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Abstract

We study the decision to pool assets for a privately informed issuer attempting to sell
securities to liquidity suppliers endowed with market power, as is often the case in
over-the-counter markets. Contrary to what has been shown for competitive markets,
issuing debt on a pool of assets becomes suboptimal in our environment when the po-
tential gains from trade are large. In those cases, selling assets separately reduces the
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1 Introduction

Structured products are typically originated in over-the-counter (OTC) markets, where

asymmetric information and market power have been shown to be prevalent frictions.1

Their issuers may occasionally face prices that are not fully competitive as only a few

financial institutions are well-positioned to acquire new securities; for example, as most

institutions are subject to similar regulatory constraints, their holding costs might increase

at the same time. Motivated by these observations, we study the security design problem of

a privately informed issuer who possesses multiple assets and seeks liquidity from liquidity

suppliers, or buyers, endowed with market power.

Our analysis reveals how the allocation of market power has relevant and robust im-

plications for security design that contrast with the takeaways from models featuring com-

petitive environments. In our setting, pooling all assets into one security is optimal for the

issuer when facing competitive buyers, echoing the results of the existing literature (e.g.,

DeMarzo 2005). As diversification reduces an issuer’s informational advantage, pooling

assets helps alleviate adverse selection problems, which is in the interest of the issuer when

prices are set competitively — in this case, the issuer fully internalizes the benefits of im-

proving the efficiency of trade.

In contrast, when an issuer receives non-competitive offers for his securities, pooling

assets still has the advantage of reducing adverse selection concerns, but it now comes at

a cost, namely, a potential reduction in the issuer’s information rents. Counter to conven-

tional wisdom, an issuer may prefer not to pool assets, especially when the potential gains

from trade are large relative to the information asymmetry between the issuer and prospec-

1For evidence that OTC trading often involves heterogeneously informed traders, see Green, Hollifield,
and Schürhoff (2007), Jiang and Sun (2015), and Hollifield, Neklyudov, and Spatt (2017). For evidence that
OTC trading tends to be concentrated among a small set of players, see Cetorelli et al. (2007), Atkeson,
Eisfeldt, and Weill (2014), Begenau, Piazzesi, and Schneider (2015), Di Maggio, Kermani, and Song (2017),
Hendershott et al. (2017), Li and Schürhoff (2019), and Siriwardane (2019).
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tive buyers. In fact, any pooling decision that achieves perfect diversification is never opti-

mal for an issuer facing market power on the demand side. We provide explicit, sufficient

conditions under which the issuer’s best option is to simply sell all assets separately. Under

these conditions the issuer is strictly worse off when pooling assets, as diversification in-

vites strategic buyers with market power to choose pricing strategies that lead to inefficient

rationing and lower rents for the issuer. Pooling assets is then suboptimal for the issuer

and for society. As pooling affects the shape of the distributions characterizing information

asymmetries between issuers and buyers, it alters how elastically trade volume responds

to prices, which is crucial in settings with market power. In particular, pooling generally

worsens inefficient rationing when selling assets separately is already “fairly efficient.”2

Diversification makes the distribution characterizing the information asymmetry between

agents have thinner tails, which, in turn, leads to less elastic trade volume in the right tail

of the distribution and greater rationing in equilibrium.

Our results highlight how in recent years liquidity shortages among major institutions

participating in OTC markets might have been an important driver of the dramatic declines

in asset-backed security (ABS) issuances, which occurred concurrently with an increase

in the volume of assets sold separately.3 Our analysis shows that, when liquidity becomes

scarce, the benefits of pooling assets highlighted in the literature can be swamped by an

associated increase in the severity of market power problems. In periods of scarce liquidity,

the benefits from unloading the assets are typically large for the issuer, but the few traders

with excess liquidity gain market power. These two conditions, when combined, boost the

relative benefits of the separate sale of assets versus the issuance of pooled securities — in

2Technically, this situation arises either if there is no exclusion of buyer types or if the exclusion only
pertains to a relatively small subset of buyer types in the right tail of the distribution.

3In 2015, issuance volume of ABS in the U.S. was 60% lower than it was in 2006, while the issuance
volume of CDO was 80% lower. In contrast, the total issuance volume in fixed income markets was 3%
higher in 2015 than in 2006. For more data, see the Securities Industry and Financial Markets Association:
http://www.sifma.org/research/statistics.aspx.
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that sense, it is during periods when trade is most valuable (due to liquidity problems), yet

difficult to implement (due to imperfect competition) that our novel insights become most

relevant. Relatedly, our paper sheds light on the consequences of regulating the liquidity of

financial institutions that are typically on the buy side of the structured securities market.

Early contributions by Subrahmanyam (1991), Boot and Thakor (1993), and Gorton

and Pennacchi (1993) have emphasized the diversification benefits of pooling assets when

securities are sold in competitive/centralized markets plagued by asymmetric information

problems. Our paper focuses on the impact of market power on the decision to pool assets

and derives novel insights that shed light on the securities issued in decentralized markets.

The two papers closest to ours are DeMarzo (2005) and Biais and Mariotti (2005). Specif-

ically, our focus on the decision to pool assets relates our analysis to DeMarzo (2005) who

builds on the signaling-through-retention framework with price-taking buyers of DeMarzo

and Duffie (1999) and shows that the pooling of assets dampens an issuer’s ability to signal

individual assets’ quality through retention. However, when the number of assets is large

and the issuer can sell debt on the pool of assets, this “information destruction effect” is

dominated by the above-mentioned benefits of diversifying the risks associated with the

issuer’s private information about each asset’s value. Issuing debt on a large pool of as-

sets reduces residual risks and the information sensitivity of the security being issued.4 In

contrast to DeMarzo (2005) whose setup can be thought of as a centralized market where

(price-taking) buyers compete for the asset, we consider the case of an issuer who faces a

demand side endowed with market power, capturing a realistic feature of many over-the-

counter markets.

Our focus on the role played by market power in an issuer’s security design decision

relates our analysis to Biais and Mariotti (2005) who analyze a model where the security

4See also Hartman-Glaser, Piskorski, and Tchistyi (2012) who model a moral hazard problem between
a principal and a mortgage issuer and show that the optimal contract features pooling of mortgages with
independent defaults, as it facilitates effort monitoring.
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design stage is followed by a stage where either the issuer or the prospective buyer chooses

a trading mechanism (i.e., a price-quantity menu) for selling the designed security. Their

paper shows that in both cases issuers with bad assets participate in the market, whereas

high-quality issuers might not (despite the presence of gains to trade). In particular, when

the buyer can choose the trading mechanism, he effectively screens the issuer, trading off

higher volume with lower issuer participation. In contrast, when the issuer can choose the

mechanism, the setup becomes equivalent to one with multiple competitive buyers. Biais

and Mariotti (2005) show that issuing debt on a risky asset is optimal in both cases, since

the debt contract’s low information sensitivity helps avoid market exclusion.5 However,

unlike our paper, Biais and Mariotti (2005) only consider the case of an issuer wishing to

sell one asset, thus their analysis is silent about the decision to pool multiple assets into one

security.

Axelson (2007) studies an uninformed issuer’s decision to design securities that are

(centrally) traded in a uniform price auction with privately informed buyers. Axelson

(2007) finds that pooling assets and issuing debt on these assets is always optimal when

the number of assets is large, otherwise selling assets separately might be optimal if the

signal distribution is discrete and competition is high enough. Since the issuer is unin-

formed and buyers compete for assets through an auction, Axelson’s (2007) analysis is

silent about how security design can be used to prevent being monopolistically screened by

liquidity providers, which is the main focus of our paper.6

Palfrey (1983) analyzes a firm’s decision to bundle products (or assets) sold in a second-

5Gorton and Pennacchi (1990), Dang, Gorton, and Holmstrom (2015), Farhi and Tirole (2015), and Yang
(2019) also study the optimal information sensitivity of securities issued in markets with asymmetric infor-
mation, These papers highlight the benefits of designing securities that split cash-flows into an information-
sensitive part and a risk-less part. These papers are, however, silent about how pooling imperfectly correlated
assets affects the issuer’s ability to extract surplus when facing buyers with market power, which is the focus
of our paper.

6See also DeMarzo, Kremer, and Skrzypacz (2005) and Inderst and Mueller (2006) who study optimal
security design problems with informed buyers and only one asset.
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price auction. In his model, customers have private information about their heterogenous

valuations for the products. Selling the products separately is optimal when the sum of

the expected second-highest valuation for each product is higher than the expected second-

highest valuation for the bundle of all products. This comparison depends on the number

of prospective customers and the distribution of their product-specific valuations. Instead,

we vary the degree of competition among buyers who share the same valuation for the

assets being sold and the cross-buyer heterogeneity in valuations that is central for Palfrey’s

(1983) results plays no role in our analysis.

In the next section, we describe the environment of our model and discuss an illustrative

example where the issuer sells a pool of a continuum of assets. This example highlights

that the presence of market power on the demand side greatly affects the issuer’s benefits

from pooling assets. Section 3 presents our main analysis of both a competitive market

and one with market power. Section 4 discusses the robustness of our results to various

alternative specifications of the environment. The last section concludes.

2 The Environment

Suppose an issuer has n ≥ 2 fundamental assets to sell. These assets are indexed by i and

the set of all these assets is denoted by Ω ≡ {1, ..., n}. Each asset i produces a random

payoff Xi at the end of the period. The assets’ payoffs Xi are assumed to be identically and

independently distributed according to the cumulative distribution function (CDF) G(·)

with a probability density function (PDF) g(·) that is positive everywhere on its domain

χ ≡ [0, x̄].7

Market participants and their liquidity needs. As is common in the security design litera-

7The necessary condition for our results is that assets’ payoffs are not perfectly correlated as the analysis
can be generalized to the case where assets’ payoffs exhibit some correlation.
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ture, all agents are risk neutral and differential liquidity (or hedging) needs across traders

are captured through different discount factors. In the analysis that follows, we will study

and compare two (polar) market scenarios to highlight the importance of market power in

the decision whether to pool assets.

In the first scenario, we assume that several deep-pocketed traders are better equipped

to hold claims to future cash-flows than the issuer is (who needs liquidity today). Whereas

the issuer applies a discount factor δ ∈ (0, 1) on future cash-flows, these prospective buyers

apply a discount factor of 1. Thus, the ex ante private value of each fundamental asset is

δ E(Xi) for the issuer and E(Xi) for a buyer with good liquidity. As a result, there are gains

from transferring the issuer’s assets to such a buyer in exchange for cash now. Since there

are multiple buyers who value assets more than the issuer in this scenario, these buyers bid

competitively for the securities being sold by the issuer.

In the second scenario, we assume that only one buyer is better equipped to hold claims

to future cash-flows than the issuer is; that is, only one buyer has a discount factor of

1. In this case, the one buyer with a superior liquidity position has market power; he is

the only one bidding for the issuer’s securities.8 This scenario captures the idea that in

some time periods when most potential counterparties in the market face similar regulatory

constraints or liquidity needs as the issuer. For both scenarios, we will occasionally refer

to the prospective buyers with a discount factor of 1 as “liquidity suppliers” (in line with

the literature; see, e.g., Biais and Mariotti 2005).

Timing and information structure. We follow the existing literature (see, e.g., DeMarzo

and Duffie 1999, Biais and Mariotti 2005) in the specification of the timing of the security

design and trading game. First, the issuer designs the securities he plans to sell. Second,

the issuer becomes informed about the realizations of each asset payoff Xi. Third, the

8Going forward, we will refer to this scenario as monopolistic demand or monopolistic liquidity supply.
In this context, the buyer can also be referred to as a monopsonist.
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buyer(s) make(s) take-it-or-leave offers to the issuer. Fourth, the issuer decides whether or

not to accept any of these offer(s) in exchange for the securities; if multiple buyers offer an

identical price that is accepted by the issuer, the security is randomly allocated among the

highest bidders. Finally, all payoffs are realized.

Assuming that the issuer does not have private information at the initial security design

stage increases the tractability of the analysis and shares similarities with the shelf registra-

tion process commonly used in practice (as also argued by DeMarzo and Duffie 1999, Biais

and Mariotti 2005). In that process, issuers first specify and register with the SEC the se-

curities they intend to issue. Then, potentially after several months, issuers bring these

securities to the market. In the meantime, the issuer has typically obtained additional pri-

vate information about future cash-flows, which allows for informed trading behavior. In

Section 4, we discuss the robustness of our the main insights to changes in our timeline that

would introduce signaling complications at the security design stage.

An illustrative example. Before proceeding with our main analysis, we present a simple,

yet generic example that illustrates how the issuer’s benefits from pooling assets crucially

depend on the allocation of market power. Suppose the issuer owns a continuum of assets

of measure one with i.i.d. payoffs Xi with finite mean and variance. The issuer considers

pooling all assets and offering to sell this pool to the buyer(s).

First, we analyze the market scenario in which multiple prospective buyers have abun-

dant liquidity (that is, they have a discount factor equal to one). In this case, buyers effec-

tively compete in quotes à la Bertrand and offer a price that is equal to the expected security

payoff conditional on the issuer accepting the offer. When the issuer tries to sell the assets

as one pool, the law of large numbers applies, that is, perfect diversification implies that

the pool’s payoff is
∫ 1

0
xidi = E[Xi] almost surely. As a result, adverse selection concerns

are completely eliminated, and the competitive buyers offer a price p̂ = E[Xi] for this pool.
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The maximum total surplus from trade, E[Xi] · (1 − δ), is attained and the issuer fully

internalizes this surplus. That is, the issuer achieves the optimal expected payoff. The fact

that pooling the continuum of assets eliminates information asymmetries is unambiguously

beneficial when facing competitive buyers, as the issuer then fully internalizes the resultant

improvements in trade efficiency (see also Theorem 5 in DeMarzo 2005).

In contrast, we now analyze the market scenario in which only one prospective buyer

has liquidity to purchase the issuer’s assets (i.e., only one buyer has a discount factor of

1). Acting as a de-facto monopolist, this buyer can choose the price that maximizes his

expected payoff. In this case, this optimally chosen price is the issuer’s reservation price

for the pool of assets, that is, p∗ = E[Xi]δ. As in the scenario with multiple prospec-

tive buyers, pooling the continuum of assets yields perfect diversification and eliminates

adverse selection concerns. Yet, now that the demand side has market power, fully elimi-

nating these information asymmetries has no upside for the issuer. Facing no informational

disadvantage, the monopolistic liquidity supplier can extract all trade surplus, leaving the

issuer indifferent between trading the security or not.

This generic result with a continuum of assets strikingly highlights the relevance of

market power for the optimality of pooling assets from the perspective of the issuer. In the

presence of such market power, the issuer’s only source of surplus are information rents,

which require retaining some private information. Thus, any pooling that leads to perfect

diversification (as was the case in this example) is never optimal for an issuer when facing

a prospective buyer with market power. Instead, the issuer prefers to retain some private

information, which requires him to sell some assets separately. Being at an informational

disadvantage, buyers with market power then strategically choose prices that jeopardize the

realization of gains from trade. When deciding whether to pool assets, the issuer therefore

faces the following trade-off: he can only extract rents when retaining some private infor-

mation, but he still partially internalizes the inefficiencies emerging from adverse selection
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and the exercise of market power under asymmetric information. As a result, he may only

choose to pool a subset of assets in order to achieve partial diversification (but not perfect

diversification). Understanding these channels and how they affect the design of optimal

securities is the focus of our main analysis below.

3 Main Analysis

We now formalize our paper’s main insights. The issuer decides on the pooling of the

n underlying assets and on the securities that specify payoffs as a function of the pools’

payoffs. Formally, the issuer chooses a partition of the set Ω, that is, he groups the n assets

into m ≤ n disjoint subsets denoted by Ωj with j ∈ {1, ...,m}.9 The corresponding m

pools of assets then have the payoffs:

Yj ≡
∑
i∈Ωj

Xi,∀j. (1)

The CDF Gj of Yj then has positive and finite density gj on the compact interval χj =

[0, ȳj], where ȳj ≡
∑

i∈Ωj
x̄. Going forward, we follow the convention of using capitalized

letters for random variables and lower-case letters for their realizations. In line with the

existing literature (see, e.g., Myerson 1981), we assume that these distributions satisfy

a regularity condition that ensures that first-order conditions in the trading game with a

monopolistic buyer are sufficient conditions for the optimal pricing decisions.

9Note that, whether the issuer pools the assets or not, he is still offering all assets to the buyer(s). Hence,
even if we allowed for risk aversion, pooling assets would not by itself lead to better risk sharing among
traders. The main impediment to risk sharing would then be the fact that the issuer’s private information may
result in socially inefficient trade breakdowns, which is already a force at play in our paper.
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Assumption 1. For any partition of Ω, the elasticity functions:

ej(y) ≡ gj(y)

Gj(y)
· y, ∀j (2)

are weakly decreasing on their respective supports χj .

Throughout our main analysis below, we will cover examples with distributions satis-

fying Assumption 1. When interpreting elasticity functions, it might help to remember that

they represent the ratio of the local density gj(yj) to the average density Gj(yj)/yj . These

quantities will play an important role in understanding how a monopolistic buyer picks

his pricing strategy. We also denote by e(xi) ≡ g(xi)
G(xi)

· xi the elasticity function of each

fundamental asset i.

The issuer chooses for each pooled payoff Yj a security that is backed by that payoff.

Specifically, the security payoff Fj is made contingent on the realized cash-flow Yj accord-

ing to the function ϕj : χj → R+ such that Fj = ϕj(Yj). We impose the standard limited

liability condition:

(LL) 0 ≤ ϕj ≤ Idχj
,

where Idχj
is the identity function on χj . In addition, as in Harris and Raviv (1989),

Nachman and Noe (1994), and Biais and Mariotti (2005), we restrict the set of admissible

securities by requiring that both the payoffs to the liquidity supplier and to the issuer be

non-decreasing in the underlying cash-flow:

(M1) ϕj is non-decreasing on χj .

(M2) Idχj
− ϕj is non-decreasing on χj .

The sets of admissible payoff functions for the securities is therefore given by {ϕj : χj →

R+| (LL), (M1), and (M2) hold}.
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3.1 Competitive Demand

In this subsection, we analyze the (benchmark) scenario in which the issuer faces multiple

liquidity suppliers who use a discount factor of one. In this case, the issuer receives compet-

itive ultimatum price quotes, a feature that is common in the literature (see, e.g., Boot and

Thakor 1993, Nachman and Noe 1994, Friewald, Hennessy, and Jankowitsch 2015) and,

importantly, delivers results that are consistent with DeMarzo’s (2005) seminal analysis of

an issuer’s decision to pool assets.10

3.1.1 Optimality of Pooling Assets

Echoing the existing literature, our analysis of this scenario predicts that issuing debt on

the whole pool of assets is optimal for the issuer.

Proposition 1. If E[Xi] ≥ δx̄, the issuer is indifferent between selling assets separately

and selling them as a pool. If E[Xi] < δx̄, the issuer optimally pools all n assets and issues

a debt security on this pool.

To provide intuition for this result we will discuss the proof of Proposition 1 in the main

text. At the trading stage, the issuer has perfect knowledge of the realizations xi of future

cash-flows Xi. Since the payoff of any security Fj is only contingent on Yj =
∑

Ωj
Xi, the

issuer also perfectly knows the realization fj = ϕj(yj) of Fj . Suppose the issuer uses a

simple equity security (what DeMarzo and Duffie 1999, refer to as a “passthrough” secu-

rity). If E[Xi] ≥ δx̄, he can sell the assets separately (as equity), each at price p = E[Xi],

since at this price even the highest issuer type x̄ finds it optimal to accept the price. The

10DeMarzo (2005) considers a richer strategy space for the issuer through the posting of price-quantity
menus, but our simpler structure allows us to illustrate the main intuition for the competitive case and more
quickly reach the focus of our analysis, that is, the case with market power on the demand side. See Section
4 for a discussion of how retention would affect our results.
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issuer obtains the same total payoff when pooling the assets and selling an equity security

on the pool(s). Since the potential gains from trade are large enough (δ is sufficiently low),

adverse selection does not impede the efficiency of trade even when assets are sold sepa-

rately. The first-best level of total trade surplus is achieved, and the issuer fully internalizes

this surplus.

In contrast, if E[Xi] < δx̄, the sale of an equity security on a single asset leads to

adverse selection, since the highest issuer type x̄ would not accept a price equal to E[Xi].

Similarly, the sale of an equity security on a pool of ñ assets leads to the exclusion of

some issuer types, since the highest issuer type ȳj = ñx̄ would not accept a price equal

to E[Yj] = ñE[Xi]. In this case, it is useful to recall the following result from Biais and

Mariotti’s (2005) analysis of a setting with one underlying asset:

Lemma 1. Given an underlying asset with random payoff Y and E[Y ] < δȳ, the issuer

optimally designs a debt security with the highest face value d such that a buyer just breaks

even when purchasing this debt security at a price p = δd.

Proof. See Proposition 4 in Biais and Mariotti (2005).

Independent of his pooling choice that determines the underlying assets with payoffs Yj ,

the issuer optimally uses a debt security when E[Xi] < δx̄ and equivalently, E[Yj] < δȳj .

To determine the issuer’s optimal pooling decision, it is useful to first consider buyers’

expected net profits. A buyer purchasing debt with face value d at a price p = δd obtains

the following expected net profit:

∫ d

0

ygj(y)dy + [1−Gj(d)]d− δd =(1− δ)d−
(
Gj(d)d−

∫ d

0

ygj(y)dy

)
, (3)

=(1− δ)d−
∫ d

0

Gj(y)dy, (4)
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where the last step follows from integration by parts. Next, we compare buyers’ expected

net-payoff from the sales of separate debt securities to that from the sale of a debt secu-

rity on an underlying pool of assets. Consider first that the issuer sells ñ individual debt

securities with face value d. Further, suppose that each debt security is written on a sepa-

rate underlying asset and the price in each transaction is δd. Then buyers’ total expected

net-profit (which may be negative) is:11

ñ ·
(

(1− δ)d−
∫ d

0

G(x)dx

)
= (1− δ)ñd−

∫ ñd

0

G
(y
ñ

)
dy, (5)

where we used a change in variables, with y = ñx. In contrast, consider now that the issuer

pools the ñ assets and issues one debt security with face value dj = ñd and buyers purchase

this debt at price δdj . In this case, buyers’ total expected net-profit (which again may be

negative) is:

(1− δ)ñd−
∫ ñd

0

Gj(y)dy. (6)

The following lemma sheds light on the relative magnitude of the profits in (5) and (6).

Lemma 2. The distribution of the pooled payoff Yj =
∑ñ

i=1Xi second-order stochastically

dominates the distribution of the payoff ñXi, that is,

∫ s

0

[
G
(y
ñ

)
−Gj(y)

]
dy ≥ 0 (7)

for any s ∈ [0, ȳj].

Proof. See Appendix.

11Note that the considered supposition does not impose that the buyers’ participation constraint is satisfied.
That is, the expected net-profit can be negative.
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This lemma implies that buyers’ total expected net-profit is higher in the scenario with

pooling (i.e., (6) is greater than (5)). Next, recall that, according to Lemma (1), the optimal

face value in each scenario would be set such that buyers break even, that is, the optimal

face values would ensure that (5) and (6) are each equal to zero. The above result implies

that if buyers break even at a face value d∗ on separate sales (first scenario), then they make

positive profits on the pooled sale if the face value is set equal to ñd∗ (second scenario). It

follows that the issuer can choose a face value d∗j ≥ ñd∗ on the pool while still ensuring

that the buyers can break even (as buyers’ expected net-profit is a continuous function of

dj). Finally, observe that when issuing debt with break-even face values under each of the

two scenarios, the issuer’s total profits are (1 − δ)δñd∗ and (1 − δ)δd∗j , respectively, and

the issuer extracts the full gains from trade in the competitive market. Since d∗j ≥ ñd∗, the

issuer obtains a higher expected net-profit when pooling the ñ assets and issuing debt with

face value d∗j .

In sum, the argument for the optimality of pooling is intuitive. In a market with com-

petitive liquidity suppliers, the issuer extracts all the gains from trade. As a result, he fully

internalizes any improvements in trade efficiency. Thus, when adverse selection concerns

impede trade efficiency, the issuer seeks to minimize the information asymmetry between

him and his prospective buyers by pooling assets. As pooling leads to diversification, it

reduces the information asymmetry and its associated inefficiencies. In other words, the

issuer does not face a trade-off when facing competitive buyers — reducing information

asymmetry is always weakly beneficial. We will, however, show below that the unambigu-

ous optimality of pooling ceases to hold when the supply of liquidity becomes imperfectly

competitive.
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3.2 Monopolistic Demand

In this subsection, we derive our paper’s main results by considering the scenario in which

the issuer faces an imperfectly competitive demand, a feature that is relevant for our un-

derstanding of actual OTC markets. In this setting, only one buyer has a discount factor of

one, which imparts him the advantage of being a monopolistic liquidity supplier.12

We start by examining the optimal pricing decision of this buyer. Biais and Mariotti

(2005) show that for a given security offered the optimal mechanism for the liquidity sup-

plier with market power can be implemented via a take-it-or-leave-it offer (see also Riley

and Zeckhauser 1983). In accordance, the buyer makes an ultimatum price offer pj to

maximize his ex-ante profit from purchasing a security with payoff Fj:

Pr(δfj ≤ pj)(E[fj|δfj ≤ pj]− pj) =

∫ pj/δ

0

(ϕj(y)− pj)gj(y)dy. (8)

The optimal price pmj set by a monopolistic buyer identifies a marginal issuer type that is

just willing to accept this price, fmj = pmj /δ. Issuer types with security payoffs below the

threshold value fmj participate in the trade, whereas issuer types with payoffs above fmj are

excluded (i.e., they reject the offer).

3.2.1 Optimality of Separate Equity Sales

We now establish our first main result, which derives a sufficient condition for the strict

optimality of selling assets separately. This result also provides the necessary and sufficient

condition under which selling assets separately yields the first-best level of trade surplus.

12While we consider the case in which only one buyer has a discount factor of one, similar outcomes arise
when there are multiple buyers with a discount factor of one, but these buyers face position limits. The central
feature of our analysis is the presence of some degree of market power, that is, a buyer can strategically affect
the prices of the securities being offered. Biais, Martimort, and Rochet (2000) show that this type of strategic
pricing behavior also arises when multiple risk averse liquidity suppliers compete in mechanisms (see also
Vives 2011).
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Proposition 2. Suppose that the following condition holds:

e(x̄) ≥ δ

1− δ
, or equivalently δ ≤ δ̄, (9)

where δ̄ ≡ e(x̄)
1+e(x̄)

. Then the following results obtain:

(i) The issuer optimally sells each asset separately to a monopolistic buyer, that is,

Ωj = j and ϕj(Xj) = Xj for j = 1, ..., n. (10)

The first-best level of total surplus from trade, n(1 − δ)E[Xi], is then achieved and

the issuer collects nδx̄, obtaining a surplus of nδ(x̄− E[Xi]).

(ii) If the issuer pools any of the assets, the total surplus from trade is strictly below the

first-best level n(1−δ)E[Xi], and the issuer’s surplus is strictly below nδ(x̄−E[Xi]).

To provide intuition for these central results, we develop the proof here in the main text.

First, consider part (i) of the proposition. Suppose that the issuer sells an equity claim on a

pool j, such that, ϕj(Yj) = Yj . When designing the optimal security, the issuer anticipates

the buyer’s optimal pricing response. Using equation (8), we can write the buyer’s marginal

benefit of increasing the threshold type fmj = ymj for fmj ∈ [0, ȳj) as:

(1− δ)fmj gj(fmj )− δGj(f
m
j ). (11)

This last equation highlights the generic trade-off that a buyer with market power faces

when choosing the price he plans to offer. When marginally increasing the price to include

marginal issuer types, the buyer benefits from extracting the full gains to trade (1 − δ)fmj

from these types, which have the local density gj(fmj ). Yet, increasing the price also comes
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at the cost of paying more when trading with all infra-marginal types, which have mea-

sure Gj(f
m
j ). In net, the buyer benefits from increasing the marginal buyer type if ex-

pression (11) takes a strictly positive value (for any fmj < ȳj). This condition can be

equivalently expressed as a condition applying to the above-defined elasticity function:

ej(f
m
j ) >

δ

1− δ
. (12)

Now suppose the issuer simply sells all assets separately. Then the condition e(x̄) > δ
1−δ

together with Assumption 1 ensures that the buyer’s optimal price quote for each asset is

pi = δx̄, allowing the issuer to collect nδx̄. In this case, the marginal issuer type is the

highest type on the support [0, x̄] and trade occurs with probability one, ensuring that the

first-best level of surplus from trade is achieved.

Facing a monopolistic buyer, the issuer cannot collect more than nδx̄ since the best

possible payoff that all assets can deliver jointly is nx̄ and a buyer with market power

would never offer a price above δnx̄, even if he believed that this maximum payoff on all

assets was attained.

To address part (ii) of the proposition, we show that the issuer’s surplus and the total

surplus are strictly lower when assets are pooled. First, we introduce the following result:

Lemma 3. For any set Ωj that contains more than one element (that is, if there is pooling),

the following condition is satisfied:

ej(ȳj) = 0 <
δ

1− δ
. (13)

Proof. See Appendix.

This lemma states that if the issuer pools assets and issues an equity security on the
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pool, the elasticity for this security at the upper bound of the support ȳj is zero, implying the

exclusion of a positive measure of types. The elasticity is zero at the upper bound ȳj since

the density for the outcome that two assets simultaneously achieve their highest possible

value x̄ is 0. The intuitive reason for this result is diversification: the more diversified

pool of assets is less likely to generate an extreme outcome than each idiosyncratic asset

separately. Figure 1 illustrates this result for the case where each separate asset follows a

uniform distribution. The figure compares, after rescaling the domains (see caption details),

the shapes of the PDFs of a single asset, a pool of two assets, and a pool of four assets. The

graph illustrates the familiar notion that diversification leads to a more peaked distribution

with thinner tails.
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Figure 1: Effect of pooling on the shape of the probability density function. The graph considers
a setting with four assets (n = 4), each of which has a payoff Xi ∼ Unif[0, 1]. The graph plots the
PDF of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the PDFs’ shapes
relative to their respective domains ([0, 1], [0, 2], and [0, 4]), the graph rescales the horizontal axis
to represent the interval χj = [0, ȳj ] for each PDF gj .

These changes in the shapes of the PDFs map into corresponding changes in the elas-

ticity functions ej(yj), which govern the pricing behavior in the trading game (see equa-

tion (12)). Figure 2 confirms that as soon as two assets are pooled, the elasticity at the

upper bound of the support ȳj shrinks to zero. A thinner right tail of the PDF implies a
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lower elasticity in the right tail of the distribution (recall that the elasticity is the ratio of the

local density gj(yj) to the average density Gj(yj)/yj). Facing a less elastic response from

the issuer in that part of the domain, a monopolistic buyer has stronger incentives to offer

lower prices, which leads to the exclusion of high issuer types. If ñ ≥ 2 assets are pooled

in a set Ωj , then the buyer optimally chooses a marginal issuer type strictly below ȳj = ñx̄,

since ej(ȳj) = 0 < δ
1−δ . Correspondingly, the price offered by the buyer is strictly below

δñx̄ for a pool of ñ assets, and the issuer obtains an expected payoff from pooling that is

strictly below δñx̄.
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Figure 2: Effect of pooling on the shape of the elasticity function. The graph considers a setting
with four assets (n = 4), each of which has a payoff Xi ∼ Unif[0, 1]. The graph plots the elasticity
function of a separate asset, a pool of 2 assets, and a pool of 4 assets. To compare the elasticity
functions’ shapes relative to their respective domains ([0, 1], [0, 2], and [0, 4]), the graph rescales the
horizontal axis to represent the interval χj = [0, ȳj ] for each elasticity function ej .

To conclude the proof of part (ii) of Proposition 2, we address whether the issuer, after

pooling assets, could still obtain an equally beneficial payoff as under separate sales by

designing an optimal security Fj = ϕj(Yj) on the pooled payoff Yj . The following lemma

characterizes the optimal security on a given underlying asset Yj when an equity security

leads to rationing.
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Lemma 4. When the trading of an equity security on a payoff Yj leads to the exclusion of

issuer types (i.e., if e(ȳj) < δ/(1− δ)) but sustains trade with positive probability (that is,

if e(0) > δ/(1−δ), the optimal security from the perspective of the issuer is a debt security

with face value dmj , i.e., ϕ = min[Idχj
, dmj ], where dmj is the largest d such that:

∫ d

0

fjgj(fj)dfj + [1−Gj(d)]d− δd︸ ︷︷ ︸
Net-payoff from offering price δd

−
∫ fmj

0

(fj − δfmj )gj(fj)dfj︸ ︷︷ ︸
Net-payoff from offering price δfmj < δd.

≥ 0, (14)

and where fmj solves:

ej(f
m
j ) =

δ

1− δ
. (15)

That is, the optimal debt contract specifies the highest face value such that the buyer weakly

prefers offering a price for the debt that is always accepted by the issuer (δd) over offering

a lower price that is only accepted by issuer types below the threshold type fmj .

Proof. As each of the pooled payoffs Yj satisfy the regularity condition stated in Assump-

tion 1, the results follow from Propositions 3, 4, and 5 in Biais and Mariotti (2005).

Since any pooling of ñ ≥ 2 assets in a set Ωj leads to exclusion when an equity security

is offered (as ej(ȳj) < δ/(1− δ)), Lemma 4 implies that the best possible security written

on that pool is a debt security with face value dmj . Yet, since dmj < ȳj = ñx̄, selling this

debt security will also deliver a payoff to the issuer that is strictly below the one he obtains

from selling the ñ assets separately. Thus, the effects of diversification cannot be undone

by designing a security that pays as a function of the pooled (diversified) cash-flow Yj . This

concludes our proof of Proposition 2.

In sum, when separate sales of assets are efficient, pooling assets leads to strictly worse

outcomes, both for the issuer and for the overall efficiency of trade. This result emerges as
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pooling generically leads to a payoff distribution with thinner tails, and equivalently, a less

elastic response to price quotes in the right tail of the payoff distribution (see Figure 2). A

less elastic response causes a liquidity supplier with market power to optimally set prices

that lead to inefficient rationing, harming both the issuer and the total trade efficiency.

Thus, in contrast to the previously analyzed scenario with competitive liquidity suppliers

(see Proposition 1), pooling assets may hurt the issuer when the demand side has market

power.

3.2.2 Optimality of Separate Debt Sales

Proposition 2 provided the condition under which selling assets separately, as equity, is

optimal for the issuer and attains the first-best level of trade surplus. We will now show

that even when this condition is violated, it may be optimal for the issuer to sell assets

separately. However, in those cases, the issuer will opt for separate debt securities rather

than equity securities.

Proposition 3. Suppose now that each elasticity function ej is strictly decreasing on its re-

spective support χj (recall that Assumption 1 only required them to be weakly decreasing).

Then, for all δ ∈
(
δ̄, δ∗

]
, where δ∗ ∈

(
δ̄, 1
]
, it is optimal to issue a separate debt security

for each asset payoff Xi.

To prove this result it is useful to introduce additional notation. Let Π(δ) denote the

issuer’s profit, as a function of the parameter δ, from selling one underlying asset separately,

and issuing an optimal security on that underlying asset. Further, let Πñ(δ) denote the

issuer’s profit, also as a function of δ, from pooling ñ assets and issuing an optimal security

on that underlying pool. The basic idea of the proof is to establish that these profits are

continuous functions of δ, and then use the fact established in Proposition 2, which is that
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for δ = δ̄ selling assets separately yields the issuer a strictly higher expected profit than

from pooling assets:

ñΠ(δ̄) > Πñ(δ̄). (16)

First, suppose the issuer issues equity securities. For all δ ∈
[

ej(x̄)

1+ej(x̄)
,

ej(0)

1+ej(0)

]
the monopo-

listic buyer would target a marginal issuer type who is selling equity on a payoff Yj as the

interior type fmj satisfying:

ej(f
m
j ) =

δ

1− δ
⇔ fmj (δ) = e−1

j

(
δ

1− δ

)
, (17)

where ej is an invertible function, since it is assumed to be strictly decreasing on its support.

Thus, for all δ ∈
[

ej(x̄)

1+ej(x̄)
,

ej(0)

1+ej(0)

]
, the marginal issuer type selling equity, fmj , is a continu-

ous function of the discount factor δ. This result is useful, since as shown in Lemma 4, the

optimal debt security, which will be issued for δ > ej(x̄)

1+ej(x̄)
, is implicitly characterized as a

function of this marginal issuer type selling equity, fmj . Specifically, the optimal security

from the perspective of the issuer is a debt security with face value dmj , ϕ = min[Idχj
, dmj ]

where dmj is the largest d such that:

∫ d

0

fjgj(fj)dfj + [1−Gj(d)]d− δd −
∫ fmj

0

(fj − δfmj )gj(fj)dfj ≥ 0, (18)

where fmj = e−1
j ( δ

1−δ ). Note that this optimal face value dmj is then also a continuous

function of δ. This continuity result holds for any set Ωj , including the case where Ωj

includes only one asset.

Finally, note that if all the optimal face values dmj are continuous functions of δ, then
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the issuer’s profit functions Π(δ) and Πñ(δ) are also continuous functions of δ, since:

Π(δ) = δdm(δ)− δ
∫ dm(δ)

0

fg(f)df − δ[1−G(dm(δ))]dm(δ) = δ

∫ dm(δ)

0

G(f)df,

(19)

Πñ(δ) = δdmñ (δ)− δ
∫ dmñ (δ)

0

fg(f)df − δ[1−G(dmñ (δ))]dmñ (δ) = δ

∫ dmñ (δ)

0

Gñ(f)df,

(20)

where we use integration by parts to simplify the expressions.

Given equation (16) and the continuity of functions Π(δ) and Πñ(δ), we know that there

is also a non-empty region (δ̄, δ∗) such that when δ lies in that region, we have:

ñΠ(δ) > Πñ(δ), (21)

that is, selling ñ ≥ 2 assets separately (with debt) is strictly better for the issuer than selling

debt on a pool of ñ assets. The upper bound of the region, δ∗, is implicitly defined by the

lowest δ such that ñΠ(δ) = Πñ(δ).

The main insight from Proposition 3 is that even when the potential gains to trade are

smaller than required by the condition stated in Proposition 2, pooling assets may still

be suboptimal for the issuer. The main difference relative to the result of Proposition 3

is that once separate equity securities do not trade fully efficiently, switching to separate

debt securities is optimal. Yet, as the design of these debt securities is still intimately

linked to the monopolistic liquidity supplier’s incentives to inefficiently screen the issuer

(the marginal issuer type from equity sales enters equation (18)), the elasticity of trading

volume is still an important determinant of the issuer’s net-profit. As pooling assets reduces

this elasticity in the right tail of the payoff distribution (see Figure 2), it is undesirable

to do so when the marginal issuer type from separate equity sales is sufficiently high, or
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equivalently, when the liquidity differences between the issuer and the buyer are sufficiently

large (i.e., δ is sufficiently low).

3.2.3 Optimality of Pooling Assets when Adverse Selection is Severe

Unlike with competitive demand where it is always optimal to pool assets for the issuer,

the predictions for the scenario with monopolistic demand are more nuanced and feature a

trade-off between the benefits of diversification and the preservation of information rents.

Propositions 2 and 3 have highlighted that the optimality of separate sales emerges when

trade is particularly valuable, that is, when the buyer and the issuer differ more in terms of

their liquidity. In contrast, when potential gains from trade are smaller, adverse selection

concerns and the exercise of market power would lead to larger inefficiencies if assets were

sold separately. Lower gains from trade (i.e., higher values of δ) cause the liquidity supplier

to choose a more aggressive pricing strategy, which leads to the exclusion of a larger range

of issuer types when equity securities are issued. In fact, whenever δ > e(0)
1+e(0)

the trading

of separate securities (whether it is equity or debt) fails completely as the elasticity function

e(x) then lies below δ/(1− δ) everywhere on the support — all issuer types are excluded.

Yet, as suggested by Figure 2, pooling assets increases the elasticity in the left tail of the

distribution, and thus can allow sustaining trade when separate sales would lead to trade

breakdowns. When adverse selection concerns are severe, relative to the magnitude of the

potential gains from trade, we are back to the standard case where pooling assets helps

reduce the perverse consequences of adverse selection.

Proposition 4. Suppose that the issuer has n > δ
1−δ assets. Then at least one of the subsets

Ωj will optimally consist of n∗ assets, where n∗ > δ
1−δ .

Proposition 4 highlights that for sufficiently high values of the discount factor δ the

issuer optimally pools multiple assets into a security. This result is directly linked to the
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previously mentioned fact that trade breaks down completely whenever the elasticity of an

underlying asset at the lower bound of the support is already lower than δ/(1−δ). Let eñ(0)

denote the elasticity function associated with a pool of ñ assets. If eñ(0) < δ
1−δ , then trade

will break down with probability 1 for any security written on this pool. Yet, as suggested

by Figure 2, the elasticity at the lower bound increases when more assets are pooled, a fact

that is established in the following lemma.

Lemma 5. A pool of ñ assets has the elasticity eñ(0) = ñ at the lower bound of the support.

Proof. See Appendix.

Since trade breaks down completely whenever eñ(0) < δ
1−δ , the issuer can only attain a

positive expected surplus when the elasticity of an underlying asset, evaluated at the lower

bound, exceeds δ
1−δ . Since, as shown in Lemma 5, this elasticity for a pool of ñ assets

is exactly equal to ñ, the issuer will at least pool n > δ
1−δ assets to ensure that he can

attain an expected surplus greater than zero. At the same time, we know from our earlier

analysis that pooling an infinite number of assets is also suboptimal for the issuer, as perfect

diversification leads him to zero surplus. Thus, even when the issuer has a continuum of

assets, he prefers to pool only a subset of the assets, or none at all.

Propositions 2, 3, and 4 have highlighted that the trade-offs faced when deciding whether

to pool assets are intimately linked to the magnitude of the potential gains from trade. When

they are sufficiently large (i.e., δ is sufficiently low) it is optimal to sell assets separately. In

this case, the liquidity supplier is less worried about being adversely selected by the issuer

and is more cautious in exercising his market power. Moreover, we have shown that when

the issuer sells assets separately, the elasticity with which he responds to price changes is

larger in the right tail of the distribution than when he is pooling assets. This elasticity in

the right tail is relevant when the potential gains from trade are sufficiently large, causing
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the marginal issuer type to reside in that part of the distribution. Yet, when the potential

gains from trade are sufficiently small, adverse selection concerns and the exercise of mar-

ket power lead to complete market breakdowns when assets are sold separately. In this

case, the issuer has to reduce the amount of asymmetric information to ensure that trade

can occur. He thus pools assets. In particular, Lemma 5 reveals that the elasticity in the left

tail of the support rises with the number of assets that are pooled, allowing trade to occur

once sufficiently many assets have been pooled into the same security.

4 Discussion

In this section we discuss the robustness of our main insights to various changes in the

environment.

Multiple constrained buyers. The main result of our paper, that is, pooling assets might

be suboptimal when liquidity suppliers have market power, is derived in an environment in

which only one buyer has a discount factor of one, but is deep-pocketed. Similar results

obtain in the presence of multiple buyers, provided that these buyers face position limits,

wealth constraints, or risk aversion. Consider a simple extension of our baseline model

in which the aggregate position limit across all prospective buyers (measured in units of

underlying assets) is marginally smaller than the total quantity of assets up for sale. In

this case, each buyer’s price setting strategy is identical to the one derived in our baseline

model — as the total supply always exceeds the total demand, a buyer faces a residual

supply curve that is unaffected by the others’ pricing strategies.13 As a result, the issuer

still faces the trade-offs featured in our baseline model.

Signaling through retention. In the scenario with competing liquidity suppliers, allowing
13The result that capacity constraints can hamper competition is well known in the literature, see, for

example, Green (2007).
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the issuer to signal asset quality through partial retention, as in DeMarzo (2005), would

yield results that are, unsurprisingly, consistent with DeMarzo (2005) — issuers with as-

sets of higher quality would retain a higher fraction of the issue.14 Signaling would then

allow the high issuer types to separate themselves from the low types and would resolve

the lemons problem for high values of δ. In contrast, when facing a liquidity supplier with

market power, the issuer can be made worse off by signaling asset quality. Since the buyer

has all bargaining power once he knows the issuer type, he is able to extract all the sur-

plus from trade and leave the issuer with zero profit. In this case, the issuer’s profit from

implementing fully revealing retention policies is weakly lower than his profit without any

signaling through retention (see also Glode, Opp, and Zhang 2018, for related arguments).

Moreover, as mentioned earlier, Biais and Mariotti (2005) show that for a given security

offered by the issuer the monopolistic buyer’s optimal mechanism is to make a take-it-or-

leave-it offer for the whole security, rather than using a menu of price-quantity offers that

could result in the issuer using retention to signal asset quality.

Alternative interpretation. Our baseline model assumes that the cash-flows of different

assets occur at the same time, and we study whether pooling such assets is optimal for the

issuer. However, our model also allows an interesting alternative interpretation where a

time dimension is added to the assets’ payoffs. Suppose the issuer has an asset that pays

cash-flows in different time periods. To map this situation to our model each particular

cash-flow can be viewed as an asset from our setup, while the asset itself can be considered

as a pool of such cash-flows. For such a mapping, we would also need to assume that the

issuer is better informed than buyers about all future cash-flows. The question would then

be whether it is optimal for the issuer to sell the asset as it is, pooling all cash-flows across

time, or to separate them and sell, for example, cash-flows occurring earlier separately

14See also Williams (2019) who studies the optimality and efficiency of security retention in the presence
of search frictions.
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from those occurring at later time periods (e.g., via zero coupon bonds). The prediction of

the model is that when the demand side has market power we should see more separation

across the time dimension of cash-flows.

5 Conclusion

This paper studies the optimality of pooling assets when security issuers face a market in

which liquidity is scarce and buyers endowed with such liquidity may have market power.

Contrary to the standard result that pooling and tranching are optimal practices, we find

that selling assets separately may be preferred by issuers, in particular when liquidity dif-

ferences between the buy side and the sell side of the market are sufficiently large. While

our results suggest that the dramatic decline of the ABS market post crisis may represent

an efficient response by originators to drastic changes in liquidity and market power in

OTC markets, it also highlights the potential welfare implications of liquidity constraints

imposed on financial institutions in the new market environment.
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Appendix: Proofs Omitted from the Text

Proof of Lemma 2: We can express ñXi as follows:

ñX1 =
ñ∑
i=1

Xi +

[
(ñ− 1)X1 −

ñ∑
k=2

Xk

]
, (A1)

where
[
(ñ− 1)X1 −

∑ñ
k=2Xk

]
has a conditional expected value of zero:

E

[
(ñ− 1)X1 −

ñ∑
k=2

Xk

∣∣∣∣∣
ñ∑
i=1

Xi

]
= (ñ−1)E

[
X1

∣∣∣∣∣
ñ∑
i=1

Xi

]
−

ñ∑
k=2

E

[
Xk

∣∣∣∣∣
ñ∑
i=1

Xi

]
a.s.
= 0.

(A2)

It directly follows that ñXi is a mean-preserving spread of Yj , and the distribution of Yj

thus second-order stochastically dominates the distribution of ñXi.

Proof of Lemma 3: Consider the convolution of Yñ =
∑ñ

i=1Xi and Xk where k > ñ, that

is, Yñ+1 ≡ Yñ +Xk, . Since these Yñ and Xk are independent, we can write:

gñ+1(yñ+1) =

∫ x̄

0

gñ(yñ+1 − x)g(x)dx. (A3)

Now evaluate gñ+1 at the upper bound of the support ȳñ+1 = (ñ+ 1)x̄:

gñ+1((ñ+ 1)x̄) =

∫ x̄

0

gñ((ñ+ 1)x̄− x)g(x)dx = 0, (A4)

since the density gñ is equal to zero for any outcome above ñx̄. As a result, the elasticity

eñ+1(ȳñ+1) = gñ+1(ȳñ+1)ȳñ+1/G(ȳñ+1) is also zero for all ñ ≥ 1, that is, as soon as at

least two assets are pooled, such that ñ + 1 ≥ 2, the elasticity of the pool will be zero at

the upper bound ȳñ+1.
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Proof of Lemma 5: First, suppose that g(0) > 0 and g′(0) is finite. By L’Hôpital’s rule,

the elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
=
g′(0)0 + g(0)

g(0)
= 1. (A5)

Next, suppose that g(0) = 0, g′(0) > 0, and g′′(0) is finite. Then the elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
= lim

y→0

g′′(y)y + 2g′(y)

g′(y)
= 2. (A6)

Then, suppose that g(0) = 0, g′(0) = 0, g′′(0) > 0, and g′′′(0) is finite. The elasticity is:

lim
y→0

g(y)y

G(y)
= lim

y→0

g′(y)y + g(y)

g(y)
= lim

y→0

g′′(y)y + 2g′(y)

g′(y)
= lim

y→0

g′′′(y)y + 3g′′(y)

g′′(y)
= 3.

(A7)

More generally, if the n-th derivative of the density function g is the first derivative to be

positive and finite, then the elasticity is (n+ 1).

It remains to be shown that if the density function of one underlying asset is positive at

the lower bound (i.e., g(0) > 0), then if we construct a pool of ñ assets, the first derivative

of the density function of this pool that is positive (and non-zero) is the (ñ−1)-th derivative.

Consider the convolution of Yñ =
∑ñ

i=1Xi and Xk where k > ñ, that is, Yñ+1 ≡

Yñ +Xk. Since these Yñ and Xk are independent, we can write:

gñ+1(yñ+1) =

∫ x̄

0

gñ(yñ+1 − x)g(x)dx, (A8)
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and for 0 ≤ yñ+1 ≤ x̄ we can write:

gñ+1(yñ+1) =

∫ yñ+1

0

gñ(yñ+1 − x)g(x)dx. (A9)

Thus, the derivatives become:

g′ñ+1(y2) =gñ(0)g(yñ+1) +

∫ yñ+1

0

g′ñ(yñ+1 − x)g(x)dx, (A10)

g′′ñ+1(yñ+1) =gñ(0)g′(yñ+1) + g′ñ(0)g(yñ+1) +

∫ yñ+1

0

g′′1(yñ+1 − x)g(x)dx, (A11)

g′′′ñ+1(yñ+1) =gñ(0)g′′(yñ+1) + g′ñ(0)g′(yñ+1) + g′′ñ(0)g(yñ+1) +

∫ yñ+1

0

g′′′ñ (yñ+1 − x)g(x)dx.

(A12)

Hence, when evaluated at yñ+1 = 0, we obtain the following derivatives:

g′ñ+1(0) =gñ(0)g(0), (A13)

g′′ñ+1(0) =gñ(0)g′(0) + g′ñ(0)g(0), (A14)

g′′′ñ+1(0) =gñ(0)g′′(0) + g′ñ(0)g′(0) + g′′ñ(0)g(0). (A15)

Next consider the following iteration:

• Suppose we have ñ = 1. Then g1(0) = g(0) > 0 and adding an asset yields g2(0) = 0

(see above integral), and g′2(0) = g1(0)g(0) = g(0)2 > 0.

• Suppose we have ñ = 2. Then, as just shown, g2(0) = 0 and g′2(0) > 0. Now if we

add an asset, then it yields g3(0) = 0 (integral equation), and g′3(0) = g2(0)g(0) = 0.

Now consider g′′3(0) = g2(0)g′(0) + g′2(0)g(0) = g′2(0)g(0) > 0.

• Suppose we have ñ = 3. Then, as just shown, g3(0) = 0, g′3(0) = 0, and g′′3(0) >

0. Now if we add an asset, then it yields g4(0) = 0 (integral equation), g′4(0) =

31



g3(0)g(0) = 0, and g′′4(0) = g3(0)g′(0) + g′3(0)g(0) = 0. Now consider g′′′4 (0) =

g3(0)g′′(0) + g′3(0)g′(0) + g′′3(0)g(0) = g′′3(0)g(0) > 0.

• ...

More generally, every time we add an asset to the pool, the next-higher derivative of the

density function turns to zero, while leaving the derivatives thereafter positive.
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mediation and the Costs of Trading in an Opaque Market.” Review of Financial Studies

20: 275-314.

Harris, Milton and Artur Raviv. 1989. “The Design of Securities.” Journal of Financial

Economics 24: 255–287.

34



Hartman-Glaser, Barney. 2017. “Reputation and Signaling in Asset Sales.” Journal of

Financial Economics 125: 245-265.

Hartman-Glaser, Barney, Tomasz Piskorski, and Alexei Tchistyi. 2012. “Optimal Se-

curitization with Moral Hazard.” Journal of Financial Economics 104: 186-202.

Hendershott, Terrence, Dan Li, Dmitry Livdan, and Norman Schürhoff. 2017. “Rela-
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