Leverage Dynamics without Commitment

Peter DeMarzo

Zhiguo He

Stanford University University of Chicago

FTG Summer School, Wharton

June 2019

Introduction (1)

Leverage dynamics is at the heart of dynamic corporate finance

- Static trade-off (maximizing firm value) differs from equity's dynamic optimization
- Challenging, as debt prices interact with future equilibrium leverage polices
- Existing literature relies on some ad hoc "commitment" of future debt policies
 - Refinance to keep outstanding debt face value constant (Leland 1994 1998)
 - Whenever adjusting debt, the firm has to retire the existing debt first, with some transaction costs (Fischer, Heinkel, and Zechner 1989; Goldstein, Leland, Ju 2001)
 - Abrupt adjustment to "target" leverage
 - Empirically counterfactual: firms actively manage their debt, often incrementally

Introduction (2)

This Paper (1)

The firm cannot commit to future debt policies

- Otherwise, standard trade-off setting (tax shield vs bankruptcy cost) with stochastic asset growth; no transaction cost
- No commitment at all: say, no covenants
- A more endogenous "friction", rather than exogenous frictions to adjust leverage
- Assumption on seniority and dilution
 - Zero recovery ⇒ seniority structure irrelvant. Indirect dilution: issuing more debt hurts default probability
 - Positive recovery: pari-passu debt, direct dilution in recovery (not in this presentation)
- Leverage may go down via asset growth and debt maturing, but equity never reduces debt voluntarily
 - Repurchase debt is never optimal—leverage ratchet effect (Admati DeMarzo Hellwig Pfleiderer, 2018)
 - Our setting is more canonical

This Paper (2)

- A general method to solve this class of models
 - A result reminiscent of Coase conjecture
- Closed-form solutions for work-horse log-normal cash-flow setting
- History-dependent leverage dynamics: issue more (less) following good (bad) shocks
 - Leverage dynamics tend to be mean-reverting; no immediate adjustment to leverage "target"
- ▶ Dynamic trade-off of equity value \neq Static trade-off of firm value
 - Two leverage/maturity dynamics drastically different, but both are optimal
 - Lemmon, Roberts, and Zender (2008)

General Model: Environment

Preferences

Risk-neutral world, with common discount rate r

Assets

Assets in place generate operating income (could allow for jumps):

$$dY_{t} = \mu\left(Y_{t}\right)dt + \sigma\left(Y_{t}\right)dZ_{t}$$

 Focus on zero recovery now (debt seniority irrelevant); can be relaxed

Debt contract: aggregate face value F_t (endogenous)

- Each debt with coupon rate *c*, face value 1
- Exponentially retiring (Poisson maturing) with rate ξ

Corporate tax: $\pi (Y_t - cF_t)$

Debt Issuance/Repurchase and Default

Evolution of debt

▶ Sell/buyback debt $d\Gamma_t$, so aggregate debt face value evolves as

$$dF_t = \underbrace{-\xi F_t dt}_{\text{contractual debt maturing}} + \underbrace{d\Gamma_t}_{\text{active debt managment}}$$

Timing within [t, t + dt] & lack of commitment

- Cash flow realizes; either default or pay coupon/principal; announce dΓ_t; debt price set (and trade); next period
- Unable to commit on future $d\Gamma_{t+s}$ for s > 0

Focusing on "smooth equilibrium": $d\Gamma_t = G_t dt$

- Equity could adjust debt discretely, but not optimal in such an equilibrium
- Other equilibria with jumps? In general, yes (more later)

Equity default at endogenous stopping time τ_b

Equity Value

State variables (Markov Perfect Equilibrium)

- **Exogenous** cash-flows Y_t , and endogenous debt obligation F_t
- Equity's problem, taking debt prices p as given
 - Equity receives cash-flows (if negative, covered by issuing equity)

$$\underbrace{Y_t}_{\text{cash-flows}} - \underbrace{\pi \left(Y_t - cF_t\right)}_{\text{corproate taxes}} - \underbrace{\left(c + \xi\right)F_t}_{\text{interest & principal issuance/repurchase}} + \underbrace{p_t G_t}_{\text{issuance/repurchase}}$$

Endogenous debt price p_t determined later
 Given Y_t = Y and F_t = F, equity is solving

$$V(Y,F) \equiv \max_{\{G_s\},\tau_b} \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-r(s-t)} \left[Y_s - \pi \left(Y_s - cF_s \right) - \left(c + \xi \right) F_s + p_s G_s \right] ds \right\}$$

Controlling 1) debt evolution dF_t = F_tdt + G_tdt; and 2) when to default

Debt Price

Debt price

- Competitive risk neutral debt investors price debt rationally
- Given equity default decision τ_b , equilibrium debt price

$$p(Y,F) \equiv \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} \left(c+\xi\right) ds \,|\, Y_t = Y, F_t = F \right\}$$

Why does commitment matter?

- p_t depends on equilibrium default time τ_b
- > τ_b depends on firm's future debt policy—the more the future debt, the more likely the default

Value Equivalence of No-Issuance (1)

Hamilton-Jacobi-Bellman equation for equity

$$rV(Y,F) = \max_{G} \left[\underbrace{\underbrace{Gp(Y,F)}_{\text{issuance/repurchase}} + \underbrace{(G - \xi F) V_F(Y,F)}_{\text{evolution of debt}} \right]$$
$$Y - \pi (Y - cF) - (c + \xi) F + \mu (Y) V_Y (Y,F) + \frac{\sigma^2 (Y)}{2} V_{YY} (Y,F)$$

• Objective linear in G. Optimal $G \Rightarrow$ First-Order Condition

$$\underbrace{p(Y,F)}_{\text{MB of issuance}} + \underbrace{V_F(Y,F)}_{\text{MC on future value}} = 0$$

Under FOC, equity indifferent at any G (given equilibrium p)
 Linear control with interior solution (smooth policy G_tdt)
 Equity value can be solved by setting G = 0 always

Value Equivalence of No-Issuance (2)

• Equity value can be solved by setting G = 0 always

$$rV = -\xi FV_F + Y - \pi \left(Y - cF\right) - \left(c + \xi\right)F + \mu \left(Y\right)V_Y + \frac{\sigma^2\left(Y\right)}{2}V_{YY}$$

No gain in equilibrium by debt issuance/repurchase

- Any potential tax shield gain is dissipated by bankruptcy cost caused by future excessive leverage
- Reminiscent of Coase conjecture; DeMarzo and Urosevic (2006)
- **•** Get equity value V(Y, F) without knowing debt price

Equilibrium Policies

Basic idea

• Debt price p(Y, F) must satisfy the valuation equation

$$p(Y, F) = \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} \left(c+\xi\right) ds \right\}$$

V (Y, F) gives −V_F (V, F) = p (Y, F) using equity's FOC
 How to make both match? Via debt management G (Y, F)

- ODE for $V_F(V, F)$ (HJB for V) does not depend on G...
- ▶ while HJB for *p*, which depends on *G*

Equilibrium Policies

Basic idea

• Debt price p(Y, F) must satisfy the valuation equation

$$p(Y, F) = \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} \left(c+\xi\right) ds \right\}$$

Equilibrium debt issuance policy

$$G^{*}(Y,F) = \frac{c \cdot \pi'(Y - cF)}{-p_{F}(Y,F)}$$

▶ $\pi'(Y - cF) \ge 0$, tax benefit \Rightarrow always issuing debt

▶ Recall $-p_F(Y, F) = V_{FF}(Y, F) > 0$, capturing the price impact

Strict Optimality in Discrete Time

- Taking the value function at t + h as given, consider equity's problem at t, where time interval h > 0
- Denote debt issuance by Δ . Equity is maximizing

$$\max_{\Delta} \underbrace{-(1-\pi) \cdot \Delta c \cdot h}_{\text{after-tax interest payment}} + \underbrace{\Delta \left[c \cdot h + p \left(Y, F + \Delta \right) \right]}_{\text{new debt proceeds}} + \underbrace{V \left(F + \Delta, Y \right)}_{\text{future equity Value}}$$

▶ First-order condition w.r.t Δ

$$0 = \pi c \cdot h + p(Y, F + \Delta) + \Delta \cdot p_F(Y, F + \Delta) + V_F(F + \Delta, Y)$$

which implies that

$$\Delta = \frac{\underbrace{\pi c \cdot h}_{\text{tax benefit}} + \underbrace{p + V_F}_{\text{FOC}=0}}{-p_F} = \frac{\pi c}{-p_F} \cdot h$$

One can easily check the global optimality

Sufficiency of Local FOC

 Debt price decreasing in F (option value of default)
 Equity value function is convex in F
 (option value of default)

Buyback, paying a higher price; selling too much hurts price too

Leverage Ratchet Effect

What is the impact of debt repurchase on equity value?

• Often the intuition is through **firm value**...

Leverage Ratchet Effect

What is the impact of debt repurchase on equity value?

- Often the intuition is through firm value...
- Reducing debt today alleviates future default \Rightarrow higher firm value
 - But does equity benefit strictly from this effect? No. (Do not forget existing debt holders!)
 - ► Equity optimizes default decision ex post already ⇒ zero indirect impact on equity value today (envelope theorem)

Leverage Ratchet Effect

What is the impact of debt repurchase on equity value?

- Often the intuition is through firm value...
- Reducing debt today alleviates future default \Rightarrow higher firm value
 - But does equity benefit strictly from this effect? No. (Do not forget existing debt holders!)
 - ► Equity optimizes default decision ex post already ⇒ zero indirect impact on equity value today (envelope theorem)
- Tax saving benefit always tempting...leverage ratcheting in ADHP
 - This paper: a more canonical setting
 - Same logic to debt overhang—equity is optimizing investment decisions ex post

Summary of General Model

- 1. Solve for equity value V(Y, F) by setting G(Y, F) = 0
- 2. Set the equilibrium debt price $p(Y, F) = -V_F(Y, F)$
- 3. Check the equity holders' global optimality condition
 ▶ Verifying p(Y, F) is non-increasing in F (or V(Y, F) is convex in F)
- 4. Equilibrium debt issuance $G^*(Y, F) = \frac{\pi'(Y cF) \cdot c}{-p_F(Y, F)} > 0$

Log-Normal Cash-flows Model

Scale-invariance, cash-flows $dY_t / Y_t = \mu dt + \sigma dZ_t$

- The work-horse model of dynamic corporate finance
- One-dimensional state variable: scaled cash-flow $y_t \equiv Y_t/F_t$
 - Equity value V (Y, F) = F · v (y), debt price p (Y, F) = p (y); closed-form solutions
 - Strong Markov property (we can prove the uniqueness of such equilibria)

• Let
$$g^*(y_t) \equiv G^*(Y_t, F_t) / F_t$$
, then

$$\frac{dy_t}{y_t} = \begin{pmatrix} \mu & + \underbrace{\xi}_{\text{CF growth}} - \underbrace{g_t^*}_{\text{CF growth}} \end{pmatrix} dt + \underbrace{\sigma dZ_t}_{\text{CF shocks}}$$

 $\blacktriangleright \text{ Debt growth rate } g_t^* - \xi; \text{ endogenous } g_t^* = \frac{(r+\xi)\pi c}{c(1-\pi)+\xi} \frac{1}{\gamma} \left(\frac{y}{y_b}\right)^{\gamma} > 0$

• γ is a constant depending on parameters

Increasing in y, i.e., more debt issuance after good fundamental

Net Debt Issuance $g^*(y) - \xi$, Debt Maturity

Two Benchmarks with Commitment

No future debt issuance:

- The firm commits to set $g_t = 0$ always (superscript 0)
- Equity value is the same (so does y_b), debt price is higher (by the tax shield)

$$p^{0}(y) = p(y) + \frac{\pi c}{r + \xi} \left(1 - \left(\frac{y}{y_{b}}\right)^{-\gamma} \right)$$

• Less debt \Rightarrow less likely to default (same y_b but y has a higher drift)

Fixed future debt:

• The firm commits to set $g_t = \xi$ always; Leland 1998

Model Comparisons: Debt Prices and Credit Spreads

Implication of credit spreads: $y \rightarrow \infty$ i.e. zero current leverage

p^ξ (*y*) and *p*⁰ (*y*) → c+ξ/(r+ξ), with zero credit spread
 p(*y*) → c(1-π)+ξ/(r+ξ), non-zero credit spreads (high future excessive leverage!)

Equilibrium Debt Dynamics

Different from static trade-off setting, it is optimal to set F₀^{*} = 0
 Knowing the future temptation of overborrowing....

Proposition. Given cash-flow history {Y_s : 0 ≤ s ≤ t}, time-t debt is (ŷ_ζ is a constant depending on parameters)

$$F_{t} = \frac{1}{\hat{y}_{\xi}} \left[\int_{0}^{t} \gamma \xi Y_{s}^{\gamma} e^{-\gamma \xi(s-t)} ds \right]^{1/\gamma}$$

- Start from t = 0 debt grows at the order of $t^{1/\gamma}$
- Outstanding debt is average past earnings, with decaying weights $\gamma\xi$
- High mean-reverting speed, or more aggressive in adding leverage given high cash flows, when
 - Shorter debt maturity (higher ξ)

Optimal Debt Maturity Structure?

- So far the debt maturity structure ξ is taken as a parameter
- Say the firm gets a one-time chance to set ξ optimally for future debt issuance
- **Proposition**: Equity holders are **indifferent** at any ξ
 - Why? Because equity value is as if there is no future debt issuance...
- This indifference result holds more generally

Long-term vs. Short-term Debt

Two firms start with zero debt, with different debt maturities (both being optimal)—but have different leverage dynamics/target

Lemmon, Roberts, and Zender (2008)

Long-term vs. Short-term Debt

- Two firms start with zero debt, with different debt maturities (both being optimal)—but have different leverage dynamics/target
 - Lemmon, Roberts, and Zender (2008)

- With flexibility of shorter-term debt, the firm borrows more for higher debt tax shield
- But tax shield is a transfer from social perspective—so long-term debt is preferred to minimize bankruptcy cost

Investment

Special case of log-normal process. Capital K_t evolves as

$$\frac{dK_t}{K_t} = (i_t - \delta) \, dt + \sigma dZ_t$$

with quadratic investment cost $\frac{\kappa i_t^2}{2} K_t$, and output $Y_t = AK_t$

- Leverage ratchet effect prevails despite debt overhang considerations
- Equity issues debt more aggressively when controlling investment endogenously, compared to exogenous investment
 - Endogenous investment offers equity more protection later

Conclusion and Future Work

What we have done

- A general methodology solving dynamic corporate finance model without commitment
- Leverage policy depending on the entire earnings history, new insight on debt maturity and investment
- Slow initial adoption of leverage, but leads ultimately to excess

Future extensions

- DeMarzo, 2019 AFA presidential address: importance of exclusivity in collateralized borrowing
- Modeling sovereign debt and default (DeMarzo, He, and Tourre, 2019)
 - Covenant of no debt issuance once in distress (say for $y < \hat{y}$)
 - **b** Discrete debt issuance (jump to \hat{y}) in equilibrium, counter-productive
- Internal cash with liquidity-driven default?