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Abstract

Oil price shocks are known to have a sizable macroeconomic impact, despite a relatively

small fraction of total expenditures that is devoted to energy. Using micro data we document

a significant effect of oil prices on labor supply and commuting distance, especially among

low-skilled workers who face large commuting costs, relative to their wages. In addition, equity

returns of firms in less skill-intensive industries are more sensitive to oil price fluctuations.

Motivated by this empirical evidence, we employ a two-sector endogenous growth model with

an oil-dependent commuting friction to examine the effect of oil shocks on employment, real

wages, and growth, as well as equity prices. Negative oil supply shocks followed by oil price

increases depress labor supply, especially in the less capital-intensive low-skill sector, where

employment is most sensitive to the cost of commuting. As a result, output growth slows down

in the medium run as innovation and capital are reallocated towards the less affected high-skill

sector, resulting in subsequent rise in the skill premium.
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1 Introduction

Oil has long held a special place in global commodity markets, as its price fluctuations

appear to have outsize consequences for macroeconomic activity. Standard models featuring

oil as an input into production struggle to explain the sizable and persistent effect of oil supply

shocks on economic growth, since oil-related expenditures constitute only about 3% of GDP.

Yet, as pointed out by Bodenstein, Guerrieri and Kilian (2012) and Ready (2018), household

oil consumption amounts to about 65% of total oil consumed in the US after 1986, most of it

used in transportation. According to Census survey data, 86% of all U.S. workers commute

to work by automobile, with 16% of households’ income spent on transportation expenditures

(approximately one-third of it directly on gasoline - e.g. Redding and Turner (2014)). What

is the role of oil prices in driving commuting costs for workers? Is it large enough to affect

aggregate economic fluctuations by influencing labor supply?

We begin by documenting several stylized facts on the relation between labor supply, com-

muting, and oil prices using disaggregated data. Since workers in areas with low population

density tend to have longer-distance commutes (and are more likely to commute by car), they

are more likely to be sensitive to fluctuations in the cost of commuting that are caused by oil

price changes. Similarly, the cost of gasoline can be relatively small for high-skill workers as

it constitutes a much smaller fraction of their expenditure than it does for less-skilled, lower-

income workers. Using household-level data from the American Community Survey we show

that hours worked are indeed negatively related to changes in oil prices. Importantly, this

is especially true for lower-skill, lower-paid workers, and for those living in low-density areas

(where driving distances are longer). In addition, we use novel data from the U.S. Census, the

Longitudinal Employer-Household Dynamics Origin-Destination Statistics (LODES), to show

that the average commuting distance increases following positive labor demand shocks, but

shrinks following oil price rises, especially for the lower-wage workers, consistent with the idea

that gasoline prices are a major component of commuting costs. Finally, we provide evidence

from asset prices that low-skill industries are more impacted by high oil prices. We use the

labor skill-sorted portfolios of Belo, Li, Lin and Zhao (2017) and show that there is a strong

monotonic relationship between industry’s average skill level and equity return exposure to oil

prices. Low-skill industries have highly significant negative exposure to oil price changes, while

high-skill industries have insignificant exposure. This, again, suggests that the heterogeneous

response of labor supply across skill levels is an important channel for the propagation of oil
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price shocks throughout the economy.

In order to better understand the connection between oil supply and the macroeconomy

through this commuting cost channel, we propose a general equilibrium model with endogenous

productivity growth, building upon models of technological change over the business cycle as

in Romer (1990), Comin and Gertler (2006) and, in particular, Kung and Schmid (2015).

We incorporate the oil sector through a commuting friction, whereby increasing labor supply

requires progressively longer-distance commutes, and therefore a larger amount of oil. Negative

correlation between the household income and the part of income spent on transportation

suggests that introducing heterogeneity in the labor elasticity to oil shocks is important for

explaining sectoral differences in responses to oil shocks. Thus, our model features two sectors

that differ primarily in their skill- and capital intensity, which we interpret as sectors hiring

either high-skilled or low-skilled workers, similarly to Kopytov, Roussanov and Taschereau-

Dumouchel (2018).

Since low-skilled workers are more sensitive to oil price fluctuation than high-skilled workers,

we would expect the low-skill sector to suffer more from a negative oil shock as workers are

more likely to give up on low-paid jobs, especially when they are required to commute further

distances. In fact, our model’s prediction that high-skilled workers both supply more labor

(as a fraction of total hours) and commute longer distances on average is consistent with our

micro data from the ACS, at least qualitatively. In the model, a negative oil supply shock that

raises oil prices decreases labor supply disproportionately more in the low-skill sector, while

simultaneously increasing the wage skill premium in a persistent fashion, as R&D activity is

reallocated to the high-skill sector, boosting its labor productivity further. This response is

consistent with the earlier findings of Kaene and Prasad (1996), who show empirically that oil

price shocks induce substantial changes in the employment shares and relative wages across

industries.

Our model implies that negative oil shocks have a detrimental effect on both sectors in the

short run, but since the high-skill sector is less effected, R&D (as well as capital) investment is

redirected toward it, resulting in a long-lasting divergence in the relative productivity growth

rates over the medium-run. The high-skill sector is hit less than the low-skill sector, and the

corresponding real wage skill premium increases in the medium-run. This prediction is in

contrast to models of energy-skill complementarity in production, e.g. Kehrig and Ziebarth

(2017). Yet it turns out to be consistent with the positive comovement between the oil share

of household expenditures and the wage skill premium observed in the recent decades. In
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addition, model simulations exhibit a large response in labor and little response in aggregate

capital, which corresponds well to what is observed in the data as documented in Barsky and

Kilian (2004) and Ready (2018), a feature that is difficult to replicate using a standard (e.g.,

real business cycle-type) model.

The impact of oil prices on the macro aggregates and economic growth has been extensively

studied in the literature. In a series of papers, Hamilton (1983, 2009, 2012) shows that many

of the recessions in the United States since World War II had been preceded by dramatic

increases in the price of crude petroleum. Kilian (2009) investigates potential sources of the

shocks to the real price of oil, attempting to separate oil supply shocks, demand shocks for

industrial commodities and demand shocks specific to the crude oil market, and how each of

these propagate into the macroeconomic aggregates. Baumeister and Kilian (2016) elaborate

on multiple direct and indirect channels through which oil price shocks are transmitted into the

economy, which includes supply and demand channels, inter-sectoral reallocation effect, capital

uncertainty effect, and the role of monetary policy responses. Bodenstein and Guerrieri (2011)

investigate the propagation channel of country-specific oil supply shocks in a two-country DSGE

model and find that the macroeconomic implications of oil price fluctuations vary according

to their sources. Fukunaga, Hirakata and Sudo (2010) investigate potential sources of the oil

price shocks and their sectoral responses. Their main finding is that effects of oil price shocks

by industry depend on the source of the shock as well as on industry characteristics. Olson

(1988) argues that the oil shocks had a significant indirect impact on observed productivity

slowdowns. Fernald (2014) investigates the role of IT-intensity for the relation between the oil

sector and global economic boom and bust in the 2000s. We contribute to this literature by

proposing and investigating a novel channel - oil-related labor commuting cost - through which

the oil market fluctuations can transmit to the real economy. To our knowledge, this type of

shock transmission mechanism has not yet been widely studied in the literature.

Our work also contributes to the growing literature on the intersection of asset pricing and

labor economics, particularly relating to the heterogeneity across industries in their reliance on

highly skilled, versus less skilled, workers, as in Belo, Li, Lin and Zhao (2017), Kilic (2017),

Zhang (2019), as well as the geographic differences in the exposure of local factors of production

(such as labor) to aggregate shocks - e.g. Tuzel and Zhang (2017). It is also related to the

burgeoning literature on the directed technological change, following Acemoglu (2002), and the

role of innovation in driving productivity growth, e.g. Kogan, Papanikolaou, Seru and Stoffman

(2017).
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2 Empirical Evidence

We begin by analyzing micro data from the American Community Survey for the time pe-

riod 2005-2016, for which it contains some information about commuting in addition to hours

worked, income, and demographics. We are interested in understanding how labor supply re-

sponds to oil price fluctuations across categories of workers who might be differentially exposed

to the price of oil. For higher income, skilled workers the cost of gasoline is relatively trivial

compared to low-wage, unskilled workers. Similarly, for workers in high density metropolitan

areas with well-developed public transportation oil prices are largely irrelevant to their labor

supply choice. We analyze this by regressing hours worked (for employed workers reporting

non-zero hours) on lagged (real) oil price and its interactions with variables that capture these

differences: wage income, education, and population density, controlling for local area fixed

effects.1

Table 1 presents the results. High oil prices have a highly statistically significant negative

effect on hours worked in all specifications. This is not surprising given the extant macroeco-

nomic evidence, but could be driven by either supply and demand effects (e.g., labor demand

by energy-intensive industries). However, interacting the oil price with the socioeconomic sta-

tus/labor market variables and local population density indicates that, indeed, these effects are

concentrated among those for whom commuting costs are most onerous, as all of the interaction

terms are positive, and most are highly significant. For example, having a college education

(or higher) reduces the effect of oil prices on hours by roughly one third. Similarly, higher

income workers experience a much smaller decline in hours. While this result could potentially

be explained by a higher energy-intensity of low-skill jobs, this would contradict the existing

evidence, e.g. Kehrig and Ziebarth (2017).
We next turn to data from the LEHD Origin-Destination Statistics (LODES), available for

the years 2002-2015. This dataset contains information on a number of employees residing in
a given census block who are commuting to an employer in any census block location.2 In our
analysis we only use data for the state of Minnesota, where the employee location is recorded
at the level of individual establishments, which is not the case for other states. While the entire
distribution of worker wage earnings is not available, Census provides three employee numbers
for three wage categories, which we aggregate into two: those earning at most $3,333 per month,

1The granularity of local area in the ACS is at the level of U.S. Census Public Use Microdata Area (PUMA), a
geographic unit containing at least 100,000 people.

2Census blocks are the smallest units for all geographic boundaries the Census Bureau tabulates data for, in
particular census tracts. They are areas bounded by visible geographic features such as roads, streams, and railroad
tracks, as well as non-visible dividers such as property lines, administrative boundaries, etc.
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Table 1: Hours Worked and Oil Prices
Linear regression results from regressing hours worked on age, real wage income, sex, education,
lagged real oil price, and population density. Consistent PUMA 2000-2010 identifier is used for local
fixed effects. Data are from American Community Survey for years 2005-2016. Density variable is
constructed for each consistent PUMA 2000-2010. Only observations for employed respondents with
positive number of hours worked, traveled time to work and income are used. Skilled is a dummy
defined as at least 4 years of college. Standard errors (clustered by year) are in the parentheses.

(1) (2) (3) (4) (5) (6)
Age 0.102*** 0.102*** 0.102*** 0.102*** 0.102*** 0.102***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
WageIncome 53.7*** 62.2*** 62.2*** 53.7*** 62.2*** 54.4***

(3.96) (1.35) (1.35) (3.96) (1.35) (4.93)
Female -4.12*** -4.12*** -4.12*** -4.12*** -4.12*** -4.12***

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Skilled 1.29*** 0.69* 1.29*** 1.29*** 0.69* 1.02**

(0.07) (0.32) (0.07) (0.07) (0.32) (0.46)

OilPrice -0.017** -0.013 -0.009 -0.017** -0.013 -0.018**
(0.006) (0.008) (0.006) (0.006) (0.008) (0.006)

Wage×OilPrice 0.147** 0.147** 0.135
(0.064) (0.064) (0.080)

Skilled×OilPrice 0.010** 0.010** 0.004
(0.004) (0.004) (0.007)

Density ×OilPrice 0.222* 0.104 0.125 0.071
(0.116) (0.087) (0.140) (0.117)

Constant 34.85*** 34.61*** 34.41*** 34.85*** 34.61*** 34.90***
(0.424) (0.555) (0.476) (0.425) (0.556) (0.481)

Obs 11,526,550 11,526,550 11,526,550 11,526,550 11,526,550 11,526,550
R2 0.186 0.186 0.186 0.186 0.186 0.186
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and those earning more. For each employer census block we construct the measure of average
employee-weighted commuting distance based on employees of wage category k commuting to
census block i in year t:

DDi,k
t =

1

NN i,k
t

Jit∑
j=1

Di
jN

i,j,k
t ,

where Di
j is the geodesic distance (in miles) between census blocks i and j (we use ArcGIS to

compute these based on the census block coordinates provided by U.S. Census), NN i,k
t is the

total number of employees of category k in location i in year t, J it is the number of census blocks
from which employees commute to location i, and N i,j,k

t is the number of employees of category
k commuting from census block i to census block j in year t. We exclude from this calculation
workers who reside less than one mile or more than 200 miles away from their employer, as
they are unlikely to commute to the reported place of employment by car on a daily basis. The
former group (about 5-6% of all workers) are likely to walk or use public transportation, bicycle,
etc., whereas the latter (around 1-2%) are more likely to work at varying locations different
from the formal establishment (e.g., construction subcontractors) or telecommute (especially
relevant for highly-skilled workers).

Regressions of year-on-year changes in this distance on oil price changes and a host of
controls, including location fixed effects at the census block level, are reported in table 2 below.
These results show that the average employee-weighted commuting distance decreases in the
years following oil price rises, but this effect is muted for higher-wage workers, i.e. those earning
more than $3,333/month, in the near term (one- and two- year lags of oil price changes). At
the same time, this distance increases following increases in labor demand, proxied by the
overall employment growth at a given location. These results are consistent with the intuition
of the standard model of urban spatial structure developed by Mills (1967) and Muth (1969).3

These models effectively imply that commuting distance increases in labor demand as marginal
workers are attracted to jobs from further away in response to positive productivity shocks,
but higher transportation costs imply a shorter commuting distance, all else equal. They
also suggest that this channel is more pronounced for the lower-skill, lower-wage workers, for
whom commuting costs are larger relative to their wages. Indeed, we can see empirically that
average commuting distance is lower for lower-wage workers, consistent with the commuting
costs that are proportional to distance being important. Overall, our empirical results motivate
our quantitative model developed below.

As a final piece of motivating evidence we examine skill-based stock portfolios of Belo et al.
(2017), who sort firms into quintiles based on a measure of labor force skill constructed using
the Specific Vocational Preparation index (SVP) from the Dictionary of Occupational Titles

3In these “monocentric” models population density endogenously peaks near job locations in a “central business
district” and decays as distance from the center increases, as workers trade off proximity and commuting costs against
cost of living.
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Table 2: Commuting Distance: LODES Data
Table below presents linear regression results from regressing changes regressing average weighted
commuting distance of employees for each triplets of Census block Income Category-Year (as long
as there is at least one person in that income category working on this block in a given year).
Data are from LEHD Origin-Destination Statistics (LODES), available for the years 2002-2015 in
Minnesota. The income variable is a dummy for which takes a value of one if an employees income
is in the bottom two terciles of the income distribution. Standard errors (clustered by year) are in
the parentheses.

(1) (2)
∆OilPricet−1 -2.22* -2.27*

(1.10) (1.04)
∆OilPricet−2 -2.35** -2.50**

(0.88) (0.87)
∆OilPricet−3 -0.69

(1.85)

income ≤ $3333 -2.02*** -1.99***
(0.09) (0.11)

income ≤ $3333 × ∆OilPricet−1 -0.10 -0.11
(0.23) (0.23)

income ≤ $3333 × ∆OilPricet−2 -0.74** -0.78**
(0.30) (0.33)

income ≤ $3333 × ∆OilPricet−3 -0.27
(0.25)

population density -3.16*** -3.18***
(0.17) (0.19)

employment growtht−1 4.04** 3.89***
(1.61) (1.25)

income ≤ $3333 × employment growtht−1 0.08 0.03
(1.86) (1.86)

Constant 20.91*** 21.01***
(0.42) (0.60)

Observations 853,400 853,400
R2 0.109 0.109
Clustering Year Year
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(DOT).4 While they are focused on the relation between hiring costs and expected returns
within these portfolios, we are interested in whether labor skill is related to firms’ exposure
to oil price changes. Table 3 shows regressions of monthly excess returns on the skill-sorted
portfolios on percentage changes in oil prices. Panel A shows the results from univariate
regressions and Panel B controls for the CRSP value-weighted market excess return. In both
panels we see that rising oil prices are associated with negative returns in low-skill industries,
and this effect decays monotonically across the portfolios, so that high-skill industries have
insignificant exposure to oil prices.5 This result provides additional evidence that high oil
prices have the strongest negative impact on firms predominantly employing low-skill workers.

3 Model

In this section we introduce our two-sector production-based model with endogenous growth
and a novel oil-related commuting friction. The production side of the economy is composed
of two semi-final good sectors that utilize different types of labor (either highly-skilled or
unskilled), which jointly contribute to the production of the final good used in consumption,
investment, and creation of new patented products. The high-skill sector differs from the low-
skill sector in that it has both a higher labor productivity and capital intensity, as well as a
higher R&D intensity. Each sector’s productivity is subject to the endogenous growth in the
number of patented products or “blueprints” in the language of Kung and Schmid (2015). In
order to illustrate the role of the commuting channel, we assume that oil is used in the economy
only by households for commuting purposes and its supply is determined exogenously.

3.1 Household

The representative household derives utility from consumption Ct and amount of leisure over
its infinite lifetime. It contains an infinite number of atomistic agents where LH of them are
high-skilled (can work in the capital intensive sector) and LU of them are low-skilled (can work
in the less capital-intensive sector). Both types of agents can choose leisure that contribute in
the same way to the representative household’s utility function or work for the corresponding
wage. In order to keep the model on the balanced growth path, the leisure input in the utility
function is multiplied by the deterministic Trendt factor. Household has to spend resources
on oil for commuting separately for high-skilled and low-skilled workers.

max
Ct,lHt ,l

U
t

Ut = max

[
(1− β)

(
C1−φ[Trendt(leisuret)]

φ
)1−1/ψ

+ β
(
EtU

1−γ
t+1

) 1−1/ψ
1−γ

] 1
1−1/ψ

4We thank Jun Li for providing the data.
5The fact that some of the industries have a positive exposure to oil prices due to their role in oil extraction and

distribution is not driving this result. Industries related to oil extraction primarily reside in the central portfolios
(they require roughly average levels of skill).
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Table 3: Regressions Skill-based Stock Portfolios on Oil Prices
This table shows regressions of the returns to labor-skill sorted portfolios from Belo, Li, Lin, and
Zhao (2017) on changes in oil prices (measured in percent). In Panel A, the independent variable
is the percentage change in oil price, and Panel B additionally controls for the aggregate market
return. Column (1) - (5) represent returns going from the lowest to highest skill quintile, and
Column (6) is the return to a strategy which goes long the highest quintile and short the lowest
quintile. Data are from April of 1983 to December of 2014. T-stats are shows in parentheses.

Panel A: Exposure to Oil Price Changes as Independent Variable
Low Skill Quintile 2 Quintile 3 Quintile 4 High Skill HML (skill)

(1) (2) (3) (4) (5) (6)

∆p -0.09*** -0.04 -0.01 0.01 0.02 0.11***
(-2.80) (-1.52) (-0.42) (0.35) (0.64) (4.35)

Constant 0.80*** 0.83*** 0.72*** 0.59*** 0.63** -0.17
(3.13) (3.76) (2.99) (2.62) (2.20) (-0.85)

Observations 380 380 380 380 380 380
R-squared 0.02 0.01 0.00 0.00 0.00 0.05

Panel B: Exposure to Oil Price Changes and Aggregate Market Returns
Low Skill Quintile 2 Quintile 3 Quintile 4 High Skill HML (skill)

(1) (2) (3) (4) (5) (6)

∆p -0.09*** -0.04*** -0.01 0.01 0.02* 0.11***
(-5.19) (-3.51) (-0.92) (0.96) (1.89) (4.49)

Market Return 0.94*** 0.87*** 0.93*** 0.93*** 1.17*** 0.23***
(30.24) (40.15) (37.20) (51.48) (55.19) (5.11)

Constant 0.20 0.27*** 0.13 0.00 -0.12 -0.32
(1.43) (2.83) (1.12) (0.02) (-1.27) (-1.59)

Observations 380 380 380 380 380 380
R-squared 0.71 0.81 0.79 0.88 0.89 0.11
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subject to:
Ct + POt

[
ΥH(lHt ) + ΥU (lUt )

]
= WH

t l
H
t +WU

t l
U
t + D̃t (1)

leisureHt + lHt = L
H (2)

leisureUt + lUt = L
U (3)

leisuret = leisureHt + leisureUt (4)

Ct, l
H
t , l

U
t , leisure

H
t , leisure

U
t >= 0

where Υj(ljt ) is the quantity of oil required for ljt units of labor to be supplied and POt is the
price of oil.

The agent’s FOC are given by:

Ct :
∂Ut
∂Ct

= λt

ljt : −∂Ut
∂ljt

= λt(W
j
t − POt Υ′jt (ljt )) for j ∈ {H,U}

Eliminating Lagrange multiplier for the budget constraint λt we get

−∂Ut
∂ljt

/
∂Ut
∂Ct

= W j
t − POt Υ′jt for j ∈ {H,U} (5)

and the stochastic discount factor (SDF) is

mt+1 = β

(
Ct+1

Ct

)−1/ψ−φ(1−1/ψ)(Trendt+1(leisuret+1)

Trendt(leisuret)

)φ(1−1/ψ)( Ut+1

Et[U
1−γ
t+1 ]

1
1−γ

)1/ψ−γ
. (6)

We assume that households are the stock owners and thus they receive the aggregate div-
idend denoted by D̃t. It includes the net payout from the production sector (final good firm
dividendDt and profits of innovation sector). Additionally, we assume that they also receive the
lump sump transfer of rents from the sales of oil (the assumption of domestic ownership of oil
resources does not materially effect our results, however). Thus we can specify its components
as:

D̃t = Dt +

∫ NH
t

0
πHi,t +

∫ NU
t

0
πUi,t + ttP

O
t (7)

However household does not internalize those components when making their optimal de-
cisions about consumption and labor taking the dividend stream D̃t as given.

Commuting friction
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We assume exponential form for the Υ(.) function:

Υj(l) = lκ.

Thus, total commuting cost for a given type of workers is increasing and convex in the amount
of hours worked. In our baseline parametrization, we assume that the Υ(.) function is the
same for both labor types. This convex shape of the commuting cost can be micro-founded
using a version of the Mills-Muth model of urban structure. Intuitively, it reflects the fact that
the population density of workers around a city center (where most of the jobs are located) is
decreasing with the radius. Given perfect risk sharing, only workers living closest to the city
center provide work first, so that increasing labor supply requires that workers living further
away from the center being engaged and therefore the marginal commuting distance increases
with each extra worker employed.

3.2 Production

The final good Yt is produced using two semi-final goods, Y H
t and Y U

t , each being produced
using either more or less capital-intensive technology. The semi-final good technologies are
subject to the endogenous growth in the measure of patented products denoted with NH

t and
NU
t similarly to Kung and Schmid (2015). Sustained growth arises endogenously from the

development of new patented products but is “directed” towards the two sectors at different
rates, reflecting expected profitability of each sector.

3.2.1 Final good sector

The final good sector chooses levels and input factors so as to maximize the shareholder
value. Physical capital investment are subject to the convex capital adjustment cost as in
Jermann (1998). The firm chooses the optimal level of labor lHt and lUt , capital KH

t and KU
t ,

and the quantity of intangible intermediate input xji,t contributed by each of the patented
products i ∈ [0, N j

t ], purchased at a price pji,t. Investment in the physical capital IHt and IUt is
subject to the convex capital adjustment cost, and capital is sector-specific, i.e. it cannot be
reallocated between the skilled and unskilled technologies.

The final-good producer thus solves

max
{IHt+j ,IUt+j ,KH

t+1+j ,K
L
t+1+j ,l

H
t+j ,l

U
t+j ,x

H
ih,t+j ,x

U
iu,t+j}j≥0,ih∈[0,NHt ],iu∈[0,NUt ]

Et

∞∑
j=0

mt+jDt+j

subject to:

Dt = Yt −WH
t l

H
t −WU

t l
U
t − IHt − IUt −

∫ NH
t

0
pHi,tx

H
i,tdi−

∫ NU
t

0
pUi,tx

U
i,tdi
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KH
t+1 = (1− δ)KH

t + Φt

(
IHt /K

H
t

)
KH
t (8)

KU
t+1 = (1− δ)KU

t + Φt

(
IUt /K

U
t

)
KUt (9)

Yt =

(
Y ι
U,t + µY ι

H,t

) 1
ι

(10)

Y j
t =

[
(Kj

t )
αj (ajt l

j
t )

1−αj
]1−ξj

(Gjt )
ξj for j ∈ {H,U} (11)

Gjt =

[∫ Nj
t

0
xν

j

j,i,tdi

] 1
ν

j

for j ∈ {H,U} (12)

Φj
t

(
Ijt

Kj
t

)
=

a1
1− 1/ζ

(
Ijt

Kj
t

)1−1/ζ
+ a2 for j ∈ {H,U} (13)

FOC are:
IHt : QHt =

1

Φ′Ht
(14)

IUt : QUt =
1

Φ′Ut
(15)

KH
t+1 : QHt = Et

[
mt+1

(
QHt+1

(
1− δ)−

IHt+1

KH
t+1

+QHt+1Φ
H
t+1 +MPKH

t+1

)]
(16)

KU
t+1 : QUt = Et

[
mt+1

(
QUt+1

(
1− δ)−

IUt+1

KU
t+1

+QUt+1Φ
U
t+1 +MPKU

t+1

)]
(17)

ljt : MPLjt = W j
t for j ∈ {H,U} (18)

xj,i,t : pji,t =
∂Yt

∂Y j
t

[
(Kj

t )
αj (ajt l

j
t )

1−αj
]1−ξj

ξj
[ ∫ Nj

t

0
xν

j

j,i,t

] ξj
νj
−1
xν

j−1
j,i,t for j ∈ {H,U} (19)

Note that final good sector take the composite Gjt factor as exogeneous.

3.2.2 Intermediate products sectors

Innovation occurs through development of intermediate good varieties, whereby each variety
represents a patented product that is imperfectly substitutable in the production of a semi-final
good. Products are “developed” by competitive innovators and “sold” in the form of (perpetual)
patents to intermediate goods producers, who then produce the actual intermediates based on
these patents and are monopolistically competitive (since each is a monopolist in a given
variety). There are two separate directions of innovation, one contributing to the capital-
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intensive technology H and the other one contributing to the non-capital-intensive technology
U . Thus the specification below applies to each of them separately.

Intermediate (intangible) good sector (monopolistic competition)
Intermediate good producers solve the following static profit maximization problem each period:

πji,t = max
pji,t

(pji,t − 1)xji,t(p
j
i,t) for j ∈ {H,U}.

As noted by Kung and Schmidt (2015), the monopolistically competitive characterization
of the intermediate goods sector a-la Dixit and Stiglitz (1997) results in the symmetric industry
equilibrium conditions, thus we have:

xji,t = xjt for j ∈ {H,U}

pji,t = pjt =
1

νj
for j ∈ {H,U} (20)

Combining it with 19, 12 we get:

πji,t = πjt =

(
1

νj
− 1

)
xjt for j ∈ {H,U}

xjt =

(
∂Yt

∂Y j
t

ξjνj
[
(Kj

t )
αj (ajt l

j
t )

1−αj
]1−ξj

(N j
t )

ξj

νj
−1
) 1

1−ξj

for j ∈ {H,U} (21)

Innovation sector (perfect competition)
The innovation sector develops patented products and sells them at a price equal to the value
of the patent to the intermediate good producer, vj,i,t

vji,t = πji,t + (1− τ j)Et[mt+1v
j
i,t+1] for j ∈ {H,U} (22)

where τ j is the probability that a patent becomes obsolete.
Evolution of the number of patented products N j

t

N j
t+1 = ϑjtS

j
t + (1− τ j)N j

t for j ∈ {H,U}, (23)

with

ϑjt =
χjN j

t

(Sjt )
1−η(N j

t )η
for j ∈ {H,U}, (24)

where ϑjt represents the productivity of the innovation sector and is meant to capture
decreasing returns to scale in aggregate innovation (i.e., a form of the congestion externality).

Since discounted future profits on patents are the payoff to innovation and the patented
products sector is competitive, the optimality condition that pins down the number of new
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patented products Sjt is:

Et[mt+1v
j
t+1](N

j
t+1 − (1− τ)N j

t ) = Sjt for j ∈ {H,U}. (25)

Market clearing
Market clearing conditions for consumption goods and oil are given by

Yt = Ct + IHt + IUt +NH
t x

H
t +NU

t x
U
t + SUt + SHt (26)

and

tt = ΥH
t (lHt ) + ΥU

t (lUt ), (27)

respectively.
Technology processes and oil supply

Both skilled and unskilled technologies are subject to exogenous transitory productivity shocks

logaUt = ρAlog(aUt−1) + σAεUt , (28)

logaHt = log(ã)(1− ρA) + ρAlog(aHt−1) + σAεHt ,

and

logtt = log(tss)(1− ρT ) + ρT log(tt−1) + σT εtt. (29)

3.3 Implications

Endogenous growth
Plugging (21) into the production function we get that output in semi-final good sector is

given by:

Y j
t = (Kj

t )
αj (ajt l

j
t )

1−αj
( ∂Yt
∂Y j

t

ξjνj
) ξj

1−ξj (N j
t )

ξj

νj
−ξj

1−ξj for j ∈ {H,U}.

If we impose
ξj

νj
−ξj

1−ξj = (1 − αj), as required for the balanced growth, we can embed the
augmented endogenous TFP shock Zjt as follows

Y j
t = (Kj

t )
αj (Zjt l

j
t )

1−αj for j ∈ {H,U}

where

Zjt =
( ∂Yt
∂Y j

t

ξjνj
) ξj

(1−ξj)(1−αj)ajtN
j
t for j ∈ {H,U}.
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Thus, “measured” total factor productivity in each sector endogenously follows allocation
of R&D expenditures in the given sector.

High-skill wage premium
Note that since the marginal utility of leisure (marginal disutility from labor) for both

high-skilled and unskilled workers is the same, effectively we must have:

WU
t − POt Υ′Ut = WH

t − POt Υ′Ht

or the wage premium must be

WH
t −WU

t = POt

(
Υ′Ht (lHt )−Υ′Ut (lUt )

)
. (30)

Thus, the larger is the skill premium, the more high-skilled labor is supplied relative to
unskilled labor. This implies that skilled workers require more oil expenditure on average as
they travel more miles on average, since the marginal skilled worker is located further away from
the job relative to the unskilled worker. The magnitudes of these differences are proportional
to the skill premium: the higher is the pay differential, the larger is the disparity in the labor
supply, as it compensates for a larger difference in commuting costs.

Importantly, this prediction is at least qualitatively corroborated in the ACS data. Figure 1
displays summary statistics of commute times and hours worked by skill level (defined either as
hourly wage quintile, or by level of education). In all cases the distributions are both centered
further to the right and more right-skewed for higher skilled workers: they both supply more
hours and commute further to work.

4 Analyzing the Effects of Oil Shocks: Model vs. Data

We use the model to explore the behavior of key macroeconomic variables in response to a
negative oil supply shock. We calibrate the model to quantitatively match the standard features
of the aggregate U.S. economy; means and standard deviations of target moments are reported
in Table 5 and Table 6, respectively; calibrated parameter values are presented in Table 4.
Most of the parameters are as in the Kung and Schmid (2015) and they are calibrated using
simulations at a quarterly frequency. Leisure preference φ and commuting friction parameter
κ are calibrated to match oil-related moments in the data, such as oil price volatility and the
share of oil in consumption (note that while the model matches the higher end of the values
in the data, where consumption of goods is used in denominator, it substantially overshoots
the lower value that uses total household consumption expenditures, e.g. from the Consumer
Expenditure Survey). Sectoral capital shares αH and αU together match the total capital share
in the economy. R&D productivity scale parameters χU and χH are calibrated to match growth
rates in both sectors to the imposed endogenous growth rate of the economy.
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Figure 1: Commuting and labor supply by skill level: ACS

The box plots illustrate the distributions of travel time to work (top panels) and usual hours worked (bottom panels)
across different income and education categories using 2016 American Community Survey. Hourly wage quintiles
are ordered from the lowest to the highest (left two panels). Workers having at least college degree are defined as
“skilled” (right two panels). Each colored box includes the second and third quartiles of the distribution. Whiskers
indicate 1.5 inter-quartile range distances above the 75th percentile and below 25th percentile. Means values are
denoted with circles and medians with horizontal dividers. Travel time to work is expressed in minutes and refers to
minutes spent to travel from home to work.

4.1 Impulse Responses

Figure 3 confirms the commonly accepted belief that the oil supply shock has a detrimental
effect on the economy. The mechanism through which it works in our model is as follows: the
decreased oil supply causes a hike in the price of oil.6 Thus it is more costly for workers to
commute to work, which makes them work less and require a higher wage. Companies facing
the lower amount of labor employed decrease their investment in physical capital and demand
for intangible goods. Because of the lower demand for the intangible goods, the value of new
patents decreases and thus the R&D investments decrease. All of this has a detrimental effect
on the economy, causing a decrease in output and consumption growth.

The two sectors respond differently, however. The relative strength of the inter-sectoral

6We focus here on oil supply shocks in order to isolate the exogenous effect of oil prices on the economy. Impulse
responses of the economic quantities to the sectoral labor productivity shocks are relatively standard, where a positive
shock to a particular sector increases its output, wages, labor demand, capital, etc.; both sectors’ shocks that increase
labor demand also increase the price of oil. Detailed impulse response function plots are provided in the Appendix.
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responses is presented on Figure 4. We can see that after the negative oil supply shock, the
relative size of sectoral output, number of patented products, wages, capital, and labor are
generally shifting in favor of the high-skilled sector. This suggests that the high-skill sector
suffers less than the low-skilled sector in the event of an oil price spike. Interestingly, the
augmented TFP in the high-skill sector decreases at a faster pace than in the low-skilled sector
during the few first periods, causing the ratio of the augmented TFP in the high-skill sector to
low-skill sector to decrease initially. This is due to the immediate shift in capital and innovative
activity towards the high-skill sector, which, due to the law of decreasing returns to scale causes
the observed immediate drop in the relative augmented TFP. However, due to the relatively
small decrease in intangible investment in the high-skill sector, in the long term its productivity
does relatively better than the low-skill sector (compared to the steady state levels).

An interesting consequence of an oil shock in our model is its effect on the wage skill
premium. The impulse responses show that it widens on impact of a negative oil supply shock,
and continues to widen going forward. This might appear surprising, since low skill labor supply
is more impacted by the shock. However, it is precisely the difference in the sensitivities of the
two groups that drives this result: since high-skilled labor supply is less elastic, high-skilled
workers’ wages rise more than low-skilled ones’. Indeed, recall that the wage premium is given
by

WH
t −WU

t = POt

(
Υ′Ht (lHt )−Υ′Ut (lUt )

)
.

As oil price increases, the term in the parentheses does too, since lHt > lUt , and unskilled labor
decreases by more than skilled, so that the slope of Υ′Ht (lHt ), even though steeper, decreases
less than that of Υ′Ut (lUt ). Thus, the skill premium rises on impact. It continues to rise in
the medium term because investment and the R&D activity, while lower overall, now favor
the high-skilled industry, raising its demand for labor in the future. Thus the asymmetry in
sectoral responses to the oil shock in our model can be seen as a novel force behind skill-biased
technological change.

4.2 Empirical VAR

To bring our model results closer to the data, we estimate the VAR model on the ouput
and its most commonly identified components, namely capital and labor input, and total factor
productivity (TFP). Data counterpart is as in Ready (2018). Model counterpart is estimated
using simulations obtained from the baseline parametrization. Total labor in the economy is
simply the sum of labor employed in high- and low-skill sectors. Total factor productivity is
estimated as Solow residuals. We obtained an estimate for the capital share parameter alpha
of 0.33, which is in line with the previous literature. Figure 5 presents the impulse responses
for one standard deviation of the positive shock in oil price equation from the VAR model.
We can see that the impulse responses for the time series simulated in the model match the
magnitude of the oil price response observed in the data. We can also see that the model
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was able to replicate the negative response in the TFP, however with smaller magnitude. The
response in capital is negative, but very small in magnitude (close to zero) and thus corresponds
well to what is observed in the data. Last, but not least, the labor response match the data
relatively well in terms of the direction and magnitude. While in the model the response of
labor is instantaneous, whereas in the data it is delayed, presumably due to various labor
market frictions that we do not model, the long-run impact in the data is very similar to that
produced in the model.

4.3 Oil Prices and the Wage Skill Premium

One of the key predictions of the model is that the wage skill premium will be closely related
to the cost of commuting, and hence fuel costs, which are primarily driven by oil prices. We
find that this prediction is strongly supported in the data. Figure 2 plots the ratio of total
household expenditure on gasoline, which tracks oil prices insofar they are relevant for the
consumers, against the growth in wages for high- relative to low-wage workers. The relative
wage growth is constructed using the Atlanta Fed’s Wage Growth Tracker, and compares the
wage growth for workers in the top quintile of wages vs those in the bottom. The ratio of
household expenditure is from the consumer expenditure survey, and closely tracks the real
price of oil. Panel A shows this plot for the period for which the Wage Growth Tracker has
data, namely 1998 to 2018. As the plot shows the two series largely move together, with
the notable exception of the technology bubble of the early 2000s, a period that likely saw a
productivity shock specifically for high-wage workers.

Panel B plots the portion of Panel A since the financial crisis, a period that has seen large
variation in oil prices but steady overall economic growth. As the plot shows, the high oil
prices following the immediate recovery from the Great Recession corresponded with a period
of relatively lackluster wage growth for low-wage jobs. In contrast, since 2015 with the fall in
oil prices coming from North American Shale Oil boom, these wages have grown considerably
faster than those for high-wage workers.7 Panels C and D use the same data for plots A and
B but show the two lines in scatter plot form with OLS regressions. As the plot shows, for
both periods, and particularly for the second, the level of household oil expenditure closely
relates to the change in the wage skill premium. This evidence strongly supports our model’s
prediction that, at least in the recent era, oil price fluctuations have a stronger negative effect
on the wages of lower-skilled than high-skilled workers.

5 Conclusion

We build a macroeconomic model with oil entering exclusively through the commuting
channel. In our model negative oil shocks have a detrimental effect for both high- and low-

7Gilje, Ready and Roussanov (2016) quantify the role of oil supply shocks during this time period.
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Figure 2: Oil Expenditures and the Wage Skill Premium
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Panel D: 2009 - 2018

The figure shows plots of household share of consumption and the relative wage growth of high- and low-wage workers.
Household share of consumption is defined as the ratio of expenditure on gasoline and other energy goods to total
consumption expenditure for all workers in the bureau of labor statistics consumer expenditure survey. Relative
wage growth is defined as the difference in wage growth between workers in the highest quartile of wages and the
lowest quartile of wages and is obtained from the federal reserve bank of Atlanta’s Wage Growth Tracker. Panels
C and D use the same data as Panel A and B, but present regression scatter plots. The t-stats in these panels are
calculated using Newey-West errors with 3 lags.

skilled workers. However, the relative effects on the two sectors differ. Due to the lower
sensitivity of workers to commuting costs, the high-skill sector is hit less than the low-skill
sector and the corresponding real wage skill premium increases. In the short term, there is
little immediate impact to relative productivity. However, in the long term due to the relatively
milder reduction in innovation in the high-skill sector, augmented TFP in the high- skill sector
eventually does relatively better than the augmented TFP in the low-skill sector. Also, model
simulations and the VAR estimates show that the model generates a small response in capital
to an oil price shock, as observed in the data.

As the model delivers qualitatively reasonable empirical predictions, it suggests that the
commuting friction that we identify may be an important channel that contributes to oil price
shock propagation in the real economy. It also provides a novel venue for understanding skill-
biased technological change, since it shows that periods of high oil prices tend to increase the
wage skill premium and the demand for skilled workers in the medium run.

20



References

Acemoglu, Daron, “Directed Technical Change,” Review of Economic Studies, 2002, 69 (4),
781–809.

Barsky, Robert B and Lutz Kilian, “Oil and the Macroeconomy since the 1970s,” Journal
of Economic Perspectives, 2004, 18 (4), 115–134.

Baumeister, Christiane and Lutz Kilian, “Forty Years of Oil Price Fluctuations: Why
the Price of Oil May Still Surprise Us,” Journal of Economic Perspectives, February 2016,
30 (1), 139–60.

Belo, Frederico, Jun Li, Xiaoji Lin, and Xiaofei Zhao, “Labor-force heterogeneity and
asset prices: The importance of skilled labor,” The Review of Financial Studies, 2017, 30
(10), 3669–3709.

Bodenstein, Martin and Luca Guerrieri, “Oil efficiency, demand, and prices: a tale of
ups and downs,” International Finance Discussion Papers 1031, Board of Governors of the
Federal Reserve System (U.S.) 2011.

, , and Lutz Kilian, “Monetary policy responses to oil price fluctuations,” IMF Economic
Review, 2012, 60 (4), 470–504.

Buera, Francisco J., Joseph P. Kaboski, and Richard Rogerson, “Skill Biased Struc-
tural Change,” Working Paper 21165, National Bureau of Economic Research May 2015.

Comin, Diego and Mark Gertler, “Medium-Term Business Cycles,” American Economic
Review, June 2006, 96 (3), 523–551.

Fernald, John, “Productivity and Potential Output Before, During, and After the Great
Recession,” Working Paper 20248, National Bureau of Economic Research June 2014.

Fukunaga, Ichiro, Naohisa Hirakata, and Nao Sudo, “The Effects of Oil Price Changes
on the Industry-Level Production and Prices in the U.S. and Japan,” Working Paper 15791,
National Bureau of Economic Research March 2010.

Gilje, Erik, Robert Ready, and Nikolai Roussanov, “Fracking, drilling, and asset pricing:
Estimating the economic benefits of the shale revolution,” Technical Report, National Bureau
of Economic Research 2016.

Hamilton, James D., “Oil and the Macroeconomy since World War II,” Journal of Political
Economy, 1983, 91 (2), 228–248.

, “Causes and Consequences of the Oil Shock of 2007-08,” Working Paper 15002, National
Bureau of Economic Research May 2009.

21



, “Oil Prices, Exhaustible Resources, and Economic Growth,” Working Paper 17759, National
Bureau of Economic Research January 2012.

Jermann, Urban J., “Asset pricing in production economies,” Journal of Monetary Eco-
nomics, April 1998, 41 (2), 257–275.

Kaene, Michael and Eswar Prasad, “The Employment and Wage Effects of Oil Price
Changes: A Sectoral Analysis,” The Review of Economics and Statistics, Aug 1996, 78 (3),
389–400.

Kehrig, Matthias and Nicolas L. Ziebarth, “The Effects of the Real Oil Price on Regional
Wage Dispersion,” American Economic Journal: Macroeconomics, 2017.

Kilian, Lutz, “Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks
in the Crude Oil Market,” American Economic Review, June 2009, 99 (3), 1053–69.

Kilic, Mete, “Asset Pricing Implications of Hiring Demographics,” 2017.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, “Techno-
logical innovation, resource allocation, and growth,” The Quarterly Journal of Economics,
2017, 132 (2), 665–712.

Kopytov, Alexandr, Nikolai Roussanov, and Mathieu Taschereau-Dumouchel,
“Short-run pain, long-run gain? Recessions and technological transformation,” Journal of
Monetary Economics, 2018, 97, 29 – 44.

Kung, Howard and Lucas Schmid, “Innovation, Growth, and Asset Prices,” Journal of
Finance, 06 2015, 70 (3), 1001–1037.

Mills, Edwin S, “An aggregative model of resource allocation in a metropolitan area,” The
American Economic Review, 1967, 57 (2), 197–210.

Muth, Richard F, “Cities and housing; the spatial pattern of urban residential land use.,”
1969.

Olson, Mancur, “The Productivity Slowdown, the Oil Shocks, and the Real Cycle,” Journal
of Economic Perspectives, December 1988, 2 (4), 43–69.

Ready, Robert C, “Oil consumption, economic growth, and oil futures: The impact of long-
run oil supply uncertainty on asset prices,” Journal of Monetary Economics, 2018, 94, 1–26.

Redding, Stephen J. and Matthew A. Turner, “Transportation Costs and the Spatial
Organization of Economic Activity,” Working Paper 20235, National Bureau of Economic
Research June 2014.

22



Romer, Paul, “Endogenous Technological Change,” Journal of Political Economy, 1990, 98
(5), S71–102.

Tuzel, Selale and Miao Ben Zhang, “Local Risk, Local Factors, and Asset Prices,” The
Journal of Finance, 2017, 72 (1), 325–370.

Zhang, Miao Ben, “Labor-Technology Substitution: Implications for Asset Pricing,” The
Journal of Finance, 2019, 74 (4), 1793–1839.

23



A Calibration

Table 4: Parameters calibrated in quarterly model
Parameter Description model

Household
β discount factor (quarterly) 0.996
ψ IES 1.85
γ Risk aversion 10
φ Leisure preference 0.1
κH = κU Power of Upsilon function 6
L
H

= L
U

Labor resources 0.5

Production
αH Capital share in high-skill 0.4
αU Capital share in low-skill 0.2
ã Relative steady state of aH to aU 2
Ñ Relative steady state of NH to NU 1.5
µ High-skill sector weight in final output function 1
ι Final good production elasticity parameter 0.9
δ Depreciation of capital (quarterly) 0.02
ζ Investment adjustment cost parameter 0.7

Endogenous growth part
ξH Patent share 0.55
ξU Patent share 0.45
νH = νU Patent price 1.65
χH Scale parameter in high-skill 0.61
χU Scale parameter in low-skill 1.19
τH = τU Patent obsolescence rate (quarterly) 0.0375
ηH = ηU Elasticity of new patents with respect to R&D 0.83

Others
ρA Autocorrelation of exogenous shocks to

TFP(quarterly)
0.988

ρT Autocorrelation of oil supply(quarterly) 0.97

Endo Growth Endogenous growth rate (annual) 1.83%

Note: Most of the parameters as in Kung and Schmid (2015). Leisure preference φ and
power of Upsilon function κ calibrated to match oil-related moments in data. Sectoral capital
shares αU and αH calibrated to match total capital share in the economy. R&D productivity
scale parameters χU and χH calibrated to match growth rates in both sectors to the imposed
endogenous growth rate of the economy and relative size of R&D stock equal to Ñ . The steady
state level of total supply of oil in the economy tss is calibrated such that: the deterministic
steady state level of low-skill labor lUss = 0.2 keeping aUss = 1 and aHss = ã. Additional parameters
of capital adjustment cost function calibrated as in Jermann (1998)
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B Moments

Table 5: Macro moments - means
Moments model data

Oil/Output 7% 2%
Consumption/Output 45% 70%
Investment/Output 49% 28%
-Physical capital Investment/Output 20% 25%
-Intangible capital Investment/Output 29% 3.5%

Oil/Household expenditures 13% 5%-15%
Wage Skill Premium 65% 37%-65%

Sectoral comparison (high-to-low)
Production 3.4
Physical capital 5.5
R&D stock 1.7
R&D investments 3.7
Endogenous labor productivity 1.2
Labor 1.1
Cost of commuting 1.9
Marginal cost of commuting 1.7

Table 6: Macro moments - volatilities
model data

Std Dev of Annual LogGrowth Rates
Output 2.4% 2.3%
Investments 3.0% 6.1%
Consumption 1.8% 1.4%
Output high 2.3%
Output low 3.3%
Wage high 1.9%
Wage low 2.0%
Oil price 16.5% 10%-15%

Note: Output defined as Outputt = Ct + IHt + IUt + SUt + SHt + POt tt thus it is not equal
to the final goods production Yt. Data counterparts computed by author: Total household
expenditure is consumption of non-durables and services from NIPA. We also consider this
measure excluding services (this generates the range of values for the ratio of oil consumption to
household consumption). I is private+public investments, S is R&D investments. Oil/Output
ratio - as in Ready (2018); Oil/Household expenditures as in Redding and Turner (2014). Wage
skill premium as in Buera et al. (2015). Standard deviations for data as in Kung and Schmid
(2015). Standard deviation of oil prices computed by author.
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Table 7: Asset Pricing model moments
model

Annual Returns
Rf mean 1.6%

std 0.5%
RD −Rf mean 2.0%

std 3.4%
RR&D −Rf mean 0.9%

std 0.8%
RD+R&D −Rf mean 1.3%

std 2.2%
RD+R&D+Oil −Rf mean 2.0%

std 3.2%
RH −RU mean -0.5%

std 3.1%
RHgood −RUgood mean -3.3%

std 5.0%

Quarterly correlations with log-growth of oil price
RH −Rf -0.78
RU −Rf -0.78
RH −RU 0.37
RHgood −Rf -0.79
RUgood −Rf -0.80
RHgood −RUgood 0.43

Betas to (positive) one standard deviation of oil supply shock
RH −Rf p.p. 0.9
RU −Rf p.p. 1.5
RH −RU p.p. -0.5
RHgood −Rf p.p. 1.4
RUgood −Rf p.p. 2.7
RHgood −RUgood p.p. -1.0

Note: RD corresponds to the final-goods producing sector only. RR&D corresonds to the
intangible sector only. RHgood and RUgood corresponds to the high-skill part and low-skill part
of the final-goods producing sector, where the one period dividends of the sector j ∈ {H,U}
are computed: Dj

t = dYt
dY jt

Y j
t − I

j
t −W

j
t l
j
t −
∫ Nj

t
0 P ji,tx

j
i,tdi . R

H and RU includes also the profits

of R&D secotrs. Betas computed by regressing R = a + β1ε
H
t + β2ε

U
t + β3ε

t
t, table reports

estimates of β3.
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C IRFs

Figure 3: Oil shock implications for growth. IRF to negative oil supply shock (deviation from the
steady state) .
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Figure 4: Relative IRF between high and low skilled sectors to negative oil supply shock (followed
by oil price increase). 9

Note: Ratio between IRFs for high-skill sector to low-skill sector, ie KH
t /K

U
t . Since R&D

stock and Capital are pre-determined variables quarter t response on the graph corresponds to
quarter t+1 in the model.

9The numbers correspond to 100*log-deviation from the steady state. Thus for small numbers they are approxi-
mately equal to the percentage deviations.
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D VAR results

Figure 5: Response of Components of Output to Change in Oil Price and 98% CI

Note: Using VAR(4) model on first differences. Data part based on Ready (2012). Model
part estimated using simulations obtained from baseline model. Economy-wide TFP from the
model estimated using Solow residuals. Estimated alpha = 0.375 (using simulations from the
model).
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E Equilibrium conditions

Equilibrium consists of:

1. exogenous stochastic sequences for labour productivity {aHt }∞t=0, {aUt }∞t=0 and oil supply
{tt}∞t=0

2. vector of prices {WH
t ,W

U
t , P

O
t , Q

H
t , Q

U
t }∞t=0

3. low of motion {KH
t+1,K

U
t+1, N

H
t+1, N

U
t+1}∞t=0 with initial conditions {K0, N

H
0 , N

U
0 }

4. sequence of allocations and other endogenous variables

{Ut, Ct, lHt , lUt ,mt, I
H
t , I

U
t , Yt, Y

H
t , Y U

t , x
H
t , x

U
t , v

H
t , v

U
t , S

H
t , S

U
t , ϑ

H
t , ϑ

U
t , Z

H
t , Z

U
t }∞t=0

such that they satisfy the system of equations:

Household:

Ut =

[
(1− β)

(
C1−φ
t [Trendt(leisuret)]

φ
)1−1/ψ

+ β
(
EtU

1−γ
t+1

) 1−1/ψ
1−γ

] 1
1−1/ψ

WH
t − POt Υ′Ht = − φ

(1− φ)

Ct
(leisuret)

WL
t − POt Υ′Lt = − φ

(1− φ)

Ct
(leisuret)

mt+1 = β

(
Ct+1

Ct

)−1/ψ−φ(1−1/ψ)(Trendt+1(leisuret+1)

Trendt(leisuret)

)φ(1−1/ψ)( Ut+1

Et[U
1−γ
t+1 ]

1
1−γ

)1/ψ−γ

Final good firm:

KH
t+1 = (1− δ)KH

t + Φt

(
IHt /K

H
t

)
KH
t

KU
t+1 = (1− δ)KU

t + Φt

(
IUt /K

U
t

)
KU
t

KH
t+1 : QHt = Et

[
mt+1

(
QHt+1

(
1− δ)−

IHt+1

KH
t+1

+QHt+1Φ
H
t+1 +MPKH

t+1

)]

KU
t+1 : QUt = Et

[
mt+1

(
QUt+1

(
1− δ)−

IUt+1

KU
t+1

+QUt+1Φ
U
t+1 +MPKU

t+1

)]

Yt =

(
Y ι
U,t + µY ι

H,t

) 1
ι

YH,t = KαH

H,t(ZH,tl
H
t )1−α

H
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YU,t = KαU

U,t (ZU,tl
U
t )1−α

U

ZH,t =
( ∂Yt

∂Y H
t

ξHνH
) ξH

(1−ξH )(1−αH )aH,tN
H
t

ZU,t =
( ∂Yt
∂Y U

t

ξUνU
) ξU

(1−ξU )(1−αU )aU,tN
U
t

QHt =
1

Φ′Ht

QUt =
1

Φ′Ut

MPLHt = WH
t

MPLUt = WU
t

Intangible establishments equations (two times - each equation is for H and U sector )

xjt =

(
∂Yt

∂Y j
t

ξjνj
[
(Kj

t )
αj (ajt l

j
t )

1−αj
]1−ξj

(N j
t )

ξj

νj
−1
) 1

1−ξj

vjt =

(
1

νj
− 1

)
xjt + (1− τ j)Et[mt+1v

j
t+1]

N j
t+1 = ϑjtS

j
t + (1− τ j)N j

t

ϑjt =
χN j

t

(Sj)1−η
j

t (N j
t )ηj

Sjt = Et[mt+1v
j
t+1](N

j
t+1 − (1− τ j)N j

t )

Market clearing
Yt = Ct + IHt + IUt +NH

t x
H
t + SHt +NU

t x
U
t + SUt

tt = ΥH(lHt ) + ΥU (lUt )

Technology
logaUt = ρAlog(aUt−1) + σAεUt

logaHt = log(ã)(1− ρA) + ρAlog(aHt−1) + σAεHt

logtt = log(tss)(1− ρT ) + ρT log(tt−1) + σT εtt

together with functions definitions for Φ(.) and Υ(.) and their derivatives Φ′(.) and Υ′(.) and
leisuret.

Note: since the economy is on the balanced growth path, thus the model in this form is
non-stationary. To solve it using dynare we divide the sector-specific variables on the growth
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path by its sector specific N j
t and the non-sector specific variables (Y,K,I,etc...) by NH

t . The
non-stationary (growth) variables are denoted with capital letter whereas stationary variables
are denoted with small letters.
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E.1 Useful relations

Because of the free movement of capital, we have MPKH
t = MPKU

t in equilibrium, thus
we have

∂Yt

∂Y H
t

∂Y H
t

∂KH
t

=
∂Yt

∂Y U
t

∂Y U
t

∂KU
t

(Y ι
t )

1
ι
−1µ(Y H

t )ι−1αH(1− ξH)
Y H
t

KH
t

= (Y ι
t )

1
ι
−1(Y U

t )ι−1αU (1− ξU )
Y U
t

KU
t(Y H

t

Y U
t

)ι
=
KH
t

KU
t

αU (1− ξU )

µαH(1− ξH)

Yt

Y U
t

=

(
1 +

KH
t

KU
t

αU (1− ξU )

αH(1− ξH)

) 1
ι

Yt

Y H
t

=

[
µ

(
1 +

KH
t

KU
t

αU (1− ξU )

αH(1− ξH)

)] 1
ι

∂Yt

∂Y j
t

= [µ(Y H)ιt + (Y U )ιt]
1
ι
−1µ11{j=H}(Y j)ι−1t = [Y ι

t ]
1
ι
−1µ11{j=H}(Y j)ι−1t = µ11{j=H}

(
Y j
t

Yt

)ι−1

MPKj =
∂Yt

∂Y j
t

∂Y j
t

∂Kj
t

=
∂Yt

∂Y j
t

αj(1− ξj)Y
j
t

Kj
t

=

(
Kj
t

Kt

) ι−1
ι

αj(1− ξj)Y
j
t

Kj
t

MPLj =
∂Yt

∂Y j
t

∂Y j
t

∂ljt
=

∂Yt

∂Y j
t

(1− αj)(1− ξj)Y
j
t

ljt
=

(
Kj
t

Kt

) ι−1
ι

(1− αj)(1− ξj)Y
j
t

ljt

POt

(
Υ′Ht (lHt )−Υ′Ut (lUt )

)
= WH

t −WU
t = MPLHt −MPLUt

Extra definitions:
Trendt = EndoGrowth ∗ Trendt−1

Ngapjt =
N j
t

Trendt
=

N j
t

N j
t−1

Trendt−1
Trendt

N j
t−1

Trendt−1
=

N j
t

N j
t−1
∗ EndoGrowth−1 ∗Ngapjt−1
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E.2 Explanation of Transformed IRFs

Level variables need to be transformed into stationary due to growth. Sector-specific levels
are divided by sector specific N j

t , global levels are divided by NH
t . This is why in the IRF

function of the stationarized version, not only variable itself, but also its denominator is affected
by the shock. Thus to unwind the effect shock has on the denominator, we compute the
transformed IRFs in the following way:

Non-transformed IRF:
IRF t+k =

Yt+k
Nt+k

Transformed IRF:

ĨRF
t+0

=
Yt+0

Trendt+0
= IRF t+0 Nt+0

Trendt+0
= IRF t+0

ĨRF
t+1

=
Yt+1

Trendt+1
= IRF t+1 Nt+1

Trendt+1

ĨRF
t+2

=
Yt+2

Trendt+2
= IRF t+2 Nt+2

Trendt+2
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F Extra figures

Figure 6: IRF to all shocks - part 1

Note: Left axis corresponds to the impulse response to one standard deviation of (positive) TFP shocks. Right axis
corresponds to the impulse response to the one standard deviation of (negative) oil supply shock, quarterly periods
on x-axis. Capital variables (K,KH ,KU ) and R&D stock (NH , NU ) variables are pre-determined in the model and

as such period t on x-axis corresponds to response at t+1. Outputt = Ct + IHt + IUt + SH
t + SU

t +Oilt.
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Figure 7: Transformed RF to all shocks - part 110

Note: Left axis corresponds to the impulse response to one standard deviation of (positive) TFP shocks. Right axis
corresponds to the impulse response to the one standard deviation of (negative) oil supply shock, quarterly periods
on x-asix. Capital variables (K,KH ,KU ) and R&D stock (NH , NU ) variables are pre-determined in the model and

as such period t on x-axis corresponds to response at t+1. Outputt = Ct + IHt + IUt + SH
t + SU

t +Oilt.

10Variables on the balanced growth-path are transformed to unwind the effect shock has on the denominator. For
more explanation please look into the section E.2 of the appendix.
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Figure 8: IRF to all shocks - part 2

Note: Left axis corresponds to the impulse response to one standard deviation of (positive) TFP
shocks. Right axis corresponds to the impulse response to the one standard deviation of (negative)

oil supply shock, quarterly periods on x-asix. Capital variables (K,KH , KU) and R&D stock
(NH , NU) variables are pre-determined in the model and as such period t on x-axis corresponds to

response at t+1.
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