Two period

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimal dynamic financial contracting

Bruno Biais

HEC

Presentation prepared for the Summer School of the Finance Theory Group

University of Pennsylvania

June 2019

How can firm finance investment when there are incentive problems ?

Do incentive problems generate credit rationing ?

Or can financial contract be designed to mitigate incentive problems ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Incentive problems arise because of information asymmetry:

- Adverse selection (hidden information)
- Moral hazard (hidden action) \rightarrow our focus

Beyond these frictions, no ad hoc restrictions:

- All observable variables are contractible
- No ad hoc/exogenous constraints or contracts

Financial structure and contracts emerge endogenously

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Literature

One period: Holmstrom Tirole (1997) [HT] \rightarrow incentives so that agent prefers effort than shirking

Infinite horizon discrete time:

- DeMarzo Fishman (2007a,b)
- Biais, Mariotti, Plantin, Rochet (2007) [BMPR]

Continuous time:

- BMPR 2007 \rightarrow continuous time limit of discrete time
- DeMarzo Sannikov (2006) \rightarrow martingale approach
- Biais, Mariotti, Rochet, Villeneuve (2010): Poisson + investment
- DeMarzo, Fishman, He, Wang(2012): Brownian + investment
- Zhu (2013): optimal contract can involve shirking

- 1. One period HT 1997
- 2. Two-period Bolton Scharfstein 1990
- 3. Infinite horizon discrete time BMP 2007

Clarify similarity of economic mechanisms in 3 settings, and insights specific to dynamics

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Principal: unlimited liability, deep pocket (investors, bank, venture capital fund)

Agent: limited liability, cashless (manager, entrepreneur)

Indivisible initial project size $1 \rightarrow$ investment cost I

Principal invests I, hires agent to run project

All risk neutral, discount rate r

Effort and probability of success

Effort unobservable by principal + agent has limited liability -> moral hazard

Assume high effort efficient:

$$\Delta\lambda C > B$$
,

and investment efficient even if project lasts only one period:

$$\mu - \lambda C > I,$$

 \rightarrow under high effort project has positive net present value

First best = investment, effort

One period contract: mapping from cash flow to agent's compensation

Large B \rightarrow tempting to shirk \rightarrow large compensation when no loss \rightarrow cost of incentives Small $\Delta\lambda \rightarrow$ tempting to shirk \rightarrow cost of incentives Participation constraint Principal expected profit larger than 0

(1- λ) T(μ) + λ T(μ -C) \leq (μ - λ C) - I

Tension between IC and PC

Incentive feasible set (Laffont Martimort, 2002)

IC set not empty if expected cash flow <u>></u> expected agency rent

 $(\mu-\lambda C) - I \ge (1-\lambda) B/(\Delta \lambda)$

 $E({\rm return})$ which can be promised to investors without jeopardizing incentives of agent

$$\mathcal{P} = [\mu - \lambda C] - (1 - \lambda) \frac{B}{\Delta \lambda}$$
(1)

First term [in brackets] = expected cash flow with effort

Second term = expected compensation which must be left to agent for incentives (agency rent)

Incentive feasible set not empty iff

$$\mathcal{P} \ge I$$
 (2)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal contract with effort

Suppose principal has all bargaining power

$$\begin{aligned} \max(\mu - I) &- \lambda [T(\mu - C) + C] - (1 - \lambda)T(\mu) \\ \text{s.t. IC: } T(\mu) &- T(\mu - C) \geq \frac{B}{\Delta \lambda} \text{ and LL: } T \geq 0 \end{aligned}$$

$$T(\mu - C) = 0$$
: relax IC and raise P's gains
 $T(\mu) = rac{B}{\Delta\lambda}$: bind IC to max principal's gains

Max possible gain for principal

$$(\mu - \lambda C - I) - (1 - \lambda) \frac{B}{\Delta \lambda} = \mathcal{P} - I$$
 (3)

If project operated without effort, principal pays 0 wage and gets

$$[\mu - (\lambda + \Delta \lambda)C - I] \tag{4}$$

Comparing (3) & (4), greater profits with effort iff

$$(1-\lambda)\frac{B}{\Delta\lambda} < \Delta\lambda C.$$
 (5)

LHS: what must be paid to agent so that effort = cost of incentives RHS: efficiency cost of no effort = benefit of incentives

Optimal contract (from point of view of principal)

Proposition 1:

- If $E(profit| no effort) \ge 0$
 - If $B < \frac{(\Delta \lambda)^2 C}{1 \lambda}$, pay agent $\frac{B}{\Delta \lambda}$ iff success \implies effort
 - Otherwise, don't pay agent \implies no effort (// Zhu, 2013)

If E(profit| no effort) < 0:

- If $\mathcal{P} \geq$ I, pay agent $\frac{B}{\Delta\lambda}$ iff success \implies effort
- If $\mathcal{P} < I$, no investment (credit rationing)

Two period

Size adjusted transfer: $T_2 = X_2 t_2$

At beginning of period 2 following realization $C_1 \in \{0, C\}$

$$W_2(\mu - C_1) = E(T_2(\mu - C_1, \mu - \tilde{C}_2)|C_1)$$

At beginning of period 1 (by law of iterated expectations)

$$W_1 = E\left[T_1(\mu - \tilde{C}_1) + \frac{1}{1+r}W_2(\mu - \tilde{C}_1)\right]$$

 \rightarrow "promise keeping" condition

Expectations computed by agent rationally anticipating to exert effort $\rightarrow \lambda$

At beginning of 2nd period, value function

$$F_2 = X_2(\mu - C_1)E[\mu - \tilde{C}_2 - t_2(\mu - C_1, \mu - \tilde{C}_2)|C_1]$$

At beginning of period 1 (by law of iterated expectations)

$$F_1 = E\left[\mu - \tilde{C}_1 - T_1 + \frac{1}{1+r}F_2(\tilde{C}_1)
ight]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At second period, similar IC to one period

$$T_2(\mu - C_1, \mu) - T_2(\mu - C_1, \mu - C) \ge X_2(\mu - C_1) \frac{B}{\Delta \lambda}$$
 (6)

IC \implies wedge between the utility of agent after a success and after a failure, increases with $\frac{B}{\Lambda\lambda}$ and X_2

At first period:

$$\left[T_1(\mu) + \frac{W_2(\mu)}{1+r}\right] - \left[T_1(\mu - C) + \frac{W_2(\mu - C)}{1+r}\right] \ge \frac{B}{\Delta\lambda} \quad (7)$$

Incentivize with current transfer T_1 and continuation utility W_2

Lemma 1: $IC \implies$ agent's continuation utility goes down (resp. up) after loss (resp. no loss)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma 2: No transfer after loss

 \rightarrow Will also hold in infinite horizon model

Lemma 3: When principal and agent equally patient, weakly optimal to postpone compensation to final period

Because A as patient as P, delaying T (capitalizing it at rate r) generates no inefficiency, but makes incentives more effective: use late payment to reward late and early efforts

 $\rightarrow~$ Will also hold in infinite horizon model

Optimal liquidation

Continuation after success: $X_2(\mu) = 1$. Moreover, if

$$\lambda(\mu - \lambda C) > (1 - \lambda) \frac{B}{\Delta \lambda}.$$
(8)

then continuation even after failure $X_2(\mu-C)=1$ otherwise liquidation $X_2(\mu-C)=0$

 $X_2(\mu)$ no conflict between rents and efficiency

 $X_2(\mu - C)$: rent–efficiency tradeoff

- Raising $X_2(\mu C)$ increases productive efficiency
- but also rent after loss ightarrow cost of incentives at period 1

If
$$X_2(\mu - C) = 1$$
, project can be funded iff

$$\left[1+\frac{1}{1+r}\right]\mathcal{P}\geq I.$$

Without liquidation, 2 period = repetition of 1 period: $\ensuremath{\mathcal{P}}$ obtained twice

Just as in one period case, if $\mathcal{P}<$ 0, project cannot be funded, no matter how small I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Model	One period	Two period	Infinite horizon	Conclusion
	Fundir	ng with I	liquidation	after loss	

When $X_2(\mu - C) = 0$, project funded if

$$\hat{\mathcal{P}} = (\mu - \lambda C) \left[1 + \frac{1 - \lambda}{1 + r} \right] - (1 - \lambda) \frac{B}{\Delta \lambda} = \mathcal{P} + \frac{1 - \lambda}{1 + r} (\mu - \lambda C) \ge I$$
$$\hat{\mathcal{P}} > \mathcal{P}$$

 $\mathcal{P} < 0$ does not imply project cannot be funded, $\hat{\mathcal{P}}$ can still be > 0

Liquidation threat reduces cost of incentives:

 \rightarrow Bolton Scharfstein 1990

Introduction

Conclusion

Optimal contract

Proposition 1:

• If
$$\lambda(\mu - \lambda C) > (1 - \lambda)\frac{B}{\Delta \lambda}$$
 project funded iff
$$\left[1 + \frac{1}{1 + r}\right] \mathcal{P} \ge I$$

in which case i) there is no liquidation and ii) the compensation of the agent is

$$T_2(\mu,\mu) = [1+rac{1+r}{1-\lambda}]rac{B}{\Delta\lambda}, T_2(\mu-C,\mu) = rac{B}{\Delta\lambda}$$

• Otherwise, project funded iff

 $\hat{\mathcal{P}} \geq I$

in which case there is liquidation after failure and the agent is paid, after 2 successes only,

$$T_2(\mu,\mu) = \frac{1+r}{1-\lambda} \frac{B}{\Delta\lambda}$$

Implementing optimal contract with debt, equity and dividend threshold

Proposition 2: Consider the case in which there is liquidation after loss, then, if

$$\lambda < rac{1}{2+r}, rac{B}{\Delta\lambda C}rac{1+r}{1-\lambda}rac{1}{(2+r)\lambda} < 1$$

optimal contract implemented by debt, equity and dividend threshold. Agent gets

$$\alpha = \frac{B}{\Delta\lambda C} \frac{1+r}{1-\lambda} \frac{1}{(2+r)\lambda}$$

of shares, not allowed to sell (otherwise no longer incentivized) Remaining fraction of shares and debt held by principal Debt service at each period: $\mu - \lambda C$ Liquidation when debt cannot be served Dividend when accumulated retained earnings reach $(2 + r)\lambda C$

At period n:

 Agent's continuation utility W_n and principal's value function F_n evaluated given H_n = information available at beginning of period n = all past realizations of cash flows

- Set new size of operation X_n
- Agent privately decides exert effort or not
- Cash flow (μ or μC) realized
- Agent receives transfer T_n

Agent's continuation utility

On equilibrium path (effort exerted)

$$W_n = E[\sum_{k=0}^{\infty} \frac{X_{n+k}t_{n+k}}{(1+r)^k} | H_n]$$

Recursively, promise keeping condition same as with 2 periods

$$W_n = E[X_n t_n + \frac{W_{n+1}}{1+r}|H_n]$$
 (9)

Define size adjusted continuation utility $W_n = X_{n-1}w_n$, downscaling factor $x_n = \frac{X_n}{X_{n-1}}$

$$w_n = x_n E[t_n + \frac{w_{n+1}}{1+r}|H_n]$$
(10)

Introduction	Model	One period	Two period	Infinite horizon	Conclusion

Dynamics of size adjusted continuation utility

- $w_n =$ conditional expectation
- \implies changes when new info = cash flow realizations

 \implies continuation utility w_n evolves with cash flow innovations

If no loss w_n goes up to $w^+(w_n)$, if loss down to $w^-(w_n)$

Size-adjusted transfer if no loss: $t^+(w_n)$, if loss: $t^-(w_n)$

PK (promise keeping) (10) rewrites as

$$w_n = x_n [\{(1-\lambda)t^+ + \lambda t^-\} + \frac{1}{1+r} \{(1-\lambda)w^+ + \lambda w^-\}]$$
(11)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 目 - のへの

 w_n forward looking = expectation of future compensation

 w_n also backward looking = up after success, down after failure \rightarrow tracks performance

In principle continuation utility depends on all the information H_n

Because of constant returns to scale, it can be shown that only state variables one needs to remember are size X_n and size adjusted continuation utility w_n

Formal proof = verification theorem: conjectures on solution (e.g., only state variables are X_n and w_n), compute value function under conjectures, prove any other policy \rightarrow lower value

Lemma 4: The incentive compatibility condition is

$$(t^{+} + \frac{w^{+}}{1+r}) - (t^{-} + \frac{w^{-}}{1+r}) \ge \frac{B}{\Delta\lambda}$$
 (12)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similar to two-period case (7)

$$F_{n} = E[\sum_{k=0}^{\infty} \frac{X_{n+k}(\mu - \tilde{C}_{n+k} - \tilde{t}_{n+k})}{(1+r)^{k}} | H_{n}]$$

Recursively (by law of iterated expectations)

$$F_{n} = E[X_{n}(\mu - \tilde{C}_{n} - \tilde{t}_{n}) + \frac{1}{1+r}\tilde{F}_{n+1}|H_{n}]$$
(13)

similar to 2-period case

Similarly to continuation utility, scale by X_{n-1}

$$f_n = x_n E[(\mu - \tilde{C}_n - \tilde{t}_n) + \frac{1}{1+r} \tilde{f}_{n+1} | H_n]$$
(14)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dynamics of size adjusted principal's value function

Success
$$f(w_n) \to f(w^+(w_n))$$
. Failure $f(w_n) \to f(w^-(w_n))$

$$f(w_n) = \max_{t^+(),t^-(),x()} x(w_n) [(\mu - \lambda C) - \{(1 - \lambda)t^+(w_n) + \lambda t^-(w_n)\}$$

$$+\frac{1}{1+r}\{(1-\lambda)f(w^{+}(w_{n}))+\lambda f(w^{-}(w_{n}))\}]$$
(15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightarrow Bellman equation

- 1. Step 1: Delay pay until rid of moral hazard problem
- 2. Step 2: IC & PK \rightarrow dynamics of *w* when no payment and no liquidation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3. Step 3: Downscale if and only if you can't avoid it

2 period model: postpone payment until period 2 (costless because P and A equally patient)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Finite horizon T and equal patience same argument \implies delay pay until T

Optimal pay with infinite horizon

 w^P = threshold at which liquidation risk eliminated because accumulated promised pay large enough to incentivize effort

How can you incentivize effort without liquidation threat?

In two period case: if no liquidation threat, dynamic contract = repetition of one period contract

Same thing with infinite horizon: to incentivise effort without liquidation threat, promise to pay, at each period, $\frac{B}{\Delta\lambda}$ after success and 0 after failure (as in one period model)

What is the expected present value of this stream of payments?

$$(1+\frac{1}{1+r}+\frac{1}{(1+r)^2}+\ldots)(1-\lambda)\frac{B}{\Delta\lambda}=\frac{1+r}{r}(1-\lambda)\frac{B}{\Delta\lambda}=w^P$$

・ロト・西ト・ヨト・ヨー もんぐ

When no transfer, binding IC and PK yields:

• If loss at period *n*, reduce continuation utility to

$$w^{-}(w_{n}) = (1+r)\left[w_{n} - (1-\lambda)\frac{B}{\Delta\lambda}\right]$$

• If success at period n, increase continuation utility to

$$w^+(w_n) = (1+r)\left[w_n + \lambda \frac{B}{\Delta \lambda}\right]$$

When w_n large enough, principal can threaten to reduce continuation utility by $(1 - \lambda) \frac{B}{\lambda \lambda}$ if loss

But, when w_n low, this would drive continuation utility below 0, contradicting limited liability

To relax IC, reduce X_n , i.e., downsize, to reduce private benefit from shirking $X_n B$

If w_n very low, full downsizing: liquidation

Optimal contract when P and A equally patient

Proposition 3: In the optimal contract, w_n evolves as discounted martingale, within w^L and w^P . When w_n reaches upper bound w^P :

- if no loss, transfer ($t_n = rac{B}{\Delta\lambda}$) and w_n stays at w^P
- if loss, no pay, but w_n stays at w^P (absorbed)

When w_n reaches lower bound:

- if no loss, reflected upward
- if loss downsizing/liquidation

Dynamics of continuation utility and pay in optimal contract

t

t

Dynamic of continuation utility and liquidation in optimal contract

Modigliani Miller (MM) and Moral Hazard (MH)

- MM: exogenous cash \rightarrow financial structure does not affect cash flow \rightarrow nor value
- MH: as long as IC holds $\rightarrow financial$ structure does not affect cash flow \rightarrow nor value
- If different financial structures \rightarrow same incentives \rightarrow same value

Next, we present an intuitive and realistic implementation

DeMarzo Fishman (2007) offer another interesting implementation, with credit lines

Implementation of optimal contract

Assets (X_n)

Cash reserves (M_n)

Debt (held by principal)

Equity

Inside (held by agent) Outside (held by principal)

Implementation of optimal contract

Tracks performance: Informationally equivalent to rent W_n

Conclusion

Optimal dynamic contract relies on:

- carrots: promise pay (=agency rents) if performance milestone reached
- sticks: threaten downsizing → reduces incentives to shirk, liquidation → no more rents, after bad performance

Dynamic incentives help cope with moral hazard: long term contracting more powerful than short term (less rents)

Dynamic optimal contract can be implemented with:

- cash reserves
- inside and outside equity + dividend threshold
- debt + downsizing/liquidation when cash < debt service
- \rightarrow Endogenous, optimal, financial structure