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Issues

How can �rm �nance investment when there are incentive
problems ?

Do incentive problems generate credit rationing ?

Or can �nancial contract be designed to mitigate incentive
problems ?
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Optimal complete contracts

Incentive problems arise because of information asymmetry:

� Adverse selection (hidden information)
� Moral hazard (hidden action) ! our focus

Beyond these frictions, no ad hoc restrictions:

� All observable variables are contractible
� No ad hoc/exogenous constraints or contracts

Financial structure and contracts emerge endogenously
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Literature

One period: Holmstrom Tirole (1997) [HT] ! incentives so that
agent prefers e¤ort than shirking

In�nite horizon discrete time:

� DeMarzo Fishman (2007a,b)
� Biais, Mariotti, Plantin, Rochet (2007) [BMPR]

Continuous time:

� BMPR 2007 ! continuous time limit of discrete time

� DeMarzo Sannikov (2006) ! martingale approach

� Biais, Mariotti, Rochet, Villeneuve (2010): Poisson +
investment

� DeMarzo, Fishman, He, Wang(2012): Brownian + investment
� Zhu (2013): optimal contract can involve shirking
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Outline

1. One period HT 1997

2. Two-period Bolton Scharfstein 1990

3. In�nite horizon discrete time BMP 2007

Clarify similarity of economic mechanisms in 3 settings, and
insights speci�c to dynamics
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Players

Principal: unlimited liability, deep pocket (investors, bank, venture
capital fund)

Agent: limited liability, cashless (manager, entrepreneur)

Indivisible initial project size 1! investment cost I

Principal invests I , hires agent to run project

All risk neutral, discount rate r



Effort

Shirk

Private benefit
per unit: B



 ‐ C

1 – 



1 –  





 ‐ C

Effort and probability of success

Effort unobservable by principal + agent has limited liability ‐> moral hazard
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First best (e¤ort observable)

Assume high e¤ort e¢ cient:

∆λC > B,

and investment e¢ cient even if project lasts only one period:

µ� λC > I ,

! under high e¤ort project has positive net present value

First best = investment, e¤ort



Effort

Shirk

Private benefit
per unit: B



 ‐ C

1 – 



1 –  





 ‐ C

One period

One period contract: mapping from cash flow to agent’s compensation

T()

T( C)

T()

T( C)



Incentive compatibility
Agent’s expected gain larger under effort than under shirking

T() ‐ T(‐C) ≥  B/()

T(‐C) ≥ 0 (LL)

T()

B/(

IC

Not IC

Large B → tempting to shirk → large compensaƟon when no loss → cost of incentives
Small Δλ → tempting to shirk → cost of incentives



Participation constraint
Principal expected profit larger than 0

(1‐λ) T(μ) + λ T(μ‐C)  ≤ (μ‐λC) ‐ I

T(‐C) ≥ 0 (LL)

T()

PC

Not PC
(μ‐λC‐I)/(1‐λ)



Tension between IC and PC

T(‐C) ≥ 0 (LL)

T()

Not PC
(μ‐λC‐I)/(1‐λ)

B/(

Not IC



Incentive feasible set (Laffont Martimort, 2002)

T(‐C) ≥ 0 (LL)

T()

Not PC
(μ‐λC‐I)/(1‐λ)

B/(

Not IC
IC and PC

IC set not empty if expected cash flow > expected agency rent

(μ‐λC) ‐I > (1‐λ) B/(
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Pledgeable income (Tirole 2006)

E (return) which can be promised to investors without jeopardizing
incentives of agent

P = [µ� λC ]� (1� λ)
B

∆λ
(1)

First term [in brackets] = expected cash �ow with e¤ort

Second term = expected compensation which must be left to
agent for incentives (agency rent)

Incentive feasible set not empty i¤

P � I (2)
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Optimal contract with e¤ort

Suppose principal has all bargaining power

max(µ� I )� λ[T (µ� C ) + C ]� (1� λ)T (µ)

s.t. IC: T (µ)� T (µ� C ) � B
∆λ

and LL: T � 0

T (µ� C ) = 0: relax IC and raise P�s gains

T (µ) = B
∆λ : bind IC to max principal�s gains

Max possible gain for principal

(µ� λC � I )� (1� λ)
B

∆λ
= P � I (3)
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Optimal contract without e¤ort

If project operated without e¤ort, principal pays 0 wage and gets

[µ� (λ+ ∆λ)C � I ] (4)

Comparing (3) & (4), greater pro�ts with e¤ort i¤

(1� λ)
B

∆λ
< ∆λC . (5)

LHS: what must be paid to agent so that e¤ort = cost of incentives
RHS: e¢ ciency cost of no e¤ort = bene�t of incentives
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Optimal contract (from point of view of principal)

Proposition 1:
If E (pro�tj no e¤ort) � 0

� If B < (∆λ)2C
1�λ , pay agent B

∆λ i¤ success =) e¤ort

� Otherwise, don�t pay agent =) no e¤ort (// Zhu, 2013)

If E (pro�tj no e¤ort) < 0:
� If P � I , pay agent B

∆λ i¤ success =) e¤ort

� If P < I , no investment (credit rationing)



Effort

Shirk: B



 ‐ C

1 – 



1 –  



Two period

T(), X2()

T(  C), X2(  C)



 ‐ C

T() , X2()

T( C), X2( C)

Effort

Shirk: B X2()

Effort

Shirk: B X2(  C)

Effort

Shirk: B X2()

Effort

Shirk: B X2(  C)



 ‐ C

T(, )

T(, ‐ C)



 ‐ C

T(‐ C, )

T(‐ C, ‐ C)



 ‐ C

T(, )

T(, ‐ C)



 ‐ C

T(‐ C, )

T(‐ C, ‐ C)

Size adjusted transfer: T2 = X2 t2
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Agent�s continuation utility

At beginning of period 2 following realization C1 2 f0,Cg

W2(µ� C1) = E (T2(µ� C1, µ� C̃2)jC1)

At beginning of period 1 (by law of iterated expectations)

W1 = E
�
T1(µ� C̃1) +

1
1+ r

W2(µ� C̃1)
�

! �promise keeping� condition

Expectations computed by agent rationally anticipating to exert
e¤ort ! λ
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Principal�s value function

At beginning of 2nd period, value function

F2 = X2(µ� C1)E [µ� C̃2 � t2(µ� C1, µ� C̃2)jC1]

At beginning of period 1 (by law of iterated expectations)

F1 = E
�

µ� C̃1 � T1 +
1

1+ r
F2(C̃1)

�
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Incentive compatibility

At second period, similar IC to one period

T2(µ� C1, µ)� T2(µ� C1, µ� C ) � X2(µ� C1)
B

∆λ
(6)

IC =) wedge between the utility of agent after a success and
after a failure, increases with B

∆λ and X2

At �rst period:

�
T1(µ) +

W2(µ)

1+ r

�
�
�
T1(µ� C ) +

W2(µ� C )
1+ r

�
� B

∆λ
(7)

Incentivize with current transfer T1 and continuation utility W2



Introduction Model One period Two period In�nite horizon Conclusion

Continuation utility dynamics

Lemma 1: IC =) agent�s continuation utility goes down (resp.
up) after loss (resp. no loss)

Lemma 2: No transfer after loss

! Will also hold in in�nite horizon model
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Delay payment

Lemma 3: When principal and agent equally patient, weakly
optimal to postpone compensation to �nal period

Because A as patient as P, delaying T (capitalizing it at rate r)
generates no ine¢ ciency, but makes incentives more e¤ective: use
late payment to reward late and early e¤orts

! Will also hold in in�nite horizon model
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Optimal liquidation

Continuation after success: X2(µ) = 1. Moreover, if

λ(µ� λC ) > (1� λ)
B

∆λ
. (8)

then continuation even after failure X2(µ� C ) = 1 otherwise
liquidation X2(µ� C ) = 0

X2(µ) no con�ict between rents and e¢ ciency

X2(µ� C ): rent�e¢ ciency tradeo¤
� Raising X2(µ� C ) increases productive e¢ ciency
� but also rent after loss ! cost of incentives at period 1
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Funding without liquidation

If X2(µ� C ) = 1, project can be funded i¤�
1+

1
1+ r

�
P � I .

Without liquidation, 2 period = repetition of 1 period: P obtained
twice

Just as in one period case, if P < 0, project cannot be funded, no
matter how small I
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Funding with liquidation after loss

When X2(µ� C ) = 0, project funded if

P̂ = (µ�λC )
�
1+

1� λ

1+ r

�
� (1�λ)

B
∆λ

= P + 1� λ

1+ r
(µ�λC ) � I

P̂ > P

P < 0 does not imply project cannot be funded, P̂ can still be > 0

Liquidation threat reduces cost of incentives:
! Bolton Scharfstein 1990
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Optimal contract

Proposition 1:
� If λ(µ� λC ) > (1� λ) B∆λ project funded i¤�

1+
1

1+ r

�
P �I

in which case i) there is no liquidation and ii) the
compensation of the agent is

T2(µ, µ) = [1+
1+ r
1� λ

]
B

∆λ
,T2(µ� C , µ) =

B
∆λ

� Otherwise, project funded i¤

P̂ �I
in which case there is liquidation after failure and the agent is
paid, after 2 successes only,

T2(µ, µ) =
1+ r
1� λ

B
∆λ
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Implementing optimal contract with debt, equity and
dividend threshold

Proposition 2: Consider the case in which there is liquidation
after loss, then, if

λ <
1

2+ r
,
B

∆λC
1+ r
1� λ

1
(2+ r)λ

< 1

optimal contract implemented by debt, equity and dividend
threshold. Agent gets

α =
B

∆λC
1+ r
1� λ

1
(2+ r)λ

of shares, not allowed to sell (otherwise no longer incentivized)
Remaining fraction of shares and debt held by principal
Debt service at each period: µ� λC
Liquidation when debt cannot be served
Dividend when accumulated retained earnings reach (2+ r)λC
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Timing

At period n:

� Agent�s continuation utility Wn and principal�s value function
Fn evaluated given Hn = information available at beginning of
period n = all past realizations of cash �ows

� Set new size of operation Xn
� Agent privately decides exert e¤ort or not
� Cash �ow (µ or µ� C ) realized
� Agent receives transfer Tn
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Agent�s continuation utility

On equilibrium path (e¤ort exerted)

Wn = E [
∞

∑
k=0

Xn+k tn+k
(1+ r)k

jHn ]

Recursively, promise keeping condition same as with 2 periods

Wn = E [Xntn +
Wn+1

1+ r
jHn ] (9)

De�ne size adjusted continuation utility Wn = Xn�1wn,
downscaling factor xn = Xn

Xn�1

wn = xnE [tn +
wn+1
1+ r

jHn ] (10)
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Dynamics of size adjusted continuation utility

wn = conditional expectation

=) changes when new info = cash �ow realizations

=) continuation utility wn evolves with cash �ow innovations

If no loss wn goes up to w+(wn) , if loss down to w�(wn)

Size�adjusted transfer if no loss: t+(wn), if loss: t�(wn)

PK (promise keeping) (10) rewrites as

wn = xn [f(1� λ)t+ + λt�g+ 1
1+ r

f(1� λ)w+ + λw�g] (11)
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State variable

wn forward looking = expectation of future compensation

wn also backward looking = up after success, down after failure !
tracks performance

In principle continuation utility depends on all the information Hn

Because of constant returns to scale, it can be shown that only
state variables one needs to remember are size Xn and size
adjusted continuation utility wn

Formal proof = veri�cation theorem: conjectures on solution (e.g.,
only state variables are Xn and wn), compute value function under
conjectures, prove any other policy ! lower value
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Incentive compatibility

Lemma 4: The incentive compatibility condition is

(t+ +
w+

1+ r
)� (t� + w�

1+ r
) � B

∆λ
(12)

Similar to two�period case (7)
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Principal�s value function

Fn = E [
∞

∑
k=0

Xn+k (µ� C̃n+k � t̃n+k )
(1+ r)k

jHn ]

Recursively (by law of iterated expectations)

Fn = E [Xn(µ� C̃n � t̃n) +
1

1+ r
F̃n+1jHn ] (13)

similar to 2�period case

Similarly to continuation utility, scale by Xn�1

fn = xnE [(µ� C̃n � t̃n) +
1

1+ r
f̃n+1jHn ] (14)
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Dynamics of size adjusted principal�s value function

Success f (wn) ! f (w+(wn)). Failure f (wn) ! f (w�(wn))

f (wn) = max
t+(),t�(),x ()

x(wn)[(µ�λC )�f(1�λ)t+(wn)+λt�(wn)g

+
1

1+ r
f(1� λ)f (w+(wn)) + λf (w�(wn))g] (15)

! Bellman equation
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Heuristic derivation of optimal contract

1. Step 1: Delay pay until rid of moral hazard problem

2. Step 2: IC & PK ! dynamics of w when no payment and no
liquidation

3. Step 3: Downscale if and only if you can�t avoid it
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Optimal pay with �nite horizon

2 period model: postpone payment until period 2 (costless because
P and A equally patient)

Finite horizon T and equal patience same argument
=) delay pay until T
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Optimal pay with in�nite horizon

wP = threshold at which liquidation risk eliminated because
accumulated promised pay large enough to incentivize e¤ort

How can you incentivize e¤ort without liquidation threat?

In two period case: if no liquidation threat, dynamic contract =
repetition of one period contract

Same thing with in�nite horizon: to incentivise e¤ort without
liquidation threat, promise to pay, at each period, B

∆λ after success
and 0 after failure (as in one period model)

What is the expected present value of this stream of payments?

(1+
1

1+ r
+

1
(1+ r)2

+ ...)(1� λ)
B

∆λ
=
1+ r
r
(1� λ)

B
∆λ

= wP



Introduction Model One period Two period In�nite horizon Conclusion

Step 2: IC and PK pin down w

When no transfer, binding IC and PK yields:

� If loss at period n, reduce continuation utility to

w�(wn) = (1+ r)
�
wn � (1� λ)

B
∆λ

�
� If success at period n, increase continuation utility to

w+(wn) = (1+ r)
�
wn + λ

B
∆λ

�
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Step 3: when continuation utility too low impossible to
incentivize using carrots only

When wn large enough, principal can threaten to reduce
continuation utility by (1� λ) B∆λ if loss

But, when wn low, this would drive continuation utility below 0,
contradicting limited liability

To relax IC, reduce Xn, i.e., downsize, to reduce private bene�t
from shirking XnB

If wn very low, full downsizing: liquidation
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Optimal contract when P and A equally patient

Proposition 3: In the optimal contract, wn evolves as discounted
martingale, within wL and wP .
When wn reaches upper bound wP :

� if no loss, transfer ( tn = B
∆λ ) and wn stays at w

P

� if loss, no pay, but wn stays at wP (absorbed)

When wn reaches lower bound:

� if no loss, re�ected upward
� if loss downsizing/liquidation



Dynamics of continuation utility and pay in optimal contract

wP

wL

t

wt

w0

w1

w2
….

wt

wt+1

Pay if success, stay if failure



Dynamic of continuation utility and liquidation in optimal contract

wP

wL

t

wt

w0

w1

w2
….

wt wt+1

Downsizing
Liquidation
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Modigliani Miller (MM) and Moral Hazard (MH)

� MM: exogenous cash ! �nancial structure does not a¤ect
cash �ow ! nor value

� MH: as long as IC holds !�nancial structure does not a¤ect
cash �ow ! nor value

If di¤erent �nancial structures ! same incentives ! same value

Next, we present an intuitive and realistic implementation

DeMarzo Fishman (2007) o¤er another interesting implementation,
with credit lines



Implementation of optimal contract

Assets (Xn)

Cash reserves (Mn)

Debt (held by principal)

Equity
Inside (held by agent)
Outside (held by principal)



Implementation of optimal contract

Assets (Xn)

Cash reserves (Mn)

Debt (held by principal)

Equity
Inside (held by agent)
Outside (held by principal)

Constant coupon

Dividend
(if accumulated earnings
= cash reserves
reach milestone)

Downsized if 
cash at hand 
not enough to 
pay coupon 

Increases after
success, decreases
after failure (cash 
flow from operation
< coupon)

Tracks performance:
Informationally equivalent to rent Wn
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Conclusion
Optimal dynamic contract relies on:

� carrots: promise pay (=agency rents) if performance
milestone reached

� sticks: threaten downsizing ! reduces incentives to shirk,
liquidation ! no more rents, after bad performance

Dynamic incentives help cope with moral hazard: long term
contracting more powerful than short term (less rents)

Dynamic optimal contract can be implemented with:

� cash reserves
� inside and outside equity + dividend threshold
� debt + downsizing/liquidation when cash < debt service

! Endogenous, optimal, �nancial structure
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