolls (CNP), initial jobless claims (IJC), ISM manufacturing (ISM), and consumer confidence index (CCI). Distributions of the MNA surprises do not seem to differ much across different phases of business cycle during 1998-2017.

The ease of comparison across other “good” surprises. We then run the following regression

\[r_{t-\Delta} = \alpha + \beta_{\text{good}} \gamma X_{\text{good},t} + \beta_{\text{bad}} \gamma X_{\text{bad},t} + \epsilon_t. \]

(A.5)

Note that if \(\beta_{\text{good}} \) and \(\beta_{\text{bad}} \) are identical, this equation becomes (A.1). Figure A.7 displays the corresponding estimates of \(\hat{\beta}_{\text{good}} \) and \(\hat{\beta}_{\text{bad}} \). Surprisingly, the standard error bands on \(\hat{\beta}_{\text{good}} \) and \(\hat{\beta}_{\text{bad}} \) overlap almost always, and thus the sensitivity estimates are statistically indifferent from one another. In sum, there is no evidence for asymmetry in the response to good and bad MNA surprises during 1998 to 2017.

Distribution of the MNA surprises. One might suspect that time variation in the stock market sensitivity is primarily driven by time variation in MNA surprises. To test the hypothesis formally, we partition the sample into the above, near, and below trend periods (see Figure A.1) and perform the two sample Kolmogorov-Smirnov test in Table A.5. We
compute a test decision for the null hypothesis that the surprises in different subsamples are from the same distribution. None of the test reject the null hypothesis at the 5% significance level. We then create two dummy variables locating the below trend and above trend periods and regress the raw and absolute MNA surprises on these dummy variables. We find that coefficients for these two dummy variables are largely insignificant as shown by Table A.6.

To be fully robust, we also modify the estimation specification in (A.1) and allow for the mean and variance of X_t to vary over time. Specifically, we estimate

$$r_{t-\Delta} = \alpha(S_t) + \beta(S_t)X_t + \gamma(S_t)U_t + \epsilon_t$$

where $\beta(\cdot)$ and $\gamma(\cdot)$ are scalar variables. We impose tight priors on the transition matrix such that persistence of each regime is close to one. We find that the estimated time-varying sensitivity of the stock return did not change much. The results are available upon request.

Controlling for possible omitted variable problems. It is possible that our benchmark specification may suffer from omitted variable problems. We augment the regression with other predictor variables $Z_{t-\Delta_z}$ which are known before the announcements

$$r_{t-\Delta} = \alpha^\tau + \beta^\tau X_t + \delta^\tau Z_{t-\Delta_z} + \epsilon_t.$$ \hfill (A.6)
Figure A.8: The stock return sensitivity: longer sample evidence with daily returns

Notes: We use S&P 500 futures (SP) which are available from 1988 to 2017. We use daily returns to incorporate the following macroeconomic announcements, which are change in nonfarm payrolls, consumer confidence index, initial jobless claims, ISM manufacturing, new home sales, unemployment rate, GDP annualized QoQ. We first run (A.1) with ES from 1998 to 2017 in which the return window is set to $\Delta = 30$ min to obtain the estimate of $\hat{\gamma}$. Then, conditional on $\hat{\gamma}$, we run (A.1) with daily SP from 1988 to 2017 to obtain the estimates of $\hat{\beta}^\tau$. We do this to sharpen the inference on β^τ. We impose that β^τ (black-solid line) is on average equal to one. We provide ± 2-standard-error bands (light-shaded area) around β^τ.

information is included in the regression. We find that the coefficient loading on change in spread and the ADS index are estimated to be significant at 1% and 5% level of significance, respectively. Nonetheless, the resulting estimates for $\hat{\beta}^\tau$ from these regressions are essentially unchanged. We also tried to control for volatility changes, if any, in stock returns by dividing the return by VIX. Our results are not affected.

Longer-sample evidence. We extend the sample to the 1990s and examine if a similar pattern emerges. Before 2000, the futures market was very illiquid outside the trading hours. This restriction excludes the use of all announcements released at 8:30am. To tackle this issue, we use daily returns to incorporate a wider range of macroeconomic announcements which include change in nonfarm payrolls, consumer confidence index, initial jobless claims, ISM manufacturing, new home sales, unemployment rate, GDP annualized QoQ. We use the survey data from Money Market Service (MMS) to construct surprises. We do it because survey forecasts are available from early 1980s in MMS while they are only available after 1997 in Bloomberg. By changing both left-hand side and right-hand side variables in the regression, we aim to provide further robustness to our main finding.

We first run (A.1) with intra-day returns from 1998 to 2017 in which the return window
is set to $\Delta = 30$ min to obtain the estimate of $\hat{\gamma}$. Then, conditional on $\hat{\gamma}$, we work with daily returns from 1988 to 2017 to obtain the estimates of $\hat{\beta}^\tau$ by running (A.3). It is important to note that we remove all the days when there are the FOMC related news in constructing daily returns. We do this to sharpen the inference on $\hat{\beta}^\tau$ which is provided in Figure A.8. The mean estimates are qualitatively similar, but estimated with larger standard errors. Overall, we conclude that our results are robust across various return measures, surprise measures, and different periods.

Figure A.9: The smoothing parameter τ

![Graph showing sensitivity β^τ over time with different smoothing parameters.]

Notes: We repeat the estimation by varying the values of smoothing parameter τ. The highest frequency considered in this picture is 3 months and the lowest is 4 years.

Other robustness checks. We improve the econometric power in identifying the cyclical variation in stock return responses by pooling information within τ subperiod, that is, a year. Yet, it requires us to assume that the responses move proportionally within τ period. Figure A.9 show that our results are robust to different smoothing parameter values τ. We also relax the assumption that the stock return responsiveness to all MNA surprises shifts by a roughly proportionate amount. This amounts to removing the common β^τ structure in (A.1) and replacing with individual γ^τ. See Figure A.10. We also show that the stock return responsiveness is qualitatively similar across individual MNAs.
Figure A.10: The stock return sensitivity: Evidence from individual regression

Notes: Macroeconomic announcements are Change in Nonfarm Payrolls, Consumer Confidence Index, Initial Jobless Claims, and ISM Manufacturing. We set $\Delta = 30$ min. We impose that γ^τ (black-solid line) is on average equal to one. We provide ± 2-standard-error bands (light-shaded area)
B Solving the Regime-Switching No-Arbitrage Model

Real dividends and monetary policy. We assume that the Federal Reserve can directly control the real rate, r_t. The monetary policy rule responds to dividend gap. To generate monetary non-neutrality, we assume that dividends dynamics resemble the standard New Keynesian IS curve. Put together,

$$
d_t = \bar{d}(S_t) + \gamma d_{t-1} + (1 - \gamma)E_t d_{t+1} - \xi r_t + u_{d,t}
$$

(A.7)

$$
r_t = \bar{r}(S_t) + \phi(S_t)(d_t - d^*_t)
$$

$$
d^*_t = \mu + d^*_{t-1} + u_{\tau,t}, \quad u_{\tau,t} \sim N(0, \sigma^2_{\tau}).
$$

Here, d^*_t indicates the potential level of dividends in the economy. There are two shocks in this economy. One is real dividends shock, $u_{d,t}$, and the other is trend shock, $u_{\tau,t}$. Both can be described with

$$
u_t = \Phi u_{t-1} + \Sigma \varepsilon_t, \quad \varepsilon \sim N(0, I_2).
$$

(A.8)

Here, we assume the level of dividends $\bar{d}(S_t)$ depends on the state. The strength with which the Federal Reserve tries to pursue its goal—a stabilization policy—also changes over time. The stabilization policy is “aggressive” or “loose” depending on its responsiveness. We capture this time variation with a regime-switching policy coefficient, $\phi(S_t)$. We impose that $\xi \geq 0$ governs the extent to which the real rate affects dividends dynamics. We define the Markov transition probability p_{ij}, i.e., the probability of changing from regime i to regime j, $\forall i, j \in \{1, \ldots, K\}$.

Because of the random-walk with drift assumption, we can re-express (A.7) in terms of deviation from potential level, i.e., $\hat{r}_t = r_t - \bar{r}(S_t)$ and $\hat{d}_t = d_t - d^*_t$,

$$
\hat{d}_t = c(S_t) + \gamma \hat{d}_{t-1} + (1 - \gamma)E_t \hat{d}_{t+1} - \xi \hat{r}_t - \gamma u_{\tau,t} + u_{d,t}
$$

(A.9)

$$
\hat{r}_t = \phi(S_t) \hat{d}_t
$$

where we conveniently re-express $c(S_t) = \bar{d}(S_t) - \xi \bar{r}(S_t) + (1 - 2\gamma)\mu$. By plugging the second equation to the first equation in (A.9), the system reduces to a single regime-dependent
equation

\[\chi(S_t) \hat{d}_t = c(S_t) + \gamma \hat{d}_{t-1} + (1 - \gamma) E_t \hat{d}_{t+1} + \omega' u_t \]

(A.10)

where

\[\chi(S_t) = 1 + \xi \phi(S_t), \quad \omega = \begin{bmatrix} 1, & -\gamma \end{bmatrix}'. \]

Solution. There exists a unique bounded regime-dependent linear solutions of the form (see Davig and Leeper (2007) and Song (2017) for discussion)

\[\hat{d}_t = \psi_0(S_t) + \psi_1(S_t) \hat{d}_{t-1} + \psi_2(S_t)' u_t \]

(A.11)

for \(p_{ji} \in [0, 1) \). Then, (A.10) can be expressed as

\[\begin{aligned}
\left\{ \chi(S_t) - (1 - \gamma) E_t \psi_1(S_{t+1}) \right\} \hat{d}_t &= c(S_t) + (1 - \gamma) E_t \psi_0(S_{t+1}) + \gamma \hat{d}_{t-1} \\
&+ \left\{ (1 - \gamma) E_t \psi_2(S_{t+1})' \Phi + \omega' \right\} u_t.
\end{aligned} \]

(A.12)

Here, we assumed independence between \(S_{t+1} \) and \(\epsilon_{t+1} \) and set \(E_t[\psi_2(S_{t+1})' \Sigma \epsilon_{t+1}] = 0 \).

We match the coefficients

1. \(\psi_0(S_t) = \frac{c(S_t) + (1 - \gamma) E_t \psi_0(S_{t+1})}{\chi(S_t) - (1 - \gamma) E_t \psi_1(S_{t+1})} \)
2. \(\psi_1(S_t) = \frac{\gamma}{\chi(S_t) - (1 - \gamma) E_t \psi_1(S_{t+1})} \)
3. \(\psi_2(S_t)' = \frac{(1 - \gamma) E_t \psi_2(S_{t+1})' \Phi + \omega'}{\chi(S_t) - (1 - \gamma) E_t \psi_1(S_{t+1})} \)

To build intuition into the solution coefficients, consider the case of fixed regime. We can express

\[\begin{aligned}
\psi_0 &= \frac{c}{\chi - (1 - \gamma)(\psi_1 + 1)} \\
\psi_1 &= \frac{\chi \pm \sqrt{\chi^2 - 4(1 - \gamma) \gamma}}{2(1 - \gamma)} \\
\psi_2 &= w'(\chi I - (1 - \gamma)(\psi_1 I + \Phi))^{-1}.
\end{aligned} \]

(A.13)
Among the two roots, we select
\[\psi_1 = \frac{x - \sqrt{x^2 - 4(1 - \gamma)\gamma}}{2(1 - \gamma)} \leq 1 \]
to preserve stationarity of \(\hat{d}_t \) dynamics. This is true for \(\chi \geq 1 \). Note that
\begin{align*}
\lim_{\gamma \to 0} \psi_0(\gamma) &= \frac{\epsilon}{\chi - 1} \\
\lim_{\gamma \to 0} \psi_1(\gamma) &= 0 \\
\lim_{\gamma \to 0} \psi_2(\gamma) &= w'(\chi I - \Phi)^{-1}
\end{align*}
(A.14)

Dividend growth. Note that
\begin{align*}
\Delta d_{t+1} &= \Delta \hat{d}_{t+1} + \Delta d^*_t \\
&= \mu + \psi_0(S_{t+1}) + (\psi_1(S_{t+1}) - 1)\psi_0(S_t) + (\psi_1(S_{t+1}) - 1)\psi_1(S_t) \hat{d}_{t-1} \\
&\quad + \{ (\psi_1(S_{t+1}) - 1)\psi_2(S_t)' + \psi_2(S_{t+1})'\Phi \} u_t + (\psi_2(S_{t+1})' + \epsilon'_2)\Sigma \varepsilon_{t+1}.
\end{align*}
(A.15)

We can express the expected \(n \)-period-ahead dividend growth rate as
\[E_t \Delta d_{t+n|S_t=j} = \psi_{n,0}^{e}(j) + \psi_{n,1}^{e}(j)\hat{d}_{t-1} + \psi_{n,2}^{e}(j)'u_t. \]
(A.16)

For ease of exposition, define
\begin{align*}
\Psi_{n+1,1} &= \Pi \Psi_{n,1} \odot \Psi_1, \quad n \geq 1, \quad \Psi_{1,1} = \Psi_1 \\
f(\Psi_{n,1}, \Psi_x) &= \Pi \Psi_{n,1} \odot \Psi_x.
\end{align*}
(A.17)
We can obtain
\[\psi_{n,0}^{e} = \Pi(j, :) \left((\Pi^{n-1} - \Pi^{n-2}) \Psi_{0} + \sum_{j=1}^{n-2} (\Pi^{n-1-j} - \Pi^{n-2-j}) f(\Psi_{j, 1}, \Psi_{0}) \right) \]
\[+ f(\Psi_{n-1, 1}, \Psi_{0}) + \Psi_{n, 1} \odot \Psi_{0} - \Psi_{n-1, 1} \odot \Psi_{0} \right) + \mu \]
\[\psi_{n,1}^{e} = \Pi(j, :) \left(\Psi_{n, 1} \odot \Psi_{1} - \Psi_{n-1, 1} \odot \Psi_{1} \right) \]
\[\psi_{n,2}^{e} = \Pi(j, :) \left(\Psi_{n, 1} \odot \Psi_{2} - \Psi_{n-1, 1} \odot \Psi_{2} + \sum_{j=1}^{n-2} \Pi^{j-1} \{ f(\Psi_{n-j, 1}, \Psi_{2}) - f(\Psi_{n-1-j, 1}, \Psi_{2}) \} \Phi^{j} \right) \]
\[+ \Pi^{n-2} \{ f(\Psi_{1, 1}, \Psi_{2}) - \Psi_{2} \} \Phi^{n-1} + \Pi^{n-1} \Psi_{2} \Phi^{n} \).

These expressions are valid for \(n \geq 3 \).

We can deduce from (A.14) that there exists \(1 \leq n \) such that
\[\lim_{\gamma \to 0} \psi_{n,0}^{e}(\gamma) > 0 \quad \lim_{\gamma \to 1} \psi_{n,0}^{e}(\gamma) > 0 \]
\[\lim_{\gamma \to 0} \psi_{n,1}^{e}(\gamma) = 0 \quad \lim_{\gamma \to 1} \psi_{n,1}^{e}(\gamma) < 0 \]
\[\lim_{\gamma \to 0} \psi_{n,2}^{e}(\gamma) < 0 \quad \lim_{\gamma \to 1} \psi_{n,2}^{e}(\gamma) > 0 \]

It is possible that \(\lim_{\gamma \to 1} \psi_{n,2}^{e}(\gamma) \leq 0 \) for large \(n \). The key takeaway is that the expected dividend growth dynamics critically depends on the value of \(\gamma \). For \(u_{d,t} \) to increase both the level and growth rate of dividends, we need \(\gamma \) to be sufficiently close to one.

Expected risk-free rates. Using the solution expression for dividends (A.11), we can re-express the risk-free rate as
\[r_{t} = \bar{r}(S_{t}) + \phi(S_{t})\psi_{0}(S_{t}) + \phi(S_{t})\psi_{1}(S_{t})\hat{d}_{t-1} + \phi(S_{t})\psi_{2}(S_{t})'u_{t} \]
\[= r_{0}(S_{t}) + r_{1}(S_{t})\hat{d}_{t-1} + r_{2}(S_{t})'u_{t}. \]

The goal is to compute
\[E_{t}r_{t+n|S_{t}=j} = r_{n,0}^{e}(j) + r_{n,1}^{e}(j)\hat{d}_{t-1} + r_{n,2}^{e}(j)'u_{t}. \]
For ease of exposition, define

\[
R_{n+1,1} = \prod R_{n,1} \odot \Psi_1, \quad n \geq 1, \quad R_{1,1} = R_1
\]

\[
f(R_{n,1}, \Psi_x) = \prod R_{n,1} \odot \Psi_x.
\]

We can express

\[
r^n_{e,0}(j) = \prod(j, :) \left(\prod^{n-1} R_0 + R_{n,1} \odot \Psi_0 + \prod^{n-2} f(R_{1,1}, \Psi_0) + \sum_{j=1}^{n-2} \prod^{n-2-j} f(R_{j+1,1}, \Psi_0) \right)
\]

\[
r^n_{e,1}(j) = \prod(j,:) R_{n,1} \odot \Psi_1
\]

\[
r^n_{e,2}(j) = \prod(j,:) \left(\prod^{n-1} R_2 \Phi^n + R_{n,1} \odot \Psi_2 + \sum_{j=0}^{n-2} \prod^{n-2-j} f(R_{j+1,1}, \Psi_2) \Phi^{n-1-j} \right).
\]

These expressions are valid for \(n \geq 3 \).

Stochastic discount factor. The log pricing kernel is assumed as

\[
m_{t+1} = -r_t - \frac{1}{2} \lambda(S_t) \Sigma \Sigma' \lambda(S_t) - \lambda(S_t)' \Sigma \varepsilon_{t+1}
\]

where the market price of risk \(\lambda(S_t) \) follows a Markov process. The real risk-free rate is assumed in (A.7).

Price to dividend ratio. We conjecture that the log price to dividend ratio has the following expression

\[
z_t = z_0(S_t) + z_1(S_t) \hat{d}_{t-1} + z_2(S_t)' u_t.
\]

Market return. We rely on Campbell-Shiller log-linear approximation to preserve (conditionally) linear log market return dynamics \(r_{d,t+1} = \kappa_0 + \kappa_1 z_{t+1} - z_t + \Delta d_{t+1} \). We can
express the dividend growth rate as

\[r_{d,t+1} = \mu + \kappa_0 + \kappa_1 z_0(S_{t+1}) - z_0(S_t) + \psi_0(S_{t+1}) + \kappa_1 z_1(S_{t+1}) \psi_0(S_t) + (\psi_1(S_{t+1}) - 1) \psi_0(S_t) \]
\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_1(S_t) - z_1(S_t) + (\psi_1(S_{t+1}) - 1) \psi_1(S_t) \right) \hat{d}_{t-1} \]
\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_2(S_t) + \kappa_1 z_2(S_{t+1}) \Phi - z_2(S_t) + (\psi_2(S_{t+1}) - 1) \psi_2(S_t) \right) u_t \]
\[+ \left(\kappa_1 z_2(S_{t+1}) + \psi_2(S_{t+1}) + e'_2 \right) \Sigma \varepsilon_{t+1}. \]

Define

\[r_{d\Delta,t+1} = r_{d,t+1} - \Delta d_{t+1}. \tag{A.24} \]

We can express \(E_t r_{d\Delta,t+n} \) as

\[E_t r_{d\Delta,t+n} | s_t = j = r_{d\Delta,n,0}^e(j) + r_{d\Delta,n,1}^e(j) \hat{d}_{t-1} + r_{d\Delta,n,2}^e(j) u_t. \tag{A.25} \]

For ease of exposition, define

\[Z_{n+1,1} = \Pi Z_{n,1} \otimes \Psi_1, \quad n \geq 1, \quad Z_{1,1} = Z_1 \tag{A.26} \]
\[f(Z_{n,1}, \Psi_x) = \Pi Z_{n,1} \otimes \Psi_x. \]

We can obtain

\[r_{d\Delta,n,0}^e = \Pi(j, :) \left(\kappa_0 + \kappa_1 \Pi^{(n-1)} Z_0 - \Pi^{(n-2)} Z_0 + \kappa_1 \Pi^{(n-2)} f(\Psi_{1,1}, \Psi_0) \right. \]
\[+ \sum_{j=1}^{n-2} \Pi^{n-2-j} \left\{ \kappa_1 f(\Psi_{j+1,1}, \Psi_0) - f(\Psi_{j,1}, \Psi_0) \right\} + \kappa_1 Z_{n,1} \otimes \Psi_0 - Z_{n-1,1} \otimes \Psi_0 \right) \]
\[r_{d\Delta,n,1}^e = \Pi(j, :) \left(\kappa_1 Z_{n,1} \otimes \Psi_1 - Z_{n-1,1} \otimes \Psi_1 \right) \]
\[r_{d\Delta,n,2}^e = \Pi(j, :) \left(\kappa_1 Z_{n,1} \otimes \Psi_2 - Z_{n-1,1} \otimes \Psi_2 + \kappa_1 \Pi^{n-1} Z_2 \Phi - \Pi^{n-2} Z_2 \Phi^{(n-1)} \right. \]
\[+ \sum_{j=1}^{n-1} \Pi^{j-1} \kappa_1 f(Z_{n-j,1}, \Psi_2) \Phi^j - \sum_{j=1}^{n-2} \Pi^{j-1} f(Z_{n-1-j,1}, \Psi_2) \Phi^j. \]

These expressions are valid for \(n \geq 3. \)
Note that

\[Et r_{d,t+n} = Et r_{d\Delta,t+n} + Et \Delta d_{t+n}. \] \hspace{1cm} (A.28)

Thus, the expected \(n \)-period-ahead return can be expressed as

\[Et r_{d,t+n} | s_t = j = r^e_{d,n,0}(j) + r^e_{d,n,1}(j) \hat{d}_{t-1} + r^e_{d,n,2}(j)^\prime u_t \] \hspace{1cm} (A.29)

where

\[
\begin{align*}
 r^e_{d,n,0} &= r^e_{d\Delta,n,0} + \psi^e_{n,0} \\
 r^e_{d,n,1} &= r^e_{d\Delta,n,1} + \psi^e_{n,1} \\
 r^e_{d,n,2} &= r^e_{d\Delta,n,2} + \psi^e_{n,2}.
\end{align*}
\] \hspace{1cm} (A.30)

Solving the Euler equation. We log-linearization the equation to solve for \(z_0(S_t) \), \(z_1(S_t) \), and \(z_2(S_t) \),

\[0 \approx E \left[E(m_{t+1} + r_{d,t+1}|S_{t+1}) + \frac{1}{2} Var(m_{t+1} + r_{d,t+1}|S_{t+1})|S_t \right]. \] \hspace{1cm} (A.31)

Note that

\[
\begin{align*}
m_{t+1} + r_{d,t+1} &= \mu + \kappa_0 + \kappa_1 z_0(S_{t+1}) - z_0(S_t) + \psi_0(S_{t+1}) \\
&+ \kappa_1 z_1(S_{t+1}) \psi_0(S_t) + (\psi_1(S_{t+1}) - 1)\psi_0(S_t) - r_0(S_t) \\
&+ \left(\kappa_1 z_1(S_{t+1}) \psi_1(S_t) - z_1(S_t) + (\psi_1(S_{t+1}) - 1)\psi_1(S_t) - r_1(S_t) \right) \hat{d}_{t-1} \\
&+ \left(\kappa_1 z_1(S_{t+1}) \psi_2(S_t)^\prime + \kappa_1 z_2(S_{t+1})^\prime \Phi - z_2(S_t)^\prime + (\psi_1(S_{t+1}) - 1)\psi_2(S_t)^\prime \\
&+ \psi_2(S_{t+1})^\prime \Phi - r_2(S_t)^\prime \right) u_t - \frac{1}{2} \lambda(S_t)^\prime \Sigma \Sigma \lambda(S_t) \\
&+ \left(\kappa_1 z_2(S_{t+1})^\prime + \psi_2(S_{t+1})^\prime + \epsilon_2 - \lambda(S_t)^\prime \right) \Sigma \tilde{e}_{t+1}.
\end{align*}
\]
We first calculate

\[E(m_{t+1} + r_{d,t+1} | S_{t+1}) + \frac{1}{2} \text{Var}(m_{t+1} + r_{d,t+1} | S_{t+1}) \]

\[= \mu + \kappa_0 + \kappa_1 z_0(S_{t+1}) - z_0(S_t) + \psi_0(S_{t+1}) + \kappa_1 z_1(S_{t+1}) \psi_0(S_t) + (\psi_1(S_{t+1}) - 1) \psi_0(S_t) - r_0(S_t) \]

\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_1(S_t) - z_1(S_t) + (\psi_1(S_{t+1}) - 1) \psi_1(S_t) - r_1(S_t) \right) \hat{d}_{t-1} \]

\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_2(S_t)' + \kappa_1 z_2(S_{t+1})' \Phi - z_2(S_t)' + (\psi_1(S_{t+1}) - 1) \psi_2(S_t)' + \psi_2(S_{t+1})' \Phi - r_2(S_t)' \right) u_t \]

\[- \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \lambda(S_t) \]

\[+ \frac{1}{2} \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \left(\kappa_1 z_2(S_{t+1}) + \psi_2(S_{t+1}) + \epsilon_2 \right). \]

Market price of risk. We assume that

\[\lambda(S_t) = \lambda_0(S_t) + \lambda_1(S_t) \hat{d}_{t-1} + \lambda_2(S_t) u_t. \]

Plugging (A.33) into (A.32), we get

\[E(m_{t+1} + r_{d,t+1} | S_{t+1}) + \frac{1}{2} \text{Var}(m_{t+1} + r_{d,t+1} | S_{t+1}) \]

\[= \mu + \kappa_0 + \kappa_1 z_0(S_{t+1}) - z_0(S_t) + \psi_0(S_{t+1}) + \kappa_1 z_1(S_{t+1}) \psi_0(S_t) + (\psi_1(S_{t+1}) - 1) \psi_0(S_t) \]

\[- r_0(S_t) - \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \lambda_0(S_t) \]

\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_1(S_t) - z_1(S_t) + (\psi_1(S_{t+1}) - 1) \psi_1(S_t) - r_1(S_t) \right) \hat{d}_{t-1} \]

\[- \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \lambda_1 \]

\[+ \left(\kappa_1 z_1(S_{t+1}) \psi_2(S_t)' + \kappa_1 z_2(S_{t+1})' \Phi - z_2(S_t)' + (\psi_1(S_{t+1}) - 1) \psi_2(S_t)' + \psi_2(S_{t+1})' \Phi \right. \]

\[- r_2(S_t)' - \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \lambda_2 \]

\[u_t \]

\[+ \frac{1}{2} \left(\kappa_1 z_2(S_{t+1})' + \psi_2(S_{t+1})' + \epsilon_2' \right) \Sigma \Sigma' \left(\kappa_1 z_2(S_{t+1}) + \psi_2(S_{t+1}) + \epsilon_2 \right). \]
We can solve for by combining (A.31) with (A.34)

\[Z_1 = (I - \kappa_1 D(\Psi_1)\Pi)^{-1}\left(\Pi(\Psi_1 - 1) \odot \Psi_1 - R_1 - k_1 \Pi^B(I_K \odot (Z_2 \Sigma \Sigma'))\Lambda_1 \right. \\
\left. - \Pi^B(I_K \odot ((\Psi_2 + e_2)\Sigma \Sigma'))\Lambda_1 \right) \]

\[Z_2 = \kappa_1 \Pi Z_2 \Phi - k_1 \Pi^B(I_K \odot (Z_2 \Sigma \Sigma'))\Lambda_2 + \kappa_1 \Pi Z_1 \odot \Psi_2 + (\Pi \Psi_1 - 1) \odot \Psi_2 + \Pi \Psi_2 \Phi - R_2 \\
- \Pi^B(I_K \odot ((\Psi_2 + e_2)\Sigma \Sigma'))\Lambda_2. \]

In case \(\lambda_2(S_t) = \lambda_2 \), we can simplify it further below. Using \(vec(ABC) = (C' \odot A)vec(B) \), we express

\[vec(Z_2) = \left(I - ((A - \Sigma \Sigma')' \odot (\kappa_1 \Pi)) \right)^{-1} vec \left(\kappa_1 \Pi Z_1 \odot \Psi_2 + (\Pi \Psi_1 - 1) \odot \Psi_2 \right) \]

\[+ \Pi \Psi_2 \Phi - R_2 - (\Pi \Psi_2 + e_2)\Sigma \Sigma' \lambda_2 \right). \]

The constant term is

\[Z_0 = (I - \kappa_1 \Pi)^{-1}\left(\mu + \kappa_0 + \Pi \Psi_0 + \kappa_1 \Pi Z_1 \odot \Psi_0 + (\Pi \Psi_1 - 1) \odot \Psi_0 - R_0 - \Pi \Sigma \Sigma' \odot \Lambda_0 + \Pi \Phi \right) \]

where

\[\Xi(i) = \kappa_1 z_2(i)' + \psi_2(i)' + e_2', \quad \Upsilon(i) = \frac{1}{2} \Xi(i) \Sigma \Sigma' \Xi(i)'. \]

Risk premium. The risk premium for the dividend claim is

\[E[r_{d,t+1} - r_t | S_t] + \frac{1}{2} Var[r_{d,t+1} | S_t] = -Cov[r_{d,t+1}, m_{t+1} | S_t] \]

\[= (\Pi(j,:)\Xi)'\Sigma \Sigma' \lambda_0(S_t) \]

\[+ (\Pi(j,:)\Xi)'\Sigma \Sigma' \lambda_1 \hat{d}_{t-1} + (\Pi(j,:)\Xi)'\Sigma \Sigma' \lambda_2 u_t. \]

The following definition links dividends and prices

\[R_{d,t+1} = \frac{P_{t+1} + D_{t+1}}{P_t} = \left(1 + \frac{P_{t+1}}{D_{t+1}} \right) \frac{D_{t+1}}{D_t} \]

\[= \frac{P_t}{D_t}. \]
where \(R_{d,t+1} \) denotes the rate of return of the asset from period \(t \) to period \(t + 1 \), \(P_t \) the price of this asset in period \(t \) and \(D_{t+1} \) the dividend paid at the beginning of period \(t + 1 \). Campbell and Shiller take a first-order Taylor approximation of the equation relating the log stock return to log stock prices and dividends

\[
rd_{t+1} = \log (1 + \exp(pd_{t+1})) + \Delta d_{t+1} - pd_t \tag{A.38}
\]

\[
\approx \log (1 + \exp(pd)) + \frac{\exp(pd)}{1 + \exp(pd)}(pd_{t+1} - pd) + \Delta d_{t+1} - pd_t \tag{A.39}
\]

The approximate equation is solved forward, imposing a terminal condition that the log price-dividend ratio does not follow an explosive process

\[
\lim_{t \to \infty} \{pd_t \approx \text{constant} + \sum_{j=1}^{\infty} \kappa_1^{j-1} \Delta d_{t+j} - \sum_{j=1}^{\infty} \kappa_1^{j-1} r_{d,t+j}\} \tag{A.40}
\]

Rearrange equation (A.38) by using equation (A.39)

\[
r_{d,t+1} - E_t r_{d,t+1} = \kappa_1(pd_{t+1} - E_t pd_{t+1}) + (\Delta d_{t+1} - E_t \Delta d_{t+1}), \tag{A.41}
\]

We relate the unexpected stock return in period \(t+1 \) to news about cash flows (dividends) and news about future returns

\[
r_{d,t+1} - E_t r_{d,t+1} \approx (E_{t+1} - E_t) \left(\sum_{j=0}^{\infty} \kappa_1^j \Delta d_{t+1+j} \right) - (E_{t+1} - E_t) \left(\sum_{j=1}^{\infty} \kappa_1^j r_{d,t+1+j} \right) \tag{A.42}
\]

where \(\kappa_1 \) is a discount coefficient. (A.41) is an accounting identity. An increase in expected future dividend growth (returns) is associated with a capital gain (loss) today.

We assume that news about future returns can be further decomposed into news about risk-free rate and news about risk premium. Denote news about cash flows by \(N_{CF} \), news
about risk-free rate by \(N_{RF} \), and news about risk premium by \(N_{RP} \). Put together,
\[
N_{CF,t+1} = (E_{t+1} - E_t) \left(\sum_{j=0}^{\infty} \kappa_1^j \Delta d_{t+1+j} \right)
\]

\[
N_{RF,t+1} = (E_{t+1} - E_t) \left(\sum_{j=1}^{\infty} \kappa_1^j r_{t+1+j} \right).
\]

\[
N_{RP,t+1} = (E_{t+1} - E_t) \left(\sum_{j=1}^{\infty} \kappa_1^j (r_{d,t+1+j} - r_{t+1+j}) \right).
\]

Plugging (A.42) into (A.41), we express the unexpected stock return by sum of news about cash flows, risk-free rate, and risk premium:
\[
r_{d,t+1} - E_tr_{d,t+1} = N_{CF,t+1} - N_{RF,t+1} - N_{RP,t+1}.
\]

We provided the return response to the MNAs. We now attempt to examine the informational content of MNAs. To facilitate the decomposition of (A.43), we look for proxies for \(N_{CF} \), \(N_{RF} \), and \(N_{RP} \).

Suppose that
\[
E_t \Delta d_{t+j+1}|S_t = k = \psi_{j+1,0}(k) + \psi_{j+1,1}(k)\hat{d}_{t-1} + \psi_{j+1,2}(k)'u_t,
\]

\[
E_t r_{t+j+1}|S_t = k = r_{j+1,0}(k) + r_{j+1,1}(k)\hat{d}_{t-1} + r_{j+1,2}(k)'u_t.
\]

then
\[
E_{t+1} \Delta d_{t+j+1}|S_{t+1} = i, S_t = k = \psi_{j,0}(i) + \psi_{j,1}(i)\psi_0(k) + \psi_{j,2}(i)\psi_1(k)\hat{d}_{t-1} +
\[
+ (\psi_{j,1}(i)\psi_2(k)'+\psi_{j,2}(i)\Phi)u_t + \psi_{j,2}(i)\Sigma\varepsilon_{t+1}.
\]

\[
E_{t+1} r_{t+j+1}|S_{t+1} = i, S_t = k = r_{j,0}(i) + r_{j,1}(i)\hat{d}_{t} + r_{j,2}(i)'u_{t+1},
\]

\[
= r_{j,0}(i) + r_{j,1}(i)\psi_0(k) + r_{j,1}(i)\psi_1(k)\hat{d}_{t-1} +
\[
+ (r_{j,1}(i)\psi_2(k)'+r_{j,2}(i)\Phi)u_t + r_{j,2}(i)'\Sigma\varepsilon_{t+1}.
\]
We can deduce that

$$E_{t+1}\Delta d_{t+j+1}|(s_{t+1}=i,s_t=k) - E_t\Delta d_{t+j+1}|(s_t=k)$$

$$= \left(\psi^e_{j,0}(i) + \psi^e_{j,1}(i)\psi^0(k) - \psi^e_{j+1,0}(k)\right) + \left(\psi^e_{j,1}(i)\psi^1(k) - \psi^e_{j+1,1}(k)\right)\hat{d}_{t-1}$$

$$+ \left(\psi^e_{j,1}(i)\psi_2(k) + \psi^e_{j,2}(i)'\Phi - \psi^e_{j+1,2}(k)\right)\bar{u}_t + \psi^e_{j,2}(i)'\Sigma r_{t+1},$$

$$E_{t+1}r_{t+j+1}|(s_{t+1}=i,s_t=k) - E_tr_{t+j+1}|(s_t=k)$$

$$= \left(r^e_{j,0}(i) + r^e_{j,1}(i)\psi^0(k) - r^e_{j+1,0}(k)\right) + \left(r^e_{j,1}(i)\psi^1(k) - r^e_{j+1,1}(k)\right)\hat{d}_{t-1}$$

$$+ \left(r^e_{j,1}(i)\psi_2(k) + r^e_{j,2}(i)'\Phi - r^e_{j+1,2}(k)\right)\bar{u}_t + r^e_{j,2}(i)'\Sigma r_{t+1}.$$

For $j \geq 1$, define

$$N^{CF}_{j,0} = \kappa_1^j \left(\psi^e_{j,0}(i) + \psi^e_{j,1}(i)\psi^0(k) - \psi^e_{j+1,0}(k)\right)$$

$$N^{CF}_{j,1} = \kappa_1^j \left(\psi^e_{j,1}(i)\psi^1(k) - \psi^e_{j+1,1}(k)\right)$$

$$N^{CF}_{j,2} = \kappa_1^j \left(\psi^e_{j,1}(i)\psi_2(k) + \psi^e_{j,2}(i)'\Phi - \psi^e_{j+1,2}(k)\right)$$

$$N^{CF}_{j,3} = \kappa_1^j \psi^e_{j,2}(i)'.$$

When $j = 0$,

$$N^{CF}_{0,0} = (\psi^0(i) - \Pi(k,:)|\Psi_0) + (\psi^1(i) - \Pi(k,:)\Psi_1)\psi^0(k)$$

$$N^{CF}_{0,1} = (\psi^1(i) - \Pi(k,:)\Psi_1)\psi^1(k)$$

$$N^{CF}_{0,2} = (\psi^1(i) - \Pi(k,:)\Psi_1)\psi_2(k) + (\psi^2(i)' - \Pi(k,:)\Psi_2)\Phi$$

$$N^{CF}_{0,3} = \psi^2(i)' + e^e_2.$$
Similarly, for $j \geq 1$,

$$
N^\text{RF}_{j,0} = \kappa^j_1 \left(r^e_{j,0}(i) + r^e_{j,1}(i)\psi_0(k) - r^e_{j+1,0}(k) \right)
$$

$$
N^\text{RF}_{j,1} = \kappa^j_1 \left(r^e_{j,1}(i)\psi_1(k) - r^e_{j+1,1}(k) \right)
$$

$$
N^\text{RF}_{j,2} = \kappa^j_1 \left(r^e_{j,1}(i)\psi_2(k)' + r^e_{j,2}(i)'\Phi - r^e_{j+1,2}(k)' \right)
$$

$$
N^\text{RF}_{j,3} = \kappa^j_1 r^e_{j,2}(i)'.
$$

We can express

$$
N_{CF,t+1} = \sum_{j=0}^{\infty} \left(N^\text{CF}_{j,0} + N^\text{CF}_{j,1} \hat{a}_{t-1} + N^\text{CF}_{j,2} u_t + N^\text{CF}_{j,3} \Sigma \varepsilon_{t+1} \right)
$$

$$
N_{RF,t+1} = \sum_{j=1}^{\infty} \left(N^\text{RF}_{j,0} + N^\text{RF}_{j,1} \hat{a}_{t-1} + N^\text{RF}_{j,2} u_t + N^\text{RF}_{j,3} \Sigma \varepsilon_{t+1} \right)
$$

$$
N_{RP,t+1} = N_{CF,t+1} - N_{RF,t+1} - (r_{d,t+1} - E(r_{d,t+1})).
$$