Dynamic Capital Structure and Related Models

Zhiguo He

University of Chicago

Booth School of Business

FTG Summer School, June 2019

Leland Models

- Leland (1994): A workhorse model in modern structural corporate finance
- If you want to combine model with data, this is the typical setting
- A dynamic version of traditional trade-off model, but capital structure decision is static
- Trade-off model: a firm's leverage decision trades off the tax benefit with bankruptcy cost
- Relative to the previous literature (say Merton's 1974 model), Leland setting emphasizes equity holders can decide default timing ex post
- So-called "endogenous default," an useful building block for more complicated models
- Merton 1974 setting: given V_{T} distribution, default if $\widetilde{V}_{T}<F_{T}$. No default before T and the path of V_{t} does not matter

Firm and Its Cash Flows

- A firm's asset-in-place generates cash flows at a rate of δ_{t}
- Over interval $[t, t+d t]$ cash flows is $\delta_{t} d t$
- Leland '94, state variable unlevered asset value $V_{t}=\frac{\delta_{t}}{r-\mu}$ (just relabeling)
- Cash flow rate follows a Geometric Brownian Motion (with drift μ and volatility σ)

$$
\frac{d \delta_{t}}{\delta_{t}}=\mu d t+\sigma d Z_{t}
$$

- $\left\{Z_{t}\right\}$ is a standard Brownian motion (Wiener process):

$$
Z_{t} \sim \mathcal{N}(0, t), Z_{t}-Z_{s} \text { is independent of } \mathcal{F}\left(\left\{Z_{u<s}\right\}\right)
$$

- Given $\delta_{0}, \delta_{t}=\delta_{0} \exp \left(\left(\mu-0.5 \sigma^{2}\right) t+\sigma Z_{t}\right)>0$
- Arithmetic Brownian Motion: $d \delta_{t}=\mu d t+\sigma d Z_{t}$ so

$$
\delta_{t}=\delta_{0}+\mu t+\sigma Z_{t}
$$

- Persistent shocks, i.i.d. return. Today's shock $d Z_{t}$ affects future level of δ_{s} for $s>t$
- One interpretation: firm produces one unit of good per unit of time, with market price fluctuating according to a GBM
- In this model, everything is observable, i.e. no private information

Debt as Perpetual Coupon

- Firm is servicing its debt holders by paying coupon at the rate of C
- Debt holders are receiving cash flows Cdt over time interval $[t, t+d t]$
- Debt tax shield, with tax rate τ
- Debt is deducted before calculating taxable income implies that debt can create DTS
- The previous cash flows are after-tax cash flows, so before-tax cash flows are $\delta_{t} /(1-\tau)$
- So-called Earnings Before Interest and Taxes (EBIT)
- By paying coupon C, taxable earning is $\delta_{t} /(1-\tau)-C$, so equity holders' cash flows are

$$
\left(\frac{\delta_{t}}{1-\tau}-C\right)(1-\tau)=\delta_{t}-(1-\tau) C
$$

- The firm investors in total get (Modigliani-Miller idea)

$$
\underbrace{\delta_{t}-(1-\tau) C}_{\text {Equity }}+\underbrace{C}_{\text {Debt }}=\underbrace{\delta_{t}}_{\text {Firm's Asset }}+\underbrace{\tau C}_{\text {DTS }}
$$

Endogenous Default Boundary

- Equity holders receiving δ_{t} which might become really low, but is paying constant $(1-\tau) C$
- When $\delta_{t} \rightarrow 0$, holding the firm almost has zero value-then why pay those debt holders?
- Equity holders default at $\delta_{B}>0$ where equity value at δ_{B} has $E\left(\delta_{B}\right)=0$ and $E^{\prime}\left(\delta_{B}\right)=0$
- Value matching $E\left(\delta_{B}\right)=0$, just says that at default equity holders recover nothing
- Smooth pasting $E^{\prime}\left(\delta_{B}\right)=0$, optimality: equity can decide to wait and default at $\delta_{B}-\epsilon$, but no benefit of doing so
- At bankruptcy, some deadweight cost, debt holders recover a fraction $1-\alpha$ of first-best firm value $(1-\alpha) \delta_{B} /(r-\mu)$
- First-best unlevered firm value $\delta_{B} /(r-\mu)$, Gordon growth formula
- Two steps:

1. Derive debt $D(\delta)$ and equity $E(\delta)$, given default boundary δ_{B}
2. Using smooth pasting condition to solve for δ_{B}

Valuation or Halmilton-Jacobi-Bellman (HJB) Equation (1)

- $V(y)=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-r(s-t)} f\left(y_{s}\right) d s \mid y_{t}=y\right]$ s.t.

$$
d y_{t}=\mu\left(y_{t}\right) d t+\sigma\left(y_{t}\right) d Z_{t}
$$

- Discrete-time Bellman equation

$$
V(y)=\frac{1}{1+r}\left(f(y)+\mathbb{E}\left[V\left(y^{\prime}\right) \mid y\right]\right) \text { s.t. } y^{\prime}=y+\mu(y)+\sigma(y) \varepsilon
$$

- Continuous-time, $V(y)$ can be written as

$$
\begin{aligned}
& V(y)=\mathbb{E}_{t}\left[f\left(y_{t}\right) d t+\int_{t+d t}^{\infty} e^{-r(s-t)} f\left(y_{s}\right) d s \mid y_{t+d t}=y_{t}+\mu\left(y_{t}\right) d t+\sigma\left(y_{t}\right) d Z_{t}\right] \\
= & f(y) d t+e^{-r \cdot d t} \mathbb{E}_{t}\left[\int_{t+d t}^{\infty} e^{-r(s-t-d t)} f\left(y_{s}\right) d s \mid y_{t+d t}=y_{t}+\mu\left(y_{t}\right) d t+\sigma\left(y_{t}\right) d Z_{t}\right] \\
= & f(y) d t+e^{-r \cdot d t} \mathbb{E}_{t}\left[\mathbb{E}_{t+d t}\left(\int_{t+d t}^{\infty} e^{-r(s-t-d t)} f\left(y_{s}\right) d s \mid y_{t+d t}=y_{t}+\mu\left(y_{t}\right) d t+\sigma\left(y_{t}\right) d Z_{t}\right)\right] \\
= & f(y) d t+(1-r d t) \mathbb{E}_{t}\left[V\left(y_{t}+\mu(y) d t+\sigma\left(y_{t}\right) d Z_{t}\right)\right] \\
= & f(y) d t+(1-r d t) \mathbb{E}_{t}\left[V\left(y_{t}\right)+V^{\prime}\left(y_{t}\right) \mu\left(y_{t}\right) d t+V^{\prime}\left(y_{t}\right) \sigma\left(y_{t}\right) d Z_{t}+\frac{1}{2} V^{\prime \prime}\left(y_{t}\right) \sigma^{2}\left(y_{t}\right) d t\right] \\
= & f(y) d t+(1-r d t)\left[V(y)+V^{\prime}(y) \mu(y) d t+\frac{1}{2} V^{\prime \prime}(y) \sigma^{2}(y) d t\right]
\end{aligned}
$$

Valuation or Halmilton-Jacobi-Bellman (HJB) Equation (2)

- Expansion of RHS:

$$
\begin{aligned}
V(y)= & f(y) d t+(1-r d t)\left[V(y)+V^{\prime}(y) \mu(y) d t+\frac{1}{2} V^{\prime \prime}(y) \sigma^{2}(y) d t\right] \\
= & f(y) d t+V(y)+V^{\prime}(y) \mu(y) d t+\frac{1}{2} V^{\prime \prime}(y) \sigma^{2}(y) d t \\
& -r V(y) d t-r V^{\prime}(y) \mu(y)(d t)^{2}-r \frac{1}{2} V^{\prime \prime}(y) \sigma^{2}(y)(d t)^{2}
\end{aligned}
$$

- From higher to lower orders, until non-trivial identity
- At order $O(1), V(y)=V(y)$, trivial identity
- At order $O(d t)$, non-trivial identity

$$
0=\left[f(y)+V^{\prime}(y) \mu(y)+\frac{1}{2} V^{\prime \prime}(y) \sigma^{2}(y)-r V(y)\right] d t
$$

- As a result, we have

$$
\underbrace{r V(y)}_{\text {equired return }}+\underbrace{f(y)}_{\text {flow (dividend) payoff }}+\underbrace{V^{\prime}(y) \mu(y)+\frac{1}{2} \sigma^{2}(y) V^{\prime \prime}(y)}_{\text {local change of value function (capital gain, long-term payoffs) }}
$$

- That is how I write down value functions for any process (later I will introduce jumps)

General Solution for GBM process with Linear Flow Payoffs

- In the Leland setting, the model is special because

$$
f(y)=a+b y, \mu(y)=\mu y, \text { and } \sigma(y)=\sigma y
$$

- It is well known that the general solution to $V(y)$ is

$$
V(y)=\frac{a}{r}+\frac{b}{r-\mu} y+K_{\gamma} y^{-\gamma}+K_{\eta} y^{\eta}
$$

where the "power" parameters are given by

$$
\begin{aligned}
-\gamma & =-\frac{\mu-\frac{1}{2} \sigma^{2}+\sqrt{\left(\frac{1}{2} \sigma^{2}-\mu\right)^{2}+2 \sigma^{2} r}}{\sigma^{2}}<0, \\
\eta & =-\frac{\mu-\frac{1}{2} \sigma^{2}-\sqrt{\left(\frac{1}{2} \sigma^{2}-\mu\right)^{2}+2 \sigma^{2} r}}{\sigma^{2}}>1
\end{aligned}
$$

- The constants K_{γ} and K_{η} are determined by boundary conditions

Side Note: How Do You Get Those Two Power Parameters

- Those two power parameters $-\gamma$ and η are roots to the fundamental quadratic equations
- Consider the homogenous ODE:

$$
r V(y)=\mu y V^{\prime}(y)+\frac{1}{2} \sigma^{2} y^{2} V^{\prime \prime}(y)
$$

- Guess the $V(y)=y^{x}$, then $V^{\prime}(y)=x y^{x-1}$ and $V^{\prime \prime}(y)=x(x-1) y^{x-2}$

$$
\begin{aligned}
r y^{x} & =\mu x y^{x}+\frac{1}{2} \sigma^{2} x(x-1) y^{x} \\
r & =\mu x+\frac{1}{2} \sigma^{2} x(x-1) \\
0 & =\frac{1}{2} \sigma^{2} x^{2}+\left(\mu-\frac{1}{2} \sigma^{2}\right) x-r
\end{aligned}
$$

- $-\gamma$ and η are the two roots of this equation

Debt Valuation (1)

- For debt, flow payoff is C so

$$
D(\delta)=\frac{C}{r}+K_{\gamma} \delta^{-\gamma}+K_{\eta} \delta^{\eta}
$$

- Two boundary conditions
- When $\delta=\infty$, default never occurs, so $D(\delta=\infty)=\frac{C}{r}$ perpetuity. Hence $K_{\eta}=0$ (otherwise, D goes to infinity)
- When $\delta=\delta_{B}$, debt value is $\frac{(1-\alpha) \delta_{B}}{r-\mu} . D\left(\delta_{B}\right)=\frac{(1-\alpha) \delta_{B}}{r-\mu}$ implies that

$$
\frac{C}{r}+K_{\gamma} \delta_{B}^{-\gamma}=\frac{(1-\alpha) \delta_{B}}{r-\mu} \Rightarrow K_{\gamma}=\frac{\frac{(1-\alpha) \delta_{B}}{r-\mu}-\frac{C}{r}}{\delta_{B}^{-\gamma}}
$$

Debt Valuation (2)

- We obtain the closed-form solution for debt value

$$
\begin{aligned}
D(\delta) & =\frac{C}{r}+\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\left(\frac{(1-\alpha) \delta_{B}}{r-\mu}-\frac{C}{r}\right) \\
& =\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma} \frac{(1-\alpha) \delta_{B}}{r-\mu}+\left(1-\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\right) \frac{C}{r}
\end{aligned}
$$

- Present value of 1 dollar contingent on default:

$$
\mathbb{E}\left[e^{-r \tau_{B}}\right]=\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma} \text { where } \tau_{B}=\inf \left\{t: \delta_{t}<\delta_{B}\right\}
$$

- The debt value can also be written in the following intuitive form

$$
\begin{aligned}
D(\delta) & =\mathbb{E}\left[\int_{0}^{\tau_{B}} e^{-r s} C d s+e^{-r \tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right] \\
& =\mathbb{E}\left[\frac{C}{r}\left(-\int_{0}^{\tau_{B}} d e^{-r s}\right)+e^{-r \tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right] \\
& =\mathbb{E}\left[\frac{C}{r}\left(1-e^{-r \tau_{B}}\right)+e^{-r \tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right]
\end{aligned}
$$

Equity Valuation (1)

- For equity, flow payoff is $\delta_{t}-(1-\tau) C$, so

$$
E(\delta)=\frac{\delta}{r-\mu}-\frac{(1-\tau) C}{r}+K_{\gamma} \delta^{-\gamma}+K_{\eta} \delta^{\eta}
$$

- When $\delta=\infty$, equity value cannot grow faster than first-best firm value which is linear in δ. So $K_{\eta}=0$
- When $\delta=\delta_{B}$, we have

$$
E\left(\delta_{B}\right)=\frac{\delta_{B}}{r-\mu}-\frac{(1-\tau) C}{r}+K_{\gamma} \delta_{B}^{-\gamma}=0 \Rightarrow K_{\gamma}=\frac{\frac{(1-\tau) C}{r}-\frac{\delta_{B}}{r-\mu}}{\delta_{B}^{-\gamma}}
$$

Thus

$$
\begin{aligned}
E(\delta)= & \underbrace{\frac{\delta}{r-\mu}-\frac{(1-\tau) C}{r}}_{\text {Equity value if never defaults (pay }(1-\tau) C \text { forever) }} \\
& \underbrace{\left(\frac{(1-\tau) C}{r}-\frac{\delta_{B}}{r-\mu}\right)\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}}_{\text {Option value of default }}
\end{aligned}
$$

$$
+
$$

Equity Valuation (2)

- Finally, smooth pasting condition

$$
\begin{aligned}
0 & =\left.E^{\prime}(\delta)\right|_{\delta=\delta_{B}} \\
& =\frac{1}{r-\mu}+\left.\left(\frac{(1-\tau) C}{r}-\frac{\delta_{B}}{r-\mu}\right)(-\gamma)\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma-1} \frac{1}{\delta_{B}}\right|_{\delta=\delta_{B}} \\
& =\frac{1}{r-\mu}+(-\gamma)\left(\frac{(1-\tau) C}{r \delta_{B}}-\frac{1}{r-\mu}\right)
\end{aligned}
$$

- Thus

$$
\delta_{B}=(1-\tau) C \frac{r-\mu}{r} \frac{\gamma}{1+\gamma}
$$

What if the firm can decide optimal coupon

- At $t=0$, what is the optimal capital structure (leverage)?
- Given δ_{0} and C, the total levered firm value $v\left(\delta_{0}\right)=E\left(\delta_{0}\right)+D\left(\delta_{0}\right)$ is

$$
\underbrace{\frac{\delta_{0}}{r-\mu}}_{\text {levered value }}+\underbrace{\frac{\tau C}{r}\left(1-\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\right)}_{\text {Tax shield }}-\underbrace{\frac{\alpha \delta_{B}}{r-\mu}\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}}_{\text {Bankruptcy cost }}
$$

- Realizing that δ_{B} is linear in C, we can find the optimal C^{*} that maximizing the levered firm value to be

$$
C^{*}=\frac{\delta_{0}}{r-\mu} \frac{r(1+\gamma)}{(1-\tau) \gamma}\left(1+\gamma+\frac{\alpha \gamma(1-\tau)}{\tau}\right)^{-1 / \gamma}
$$

- Important observation: optimal C^{*} is linear in δ_{0} ! So called scale-invariance
- It implies that if the firm is reoptimizing, its decision is just some constant scaled by the firm size

Trade-off Theory: Economics behind Leland (1994)

- Benefit: borrowing gives debt tax shield (DTS)
- Equity holders makes default decision ex post
- The firm fundamental follows GBM, persistent income shocks
- After enough negative shocks, equity holders' value of keeping the firm alive can be really low
- Debt obligation is fixed, so when δ_{t} is sufficiently low, it is optimal to default
- Debt-overhang-Equity holders do not care if default impose losses on debt holders
- But, at time zero when equity holders issue debt, debt holders price default in $D\left(\delta_{0}\right)$
- And equity holders will receive $D\left(\delta_{0}\right)$!
- Hence equity holders optimize $E\left(\delta_{0}\right)+D\left(\delta_{0}\right)$, realizing that coupon C will affect DTS (positively) and bankruptcy cost (negatively)
- If equity holders can commit ex ante about ex post default behavior, what do they want to do?

Leland, Goldstein and Ju (2000, Journal of Business)

- There are two modifications relative to Leland (1994):
- First, directly modelling pre-tax cashflows - so-called EBIT, rather than after-tax cashflows
- It makes clear that there are three parties to share the cashflows: equity, debt, and government
- When we take comparative statics w.r.t. tax rate τ, in Leland (1994) you will ironically get that levered firm value \uparrow when $\tau \uparrow$
- In Leland, raising τ does not change δ_{t} (which is after-tax cashflows)
- In LGJ, after-tax cashflows are $(1-\tau) \delta_{t}$, so raising τ lowers firm value

Leland, Goldstein and Ju (2000, Journal of Business)

- Second, more importantly, allowing for firms to upward adjust their leverage if it is optimal to do so in the future
- When future fundamental goes up, leverage goes down, optimal to raise more debt
- Need fix cost to do so-otherwise tend to do it too often
- Key assumption for tractability: when adjusting leverage, the firm has to buy back all existing debt
- Say that this rule is written in debt covenants
- As a result, there is always one kind of debt at any point of time
- After buying back, when equity holders decide how much debt to issue, they are solving the same problem again with new firm size
- But the model is scale invariant, so the solution is the same (except a larger scale)
- F face value. A firm with (δ, F) faces the same problem as ($k \delta, k F$)

Optimal Policies in LGJ

- $\frac{\delta_{B}}{\delta_{0}}=\psi$: default factor, $\frac{\delta_{u}}{\delta_{0}}=\gamma$: leverage adjustment factor

- LGJ: can precommit to γ. No precommitment in Fischer-Heinkel-Zechner (1989)

How Do We Model Finite Maturity

- Perpetual debt in Leland (1994). In practice debt has finite maturity
- Debt maturity is very hard to model in a dynamic model
- You can do exponentially decaying debt (Leland, 1994b, 1998)
- Rough idea: what if your debt randomly matures in a Poisson fashion with intensity $1 / m$?
- Exponential distribution, the expected maturity is $\int_{0}^{\infty} x \frac{1}{m} e^{-x / m} d x=m$
- It is memoriless-if the debt has not expired, looking forward the debt price is always the same!
- Actually, you do not need random maturing. Exponential decaying coupon payment also works!
- So, debt value is $D(\delta)$, not $D(\delta, t)$ where t is remaining maturity
- If all debt maturity is i.i.d, large law of numbers say that at $[t, t+d t], \frac{1}{m} d t$ fraction of debt mature

Leland (1998)

- Using exponentially decaying finite maturity debt
- Equity holders can ex post choose risk

$$
\sigma \in\left\{\sigma_{H}, \sigma_{L}\right\}
$$

- Research question: how does asset substitution work in this dynamic framework? How does it depend on debt leverage and debt maturity?
- Typically with default option, asset substitution occurs optimally (default option gets more value if volatility is higher)
- With asset substitution, the optimal maturity is shorter, consistent with the idea that short-term debt helps curb agency problems (numerical result, not sure robust)
- Quantitatively, agency cost due to asset substitution is small

Leland (1998) (2)

- Assume threshold strategy that there exists δ_{S} s.t.

$$
\sigma=\sigma_{H} \text { for } \delta<\delta_{S} \text { and } \sigma=\sigma_{L} \text { for } \delta \geq \delta_{S}
$$

- Solve for equity, debt, DTS, BC the same way as before, with one important change
- Need to piece solutions on $\left[\delta_{B}, \delta_{S}\right.$) and $\left[\delta_{S}, \infty\right)$ together
- $-\gamma_{H}, \eta_{H},-\gamma_{L}, \eta_{L}$: solutions to fundamental quadratic equations

$$
\begin{aligned}
D^{H}(\delta) & =\frac{C}{r}+K_{\gamma}^{H} \delta^{-\gamma_{H}}+K_{\eta}^{H} \delta^{\eta_{H}} \text { for }\left[\delta_{B}, \delta_{S}\right) \\
D^{L}(\delta) & =\frac{C}{r}+K_{\gamma}^{L} \delta^{-\gamma_{L}}+K_{\eta}^{L} \delta^{\eta_{L}} \text { for }\left[\delta_{S}, \infty\right)
\end{aligned}
$$

- Four boundary conditions to get $K_{\gamma}^{H}, K_{\eta}^{H}, K_{\gamma}^{L}, K_{\eta}^{L}$
- $K_{\eta}^{L}=0$ because $D(\delta=\infty)<\frac{C}{r}$. The other three: $D^{H}\left(\delta_{S}\right)=D^{L}\left(\delta_{S}\right)$ (value matching), $D^{H \prime}\left(\delta_{S}\right)=D^{L \prime}\left(\delta_{S}\right)$ (smooth pasting), $D^{H}\left(\delta_{B}\right)=\frac{(1-\alpha) \delta_{B}}{r-\mu}$ (value matching)
- Here, smooth pasting at δ_{S} always holds, because Brownian crosses δ_{S} "super" fast. The process does not stop there (like at δ_{B})

Leland and Toft (1996)

- Deterministic maturity, but keep uniform distribution of debt maturity structure
- Say we have debts with a total measure of 1 , maturity is uniformly distributed $U[0, T]$, same principal P, same coupon C
- Tough: now debt price is $D(\delta, t)$, need to solve a PDE
- Equity promises to keep the same maturity structure in the future
- Equity holders' cashflows are

$$
\delta_{t} d t-(1-\tau) C d t-\frac{1}{T} d t(P-D(\delta, T))
$$

- Cashflows $\delta_{t} d t$; Coupon Cdt; and Rollover losses/gains
- Over $[t, t+d t]$, there is $\frac{1}{T} d t$ measure of debt matures, equity holders need to pay

$$
\frac{1}{T} d t(P-D(\delta, T))
$$

as equity holders get $D(\delta, T) \frac{1}{T} d t$ by issuing new debt

Leland and Toft (1996)

- First step: solve the PDE

$$
r D(\delta, t)=C+D_{t}(\delta, t)+\mu \delta D_{\delta}(\delta, t)+\frac{1}{2} \sigma^{2} \delta^{2} D_{\delta \delta}(\delta, t)
$$

Boundary conditions

$$
\begin{aligned}
D(\delta=\infty, t) & =\frac{C}{r}\left(1-e^{-r t}\right)+P e^{-r t}: \text { defaultless bond } \\
D\left(\delta=\delta_{B}, t\right) & =(1-\alpha) \frac{\delta_{B}}{r-\mu}: \text { defaulted bond } \\
D(\delta, 0) & =P \text { for } \delta \geq \delta_{B}: \text { paid back in full when it matures }
\end{aligned}
$$

- Leland-Toft (1996) get closed-form solutions for debt values; have a look
- Better know the counterpart of Feyman-Kac formula. The point is to know it admits closed-form solution

Leland and Toft (1996)

- Equity value satisfies the ODE

$$
r E(\delta)=\delta-(1-\tau) C+\frac{1}{T}[D(\delta, T)-P]+\mu \delta E_{\delta}(\delta)+\frac{1}{2} \sigma^{2} \delta^{2} E_{\delta \delta}(\delta)
$$

- This is also very tough, given the complicated form of $D(\delta, T)$!
- Leland and Toft have a trick (Modigliani-Miller idea): $E(\delta)=$

$$
v(\delta)-\frac{1}{T} \int_{0}^{T} D(\delta, t) d t=\frac{\delta}{r-\mu}+D T S(\delta)-B C(\delta)-\frac{1}{T} \int_{0}^{T} D(\delta, t) d t
$$

- DTS (δ) and $B C(\delta)$ are much easier to price
- DTS (δ) is the value for constant flow payoff τC till default occurs
- BC (δ) is the value of bankruptcy cost incurred on default
- We have derived them given δ_{B}
- After getting $E\left(\delta ; \delta_{B}\right), \delta_{B}$ is determined by smooth pasting $E^{\prime}\left(\delta_{B} ; \delta_{B}\right)=0$
- In He-Xiong (2012), we introduce market trading frictions for corporate bonds
- Some deadweight loss during trading, the above trick does not work

Calculation of Debt Tax Shield

- Let us price DTS (δ) which is the value for constant flow payoff τC till default occurs
- We can have

$$
\begin{aligned}
\operatorname{DTS}(\delta) & =\mathbb{E}\left[\int_{0}^{\tau_{B}} e^{-r s} \tau C d s\right] \\
& =\mathbb{E}\left[\frac{\tau C}{r}\left(1-e^{-r \tau_{B}}\right)\right]=\frac{\tau C}{r}\left(1-\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\right)
\end{aligned}
$$

- Or, $F(\delta)=D T S(\delta)$

$$
\begin{aligned}
r F(\delta) & =\tau C+\mu \delta F_{\delta}(\delta)+\frac{1}{2} \sigma^{2} \delta^{2} F_{\delta}(\delta) \\
F(\delta) & =\frac{\tau C}{r}+K_{\gamma} \delta^{-\gamma}+K_{\eta} \delta^{\eta}
\end{aligned}
$$

plugging $F\left(\delta_{B}\right)=0$ and $F(\infty)=\frac{\tau C}{r}\left(\right.$ so $\left.K_{\eta}=0\right)$ we have

$$
F(\delta)=\frac{\tau C}{r}\left(1-\left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\right)
$$

MELLA-BARRAL and PERRAUDIN (1997) (1)

- How to model negotiation and strategic debt service?
- Consider a firm producing one widget per unit of time, random widget price

$$
d p_{t} / p_{t}=\mu d t+\sigma d Z_{t}
$$

- Constant production cost $w>0$ so cash flows are $p_{t}-w$
- If debt holders come in to manage the firm, cash flows are $\xi_{1} p_{t}-\xi_{0} w$ with $\xi_{1}<1$ and $\xi_{0}>1$
- Even without debt, p_{t} can be so low that shutting down the firm is optimal
- This is so called "operating leverage"
- One explanation for why Leland models predict too high leverage relative to data: Leland model includes operating leverage
- For debt holders, if they take over, value is $X(p)$ (need to figure out their hypothetical optimal stopping time by using smooth-pasting condition)

MELLA-BARRAL and PERRAUDIN (1997) (2)

- Now imagine the original coupon is $b>0$
- When p_{t} goes down, what if equity holders can make a take-it-or-leave-it offer to debt holders?
- Denote the equilibrium coupon service $s(p)$, and resulting debt value $L(p)$
- In equilibrium there exist two thresholds $p_{c}<p_{s}$
- When $p_{t} \geq p_{s}, s(p)=b$, nothing happens
- When $p_{t} \in\left(p_{c}, p_{s}\right)$, we have $s(p)<b$ and $L(p)=X(p)$. As long as debt service is less than the contracted coupon, the value of debt equals that of debtholders' outside option $X(p)$
- When p_{t} hits p_{c}, liquidating the firm
- When $s(p)<b$ we have $s(p)=\xi_{1} p_{t}-\xi_{0} w$ which is as if debt holders take the firm.
- In the paper, there is some complication of $\gamma>0$ which is the firm's scrap value

Miao, Hackbarth, Morellec (2006)

- Firm EBIT is $y_{t} \delta_{t}, y_{t}$ aggregate business cycle condition

$$
\begin{aligned}
d \delta_{t} / \delta_{t} & =\mu d t+\sigma d Z_{t} \\
y_{t} & \in\left\{y_{G}, y_{B}\right\}: \text { Markov Chain }
\end{aligned}
$$

- Exponentially decaying debt, etc, same as Leland (1998)
- Default boundary depends on the current macro state: δ_{B}^{G} and δ_{B}^{B}. Same smooth-pasting condition
- $\delta_{B}^{G}<\delta_{B}^{B}$, default more in B. Help explain credit spread puzzle
- Bond seems too cheap in the data. If bond payoff is lower in recession, then it requires a higher return
- Lots of papers about credit spread puzzle use this framework

$$
d \delta_{t} / \delta_{t}=\mu_{s} d t+\sigma_{s} d Z_{t}
$$

where $s \in\{G, B\}$ or more

- ODE in vector: $x=\ln (\delta), \mathbf{D}(x)=\left[D^{G}(x), D^{B}(x)\right]^{\prime}$

$$
r \mathbf{D}(x)=c \mathbf{1}_{2 \times 1}+\boldsymbol{\mu}_{2 \times 2} \mathbf{D}^{\prime}(x)+\frac{1}{2} \Sigma_{2 \times 2} \mathbf{D}^{\prime \prime}(x)
$$

see my recent Chen, Cui, He, Milbradt (2014) if you are interested

Debt Overhang Framework

- Investment decisions are made by shareholders to maximize the value of equity
- No renegotiation of debt contracts
- Debt holders cannot do real investment themselves (investments lost if not done by owners). No other distress costs.
- Question: Does the firm want to invest?
- Answer: The firm will forgo investment projects with NPV below the wealth transfer to debt holders plus any loss from inefficient decisions implied by the debt structure

Diamond-He (2014): Will Short-term Debt Impose Stronger Overhang?

- What is the maturity effect on debt overhang?
- Consider two otherwise identical firms, one with long-term 10 year debt and the other with short-term 5 year debt. They have the same initial leverage
- Note, short-term debt is very different from debt that has matured
- Empirically, short-term debt means 3- or 5- year cutoff
- Say equity holders are investing right now
- Which firm suffers more debt overhang?
- Say equity holders are facing dynamic investment opportunities
- Which firm suffers more debt overhang?

Immediate Investment, Black-Scholes-Merton Setting (1)

- Say a firm with asset value

$$
\frac{d V_{t}}{V_{t}}=r d t+\sigma d Z_{t}
$$

- The firm has a debt outstanding, with face value F_{m} and maturity m. At time m, the debt payoff is $\min \left(F_{m}, V_{m}\right)$ and equity payoff is $\max \left(V_{m}-F_{m}, 0\right)$
- The equity value is $E\left(V_{0}, m\right)$ and debt value $D\left(V_{0}, m\right)=V_{0}-E\left(V_{0}, m\right)$
- Remind you of European call option? That is how Black-Scholes paper gets published (they apply their stuff to corporate debt)
- Suppose that investment raises V_{0} by ε. How much equity/debt gain?
- It is Delta $=E_{V}\left(V_{0}, m\right)$! Debt delta is
$D_{V}\left(V_{0}, m\right)=1-E_{V}\left(V_{0}, m\right)$
- The higher the $D_{V}\left(V_{0}, m\right)$ the greater the debt overhang

Immediate Investment, Black-Scholes-Merton Setting (2)

- Benchmark result. Yes, short-term debt always has lower overhang!
- Proposition: Suppose $m_{1}<m_{2}$. If we choose F_{m} so that $D\left(V_{0}, m_{1}\right)=D\left(V_{0}, m_{2}\right)$, then

$$
D_{V}\left(V_{0}, m_{1}\right)<D_{V}\left(V_{0}, m_{2}\right)
$$

- This result depends on constant volatility assumption
- Two period model, and suppose period-2 volatility depends on period-1 shock

$$
\sigma=\sigma_{L} \text { if } Z_{1}>Q \text { and } \sigma=\sigma_{H} \text { otherwise }
$$

- Keep debt value constant. If $\sigma_{L}=\sigma_{H}=\varepsilon$, stronger long-term overhang; If $\sigma_{L}=0$ and $\sigma_{H}=\varepsilon$, stronger short-term overhang
- Use the fact that when $\varepsilon \rightarrow 0$, long-term and short-term are the same
- Often theorists can only rigorously show limit results, but they are important (qualitatively)!
- Intuition: if volatility is higher after interim bad news, short-term debt kills the firm but long-term debt allows equity to recover a lot

Future Investment, Leland Setting

- Given investment \widetilde{i}_{t}, firm's cash flows are

$$
d \delta_{t} / \delta_{t}=\widetilde{i}_{t} d t+\sigma d Z_{t}
$$

- Binary investment choice, cost $\lambda \widetilde{\delta i_{t}}$, optimal threshold strategy (verified later)

$$
i(\delta)=i \text { if } \delta>\delta_{i} \text { and } i(\delta)=0 \text { otherwise }
$$

- Zero-coupon debt with principal P. Equity holders refinance $1 / m$ fraction, so net cashflow $(D(\delta)-P) / m$ every period.
- Equity's cash flow:

$$
\delta_{t} d t-\lambda \delta_{t} \widetilde{i}_{t} d t+\left(D\left(\delta_{t}\right)-P\right) / m \cdot d t
$$

- Equity defaults when δ_{t} hits δ_{B}

Debt and Equity Valuations

- For debt

$$
r D(\delta)=i(\delta) D^{\prime}(\delta)+\frac{\delta^{2} \sigma^{2}}{2} D^{\prime \prime}(\delta)+\frac{1}{m}(P-D(\delta))
$$

with solution $\left(p=\frac{P}{1+m r}\right)$

$$
D(\delta)=\left\{\begin{array}{cc}
p+A_{1} \delta^{-\gamma_{1}} & \text { if } \delta>\delta_{i} \\
p+A_{2} \delta^{-\gamma_{2}}+A_{3} \delta^{-\gamma_{3}} & \text { if } \delta \in\left[\delta_{B}, \delta_{i}\right]
\end{array}\right.
$$

$-A_{1}<0, A_{2}, A_{3}$ determined by value-matching at δ_{i} and δ_{B} and smooth-pasting at δ_{i}

- Why smooth-pasting at δ_{i} ?
- Equity:

$$
r E(\delta)=\max _{i} \delta(1-\lambda i(\delta))+i(\delta) \delta E^{\prime}(\delta)+\frac{\delta^{2} \sigma^{2}}{2} E^{\prime \prime}(\delta)-\frac{1}{m}(P-D(\delta))
$$

- Optimal thresholds $E^{\prime}\left(\delta_{i}\right)=\lambda$ and $E^{\prime}\left(\delta_{B}\right)=0$
- It is easier to solve for levered firm value $V(\delta)$ first and then $E(\delta)=V(\delta)-D(\delta)$

Proof of Unique Investment Threshold

- Useful technique in other situations. This also proves optimality of threshold strategy for investment
- $E^{\prime}\left(\delta_{B}\right)=0$, and $E^{\prime}(\delta=\infty)=\frac{1-\lambda i}{r-i}>\lambda$
- $E(\delta=\infty)=\frac{1-\lambda i}{r-i} \delta>\frac{1}{r} \delta$, i.e., $\lambda r<1$ for investment being efficient
- Say there are potentially multiple points that $E^{\prime}\left(\delta_{i}\right)=\lambda$. Take the smallest and construct equity valuation
- Say $\delta_{2}>\delta_{1}>\delta_{i}, E^{\prime}\left(\delta_{1}\right)=E^{\prime}\left(\delta_{2}\right)=\lambda$ but $E^{\prime \prime}\left(\delta_{1}\right)<0$ and $E^{\prime \prime}\left(\delta_{2}\right)>0$
- Find some middle point δ_{3} with $E^{\prime}\left(\delta_{3}\right)<\lambda, E^{\prime \prime}\left(\delta_{3}\right)=0$ and $E^{\prime \prime \prime}\left(\delta_{3}\right)>0$
- Taking derivative of equity equation again and evaluate at $\delta_{3}>\delta_{i}$

$$
(r-i) E^{\prime}\left(\delta_{3}\right)-1+\lambda i=\underbrace{\left(i+\sigma^{2}\right) \delta_{3} E^{\prime \prime}\left(\delta_{3}\right)}_{0}+\underbrace{\frac{\sigma^{2} \delta_{3}^{2}}{2} E^{\prime \prime \prime}\left(\delta_{3}\right)}_{>0}+\underbrace{\frac{1}{m} D^{\prime}\left(\delta_{3}\right)}_{>0}>0
$$

- But $(r-i) E^{\prime}\left(\delta_{3}\right)-1+\lambda i<(r-i) \lambda-1+\lambda i=\lambda r-1<0$, contradiction!

Optimal debt maturity

- Without investment, long-term debt $m=0$ is optimal (Leland-Toft)
- Two ways to make long-term debt inferior: 1) investment, so debt overhang 2) investor liquidity shocks with early consumption needs

