Dynamic Capital Structure and Related Models

Zhiguo He

University of Chicago

Booth School of Business

FTG Summer School, June 2019

Leland Models

- Leland (1994): A workhorse model in modern structural corporate finance
 - If you want to combine model with data, this is the typical setting
- A dynamic version of traditional trade-off model, but capital structure decision is static
 - Trade-off model: a firm's leverage decision trades off the tax benefit with bankruptcy cost
- Relative to the previous literature (say Merton's 1974 model), Leland setting emphasizes equity holders can decide default timing ex post
 - So-called "endogenous default," an useful building block for more complicated models
 - Merton 1974 setting: given V_T distribution, default if $\tilde{V}_T < F_T$. No default before T and the path of V_t does not matter

(日) (同) (三) (三) (三) (○) (○)

Firm and Its Cash Flows

- A firm's asset-in-place generates cash flows at a rate of δ_t
 - Over interval [t, t + dt] cash flows is $\delta_t dt$
 - Leland '94, state variable unlevered asset value $V_t = \frac{\delta_t}{r-\mu}$ (just relabeling)
- Cash flow rate follows a Geometric Brownian Motion (with drift μ and volatility σ)

$$\frac{d\delta_t}{\delta_t} = \mu dt + \sigma dZ_t$$

- ► { Z_t } is a standard Brownian motion (Wiener process): $Z_t \sim \mathcal{N}(0, t), Z_t - Z_s$ is independent of $\mathcal{F}(\{Z_{u < s}\})$
- Given δ_0 , $\delta_t = \delta_0 \exp\left(\left(\mu 0.5\sigma^2\right)t + \sigma Z_t\right) > 0$
- Arithmetic Brownian Motion: $d\delta_t = \mu dt + \sigma dZ_t$ so $\delta_t = \delta_0 + \mu t + \sigma Z_t$
- Persistent shocks, i.i.d. return. Today's shock dZ_t affects future level of δ_s for s > t
- One interpretation: firm produces one unit of good per unit of time, with market price fluctuating according to a GBM
- ► In this model, everything is observable, i.e. no private information

Debt as Perpetual Coupon

- Firm is servicing its debt holders by paying coupon at the rate of C
 - Debt holders are receiving cash flows Cdt over time interval [t, t + dt]
- Debt tax shield, with tax rate au
- Debt is deducted before calculating taxable income implies that debt can create DTS
- \blacktriangleright The previous cash flows are after-tax cash flows, so before-tax cash flows are $\delta_t/~(1-\tau)$
 - So-called Earnings Before Interest and Taxes (EBIT)
- By paying coupon C, taxable earning is δ_t / (1 − τ) − C, so equity holders' cash flows are

$$\left(\frac{\delta_t}{1-\tau}-C\right)(1-\tau)=\delta_t-(1-\tau)C$$

The firm investors in total get (Modigliani-Miller idea)

Endogenous Default Boundary

- Equity holders receiving δ_t which might become really low, but is paying constant $(1 \tau) C$
- ▶ When $\delta_t \rightarrow 0$, holding the firm almost has zero value—then why pay those debt holders?
- Equity holders default at $\delta_B > 0$ where equity value at δ_B has $E(\delta_B) = 0$ and $E'(\delta_B) = 0$
 - \blacktriangleright Value matching $E\left(\delta_{B}\right)=$ 0, just says that at default equity holders recover nothing
 - Smooth pasting E' (δ_B) = 0, optimality: equity can decide to wait and default at δ_B − ε, but no benefit of doing so
- At bankruptcy, some deadweight cost, debt holders recover a fraction 1α of first-best firm value $(1 \alpha) \delta_B / (r \mu)$
 - First-best unlevered firm value $\delta_B/(r-\mu)$, Gordon growth formula
- Two steps:
 - 1. Derive debt $D(\delta)$ and equity $E(\delta)$, given default boundary δ_B
 - 2. Using smooth pasting condition to solve for δ_B

Valuation or Halmilton-Jacobi-Bellman (HJB) Equation (1)

$$V(y) = \mathbb{E}_t \left[\int_t^\infty e^{-r(s-t)} f(y_s) \, ds \, | y_t = y \right] \, \text{s.t.}$$

$$dy_t = \mu(y_t) \, dt + \sigma(y_t) \, dZ_t$$

Discrete-time Bellman equation

$$V(y) = \frac{1}{1+r} \left(f(y) + \mathbb{E} \left[V(y') | y \right] \right) \text{ s.t. } y' = y + \mu(y) + \sigma(y) \varepsilon$$

• Continuous-time, V(y) can be written as

$$V(y) = \mathbb{E}_{t} \left[f(y_{t}) dt + \int_{t+dt}^{\infty} e^{-r(s-t)} f(y_{s}) ds | y_{t+dt} = y_{t} + \mu(y_{t}) dt + \sigma(y_{t}) dZ_{t} \right]$$

$$= f(y) dt + e^{-r \cdot dt} \mathbb{E}_{t} \left[\int_{t+dt}^{\infty} e^{-r(s-t-dt)} f(y_{s}) ds | y_{t+dt} = y_{t} + \mu(y_{t}) dt + \sigma(y_{t}) dZ_{t} \right]$$

$$= f(y) dt + e^{-r \cdot dt} \mathbb{E}_{t} \left[\mathbb{E}_{t+dt} \left(\int_{t+dt}^{\infty} e^{-r(s-t-dt)} f(y_{s}) ds | y_{t+dt} = y_{t} + \mu(y_{t}) dt + \sigma(y_{t}) dZ_{t} \right) \right]$$

$$= f(y) dt + (1 - rdt) \mathbb{E}_{t} \left[V(y_{t} + \mu(y) dt + \sigma(y_{t}) dZ_{t}) \right]$$

$$= f(y) dt + (1 - rdt) \mathbb{E}_{t} \left[V(y_{t}) + V'(y_{t}) \mu(y_{t}) dt + V'(y_{t}) \sigma(y_{t}) dZ_{t} + \frac{1}{2} V''(y_{t}) \sigma^{2}(y_{t}) dt \right]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Valuation or Halmilton-Jacobi-Bellman (HJB) Equation (2)

Expansion of RHS:

$$V(y) = f(y) dt + (1 - rdt) \left[V(y) + V'(y) \mu(y) dt + \frac{1}{2} V''(y) \sigma^{2}(y) dt \right]$$

= $f(y) dt + V(y) + V'(y) \mu(y) dt + \frac{1}{2} V''(y) \sigma^{2}(y) dt$
 $-rV(y) dt - rV'(y) \mu(y) (dt)^{2} - r\frac{1}{2} V''(y) \sigma^{2}(y) (dt)^{2}$

- From higher to lower orders, until non-trivial identity
 - At order O(1), V(y) = V(y), trivial identity
 - At order O (dt), non-trivial identity

$$0 = \left[f(y) + V'(y)\mu(y) + \frac{1}{2}V''(y)\sigma^{2}(y) - rV(y)\right]dt$$

As a result, we have

$$\underbrace{rV(y)}_{\text{required return}} = \underbrace{f(y)}_{\text{flow (dividend) payoff}} + \underbrace{V'(y) \mu(y) + \frac{1}{2}\sigma^2(y) V''(y)}_{\text{local change of value function (capital gain, long-term payoffs)}}$$

That is how I write down value functions for any process (later I will introduce jumps)

General Solution for GBM process with Linear Flow Payoffs

In the Leland setting, the model is special because

$$f\left(y
ight)=a+by,$$
 $\mu\left(y
ight)=\mu y,$ and $\sigma\left(y
ight)=\sigma y$

It is well known that the general solution to V (y) is

$$V(y) = \frac{a}{r} + \frac{b}{r-\mu}y + K_{\gamma}y^{-\gamma} + K_{\eta}y^{\eta}$$

where the "power" parameters are given by

$$\begin{aligned} -\gamma &= -\frac{\mu - \frac{1}{2}\sigma^2 + \sqrt{\left(\frac{1}{2}\sigma^2 - \mu\right)^2 + 2\sigma^2 r}}{\sigma^2} < 0, \\ \eta &= -\frac{\mu - \frac{1}{2}\sigma^2 - \sqrt{\left(\frac{1}{2}\sigma^2 - \mu\right)^2 + 2\sigma^2 r}}{\sigma^2} > 1 \end{aligned}$$

• The constants K_{γ} and K_{η} are determined by boundary conditions

Side Note: How Do You Get Those Two Power Parameters

- Those two power parameters -γ and η are roots to the fundamental quadratic equations
- Consider the homogenous ODE:

$$rV(y) = \mu y V'(y) + \frac{1}{2}\sigma^2 y^2 V''(y)$$

• Guess the $V(y) = y^{x}$, then $V'(y) = xy^{x-1}$ and $V''(y) = x(x-1)y^{x-2}$

$$ry^{x} = \mu xy^{x} + \frac{1}{2}\sigma^{2}x(x-1)y^{x}$$

$$r = \mu x + \frac{1}{2}\sigma^{2}x(x-1)$$

$$0 = \frac{1}{2}\sigma^{2}x^{2} + \left(\mu - \frac{1}{2}\sigma^{2}\right)x - r$$

• $-\gamma$ and η are the two roots of this equation

Debt Valuation (1)

For debt, flow payoff is C so

$$D\left(\delta\right) = \frac{C}{r} + K_{\gamma}\delta^{-\gamma} + K_{\eta}\delta^{\eta}$$

- Two boundary conditions
 - ▶ When $\delta = \infty$, default never occurs, so $D(\delta = \infty) = \frac{C}{r}$ perpetuity. Hence $K_{\eta} = 0$ (otherwise, D goes to infinity)

• When $\delta = \delta_B$, debt value is $\frac{(1-\alpha)\delta_B}{r-\mu}$. $D(\delta_B) = \frac{(1-\alpha)\delta_B}{r-\mu}$ implies that

$$\frac{C}{r} + K_{\gamma} \delta_B^{-\gamma} = \frac{(1-\alpha)\,\delta_B}{r-\mu} \Rightarrow K_{\gamma} = \frac{\frac{(1-\alpha)\delta_B}{r-\mu} - \frac{C}{r}}{\delta_B^{-\gamma}}$$

Debt Valuation (2)

We obtain the closed-form solution for debt value

$$D(\delta) = \frac{C}{r} + \left(\frac{\delta}{\delta_B}\right)^{-\gamma} \left(\frac{(1-\alpha)\delta_B}{r-\mu} - \frac{C}{r}\right)$$
$$= \left(\frac{\delta}{\delta_B}\right)^{-\gamma} \frac{(1-\alpha)\delta_B}{r-\mu} + \left(1 - \left(\frac{\delta}{\delta_B}\right)^{-\gamma}\right) \frac{C}{r}$$

Present value of 1 dollar contingent on default:

$$\mathbb{E}\left[e^{-r\tau_{B}}\right] = \left(\frac{\delta}{\delta_{B}}\right)^{-\gamma} \text{ where } \tau_{B} = \inf\left\{t : \delta_{t} < \delta_{B}\right\}$$

The debt value can also be written in the following intuitive form

$$D(\delta) = \mathbb{E}\left[\int_{0}^{\tau_{B}} e^{-rs} C ds + e^{-r\tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right]$$

$$= \mathbb{E}\left[\frac{C}{r} \left(-\int_{0}^{\tau_{B}} de^{-rs}\right) + e^{-r\tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right]$$

$$= \mathbb{E}\left[\frac{C}{r} \left(1-e^{-r\tau_{B}}\right) + e^{-r\tau_{B}} \frac{(1-\alpha) \delta_{B}}{r-\mu}\right]$$

SAC

Equity Valuation (1)

• For equity, flow payoff is $\delta_t - (1 - \tau) C$, so

$$E\left(\delta\right) = \frac{\delta}{r-\mu} - \frac{\left(1-\tau\right)C}{r} + K_{\gamma}\delta^{-\gamma} + K_{\eta}\delta^{\eta}$$

- ▶ When $\delta = \infty$, equity value cannot grow faster than first-best firm value which is linear in δ . So $K_{\eta} = 0$
- When $\delta = \delta_B$, we have

$$E\left(\delta_{B}\right) = \frac{\delta_{B}}{r-\mu} - \frac{\left(1-\tau\right)C}{r} + K_{\gamma}\delta_{B}^{-\gamma} = 0 \Rightarrow K_{\gamma} = \frac{\frac{\left(1-\tau\right)C}{r} - \frac{\delta_{B}}{r-\mu}}{\delta_{B}^{-\gamma}}$$

Thus

$$E(\delta) = \underbrace{\frac{\delta}{r-\mu} - \frac{(1-\tau)C}{r}}_{\text{Equity value if never defaults (pay (1-\tau)C forever)}}_{\left(\frac{\left(1-\tau\right)C}{r} - \frac{\delta_B}{r-\mu}\right)\left(\frac{\delta}{\delta_B}\right)^{-\gamma}}_{\text{Option value of default}}$$

Equity Valuation (2)

Finally, smooth pasting condition

$$0 = E'(\delta)|_{\delta=\delta_B}$$

= $\frac{1}{r-\mu} + \left(\frac{(1-\tau)C}{r} - \frac{\delta_B}{r-\mu}\right)(-\gamma)\left(\frac{\delta}{\delta_B}\right)^{-\gamma-1} \frac{1}{\delta_B}\Big|_{\delta=\delta_B}$
= $\frac{1}{r-\mu} + (-\gamma)\left(\frac{(1-\tau)C}{r\delta_B} - \frac{1}{r-\mu}\right)$

Thus

$$\delta_B = (1 - \tau) C \frac{r - \mu}{r} \frac{\gamma}{1 + \gamma}$$

What if the firm can decide optimal coupon

- At t = 0, what is the optimal capital structure (leverage)?
- ► Given δ_0 and C, the total levered firm value $v(\delta_0) = E(\delta_0) + D(\delta_0)$ is

▶ Realizing that δ_B is linear in C, we can find the optimal C* that maximizing the levered firm value to be

$$C^* = \frac{\delta_0}{r - \mu} \frac{r \left(1 + \gamma\right)}{\left(1 - \tau\right) \gamma} \left(1 + \gamma + \frac{\alpha \gamma \left(1 - \tau\right)}{\tau}\right)^{-1/\gamma}$$

- Important observation: optimal C* is linear in δ₀! So called scale-invariance
 - It implies that if the firm is reoptimizing, its decision is just some constant scaled by the firm size

Trade-off Theory: Economics behind Leland (1994)

- Benefit: borrowing gives debt tax shield (DTS)
- Equity holders makes default decision ex post
- > The firm fundamental follows GBM, persistent income shocks
- After enough negative shocks, equity holders' value of keeping the firm alive can be really low
- Debt obligation is fixed, so when δ_t is sufficiently low, it is optimal to default
 - Debt-overhang—Equity holders do not care if default impose losses on debt holders
- ▶ But, at time zero when equity holders issue debt, debt holders price default in $D(\delta_0)$
 - And equity holders will receive $D(\delta_0)!$
- Hence equity holders optimize E (δ₀) + D (δ₀), realizing that coupon C will affect DTS (positively) and bankruptcy cost (negatively)
- If equity holders can commit ex ante about ex post default behavior, what do they want to do?

Leland, Goldstein and Ju (2000, Journal of Business)

- ► There are two modifications relative to Leland (1994):
- First, directly modelling pre-tax cashflows so-called EBIT, rather than after-tax cashflows
- It makes clear that there are three parties to share the cashflows: equity, debt, and government
- When we take comparative statics w.r.t. tax rate τ, in Leland (1994) you will ironically get that levered firm value ↑ when τ ↑
 - In Leland, raising τ does not change δ_t (which is after-tax cashflows)

▶ In LGJ, after-tax cashflows are $(1 - \tau) \delta_t$, so raising τ lowers firm value

Leland, Goldstein and Ju (2000, Journal of Business)

- Second, more importantly, allowing for firms to upward adjust their leverage if it is optimal to do so in the future
 - When future fundamental goes up, leverage goes down, optimal to raise more debt
 - Need fix cost to do so—otherwise tend to do it too often
- Key assumption for tractability: when adjusting leverage, the firm has to buy back all existing debt
 - Say that this rule is written in debt covenants
 - ► As a result, there is always one kind of debt at any point of time
- After buying back, when equity holders decide how much debt to issue, they are solving the same problem again with new firm size
 - But the model is scale invariant, so the solution is the same (except a larger scale)
- ► F face value. A firm with (δ, F) faces the same problem as $(k\delta, kF)$

Optimal Policies in LGJ

•
$$\frac{\delta_B}{\delta_0} = \psi$$
: default factor, $\frac{\delta_U}{\delta_0} = \gamma$: leverage adjustment factor

(日)、

э

 LGJ: can precommit to γ. No precommitment in Fischer-Heinkel-Zechner (1989)

How Do We Model Finite Maturity

- ▶ Perpetual debt in Leland (1994). In practice debt has finite maturity
- Debt maturity is very hard to model in a dynamic model
- You can do exponentially decaying debt (Leland, 1994b, 1998)
- Rough idea: what if your debt randomly matures in a Poisson fashion with intensity 1/m?
- Exponential distribution, the expected maturity is $\int_0^\infty x \frac{1}{m} e^{-x/m} dx = m$
- It is memoriless—if the debt has not expired, looking forward the debt price is always the same!
- Actually, you do not need random maturing. Exponential decaying coupon payment also works!
- So, debt value is $D(\delta)$, not $D(\delta, t)$ where t is remaining maturity

► If all debt maturity is i.i.d, large law of numbers say that at [t, t + dt], ¹/_mdt fraction of debt mature

Leland (1998)

- Using exponentially decaying finite maturity debt
- Equity holders can ex post choose risk

$$\sigma \in \{\sigma_H, \sigma_L\}$$

- Research question: how does asset substitution work in this dynamic framework? How does it depend on debt leverage and debt maturity?
- Typically with default option, asset substitution occurs optimally (default option gets more value if volatility is higher)
- With asset substitution, the optimal maturity is shorter, consistent with the idea that short-term debt helps curb agency problems (numerical result, not sure robust)
- Quantitatively, agency cost due to asset substitution is small

Leland (1998) (2)

• Assume threshold strategy that there exists δ_S s.t.

$$\sigma = \sigma_H$$
 for $\delta < \delta_S$ and $\sigma = \sigma_L$ for $\delta \ge \delta_S$

- Solve for equity, debt, DTS, BC the same way as before, with one important change
- ▶ Need to piece solutions on $[\delta_B, \delta_S)$ and $[\delta_S, \infty)$ together
- $-\gamma_H, \eta_H, -\gamma_L, \eta_L$: solutions to fundamental quadratic equations

$$D^{H}(\delta) = \frac{C}{r} + K_{\gamma}^{H} \delta^{-\gamma_{H}} + K_{\eta}^{H} \delta^{\eta_{H}} \text{ for } [\delta_{B}, \delta_{S}]$$
$$D^{L}(\delta) = \frac{C}{r} + K_{\gamma}^{L} \delta^{-\gamma_{L}} + K_{\eta}^{L} \delta^{\eta_{L}} \text{ for } [\delta_{S}, \infty)$$

- Four boundary conditions to get K_{γ}^{H} , K_{η}^{H} , K_{γ}^{L} , K_{η}^{L}
- ► $K_{\eta}^{L} = 0$ because $D(\delta = \infty) < \frac{C}{r}$. The other three: $D^{H}(\delta_{S}) = D^{L}(\delta_{S})$ (value matching), $D^{H'}(\delta_{S}) = D^{L'}(\delta_{S})$ (smooth pasting), $D^{H}(\delta_{B}) = \frac{(1-\alpha)\delta_{B}}{r-\mu}$ (value matching)
 - Here, smooth pasting at δ_S always holds, because Brownian crosses δ_S "super" fast. The process does not stop there (like at δ_B)

Leland and Toft (1996)

- Deterministic maturity, but keep uniform distribution of debt maturity structure
- Say we have debts with a total measure of 1, maturity is uniformly distributed U [0, T], same principal P, same coupon C
- Tough: now debt price is $D(\delta, t)$, need to solve a PDE
- Equity promises to keep the same maturity structure in the future
- Equity holders' cashflows are

$$\delta_t dt - (1 - \tau) C dt - \frac{1}{T} dt \left(P - D\left(\delta, T \right) \right)$$

- Cashflows δ_tdt; Coupon Cdt; and Rollover losses/gains
- Over [t, t + dt], there is $\frac{1}{T}dt$ measure of debt matures, equity holders need to pay

$$\frac{1}{T}dt\left(P-D\left(\delta,T\right)\right)$$

as equity holders get $D(\delta, T) \stackrel{1}{T} dt$ by issuing new debt

Leland and Toft (1996)

First step: solve the PDE

$$rD\left(\delta,t\right) = C + D_{t}\left(\delta,t\right) + \mu\delta D_{\delta}\left(\delta,t\right) + \frac{1}{2}\sigma^{2}\delta^{2}D_{\delta\delta}\left(\delta,t\right)$$

Boundary conditions

$$D(\delta = \infty, t) = \frac{C}{r} (1 - e^{-rt}) + Pe^{-rt}: \text{ defaultless bond}$$

$$D(\delta = \delta_B, t) = (1 - \alpha) \frac{\delta_B}{r - \mu}: \text{ defaulted bond}$$

$$D(\delta, 0) = P \text{ for } \delta \ge \delta_B: \text{ paid back in full when it matures}$$

- Leland-Toft (1996) get closed-form solutions for debt values; have a look
 - Better know the counterpart of Feyman-Kac formula. The point is to know it admits closed-form solution

Leland and Toft (1996)

Equity value satisfies the ODE

$$rE\left(\delta\right) = \delta - (1 - \tau) C + \frac{1}{T} \left[D\left(\delta, T\right) - P\right] + \mu \delta E_{\delta}\left(\delta\right) + \frac{1}{2}\sigma^{2}\delta^{2}E_{\delta\delta}\left(\delta\right)$$

- This is also very tough, given the complicated form of $D(\delta, T)!$
- Leland and Toft have a trick (Modigliani-Miller idea): $E(\delta) =$

$$v\left(\delta\right) - \frac{1}{T} \int_{0}^{T} D\left(\delta, t\right) dt = \frac{\delta}{r - \mu} + DTS\left(\delta\right) - BC\left(\delta\right) - \frac{1}{T} \int_{0}^{T} D\left(\delta, t\right) dt$$

- $DTS(\delta)$ and $BC(\delta)$ are much easier to price
 - $DTS(\delta)$ is the value for constant flow payoff τC till default occurs
 - $BC\left(\delta
 ight)$ is the value of bankruptcy cost incurred on default
 - We have derived them given δ_B
- After getting $E(\delta; \delta_B)$, δ_B is determined by smooth pasting $E'(\delta_B; \delta_B) = 0$
- In He-Xiong (2012), we introduce market trading frictions for corporate bonds
 - ► Some deadweight loss during trading, the above trick does not work

Calculation of Debt Tax Shield

- Let us price $DTS(\delta)$ which is the value for constant flow payoff τC till default occurs
- We can have

$$DTS(\delta) = \mathbb{E}\left[\int_{0}^{\tau_{B}} e^{-rs} \tau C ds\right]$$
$$= \mathbb{E}\left[\frac{\tau C}{r} \left(1 - e^{-r\tau_{B}}\right)\right] = \frac{\tau C}{r} \left(1 - \left(\frac{\delta}{\delta_{B}}\right)^{-\gamma}\right)$$

• Or, $F(\delta) = DTS(\delta)$

$$rF(\delta) = \tau C + \mu \delta F_{\delta}(\delta) + \frac{1}{2}\sigma^{2}\delta^{2}F_{\delta}(\delta)$$
$$F(\delta) = \frac{\tau C}{r} + K_{\gamma}\delta^{-\gamma} + K_{\eta}\delta^{\eta}$$

plugging $F(\delta_B) = 0$ and $F(\infty) = \frac{\tau C}{r}$ (so $K_{\eta} = 0$) we have

$$F(\delta) = \frac{\tau C}{r} \left(1 - \left(\frac{\delta}{\delta_B} \right)^{-\gamma} \right)$$

MELLA-BARRAL and PERRAUDIN (1997) (1)

- How to model negotiation and strategic debt service?
- Consider a firm producing one widget per unit of time, random widget price

$$dp_t/p_t = \mu dt + \sigma dZ_t$$

- Constant production cost w > 0 so cash flows are $p_t w$
- If debt holders come in to manage the firm, cash flows are $\xi_1 p_t \xi_0 w$ with $\xi_1 < 1$ and $\xi_0 > 1$
- Even without debt, pt can be so low that shutting down the firm is optimal
- This is so called "operating leverage"
 - One explanation for why Leland models predict too high leverage relative to data: Leland model includes operating leverage
- ▶ For debt holders, if they take over, value is X (p) (need to figure out their hypothetical optimal stopping time by using smooth-pasting condition)

MELLA-BARRAL and PERRAUDIN (1997) (2)

- Now imagine the original coupon is b > 0
- When pt goes down, what if equity holders can make a take-it-or-leave-it offer to debt holders?
- Denote the equilibrium coupon service s (p), and resulting debt value L (p)
- In equilibrium there exist two thresholds $p_c < p_s$
 - When $p_t \ge p_s$, s(p) = b, nothing happens
 - When p_t ∈ (p_c, p_s), we have s (p) < b and L (p) = X (p). As long as debt service is less than the contracted coupon, the value of debt equals that of debtholders' outside option X(p)</p>
 - When p_t hits p_c , liquidating the firm
- When s (p) < b we have s (p) = ξ₁pt ξ₀w which is as if debt holders take the firm.</p>
 - \blacktriangleright In the paper, there is some complication of $\gamma>0$ which is the firm's scrap value

Miao, Hackbarth, Morellec (2006)

Firm EBIT is $y_t \delta_t$, y_t aggregate business cycle condition

$$egin{array}{rcl} d\delta_t/\delta_t &=& \mu dt + \sigma dZ_t \ y_t &\in& \{y_G,y_B\} \colon ext{Markov Chain} \end{array}$$

- Exponentially decaying debt, etc, same as Leland (1998)
- ▶ $\delta_B^G < \delta_B^B$, default more in *B*. Help explain credit spread puzzle
 - Bond seems too cheap in the data. If bond payoff is lower in recession, then it requires a higher return
- Lots of papers about credit spread puzzle use this framework

$$d\delta_t/\delta_t = \mu_s dt + \sigma_s dZ_t$$

where $s \in \{G, B\}$ or more

• ODE in vector:
$$x = \ln(\delta)$$
, $\mathbf{D}(x) = \left[D^{G}(x), D^{B}(x)\right]'$

$$r\mathbf{D}(x) = c\mathbf{1}_{2\times 1} + \mu_{2\times 2}\mathbf{D}'(x) + \frac{1}{2}\Sigma_{2\times 2}\mathbf{D}''(x)$$

see my recent Chen, Cui, He, Milbradt (2014) if you are interested

Debt Overhang Framework

- Investment decisions are made by shareholders to maximize the value of equity
- No renegotiation of debt contracts
- Debt holders cannot do real investment themselves (investments lost if not done by owners). No other distress costs.
- Question: Does the firm want to invest?
- Answer: The firm will forgo investment projects with NPV below the wealth transfer to debt holders plus any loss from inefficient decisions implied by the debt structure

Diamond-He (2014): *Will Short-term Debt Impose Stronger Overhang?*

- What is the maturity effect on debt overhang?
- Consider two otherwise identical firms, one with long-term 10 year debt and the other with short-term 5 year debt. They have the same initial leverage
- Note, short-term debt is very different from debt that has matured
 - Empirically, short-term debt means 3- or 5- year cutoff
- Say equity holders are investing right now
 - Which firm suffers more debt overhang?
- Say equity holders are facing dynamic investment opportunities

Which firm suffers more debt overhang?

Immediate Investment, Black-Scholes-Merton Setting (1)

Say a firm with asset value

$$\frac{dV_t}{V_t} = rdt + \sigma dZ_t$$

- ► The firm has a debt outstanding, with face value F_m and maturity m. At time m, the debt payoff is min (F_m, V_m) and equity payoff is max (V_m - F_m, 0)
- ► The equity value is $E(V_0, m)$ and debt value $D(V_0, m) = V_0 E(V_0, m)$
 - Remind you of European call option? That is how Black-Scholes paper gets published (they apply their stuff to corporate debt)
- Suppose that investment raises V₀ by ε. How much equity/debt gain?
- ▶ It is $Delta = E_V(V_0, m)!$ Debt delta is $D_V(V_0, m) = 1 E_V(V_0, m)$
- The higher the $D_V(V_0, m)$ the greater the debt overhang

Immediate Investment, Black-Scholes-Merton Setting (2)

- Benchmark result. Yes, short-term debt always has lower overhang!
- ▶ Proposition: Suppose $m_1 < m_2$. If we choose F_m so that $D(V_0, m_1) = D(V_0, m_2)$, then

$$D_V(V_0, m_1) < D_V(V_0, m_2)$$

- This result depends on constant volatility assumption
- Two period model, and suppose period-2 volatility depends on period-1 shock

$$\sigma = \sigma_L$$
 if $Z_1 > Q$ and $\sigma = \sigma_H$ otherwise

- ► Keep debt value constant. If $\sigma_L = \sigma_H = \varepsilon$, stronger long-term overhang; If $\sigma_L = 0$ and $\sigma_H = \varepsilon$, stronger short-term overhang
 - \blacktriangleright Use the fact that when $\varepsilon \rightarrow$ 0, long-term and short-term are the same
 - Often theorists can only rigorously show limit results, but they are important (qualitatively)!
- Intuition: if volatility is higher after interim bad news, short-term debt kills the firm but long-term debt allows equity to recover a lot

Future Investment, Leland Setting

• Given investment \tilde{i}_t , firm's cash flows are

$$d\delta_t/\delta_t = \tilde{i}_t dt + \sigma dZ_t$$

• Binary investment choice, cost $\lambda \delta \tilde{i}_t$, optimal threshold strategy (verified later)

$$i(\delta) = i$$
 if $\delta > \delta_i$ and $i(\delta) = 0$ otherwise

- ► Zero-coupon debt with principal *P*. Equity holders refinance 1/m fraction, so net cashflow $(D(\delta) P)/m$ every period.
- Equity's cash flow:

$$\delta_t dt - \lambda \delta_t \widetilde{i}_t dt + (D(\delta_t) - P) / m \cdot dt$$

• Equity defaults when δ_t hits δ_B

Debt and Equity Valuations

For debt

$$rD\left(\delta\right) = i\left(\delta\right)D'\left(\delta\right) + \frac{\delta^{2}\sigma^{2}}{2}D''\left(\delta\right) + \frac{1}{m}\left(P - D\left(\delta\right)\right)$$

with solution $(p = \frac{P}{1+mr})$

$$D\left(\delta\right) = \begin{cases} p + A_1 \delta^{-\gamma_1} & \text{if } \delta > \delta_i \\ p + A_2 \delta^{-\gamma_2} + A_3 \delta^{-\gamma_3} & \text{if } \delta \in [\delta_B, \delta_i] \end{cases}$$

- A₁ < 0, A₂, A₃ determined by value-matching at δ_i and δ_B and smooth-pasting at δ_i
 - Why smooth-pasting at δ_i ?

Equity:

$$rE\left(\delta\right) = \max_{i} \delta\left(1 - \lambda i\left(\delta\right)\right) + i\left(\delta\right)\delta E'\left(\delta\right) + \frac{\delta^{2}\sigma^{2}}{2}E''\left(\delta\right) - \frac{1}{m}\left(P - D\left(\delta\right)\right)$$

▶ Optimal thresholds $E'(\delta_i) = \lambda$ and $E'(\delta_B) = 0$

► It is easier to solve for levered firm value $V(\delta)$ first and then $E(\delta) = V(\delta) - D(\delta)$

Proof of Unique Investment Threshold

- Useful technique in other situations. This also proves optimality of threshold strategy for investment
- $E'(\delta_B) = 0$, and $E'(\delta = \infty) = \frac{1-\lambda i}{r-i} > \lambda$
 - $E(\delta = \infty) = \frac{1-\lambda i}{r-i}\delta > \frac{1}{r}\delta$, i.e., $\lambda r < 1$ for investment being efficient
- Say there are potentially multiple points that E' (δ_i) = λ. Take the smallest and construct equity valuation
- ▶ Say $\delta_2 > \delta_1 > \delta_i$, $E'(\delta_1) = E'(\delta_2) = \lambda$ but $E''(\delta_1) < 0$ and $E''(\delta_2) > 0$
- Find some middle point δ_3 with $E'(\delta_3) < \lambda$, $E''(\delta_3) = 0$ and $E'''(\delta_3) > 0$
- Taking derivative of equity equation again and evaluate at $\delta_3 > \delta_i$

$$(r-i) E'(\delta_3) - 1 + \lambda i = \underbrace{\left(i + \sigma^2\right) \delta_3 E''(\delta_3)}_{0} + \underbrace{\frac{\sigma^2 \delta_3^2}{2} E'''(\delta_3)}_{>0} + \underbrace{\frac{1}{m} D'(\delta_3)}_{>0} > 0$$

► But $(r-i) E'(\delta_3) - 1 + \lambda i < (r-i) \lambda - 1 + \lambda i = \lambda r - 1 < 0$, contradiction!

Optimal debt maturity

• Without investment, long-term debt m = 0 is optimal (Leland-Toft)

Two ways to make long-term debt inferior: 1) investment, so debt overhang 2) investor liquidity shocks with early consumption needs