Leverage Dynamics without Commitment

Peter DeMarzo
Stanford University

Zhiguo He
University of Chicago

FTG Summer School, Wharton
June 2019
Leverage dynamics is at the heart of dynamic corporate finance

- Static trade-off (maximizing firm value) differs from equity’s dynamic optimization
- Challenging, as debt prices interact with future equilibrium leverage polices

Existing literature relies on some ad hoc “commitment” of future debt policies

- Refinance to keep outstanding debt face value constant (Leland 1994 1998)
- Whenever adjusting debt, the firm has to retire the existing debt first, with some transaction costs (Fischer, Heinkel, and Zechner 1989; Goldstein, Leland, Ju 2001)
 - Abrupt adjustment to “target” leverage
- **Empirically counterfactual**: firms actively manage their debt, often incrementally
Introduction (2)

[Graphs showing the change in book debt and book debt plus market equity for American Airlines and United Airlines from 1986Q4 to 2011Q4.]
The firm cannot commit to future debt policies

- Otherwise, standard trade-off setting (tax shield vs bankruptcy cost) with stochastic asset growth; no transaction cost
- No commitment at all: say, no covenants
- A more endogenous “friction”, rather than exogenous frictions to adjust leverage

Assumption on seniority and dilution

- Zero recovery \(\Rightarrow\) seniority structure irrelevant. **Indirect** dilution: issuing more debt hurts default probability
- Positive recovery: pari-passu debt, **direct** dilution in recovery (not in this presentation)

Leverage may go down via asset growth and debt maturing, but equity never reduces debt voluntarily

- Repurchase debt is never optimal—**leverage ratchet effect** (Admati DeMarzo Hellwig Pfleiderer, 2018)
- Our setting is more canonical
This Paper (2)

- A general method to solve this class of models
 - A result reminiscent of Coase conjecture

- Closed-form solutions for work-horse log-normal cash-flow setting

- History-dependent leverage dynamics: issue more (less) following good (bad) shocks
 - Leverage dynamics tend to be mean-reverting; no immediate adjustment to leverage “target”

- Dynamic trade-off of equity value \(\neq\) Static trade-off of firm value
 - Two leverage/maturity dynamics drastically different, but both are optimal
 - Lemmon, Roberts, and Zender (2008)
General Model: Environment

Preferences
- Risk-neutral world, with common discount rate r

Assets
- Assets in place generate operating income (could allow for jumps):
 \[dY_t = \mu (Y_t) \, dt + \sigma (Y_t) \, dZ_t \]
- Focus on zero recovery now (debt seniority irrelevant); can be relaxed

Debt contract: aggregate face value F_t (endogenous)
- Each debt with coupon rate c, face value 1
- Exponentially retiring (Poisson maturing) with rate ξ

Corporate tax: $\pi (Y_t - cF_t)$
Debt Issuance/Repurchase and Default

Evolution of debt

- Sell/buyback debt $d\Gamma_t$, so aggregate debt face value evolves as

$$dF_t = -\zeta F_t dt + d\Gamma_t$$

contractual debt maturing active debt managment

Timing within $[t, t + dt]$ & lack of commitment

- Cash flow realizes; either default or pay coupon/principal; announce $d\Gamma_t$; debt price set (and trade); next period
- Unable to commit on future $d\Gamma_{t+s}$ for $s > 0$

Focusing on “smooth equilibrium”: $d\Gamma_t = G_t dt$

- Equity could adjust debt discretely, but not optimal in such an equilibrium
- Other equilibria with jumps? In general, yes (more later)

Equity default at endogenous stopping time τ_b
Equity Value

State variables (Markov Perfect Equilibrium)

- Exogenous cash-flows Y_t, and endogenous debt obligation F_t

Equity's problem, taking debt prices p as given

- Equity receives cash-flows (if negative, covered by issuing equity)

$$ Y_t - \pi(Y_t - cF_t) - (c + \xi)F_t + p_t G_t $$

 - cash-flows
 - corporate taxes
 - interest & principal
 - issuance/repurchase

- Endogenous debt price p_t determined later

- Given $Y_t = Y$ and $F_t = F$, equity is solving

$$ V(Y, F) \equiv \max_{\{G_s, \tau_b\}} \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-r(s-t)} \left[Y_s - \pi(Y_s - cF_s) - (c + \xi)F_s + p_s G_s \right] ds \right\} $$

- Controlling 1) debt evolution $dF_t = F_t dt + G_t dt$; and 2) when to default
Debt Price

Debt price

▶ Competitive risk neutral debt investors price debt rationally
▶ Given equity default decision τ_b, equilibrium debt price

$$p(Y, F) \equiv \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} (c + \xi) \, ds \mid Y_t = Y, F_t = F \right\}$$

Why does commitment matter?

▶ p_t depends on equilibrium default time τ_b
▶ τ_b depends on firm’s future debt policy—the more the future debt, the more likely the default
Value Equivalence of No-Issuance (1)

- Hamilton-Jacobi-Bellman equation for equity

\[rV(Y, F) = \max_G \left[Gp(Y, F) + (G - \xi F) V_F(Y, F) \right] \]

\[= \left(Y - \pi (Y - cF) - (c + \xi) F + \mu(Y) V_Y(Y, F) + \frac{\sigma^2(Y)}{2} V_{YY}(Y, F) \right) \]

- Objective linear in \(G \). Optimal \(G \) ⇒ First-Order Condition

\[p(Y, F) + V_F(Y, F) = 0 \]

- MB of issuance + MC on future value

- Under FOC, equity indifferent at any \(G \) (given equilibrium \(p \))

 - Linear control with interior solution (smooth policy \(G_t dt \))

 - Equity value can be solved by setting \(G = 0 \) always
Value Equivalence of No-Issuance (2)

- Equity value can be solved by setting $G = 0$ always

$$rV = \xi F V_F + Y - \pi (Y - cF) - (c + \xi) F + \mu (Y) V_Y + \frac{\sigma^2 (Y)}{2} V_{YY}$$

- No gain in equilibrium by debt issuance/repurchase
 - Any potential tax shield gain is dissipated by bankruptcy cost caused by future excessive leverage
 - Reminiscent of Coase conjecture; DeMarzo and Urosevic (2006)

- Get equity value $V(Y, F)$ without knowing debt price
Equilibrium Policies

Basic idea

▶ Debt price $p(Y,F)$ must satisfy the valuation equation

$$p(Y,F) = \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} (c + \xi) \, ds \right\}$$

▶ $V(Y,F)$ gives $-V_F(V,F) = p(Y,F)$ using equity’s FOC

▶ How to make both match? Via debt management $G(Y,F)$

▶ ODE for $V_F(V,F)$ (HJB for V) does not depend on G...

▶ while HJB for p, which depends on G
Equilibrium Policies

Basic idea

- Debt price \(p(Y, F) \) must satisfy the valuation equation

\[
p(Y, F) = \mathbb{E}_t \left\{ \int_t^{\tau_b} e^{-(r+\xi)(s-t)} (c + \xi) \, ds \right\}
\]

- \(V(Y, F) \) gives \(-V_F(V, F) = p(Y, F) \) using equity’s FOC

- How to make both match? Via debt management \(G(Y, F) \)
 - ODE for \(V_F(V, F) \) (HJB for \(V \)) does not depend on \(G \)...
 - while HJB for \(p \), which depends on \(G \)

Equilibrium debt issuance policy

\[
G^*(Y, F) = \frac{c \cdot \pi'(Y - cF)}{-p_F(Y, F)}
\]

- \(\pi'(Y - cF) \geq 0 \), tax benefit \(\Rightarrow \) always issuing debt

- Recall \(-p_F(Y, F) = V_{FF}(Y, F) > 0 \), capturing the price impact
Strict Optimality in Discrete Time

- Taking the value function at $t + h$ as given, consider equity’s problem at t, where time interval $h > 0$
- Denote debt issuance by Δ. Equity is maximizing
 \[
 \max_{\Delta} \left[- (1 - \pi) \cdot \Delta c \cdot h + \Delta \left[c \cdot h + p(Y, F + \Delta) \right] + V(F + \Delta, Y) \right]
 \]
 after-tax interest payment
ext new debt proceeds
 future equity Value
- First-order condition w.r.t Δ
 \[
 0 = \pi c \cdot h + p(Y, F + \Delta) + \Delta \cdot p_F(Y, F + \Delta) + V_F(F + \Delta, Y)
 \]
 which implies that
 \[
 \Delta = \frac{\pi c \cdot h + p + V_F}{-p_F} = \frac{\pi c}{-p_F} \cdot h
 \]
- One can easily check the global optimality
Sufficiency of Local FOC

Proposition 1: Global optimality of local FOC holds if debt price
\[p(Y, F) = -V_F(V, F) \]
is non-increasing in debt \(F \).

- Debt price decreasing in \(F \) is equivalent to the equity value function being convex in \(F \) (option value of default).
- Buyback, paying a higher price; selling too much hurts price too.
Leverage Ratchet Effect

- What is the impact of debt repurchase on equity value?
 - Often the intuition is through firm value...
What is the impact of debt repurchase on equity value?

Often the intuition is through firm value...

Reducing debt today alleviates future default ⇒ higher firm value

But does equity benefit strictly from this effect? No. (Do not forget existing debt holders!)

Equity optimizes default decision ex post already ⇒ zero indirect impact on equity value today (envelope theorem)
Leverage Ratchet Effect

- What is the impact of debt repurchase on **equity value**?
 - Often the intuition is through **firm value**...

- Reducing debt today alleviates future default \Rightarrow higher firm value
 - But does equity benefit strictly from this effect? **No.** (Do not forget existing debt holders!)
 - Equity optimizes default decision ex post already \Rightarrow zero indirect impact on equity value today (**envelope theorem**)

- **Tax** saving benefit always tempting...leverage ratcheting in ADHP
 - This paper: a more canonical setting
 - Same logic to debt overhang—equity is optimizing investment decisions ex post
Summary of General Model

1. Solve for equity value $V(Y, F)$ by setting $G(Y, F) = 0$

2. Set the equilibrium debt price $p(Y, F) = -V_F(Y, F)$

3. Check the equity holders’ global optimality condition
 ▶ Verifying $p(Y, F)$ is non-increasing in F (or $V(Y, F)$ is convex in F)

4. Equilibrium debt issuance $G^*(Y, F) = \frac{\pi'(Y-cF)\cdot c}{-p_F(Y,F)} > 0$
Log-Normal Cash-flows Model

- Scale-invariance, cash-flows $dY_t / Y_t = \mu dt + \sigma dZ_t$
 - The work-horse model of dynamic corporate finance

- One-dimensional state variable: scaled cash-flow $y_t \equiv Y_t / F_t$
 - Equity value $V(Y, F) = F \cdot v(y)$, debt price $p(Y, F) = p(y)$; closed-form solutions
 - **Strong Markov property** (we can prove the uniqueness of such equilibria)

- Let $g^*(y_t) \equiv G^*(Y_t, F_t) / F_t$, then

\[
\frac{dy_t}{y_t} = \left(\mu + \zeta - g^*_t \right) dt + \sigma dZ_t
\]

- CF growth + debt maturing - debt issuance

- Debt growth rate $g^*_t - \zeta$; endogenous $g^*_t = \frac{(r+\zeta)\pi c}{c(1-\pi)+\zeta} \frac{1}{\gamma} \left(\frac{y}{y_b} \right) > 0$
 - γ is a constant depending on parameters
 - Increasing in y, i.e., more debt issuance after good fundamental
Net Debt Issuance $g^*(y) - \bar{\xi}$, Debt Maturity
Two Benchmarks with Commitment

No future debt issuance:

⚠️ The firm commits to set $g_t = 0$ always (superscript 0)

⚠️ Equity value is the same (so does y_b), debt price is higher (by the tax shield)

\[
p^0(y) = p(y) + \frac{\pi c}{r + \xi} \left(1 - \left(\frac{y}{y_b}\right)^{-\gamma}\right)
\]

⚠️ Less debt ⇒ less likely to default (same y_b but y has a higher drift)

Fixed future debt:

⚠️ The firm commits to set $g_t = \xi$ always; Leland 1998
Model Comparisons: Debt Prices and Credit Spreads

Implication of credit spreads: $y \to \infty$ i.e. zero current leverage

- $p^\xi(y)$ and $p^0(y) \to \frac{c + \xi}{r + \xi}$, with zero credit spread
- $p(y) \to \frac{c(1 - \pi) + \xi}{r + \xi}$, non-zero credit spreads (high future excessive leverage!)
Equilibrium Debt Dynamics

- Different from static trade-off setting, it is optimal to set $F_0^* = 0$
 - Knowing the future temptation of overborrowing....

- **Proposition.** Given cash-flow history $\{ Y_s : 0 \leq s \leq t \}$, time-$t$ debt is (\hat{y}_ξ is a constant depending on parameters)

$$F_t = \frac{1}{\hat{y}_\xi} \left[\int_0^t \gamma \xi Y_s \gamma e^{-\gamma \xi (s-t)} \, ds \right]^{1/\gamma}$$

- Start from $t = 0$ debt grows at the order of $t^{1/\gamma}$
- Outstanding debt is average past earnings, with decaying weights $\gamma \xi$

- High mean-reverting speed, or more aggressive in adding leverage given high cash flows, when
 - Shorter debt maturity (higher ξ)
Optimal Debt Maturity Structure?

- So far the debt maturity structure ξ is taken as a parameter

- Say the firm gets a one-time chance to set ξ optimally for future debt issuance

- **Proposition**: Equity holders are *indifferent* at any ξ
 - Why? Because equity value is as if there is no future debt issuance...

- This indifference result holds more generally
Long-term vs. Short-term Debt

- Two firms start with zero debt, with different debt maturities (both being optimal)—but have different leverage dynamics/target
 - Lemmon, Roberts, and Zender (2008)
Long-term vs. Short-term Debt

- Two firms start with zero debt, with different debt maturities (both being optimal)—but have different leverage dynamics/target
 - Lemmon, Roberts, and Zender (2008)

- With flexibility of shorter-term debt, the firm borrows more for higher debt tax shield
 - But tax shield is a transfer from social perspective—so long-term debt is preferred to minimize bankruptcy cost
Investment

- Special case of log-normal process. Capital K_t evolves as

$$\frac{dK_t}{K_t} = (i_t - \delta) \, dt + \sigma \, dZ_t$$

with quadratic investment cost $\frac{\kappa i_t^2}{2} K_t$, and output $Y_t = AK_t$

- Leverage ratchet effect prevails despite debt overhang considerations

- Equity issues debt more aggressively when controlling investment endogenously, compared to exogenous investment
 - Endogenous investment offers equity more protection later
Conclusion and Future Work

What we have done

▶ A general methodology solving dynamic corporate finance model without commitment

▶ Leverage policy depending on the entire earnings history, new insight on debt maturity and investment

▶ Slow initial adoption of leverage, but leads ultimately to excess

Future extensions

▶ DeMarzo, 2019 AFA presidential address: importance of exlusivity in collateralized borrowing

▶ Modeling sovereign debt and default (DeMarzo, He, and Tourre, 2019)
 ▶ Covenant of no debt issuance once in distress (say for $y < \hat{y}$)
 ▶ Discrete debt issuance (jump to \hat{y}) in equilibrium, counter-productive

▶ Internal cash with liquidity-driven default?