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Short-term debt in financial intermediation
I One of the most distinct features of banks is their reliance on
short-term debt

I Deposits represent over three-quarters of funding of US
commercial banks (Hanson, Shleifer, Stein, and Vishny, 2015)

I Not limited to deposits: banks and shadow banks rely on
creditors in wholesale funding markets (Adrian and Shin, 2010)

I Reliance on short-term debt makes banks and other financial
institutions prone to fragility and runs

I Two lines of theories highlight different bank functions and
roles of short-term debt:

I Banks’core function is to provide liquidity to their depositors,
which is amplified by government guarantees

I Banks’short-term debt provides market discipline against risk
shifting, increasing the effi ciency of banks’investments

I Both lines of theories exhibit key role for incentives in shaping
banks’capital structure choices raising questions about
optimality of short-term debt and implications for fragility and
welfare



Providing guidance using theory
I These issues involve complex equilibrium interactions
I Developing a model to evaluate the full scope of the problem
requires understanding of:

I (a) How runs and fragility respond to banks’choices of
short-term debt

I (b) Given (a), how banks detrmine short-term debt
I For a given original motivation, such as liquidity provision,
discipline, guarantees

I (c) Given (a) and (b), how other conditions are determined
I For example, government guarantees, general equilibrium
behavior in banking sector, etc.

I The two models I will cover in detail provide recent analyses
of this kind for the two leading approaches:

I Allen, Carletti, Goldstein, Leonello (2018): Short-term debt is
driven by liquidity provision and government guarantees

I Eisenbach (2017): Short-term debt is driven by market
discipline



Government Guarantees and
Financial Stability

Allen, Carletti, Goldstein, Leonello

Journal of Economic Theory, 2018



Liquidity creation, fragility, and guarantees

I Liquidity creation, fragility, and guarantees (Diamond and
Dybvig, 1983):

I Banks provide risk sharing against early liquidity needs to
depositors, by offering demandable debt, thus improving their
welfare

I But, the deposit contracts expose banks to the risk of a run as
depositors may withdraw early (coordination failure)

I Government guarantees, such as deposit insurance, have been
proposed as a way to address the problem and eliminate panic

I The problem with guarantees:
I They are costly when runs do occur
I They encourage banks to increase short-term debt (Calomiris,
1990), fragility (Demirgüç-Kunt and Detragiache, 1998),
and/or risk (Gropp, Grundl, and Guttler, 2014)

I Goal: understand equilibrium interactions, fragility, Banks’
choices, and desirability of guarantees



Modelling framework

I Follow Goldstein and Pauzner (2005), where:
I Depositors’withdrawal decisions and probability of runs are
determined by the banking contract using global-games
methodology

I Banks set deposit contract to provide risk sharing against early
liquidity need, taking into account the effect on fragility

I Two ineffi ciencies:
I Ineffi cient runs destroy good investments
I Banks scale down liquidity creation (e.g., reducing deposit
rates) in the attempt of limiting runs

I Introduce different schemes of guarantees to analyze
interaction between fragility, banks’choices, and guarantees

I Previous theoretical literature (e.g., Keeley, 1990; Cooper and
Ross, 2002; Keister, 2016) does not endogenize run probability,
banks’choices, and guarantees at the same time



Results in a nutshell
I Guarantees against panic runs (similar to Diamond and
Dybvig, 1983):

I Can eliminate panics altogether, but induce banks to increase
demandable debt

I This increases the probability of fundamental-based runs and
may increase the probability of runs overall

I But, this is not indication of moral hazard, as guarantees are
never paid in equilibrium

I Guarantees allow banks to provide more risk sharing and
liquidity, increasing welfare despite greater fragility

I Guarantees against panic runs and fundamental failures
I More realistic and potentially more desirable
I They are costly and so limited; reduce probability of runs but
do not eliminate them

I They distort banks’choices, since banks do not internalize the
effect on cost to government

I Usually, banks choose too little demandable debt, as they do
not internalize that runs can reduce fundamental failures and
reduce cost to government



Environment and Technology
I Three date (t = 0, 1, 2) economy with a continuum [0, 1] of
banks and a continuum [0, 1] of consumers in every bank

I At date 0, banks raise one unit of funds from consumers in
exchange for a demandable deposit contract and invest in a
risky project

I The project returns 1 if liquidated at date 1 and R̃ at date 2
with

R̃ =
{
R > 1 w. p. p(θ)
0 w. p. (1− p(θ))

I Fundamental shock: θ ∼ U [0, 1] is the fundamental of the
economy; realized at date 1 and become public at date 2

I Probability of success: assume p
′
(θ) > 0 and Eθ [p(θ)]R > 1

I For simplicity, p(θ) = θ

I Banking sector is competitive, so that deposit contracts
maximize consumers’welfare; not taking into account
externalities



Preferences

I Consumers are risk-averse (RRA > 1 for any c ≥ 1) and
endowed with 1 unit each at date 0

I At date 0 they deposit at the bank in exchange for a deposit
contract (c1, c̃2)

I Consumers are ex ante identical but each has probability λ of
suffering a liquidity shock and having to consume at date 1

I Uncertainty is resolved privately at the beginning of date 1

I Consumers derive utility both from consuming at date 1 or 2
and from enjoying a public good g

U (c, g) = u(c) + v(g)

with u′(c) > 0, v ′(g) > 0, u′′(c) < 0, v ′′(g) < 0,
u(0) = v(0) = 0 and

u′(1) < v ′(g) < u′(0)



Depositors’information

I At the beginning of date 1, each depositor receives a private
signal xi regarding the fundamental of the economy θ of the
form

xi = θ + εi ,

with εi ∼ U [−ε,+ε] being i.i.d. across agents. Most of the
time, we focus on ε very close to 0

I Based on the signal, depositors update their beliefs about the
fundamental θ and the actions of the other depositors

I Early depositors always withdraw at date 1
I Late depositors withdraw at date 1 if they receive a low
enough signal

I The bank satisfies early withdrawal demands by liquidating its
investments. If proceeds are not enough, depositors receive a
pro-rata share



Decentralized equilibrium

I Combination of
I Bayesian Nash equilibrium among depositors at t = 1
I Competitive equilibrium among banks at t = 0

I At date 1:
I Fraction of depositors who withdraw: n ≥ λ
I Depositor payoffs (depending on bank liquidity):

liquid: n ≤ 1
c1

illiquid: n > 1
c1

wait 1−nc1
1−n R w. p. θ 0

withdraw c1 1
n

I Unique equilibrium: n = 1 below θ∗; n = λ above θ∗

I At date 0:
I Banks set cD1 to maximize expected utility of depositors



The decentralized solution: Depositors’withdrawals

I θ(c1) is the boundary for "fundamental runs"; determined as the indifference
point assuming others don’t run:

u(c1) = θu
(
1− λc1
1− λ

R
)

I θ∗(c1) is the cutoff for "panic runs"; determined as the indifference point
assuming uniform distribution on depositors who withdraw:∫ 1

c1

n=λ
θ∗u

(
1− nc1
1− n R

)
=
∫ 1

c1

n=λ
u(c1) +

∫ 1

n= 1
c1

u(
1
n
)

I Both thresholds θ(c1) and θ∗(c1) increase in c1



The decentralized solution: Types of crisis

I Banks fail when they are not able to repay the promised
repayment

I It can occur either at date 1 or 2

I At date 1, banks fail because of runs
I Low fundamentals below θ(c1)− anticipation of low returns at
date 2

I Panic between θ(c1) and θ∗(c1)− coordination failure among
depositors

I At date 2, banks fail when their asset returns 0
I Project fails with probability (1− θ)| θ > θ∗



The decentralized solution: The bank’s choice
I Given depositors’withdrawal decisions, at date 0 each bank chooses
c1 to maximize:∫ θ∗(c1)

0
u (1) dθ +

∫ 1
θ∗(c1)

[
λu(c1) + (1− λ)θu

(
1− λc1
1− λ

R
)]
dθ

+v(g)

I The optimal cD1 > 1 trades off:

I Better risk sharing; transferring consumption from patient to
impatient agents

I Against higher probability of runs
(

∂θ∗(c1)
∂c1

> 0
)

I Two ineffi ciencies related to panics:

I Banks offer too little risk sharing (liquidity creation) in
anticipation of the run: cD1 is lower than first best

I Runs lead to ineffi cient liquidation of bank investment for θ
∈ (θ(1), θ∗(cD1 ))

I Another ineffi ciency comes due to the fact that depositors are not
protected against fundamental failure



Government guarantees against panics

I A natural starting point to demonstrate the effect of government
guarantees is a scheme that guarantees against panic

I This is closest to Diamond-Dybvig, except that banking
contract will react to the scheme

I Specifically, depositors are guaranteed to receive cs =
1−λc1
1−λ R

when the bank’s project is successful at date 2, irrespective of how
many depositors have withdrawn at date 1

I Panic runs are eliminated but fundamental runs remain for θ
∈ [0, θ(c1)]

I Bank chooses cP1 to maximize∫ θ(c1)

0
u(1)dθ +

∫ 1
θ(c1)

[
λu(c1) + (1− λ)θu

(
1− λc1
1− λ

R
)]
dθ

+
∫ 1
0
v(g)dθ



Deposit contract under guarantees against panics
I Under guarantees against panic, cP1 solves:

λ
∫ 1

θ(c1)

[
u′(c1)− θu′

(
1− λc1
1− λ

R
)]
dθ +

−∂θ(c1)
∂c1

[
λu(c1) + (1− λ)θu

(
1− λc1
1− λ

R
)
− u(1)

]
= 0

I In decentralized solution, cD1 solves:

λ
∫ 1

θ∗(c1)

[
u′(c1)− θu′

(
1− λc1
1− λ

R
)]
dθ +

−∂θ∗(c1)
∂c1

[
λu(c1) + (1− λ)θ∗u

(
1− λc1
1− λ

R
)
− u(1)

]
= 0

I Result: cP1 > c
D
1 . Thus, θ(cP1 ) > θ(cD1 ) and possibly

θ(cP1 ) > θ∗(cD1 )
I Note: No distortion in the choice of cP1 as the guarantee
entails no disbursement for the government



Runs and welfare under the guarantees against panics
I As cP1 > c

D
1 , guarantees

I Increase the probability of fundamental runs and possibly runs
overall

I Two scenarios depicted below:

I But, guarantees increase depositors’expected utility from the
private good and increase overall welfare

I Increased short-term debt is not evidence of moral hazard
I It reflects better ability of banks to provide liquidity and risk
sharing



Adding guarantees against bank failure at date 2

I Still keep cs = 1−λc1
1−λ R at t = 2 iff the project succeeds

I Introduce guarantee c f 6= cs at date 2 if the bank project fails
I c f > 0 insures agents against fundamental risk and reduces
probability of fundamental runs

I But, it is costly as bank failures can occur and the government
has to reduce g to pay for the guarantee

I Questions:
I Does the government want to set c f > 0?
I How do banks respond?



Runs and deposit contract under additional guarantee

I Only fundamental runs occur. The threshold θ is the solution
to

u (c1) = θu
(
1− λc1
1− λ

R
)
+ (1− θ) u (c f ) ,

I The threshold θ increases in c1 and decreases in c f
I Each bank sets cF1 to maximize

∫ θ

0
u (1) dθ +

∫ 1

θ

 λu (c1) +

(1− λ)

[
θu
(
1−λc1
1−λ R

)
+

(1− θ) u (c f )

]  dθ

+E [v(g , c∗1 , c f )]

I Results show that dc
F
1

dc f
> 0. Thus, cF1 > c

P
1 for any c f > 0

I The bank does not internalize the reduction in g for the
provision of the guarantee



The government choice for additional guarantee
I Government chooses c f to maximize depositors’overall
expected utility

I Cost of the disbursement is internalized
I The effect on the bank’s choice of cF1 is also taken into
account

I The government chooses c f > 0 when u′ (0)− v ′ (g) > 0
I The government with a suffi ciently large endowment wants to
provide some guarantees to reduce runs

I Interestingly, there is a reverse moral hazard: the government
would choose higher short-term commitment for the bank:
cG1 > c

F
1

I This is because of lower expected utility from public good if no
runs occur:

θv(g) + (1− θ)v(g − (1− λ)c f ) < v (g)

I This is the only thing that is not internalized by the bank in
the model



Deposit insurance

I Depositors are guaranteed to receive a cs = c f = c whenever
their bank is not able to repay the promised repayment

I More realistic; similar to a standard deposit insurance scheme
with c being the lowerbound on depositors’payment

I Less desirable, because amount guaranteed is not tailored to
the cause and because guarantee might also imply payment at
date 1, which is never optimal

I Probability of both types of runs is reduced but both runs still
occur

I It is too costly to fully guarantee against panic when amount
of guarantee is the same in all cases

I Providing guarantees is costly and the market solution is
ineffi cient

I Again, banks internalize the effect of their choices on the run
probability, but not on the cost of providing the guarantee



Depositors’withdrawal decisions with deposit insurance

I Fundamental runs occur for θ < θ(c1, c) where θ(c1, c) solves

u(c1) = θu
(
1− λc1
1− λ

R
)
+ (1− θ)u(c)

I Panic runs occur now for θ < θ∗(c1, c) where

θ∗(c1, c) =

∫ n̂
n=λ u (c1) +

∫ 1
n=n̂ u(

1
n )−

∫ 1
n=λ u (c)∫ n

n=λ

[
u
( 1−nc1
1−n R

)
− u (c)

] ,

and n = R−c
Rc1−c and n̂ =

1
c1

I The thresholds θ(c1, c) and θ∗(c1, c) increase with c1 and
decrease with c



Bank’s choice of the deposit contract under deposit
insurance

I When c < 1, each bank sets c1 now to maximize∫ θ∗

0
u (1) dθ +

∫ 1

θ∗
[λu(c1) + (1− λ)(θu

(
1− λc1
1− λ

R
)
+

+ (1− θ) u (c))]dθ + E [v (g , c∗1 , c)]

where θ∗ = θ∗(c1, c), and

E [v (g , c∗1 , c)] =
∫ θ∗

0
v (g) dθ+

+
∫ 1

θ∗
[θv(g) + (1− θ)v (g − (1− λ)c)] dθ

I The deposit contract cDI1 > cD1 , with
dcDI1
dc > 0 solves

λ
∫ 1

θ∗

[
u′(c1)− θRu′

(
1−λc1
1−λ R

)]
dθ+

− ∂θ∗

∂c1

[
λu(c1) + (1− λ)

(
θ∗u

(
1−λc1
1−λ R

)
+ (1− θ∗) u (c)

)
− u (1)

]
= 0



Government choice under deposit insurance

I The government has the same objective as the bank but
internalizes the costs of providing the guarantee while taking
cDI1 as given

I It can be shown that 0 < c < 1 if g is not too high
I In this case, government would like to choose a cG1 > c

DI
1 as

θ∗v(g) + (1− θ∗)v(g − (1− λ)c) < v (g)

I Liquidating banks early (e.g., via prompt corrective actions)
can be optimal as it allows to minimize the costs associated
with public intervention

I Despite the ineffi ciency of the market solution, this scheme
may lead to higher welfare than the decentralized solution



Conclusions

I Government guarantees present a complicated trade-off and
understanding it requires endogenizing banks’choices and
depositors’behavior in response to government intervention

I Increased demandable debt and fragility may be desirable as
they reflect greater liquidity provision by banks

I While banks’choices may be distorted, in many cases more
demandable debt is desirable

I Theoretical framework sheds new light on empirical results
and policy discussions



Rollover Risk as Market Discipline: A
Two-Sided Ineffi ciency

Eisenbach

Journal of Financial Economics, 2017



Short-term debt and market discipline

I Underlying theory (Calomiris and Kahn, 1991; Diamond and
Rajan, 2001):

I Leverage provides an incentive for bank equity holders and
managers to conduct risk shifting and not liquidate bad
projects

I Demandable debt provides discipline and induces liquidation if
creditors run upon receiving bad news

I Problems with market discipline:
I Insuffi cient discipline in good times (e.g. Admati et al., 2010):

I Increasing reliance on short-term funding and increasingly
risky activities

I Excessive discipline during crisis (e.g. Gorton and Metrick,
2012):

I Large-scale withdrawal of short-term funding affecting issuers
unrelated to housing



Modelling framework and key results

I Banks optimally choose debt maturity structure
I Short term debt disciplines risk taking

I Rollover risk modeled as global game
I Resolve multiplicity at interim stage
I Probability of a run can be characterized for underlying
parameters and banks’choices

I Embed in General equilibrium framework for amplification
effects across banks

I Excessive risk taking in good times
I Excessive liquidation in bad times



Model

I Three periods t = 0, 1, 2, agents risk neutral, discount rate 0
I A continuum [0, 1] of banks (i) and a continuum [0, 1] of
creditors (j) in every bank

I Every bank has a project:



Incentive problem

I Effi ciency requires:

Continue ⇔ θiX > `

I However, if bank is financed by a combination of debt and
equity, risk shifting incentives emerge (Jensen and Meckling,
1976), since liquidation proceeds go mostly to creditors

I Banker continues even if θiX < `

I For simplicity, assume that bank is financed only with debt
(focus on maturity choice)



Financing

I Investment at t = 0 funded by competitive creditors
I Each bank i has a continuum of creditors j ∈ [0, 1]
I Long-term debt:

I Face value Bi matures at t = 2

I Short-term debt:
I Face value Ri if withdrawn at t = 1
I Face value R2i if rolled over to t = 2

I Bank chooses maturity structure of debt:
I Fraction of short-term debt αi
I Fraction of long-term debt 1− αi

I Face values Bi and Ri adjust so creditors break even



Uncertainty and information

I Idiosyncratic risk for bank i :

θi drawn i.i.d. from Fs

I Aggregate risk state:

s ∈ {H, L} with Pr[s = H ] = p

I First-order stochastic dominance:

FH (θ) < FL(θ) for all θ ∈ (0, 1)

I Information at t = 1:
I Aggregate s: common knowledge
I Idiosyncratic θi : creditor ji observes signal xji = θi + σεji



Liquidation value

I Aggregate asset sales φ ∈ [0, 1] used in secondary sector
I Liquidation value = marginal product:

`(φ) with `′(φ) < 0

I In equilibrium:

EH [θX ] > EL[θX ]
⇒ φH < φL
⇒ `H > `L



Equilibrium

Combination of

1. Bayesian Nash equilibrium among creditors at t = 1

2. Competitive equilibrium among banks at t = 0



Creditor Coordination

I Fraction of creditors who withdraw: λ

I Bank illiquid if αλR > `

I Creditor payoffs

liquid illiquid
roll over θR2 0
withdraw R `

Complication:

I Liquidation value `
I enters payoff of all creditors at all banks
I depends on coordination outcomes at all banks

→ All creditors at all banks are interacting



Creditor equilibrium

With symmetric banks, for σ→ 0, the unique Bayesian Nash
equilibrium is in switching strategies around a threshold θ̂ given by

θ̂ =
(1+ α)R − `

R2

I For realizations θi > θ̂:
I All creditors ji roll over
I Bank i is liquid and project continues

I For realizations θi < θ̂:
I All creditors ji withdraw
I Bank i is illiquid and project is liquidated



Intuition

Creditor with signal x = θ̂ has to be indifferent:

Pr [ liquid ]× θ̂R2︸ ︷︷ ︸ = Pr [ liquid ]× R + Pr [il liquid ]× `︸ ︷︷ ︸
For σ→ 0, distribution of λ | θ̂ becomes uniform

Pr [ liquid ] = Pr
[
λ ≤ `

αR

]
= `

αR

Resulting in:
`

αR × θ̂R2 = `
αR × R +

[
1− `

αR

]
× `

⇒ θ̂ =
(1+ α)R − `

R2



Rollover risk

Ex ante rollover risk for bank i :

Pr
[

θi ≤
(1+ αi )Ri − `

R2i

]
I Depends on maturity structure αi

I Directly → increasing
I Indirectly through Ri

I Run is more likely for:

1 Bad idiosyncratic news (low θi )
2 Bad aggregate news (low `)



No aggregate risk

I No aggregate risk, FH = FL =: F

→ liquidation value deterministic, `H = `L =: `

I Bank’s problem:

max
α

∫ 1

θ̂
θ
(
X − αR2 − (1− α)B

)
dF (θ)

subject to F (θ̂) `+
∫ 1

θ̂
θR2 dF (θ) = 1

F (θ̂) `+
∫ 1

θ̂
θB dF (θ) = 1

θ̂ = (1+α)R−`
R 2

Above conditions implicitly define θ̂ as a function of α with

θ̂
′
(α) > 0



Optimal maturity structure
Without aggregate risk

I Bank problem becomes:

max
α
F
(
θ̂(α)

)
`+

∫ 1

θ̂(α)
θX dF (θ)− 1

I Bank chooses effi cient liquidation:

θ̂(α∗) =
`

X



With aggregate risk

I With aggregate risk, FH (θ) < FL(θ) for all θ ∈ (0, 1)
→ liquidation value uncertain, `H > `L

I Two opposing effects:

Effi ciency: Want less liquidation in bad state

`H
X
>
`L
X

Rollover risk: Get more liquidation in bad state

(1+ α)R − `H
R2

<
(1+ α)R − `L

R2



Optimal maturity structure
With aggregate risk

Bank trades off two ineffi ciencies:

θ̂H (α
∗) <

`H
X

and θ̂L(α
∗) >

`L
X



General equilibrium
Without aggregate risk

I Conditions implicitly defining θ̂(α) both depend on `
I Liquidation value ` depends on aggregate asset sales φ

→ Explicitly θ̂(α, φ)

I Competitive banks take φ as given
I choose α∗(φ)
I yielding θ̂ (α∗(φ), φ)

I Symmetry:
mass of assets sold = fraction of banks with θi < θ̂ (α∗(φ), φ)



General equilibrium
Without aggregate risk

I Competitive equilibrium allocation:

φCE = F
(

θ̂
(

α∗(φCE), φCE
))

with θ̂ (α∗(φ), φ) =
`(φ)

X

I First-best allocation:

φFB = F
(
`(φFB)
X

)
→ Without aggregate risk, CE achieves FB allocation



General equilibrium
With aggregate risk

I Competitive equilibrium allocation Φ = [φH , φL]:

ΦCE =
[
FH
(

θ̂H

(
α∗(ΦCE),ΦCE

))
, FL

(
θ̂L

(
α∗(ΦCE),ΦCE

))]
I First-best allocation:

ΦFB =
[
FH
(
`(φFBH )
X

)
, FL

(
`(φFBL )
X

)]
With FH (θ) < FL(θ) and Fs (`(φs )/X ) decreasing in φs

I Amplification:

`(φCEH ) > `(φ
FB
H ) > `(φ

FB
L ) > `(φ

CE
L )



Feedback loops
With aggregate risk



Conclusions

I Individual bank stability depends on

1 News about idiosyncratic return
2 News about aggregate conditions

I Effi ciency and market discipline diverge

→ Two-sided ineffi ciency, in bad and good times


