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Abstract

We develop a general-equilibrium asset pricing model incorporating dynamic

supergames of price competition. Price war risks can rise endogenously due to

declines in long-run consumption growth, because firms become effectively more

impatient for cash flows and their incentives to undercut prices are stronger. The

triggered price war risks amplify the initial shocks in long-run growth by narrowing

profit margins and discouraging customer base development. In the industries with

higher capacities of radical innovation, incentives of price undercutting are less

responsive to persistent growth shocks, and thus firms are more immune to price

war risks and thus long-run risks. Exploiting detailed patent, product price, brand-

perception survey, and Factiva news data, we find evidence for price war risks, which

are significantly priced. Our results shed new light on how long-run risks are priced

in time series and cross section through the forward-looking industry competition.
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1 Introduction

A price war refers to the situation in which rival firms fiercely undercut prices to gain
market shares. Price war risks are vital and concern investors, partly because product
markets are highly concentrated, featuring rich strategic competition among leading firms
(see, e.g. Autor et al., 2017; Loecker and Eeckhout, 2017).1 According to the U.S. Census
data, the top four firms within each 4-digit SIC industry account for about 48% of the
industry’s total revenue (see Appendix Figure C.6), and the top eight firms own over
60% market shares. However, little is known about how price war risks systematically
affect asset prices. This paper is the first to study endogenous price war risks and its
asset pricing implications.

We document three stylized facts that motivate our study. First, there is a significant
co-movement between aggregate profit margins of firms and long-run consumption
growth rates (Panel A and B of Figure 1).2 This comovement cannot be explained by the
sales composition changes across industries because we plot the average profit margins
across industries in Panel A and B. Second, price war coverage in the media and analyst
reports spikes up during periods with low long-run consumption growth rates (Panel C
and D). These two stylized facts together suggest that there is a systematic component
in price war risks. Third, the pattern that long-run consumption growth predicts one-
year-head profit margins is more pronounced in industries with low capacities of radical
innovation (Panels E and F). These empirical findings raise three relevant questions. What
fundamentally drives price war risks at the aggregate level? How are the heterogeneous
exposure to price war risks determined across industries? To what extent can the equity
premium be attributed to firms’ exposure to price war risks?

Our paper takes the first step to answer these three questions. First, we develop
a model which implies that persistent consumption growth shocks (as in Bansal and

1There has been extensive and constant media coverage on the implications of price war risks on stock
returns. We list a few of headline quotes in Appendix A.

2We focus on the co-movement between long-run consumption growth rates and profit margins, instead
of product markups, because profit margins are directly related to price war risks. Our stylized fact is
consistent with the literature, which suggests that profit margins are strongly procyclical (see, e.g. Machin
and Van Reenen, 1993; Hall, 2012; Anderson, Rebelo and Wong, 2018). Although markups and profit
margins are related, the empirical evidence on the cyclicality of markups is mixed, primarily because
measuring markups is challenging (Blanchard, 2009; Anderson, Rebelo and Wong, 2018). For example,
Domowitz, Hubbard and Petersen (1986), Nekarda and Ramey (2011, 2013), Hall (2014), and Braun and
Raddatz (2016) find that markups are procyclical. Bils (1987) and Chevalier and Scharfstein (1996) find
markups are countercyclical.
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Note: Panel A and Panel B plot the yearly time series of aggregate profit margins (simple average across 4-digit SIC industries) and
long-run growth rates of consumption, filtered by an HP filter with the smoothing parameter equal to 6.25 (Ravn and Uhlig, 2002).
Panel C and Panel D plot the price war media coverage and analyst coverage. Panels E and F plot long-run growth rates (annualized
based on filtered consumption growth in the last quarter of the year) against the one-year ahead percent change in Compustat-based
profit margins in industries with low (i.e. bottom tertile) and high (i.e. top tertile) values of innosimm. Innosimm is a measure of
industry-level innovation similarity (Jaffe, 1986; Bloom, Schankerman and Van Reenen, 2013, see Section 4.1 for its construction). An
industry has a low capacity of radical or distinctive innovation if rival firms conduct similar innovation (i.e. high values of innosimm).
Long-run growth rates of consumption in year t are measured by: (1) the average realized consumption growth in year t and year
t− 1, and (2) the consumption growth filtered by a Bayesian mixed-frequency approach as in Schorfheide, Song and Yaron (2018).
Two measures of profit margins are constructed using Compustat and NBER-CES Manufacturing Industry Database. We follow
Anderson, Rebelo and Wong (2018) to construct Compustat-based profit margins. Specifically, in each 4-digit SIC industry i and year
t, profit margins are computed as (Salesi,t−COGSi,t)/Salesi,t, where Salesi,t and COGSi,t are industry i’s total sales and costs of goods
sold based on firms in Compustat. Following Domowitz, Hubbard and Petersen (1986) and Allayannis and Ihrig (2001), we compute
NBER-CES-based profit margins as (Value of shipmentsi,t + ∆Inventoryi,t − Payrolli,t − Cost of materiali,t)/(Value of shipmentsi,t +

∆Inventoryi,t). We measure price war media coverage and analyst coverage using textual analysis. We follow Baker, Bloom and
Davis (2016) and quantify the prevalence of price wars using the targeted search approach, which is a simplest but at the same time
the most powerful approach in textual analysis (see, Loughran and McDonald, 2016). Specifically, the price war media coverage (in
percent) is the number of articles that contain the term “price war” or “price wars” normalized by the number of articles published
in the Wall Street Journal, the New York Times, and the Financial Times. We consider articles covering the US region, obtained from
the Dow Jones Factiva. The price war analyst coverage (in percent) is the number of analyst reports that contain the term “price war”
or “price wars” normalized by the number of analyst reports. We consider analyst reports covering the US region, obtained from
Thomson ONE Investext. Following Huang, Zang and Zheng (2014), we plot the price war analyst coverage after 1996, because the
coverage for the full text of analyst reports is limited before 1996. We list a few of examples of analyst reports in Appendix B.

Figure 1: Profit margins, price wars, and long-run growth rates.

Yaron, 2004) can drive price war risks. Second, in the model and the data, we show that
firms’ exposure to price war risks and thus long-run risks are higher if they are in the
industry with a lower capacity of radical innovation. Our results shed new light on how
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long-run risks are priced in the cross section (see, e.g. Bansal, Dittmar and Lundblad,
2005; Hansen, Heaton and Li, 2008; Bansal, Dittmar and Kiku, 2009; Malloy, Moskowitz
and Vissing-Jørgensen, 2009; Koijen et al., 2010; Constantinides and Ghosh, 2011; Ai,
Croce and Li, 2013; Kung and Schmid, 2015; Bansal, Kiku and Yaron, 2016; Dittmar and
Lundblad, 2017). Third, we use the calibrated model to quantify the impact of price war
risks. The model implies that about 30%− 40% of the equity premium explained by
long-run risks is attributed to price war risks.

Theoretically, what is a price war? A full-blown price war is a non-collusive price
competition, which serves as an enforcement device to sustain implicit collusion on
prices (see, e.g. Friedman, 1971; Green and Porter, 1984; Porter, 1985; Abreu, Pearce and
Stacchetti, 1986; Athey, Bagwell and Sanchirico, 2004; Sannikov and Skrzypacz, 2007).
More broadly, a price war can also be a collusive price competition in which prices
drop due to self-fulfilling declines in market power, not just initial demand declines (see,
e.g. Rotemberg and Saloner, 1986; Lambson, 1987; Haltiwanger and Harrington, 1991).
As profit margins are narrowed sufficiently, a full-blown price war will be triggered in
the equilibrium, featuring a regime shift from a collusive competition equilibrium to a
non-collusive competition equilibrium. Thus, price war risks are also inherently related
to the jump risks from the collusion regime to the non-collusion regime.

We study price war risks by developing a general-equilibrium asset pricing model
incorporating dynamic supergames of price competition among firms. Our baseline
model deviates from the standard long-run-risk model (Bansal and Yaron, 2004) mainly
in two aspects: (1) consumers have deep habits (see Ravn, Schmitt-Grohe and Uribe, 2006)
over firms’ products, and thus firms need to maintain their customer base; and (2) there
are a continuum of industries and each industry features dynamic Bertrand oligopoly
with differentiated products and implicit price collusion (Tirole, 1988, Chapter 6).3

In our baseline model, oligopolies can implicitly collude with each other on setting
high product prices and obtaining high profit margins.4 Given the implicit collusive
prices, a firm can boost up its short-run revenue by secretly undercutting prices to attract

3Tirole (1988, Chapter 6) builds oligopoly models with Bertrand price competition and obtains similar
price war implications as in the models of Cournot quantity competition (Green and Porter, 1984; Rotemberg
and Saloner, 1986).

4Even though explicit collusion is illegal in many countries including United States, Canada and most of
the EU due to antitrust laws, but implicit collusion in the form of price leadership and tacit understandings
still takes place. For example, Intel and AMD implicitly collude on prices of graphic cards and central
processing units in the 2000s, though a price war was waged between the two companies recently in
October 2018.
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more customers; however, deviating from collusive prices may reduce revenue in the
long run if the price undercutting behavior is detected and punished by the firm’s peers.
Following the literature (see, e.g. Green and Porter, 1984; Brock and Scheinkman, 1985;
Rotemberg and Saloner, 1986), we adopt the non-collusive Nash equilibrium as the
incentive-compatible punishment for deviation. The implicit collusive price levels depend
on firms’ deviation incentives: a higher implicit collusive price can only be sustained by a
lower deviation incentive, which is further shaped by firms’ tradeoff between short-term
and long-term cash flows. In other words, higher collusive prices are more difficult to
sustain when the long-run growth rate is lower, because future punishment becomes less
threatening when firms expect a persistent decline in aggregate consumption demand. As
a result, collusive prices decline following negative long-run-growth shocks, increasing
the risk of entering a full-blown price war. With large negative long-run-growth shocks,
collusive prices decline significantly, making the benefit of collusion exceed its cost. As a
result, firms optimally abandon collusion and the industry falls into the non-collusive
equilibrium—a full-blown price war occurs. Importantly, price wars amplify the initial
shocks in long-run growth by further narrowing down profit margins and discouraging
customer base development.

Our theory sheds new light on industries’ heterogeneous exposure to price war risks
and thus long-run risks. In the model and the data, we show that firms in the industries
with higher capacities of radical innovation (e.g. Jaffe, 1986; Christensen, 1997; Manso,
2011; Kelly et al., 2018) are more immune to price war risks. The capacity of radical
innovation is a fundamental, persistent, and predictable industry characteristic. Intuitively,
a successful radical innovation produces products sufficiently distinctive from existing
products, allowing firms to disrupt the market and rapidly grab substantial market shares.
A prominent recent example is from Apple, a company that disrupted the mobile phone
market by cobbling together an amazing touch screen with user-friendly interface. Thus,
in the industries with higher capacities of radical innovation, the market structure is more
likely to experience dramatic changes and become highly concentrated in the future. This
implies that firms in such industries would find it more difficult to implicitly collude
with each other, because they all rationally expect that the product market is likely to
be monopolized in the future, rendering future punishment on price undercutting less
threatening. As a result, these industries feature low implicit collusive prices regardless
of long-run growth rates, generating much less variation in product prices over long-
run growth fluctuations. By contrast, in the industries with lower capacities of radical
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innovation, the market structure is relatively stable, making a costly future punishment
more credible. As a result, firms have stronger incentives for implicit price collusion,
and rationally focus on maintaining existing customer base and profit margins. However,
because firms collude on higher prices in these industries, the equilibrium collusive
prices become more sensitive to the fluctuations in firms’ collusion incentives, which are
fundamentally driven by long-run-risk shocks. Hence, these industries are more exposed
to price war risks and long-run risks.

Our model has the following main implications. First, profit margins are more sensitive
to long-run-risk shocks during periods with low long-run consumption growth rates.
Second, in the industries where the capacity of radical innovation is lower, profit margins
are higher and more sensitive to long-run consumption growth shocks. Third, in these
industries, the exposure to long-run risks and (risk-adjusted) expected excess returns are
higher.

We test these predictions using detailed data on patents and product prices. We first
construct an innovation similarity measure based on U.S. patenting activities from 1976
to 2017 to capture the capacity of radical or distinctive innovation across industries. In
light of previous studies (e.g. Jaffe, 1986; Bloom, Schankerman and Van Reenen, 2013),
our innovation similarity measure is constructed based on the technology classifications
of firms’ patents within industries. An industry is associated with a higher innovation
similarity measure, if the patents produced by firms within the industry have more
similar technology classifications. Thus, intuitively, an industry with a higher innovation
similarity measure should have a lower capacity of radical or distinctive innovation.

Consistent with our theory, we find that the aggregate profit margins co-move posi-
tively with long-run-risk shocks. Moreover, the sensitivity of aggregate profit margins
with respect to long-run risk shocks is higher in recessions. In the cross section, we
show that profit margins of the industries with lower capacities of radical innovation are
more exposed to long-run-risk shocks. We further examine the sensitivity of product
prices to long-run-risk shocks by exploiting a dataset that contains detailed product-level
data. We find that product prices are more exposed to price war risks in industries with
lower capacities of radical innovation. In particular, our event-type study shows that
these industries were more likely to engage in price wars in response to the Lehman
crash in September of 2008, a time period in which the U.S. economy experienced a
prominent negative long-run-risk shock according to the estimation of Schorfheide, Song
and Yaron (2018). Finally, we test the asset pricing implications of our model. We find

5



that industries’ capacities of radical innovation are priced in the cross section of industry
returns. In particular, industries with lower capacities of radical innovation are associated
with higher (risk-adjusted) expected excess returns. The stock returns and dividend
growth of these industries are more exposed to long-run risks.

Related Literature. Our paper contributes to the literature on long-run risks (see, e.g.
Bansal and Yaron, 2004; Bansal, Dittmar and Lundblad, 2005; Hansen, Heaton and Li,
2008; Malloy, Moskowitz and Vissing-Jørgensen, 2009; Ai, 2010; Chen, 2010; Koijen et al.,
2010; Constantinides and Ghosh, 2011; Bansal, Kiku and Yaron, 2012; Gârleanu, Panageas
and Yu, 2012; Croce, 2014; Kung and Schmid, 2015; Bansal, Kiku and Yaron, 2016; Dittmar
and Lundblad, 2017; Schorfheide, Song and Yaron, 2018). Our main contribution is to
show that price war risks can endogenously arise from long-run risks, generating a novel
amplification mechanism. Moreover, we shed new light on the cross-sectional implication
of long-run risks based on industries’ capacities of radical innovation.

Our paper contributes to the burgeoning literature on the intersection between indus-
trial organization, marketing and finance (see, e.g. Phillips, 1995; Kovenock and Phillips,
1997; Allen and Phillips, 2000; Hou and Robinson, 2006; Carlin, 2009; Aguerrevere, 2009;
Hoberg and Phillips, 2010; Hackbarth and Miao, 2012; Carlson et al., 2014; Hackbarth,
Mathews and Robinson, 2014; Hoberg, Phillips and Prabhala, 2014; Bustamante, 2015;
Weber, 2015; Hoberg and Phillips, 2016; Loualiche, 2016; Bustamante and Donangelo,
2017; Corhay, 2017; Corhay, Kung and Schmid, 2017; Andrei and Carlin, 2018; D’Acunto
et al., 2018; Dong, Massa and Zaldokas, 2018; Yang, 2018; Dou and Ji, 2018; Dou et al.,
2018; Hackbarth and Taub, 2018; Roussanov, Ruan and Wei, 2018).5 In a closely related
paper, Corhay, Kung and Schmid (2017) develop a novel general equilibrium production-
based asset pricing model to understand the endogenous relation between markups and
stock returns in the presence of firms’ static strategic competition. Their model implies
that industries with higher markups are associated with higher expected returns. Our
model yields a similar implication through firms’ dynamic strategic competition. We
show that industries with lower capacities of radical innovation have higher equilibrium
product prices and are more exposed to price war risks and long-run risks. Theoretically,
our paper pushes forward the literature by developing a general-equilibrium model

5There is also a strand of the literature that studies the asset pricing implications of imperfect competition
in the market micro-structure setting (see, e.g. Christie and Schultz, 1994; Biais, Martimort and Rochet,
2000; Liu and Wang, 2018).
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incorporated with dynamic supergames, in which price war risks arise endogenously
and industry competition is endogenously connected to fundamental long-run risks in
consumption growth.

Our paper is also related to a growing literature that studies the implications of
innovation on asset prices (see, e.g. Li, 2011; Gârleanu, Kogan and Panageas, 2012;
Gârleanu, Panageas and Yu, 2012; Hirshleifer, Hsu and Li, 2013; Kung and Schmid, 2015;
Kumar and Li, 2016; Hirshleifer, Hsu and Li, 2017; Kogan et al., 2017; Corhay, Kung and
Schmid, 2017; Dou, 2017; Fitzgerald et al., 2017; Kogan, Papanikolaou and Stoffman, 2018;
Kogan et al., 2018). One of the key results from Corhay, Kung and Schmid (2017) is that
the extensive and intensive margins of innovation endogenously drive volatility risks and
long-run risks, deepening our understanding of the economic origins of the fluctuations
in risk premia. Our model abstracts away from the growth effect of innovation and focus
on the strategic customer base stealing effect of innovation. We contribute to this literature
by showing that industries with higher capacities of radical innovation are less exposed
to price war risks and associated with lower (risk-adjusted) expected excess returns.
Importantly, we emphasize that the capacity of radical innovation provides forward-
looking information on the degree of competition in the product market, complementing
the traditional static measures of competition such as Herfindahl-Hirschman Index (HHI)
and the product similarity measure.

Our paper also contributes to the macroeconomics and industrial organization liter-
ature on implicit collusion and price wars in dynamic oligopoly industries (see Stigler,
1964; Green and Porter, 1984; Rotemberg and Saloner, 1986; Haltiwanger and Harrington,
1991; Rotemberg and Woodford, 1991; Staiger and Wolak, 1992; Bagwell and Staiger, 1997;
Athey, Bagwell and Sanchirico, 2004; Opp, Parlour and Walden, 2014). We make several
contributions to this literature. First, we analyze the asset pricing implications of price
war risks. Second, we show that, in the model and the data, the exposure to price war
risks varies across industries with different capacities of radical innovation.

Finally, our paper lies in the cross-sectional asset pricing literature (see, e.g. Cochrane,
1991; Berk, Green and Naik, 1999; Gomes, Kogan and Zhang, 2003; Pastor and Stambaugh,
2003; Ait-Sahalia, Parker and Yogo, 2004; Lustig and Van Nieuwerburgh, 2005; Nagel,
2005; Yogo, 2006; Campbell, Hilscher and Szilagyi, 2008; Livdan, Sapriza and Zhang, 2009;
Gomes and Schmid, 2010; Garlappi and Yan, 2011; Belo and Lin, 2012; Ai and Kiku, 2013;
Kogan and Papanikolaou, 2013; Belo, Lin and Bazdresch, 2014; Donangelo, 2014; Kogan
and Papanikolaou, 2014; Hackbarth and Johnson, 2015; Herskovic et al., 2016; Tsai and
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Wachter, 2016; Koijen, Lustig and Nieuwerburgh, 2017; Kozak, Nagel and Santosh, 2017;
Ai et al., 2018; Belo, Lin and Yang, 2018; Gomes and Schmid, 2018; Gu, Hackbarth and
Johnson, 2018). A comprehensive survey is provided by Nagel (2013). We show that the
exposure to price war risks varies across industries with different capacities of radical
innovation. Our paper is particularly related to the works investigating the cross-sectional
stock return implications of firms’ fundamental characteristics through intangible capital
(see, e.g. Ai, Croce and Li, 2013; Eisfeldt and Papanikolaou, 2013; Belo, Lin and Vitorino,
2014; Dou et al., 2018).

2 The Baseline Model

The economy contains a continuum of industries indexed by i ∈ I ≡ [0, 1]. Each industry
i is a duopoly, consisting of two all-equity firms that are indexed by j ∈ F ≡ {1, 2}. We
label a generic firm by ij and its competitor in industry i by ij. All firms are owned by a
continuum of atomistic homogeneous households. Firms produce differentiated goods
and set prices strategically to maximize shareholder value.

2.1 Preferences

Households are homogeneous and have stochastic differential utility of Duffie and Epstein
(1992a,b), defined recursively as follows:

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (2.1)

where

f (Ct, Ut) = βUt
1− γ

1− 1/ψ

 C1−1/ψ
t

[(1− γ)Ut]
1−1/ψ

1−γ

− 1

 . (2.2)

This preference is a continuous-time version of the recursive preferences proposed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function
f (Ct, Ut) is an aggregator over current consumption rate Ct of the final consumption good
and future utility level Ut. The coefficient β is the rate parameter of time preference, γ is
the relative risk aversion parameter for one-period consumption, and ψ is the parameter
of elasticity of intertemporal substitution (EIS) for deterministic consumption paths.
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The final consumption good Ct is obtained through a two-layer aggregation. Fol-
lowing the functional form of relative deep habits developed by Ravn, Schmitt-Grohe and
Uribe (2006)6, industry i’s composite is determined by the aggregation of firm-level
differentiated goods

Ci,t =

[
∑
j∈F

(
Mij,t

Mi,t

) 1
η

C
η−1

η

ij,t

] η
η−1

, (2.3)

where the parameter η > 1 captures the elasticity of substitution among the goods
produced in the same industry. Mij,t/Mi,t captures the relative deep habits of firm j in
industry i, where Mi,t is defined as Mi,t = ∑j∈F Mij,t.

Further, the demand for the final consumption good Ct is determined by the aggrega-
tion of industry composites

Ct =

(∫ 1

0
M

1
ε
i,tC

ε−1
ε

i,t di
) ε

ε−1

, (2.4)

where the parameter ε > 1 captures the elasticity of substitution among industry com-
posites. Consistent with the literature (see, e.g. Atkeson and Burstein, 2008; Corhay,
Kung and Schmid, 2017), we assume that η ≥ ε > 1, meaning that products within the
same industry are more similar to each other and thus the within-industry elasticity of
substitution is higher than the between-industry elasticity of substitution. For example,
the elasticity of substitution between Apple iPhone and Samsung Galaxy is higher than
the elasticity of substitution between Apple iPhone and Dell Desktop.

2.2 Customer Base and Its Dynamics

A firm’s customer base determines the demand for the firm’s goods, and it exists due to
consumers’ habits in consumption. Below, we make the connection between customer
base and habits clear by deriving the firm’s demand curve.

6The specification of relative deep habits is inspired by the habit formation of Abel (1990), which features
catching up with the Joneses. The habit formation arises endogenously from the pecuniary externality of the
competition over scarce resources (DeMarzo, Kaniel and Kremer, 2007, 2008). The key difference between
the formation of relative deep habits and the formation of habits is that with relative deep habits, agents
form habits over individual varieties of goods as opposed to over a composite consumption good.
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Demand Curves. Let Pi,t denote the price of industry i’s composite. Given Pi,t and Ct,
solving a standard expenditure minimization problem gives the demand for industry i’s
composite:

Ci,t =

(
Pi,t

Pt

)−ε

CtMi,t, (2.5)

where Pt is the price index for the final consumption good, given by

Pt =

(∫ 1

0
Mi,tP1−ε

i,t di
) 1

1−ε

. (2.6)

Without loss of generality, we normalize Pt ≡ 1 so that the final consumption good is
the numeraire. Next, given Ci,t, the demand for firm j’s good is:

Cij,t =

(
Pij,t

Pi,t

)−η

P−ε
i,t CtMij,t, with j = 1, 2. (2.7)

where Pi,t is given by

Pi,t =

[
∑
j∈F

(
Mij,t

Mi,t

)
P1−η

ij,t

] 1
1−η

. (2.8)

In equation (2.7), the demand for firm j’s goods increases with Mij,t. Thus, we can
think of Mij,t as capturing firm j’s customer base in industry i and Mi,t as capturing
industry i’s total customer base. Moreover, according to equation (2.8), firm j has more
influence on the industry’s price index Pi,t when there are higher relative deep habits
Mij,t/Mi,t toward firm j’s goods. Thus, in our model, firm j would naturally have the
incentive to accumulate the customer base Mij,t in order to increase demand and gain
market power.

Effective Short-Run Price Elasticity. The effective price elasticity of firm j in industry i
is

∂ ln Cij,t

∂ ln Pij,t
= sij,t

∂ ln Ci,t

∂ ln Pi,t︸ ︷︷ ︸
between-industry

+ (1− sij,t)
∂ ln(Cij,t/Ci,t)

∂ ln(Pij,t/Pi,t)︸ ︷︷ ︸
within-industry

= sij,tε + (1− sij,t)η (2.9)
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where sij,t is the revenue market share of firm j in industry i

sij,t =
Pij,tCij,t

Pi,tCi,t
=

(
Pij,t

Pi,t

)1−η Mij,t

Mi,t
. (2.10)

Thus, equation (2.9) shows that the short-run price elasticity of demand is given by
the average of the within-industry elasticity of substitution η and the between-industry
elasticity of substitution ε weighted by the firm’s revenue shares. Depending on the
revenue market share sij,t, firm j’s short-run price elasticity of demand lies in [ε, η]. On the
one hand, when firm j’s revenue market share sij,t is small, within-industry competition
becomes more relevant and thus firm j’s price elasticity of demand depends more on η.
In the extreme case with sij,t = 0, firm j becomes atomistic and takes the industry price
index Pi,t as given. As a result, firm j’s short-run price elasticity of demand is entirely
determined by the within-industry elasticity of substitution η. On the other hand, when
firm j’s revenue market share sij,t is large, between-industry competition becomes more
relevant and thus firm j’s short-run price elasticity of demand depends more on ε. In the
extreme case with sij,t = 1, firm j becomes the monopoly in industry i and its short-run
price elasticity of demand is entirely determined by the between-industry elasticity of
substitution ε.

The key reason why between-industry competition matters for the firm’s price elastic-
ity of demand is that each firm’s price has a non-negligible effect on the industry’s price
index in the duopoly industry. The magnitude of this effect is determined by the firm’s
revenue market share sij,t. Thus, when setting prices, each firm internalizes the effect
of its own price on the industry’s price index, which in turn determines the demand
for the industry’s goods given the between-industry elasticity of substitution ε. If there
exists a continuum of firms in each industry, as in standard monopolistic competition
models, then each firm is atomistic and has no influence on the industry’s price index. As
a result, between-industry competition would have no impact on firms’ price elasticities
of demand.

Thus, although each industry only has two firms, the modeling of endogenous
customer base allows us to simultaneously capture the pricing behavior resembling
a price taker (as in a model with monopolistic competition) and the pricing behavior
resembling an industry-level monopoly. As we show in Section 3, this tractable framework
also allows us to analyze how collusion incentive would endogenously change due to the
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change in market structure caused by radical innovation. In Appendix E.1, we further
discuss the role of the two elasticities in determining equilibrium prices.

Dynamics of Customer Bases. There are uncountable cases about how firms attract
consumers through price undercutting or discount offering. A temporary cut in prices
can have a persistent effect on increasing the firm’s demand because consumers have
switching costs. Attracted by lower prices, new customers buy the firm’s products, feel
satisfied and become loyal to the firm. Due to switching costs, these consumers become
the firm’s customers and keep buying the firm’s products in the future. To capture this
idea, following Phelps and Winter (1970) and Ravn, Schmitt-Grohe and Uribe (2006), we
model the evolution of firm j’s customer base as

dMij,t = −ρMij,tdt + z
Cij,t

Ct
dt, (2.11)

where the parameter z ≥ 0 determines the speed of customer base accumulation. Intu-
itively, a lower price Pij,t increases the contemporaneous demand flow rate Cij,t, allowing
the firm to accumulate a larger customer base over [t, t + dt]. The parameter ρ > 0
captures customer base depreciation due to economy-wide reasons such as the mortality
of consumers.

The firm’s pricing decision crucially depends on the value of z and its customer base
Mij,t. To elaborate, if z = 0, the firm’s pricing decision is static, chosen to maximize
contemporaneous profits. If z > 0, the firm’s pricing decision becomes dynamic, facing
the tradeoff between increasing contemporaneous profits through setting higher prices to
exploit existing customer base Mij,t and increasing future profits through setting lower
prices to accumulate more customer base (Chevalier and Scharfstein, 1996; Gilchrist et al.,
2017). Consistent with the empirical evidence, the slow-moving customer base Mij,t

implies that the long-run price elasticity of demand is higher than the short-run elasticity
(see, e.g. Rotemberg and Woodford, 1991).

2.3 Consumption Risks for the Long Run

We directly model the dynamics of aggregate consumption demand Ct. Thus, in fact,
we incorporate product market frictions into a Lucas-tree model (Lucas, 1978) with
homogeneous agents and complete financial markets. Many extensions of the basic
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homogeneous-agent complete-market Lucas-tree models have been developed in the
literature. For example, Longstaff and Piazzesi (2004), Bansal and Yaron (2004), Santos
and Veronesi (2006), and Wachter (2013) consider leveraged dividends and implicitly
incorporate labor market frictions in the Lucas-tree model; Cochrane, Longstaff and
Santa-Clara (2007), Menzly, Santos and Veronesi (2004) and Santos and Veronesi (2006,
2010), Martin (2013), and Tsai and Wachter (2016) consider a multi-asset (or multi-sector)
Lucas-tree economy. We consider a Lucas-tree economy with multiple sectors whose
shares are endogenously determined in the equilibrium.7 Specifically, we assume that Ct

evolves according to
dCt

Ct
= θtdt + σcdZc,t, (2.12)

where
dθt = κ(θ − θt)dt + ϕθσcdZθ,t. (2.13)

The consumption growth rate contains a persistent predictable component θt, which
determines the conditional expectation of consumption growth (see, e.g. Kandel and
Stambaugh, 1991, for early empirical evidence). The parameter θ captures the average
long-run consumption growth rate. The parameter κ determines the persistence of the
expected growth rate process. The parameter ϕθ determines the exposure to long-run
risks. dZc,t and dZθ,t are independent standard Brownian motions. Compared to other
models with long-run risks, the key feature of our model is that firm-level demand is
endogenous and depends on strategic competition.

Stochastic Discount Factors. The state-price density Λt is

Λt = exp
[∫ t

0
fU(Cs, Us)ds

]
fC(Ct, Ut). (2.14)

The market price of risk evolves according to

dΛt

Λt
= −rdt− γσcdZc,t −

γ− 1/ψ

h + η
dZθ,t, (2.15)

7The heterogenous-agent complete-market Lucas-tree models have also been developed and widely used
in asset pricing literature. For example, Chan and Kogan (2002) introduced heterogeneous risk aversions
in the Lucas-tree model, Xiong and Yan (2010) introduced information frictions to the Lucas-tree model,
Albuquerue and Wang (2015) and Kaniel and Kondor (2013) introduces agency problems into a (productive)
Lucas-tree economy, and Wang (2003), Lustig and Van Nieuwerburgh (2005), Chien and Lustig (2009), and
Chien, Cole and Lustig (2011) introduced market-incompleteness into a Lucas-tree economy.
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where r is the interest rate and h is the long-run deterministic steady-state consumption-
wealth ratio determined in general equilibrium (see Section 2.6).

2.4 Firm Production and Cash Flows

Firms produce differentiated goods using a linear technology. Over [t, t + dt], firm j
produces a flow of goods Yij,tdt with costs ωYij,tdt, where ω is the per unit cost of
production, paid to households. In equilibrium, the firm finds it optimal to choose
Pij,t > ω and the market clears for each differentiated good:

Yij,t = Cij,t. (2.16)

Thus, firm j’s operating profit over [t, t + dt] is given by

dEij,t =
(

Pij,t −ω
)

Cij,tdt. (2.17)

All the operating profits are paid out as dividends (or equity financing if dEij,t < 0).

2.5 Price Setting Supergames

The two firms in the same industry play a dynamic game, in which the stage games of
setting prices are played continuously and infinitely repeated.8 There exist a non-collusive
equilibrium and multiple collusive equilibria sustained by conditional punishment strate-
gies. Below, we first illustrate the non-collusive equilibrium. Then we define and
characterize the collusive equilibrium that yields higher profits for both firms.

Non-Collusive Equilibrium. Substituting equation (2.7) into equation (2.17), we obtain

dEij,t

Mij,t
= Πij(Pi1,t, Pi2,t)dt, (2.18)

8We do not model dynamic entries and exits because most entries and exits in the data are associated
with small firms while our model focuses on the main players in a market (Tian, 2018). Loualiche (2016)
and Corhay, Kung and Schmid (2017) develop novel models to show that the exposure of firms to entry risk
affects firms’ profit margins, which in turn determines expected stock returns. Our model emphasizes a
different point, i.e. profit margins could be affected by firms’ endogenous time-varying collusion incentive.
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where Πij(Pi1,t, Pi2,t) is the conditional expected profit rate defined by

Πij(Pi1,t, Pi2,t) ≡
(

Pij,t −ω
) (Pij,t

Pi,t

)−η

P−ε
i,t Ct. (2.19)

Equation (2.19) shows that the (local) conditional expected profit rate of firm j depends
on its peer firm j’s product price Pij,t through the industry’s price index Pi,t. This reflects
the externality of firm j’s decisions. For example, if firm j sets a low price Pij,t, the price
index Pi,t will drop, and thus the demand for firm j’s goods Cij,t will decrease. This will
motivate firm j to set a lower price Pij,t, and thus the two firms’ pricing decisions exhibit
strategic complementarity in equilibrium.

In the non-collusive equilibrium, firm j chooses product price Pij,t to maximize share-
holder value VN

ij (Mi1,t, Mi2,t, Ct, θt), conditional on its peer firm j setting the equilibrium
price PN

ij,t
. Following the standard recursive formulation in dynamic games with Markov

Perfect Nash equilibrium (see, e.g. Pakes and McGuire, 1994; Ericson and Pakes, 1995;
Maskin and Tirole, 2001), the optimization problems can be formulated recursively by
HJB equations:

0 =max
Pi1,t

ΛtΠi1(Pi1,t, PN
i2,t)Mij,tdt + Et

[
d(ΛtVN

i1 (Mi1,t, Mi2,t, Ct, θt))
]

, (2.20)

0 =max
Pi2,t

ΛtΠi2(PN
i1,t, Pi2,t)Mij,tdt + Et

[
d(ΛtVN

i2 (Mi1,t, Mi2,t, Ct, θt))
]

. (2.21)

The non-collusive equilibrium prices PN
ij (Mi1,t, Mi2,t, Ct, θt) (with j = 1, 2) are deter-

mined by the coupled HJB equations (2.20). The Nash equilibrium considered here
is non-collusive, because it does not depend on historical information (i.e. not using
conditional punishment strategies based on the two firms’ historical decisions). In the
non-collusive equilibrium, firms set prices independently taking the best actions of the
other firms as given.

Collusive Equilibrium. In the collusive equilibrium, firms collectively set higher prices
to gain higher profit margins and values.9

9In the industrial organization and macroeconomics literature, this equilibrium is called collusive
equilibrium or collusion (see, e.g. Green and Porter, 1984; Rotemberg and Saloner, 1986). Game theorists
generally call it the equilibrium of repeated game (Fudenberg and Tirole, 1991) in order to distinguish its
nature from the static equilibrium (i.e. our non-collusive equilibrium).
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Consider a generic collusive equilibrium in which firms follow the collusive pricing
schedule PC

ij (Mi1,t, Mi2,t, Ct, θt) (with j = 1, 2).10 The two firms apply non-collusive price
competition as punishment strategies to ensure the collusive price schedule is sustained
in equilibrium.

In particular, in the collusive equilibrium, each firm has to incur a flow cost of ωdt
over [t, t + dt] to monitor the other firm’s price. If one firm deviates from the collusive
equilibrium, the peer firm will implement a punishment strategy with probability φdt
over [t, t + dt] by setting the non-collusive price in future.11 The Poisson process for
successfully implementing a punishment strategy is firm-specific, denoted by Nij,t. We
assume that punishment may not always be implemented upon deviation to capture the
possibility that the two firms can negotiate with each other in order to avoid entering
non-collusive price competition.

Whether firms monitor each other is common knowledge. Thus if either firm chooses
not to monitor, both firms would set the non-collusive prices PN

ij (Mi1,t, Mi2,t, Ct, θt), or
in other words, both firms have to pay the monitoring costs ωdt in order to sustain the
collusive pricing schedule PC

ij (Mi1,t, Mi2,t, Ct, θt) as an equilibrium outcome.12 Firm j’s
value in the collusive equilibrium, denoted by VC

ij (Mi1,t, Mi2,t, Ct, θt), is determined by

0 =max
{

ΛtΠij(PC
i1, PC

i2)Mij,tdt−ωdt + Et

[
d(ΛtVC

ij (Mi1,t, Mi2,t, Ct, θt))
]

,

ΛtΠij(PN
i1 , PN

i2 )Mij,tdt + Et

[
d(ΛtVC

ij (Mi1,t, Mi2,t, Ct, θt))
]}

with j = 1, 2. (2.22)

The collusive equilibrium is sub-game perfect if conditional on monitoring, there is no
deviation from PC

ij (Mi1,t, Mi2,t, Ct, θt). Formally, denote VD
ij (Mi1,t, Mi2,t, Ct, θt) as firm j’s

10Fershtman and Pakes (2000) require all firms to adopt the same collusive price to maintain tractability.
Our collusive pricing schedule is more general because it allows firms to set different prices based on their
customer base and aggregate conditions.

11Setting the non-collusive price is considered as a punishment strategy because the industry will switch
to the non-collusive equilibrium, which has sub-game perfection. Specifically, conditional on the peer firm’s
price being non-collusive, the deviating firm would also set the non-collusive price, because setting the
non-collusive price is the best response to the peer firm’s non-collusive price. We adopt the non-collusive
equilibrium as the incentive-compatible punishment for deviation to follow the literature (see, e.g. Green
and Porter, 1984; Rotemberg and Saloner, 1986).

12Intuitively, because monitoring is common knowledge, if firm j does not pay the monitoring cost. Firm
j knows and will rationally deviate from collusive pricing. Firm j knows that firm j knows that firm j does
not pay the monitoring cost. Thus firm j can perfectly infer that firm j will deviate. As a result, firm j
will also deviate conditional on firm j’s deviation, and so on. This will completely rule out any collusive
equilibrium, making the non-collusive equilibrium a unique one.
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value for one-shot deviation conditional on monitoring,13 the HJB equations are:

0 =max
Pi1,t

ΛtΠi1(Pi1,t, PC
i2)Mi1,tdt−ωdt + Et

[
d(ΛtVD

i1 (Mi1,t, Mi2,t, Ct, θt))
]

+ Λt

[
VN

i1 (Mi1,t, Mi2,t, Ct, θt)−VD
i1 (Mi1,t, Mi2,t, Ct, θt)

]
dNi1,t, (2.23)

0 =max
Pi2,t

ΛtΠi2(PC
i1, Pi2,t)Mi2,tdt−ωdt + Et

[
d(ΛtVD

i2 (Mi1,t, Mi2,t, Ct, θt))
]

+ Λt

[
VN

i2 (Mi1,t, Mi2,t, Ct, θt)−VD
i2 (Mi1,t, Mi2,t, Ct, θt)

]
dNi2,t, (2.24)

The incentive compatibility (IC) constraints that ensure non-deviation are given by:

VD
ij (Mi1,t, Mi2,t, Ct, θt) ≤ VC

ij (Mi1,t, Mi2,t, Ct, θt), (2.25)

for j = 1, 2 and all monitoring states. In fact, there exist infinitely many collusive pricing
schedules PC

ij (Mi1,t, Mi2,t, Ct, θt) that satisfy the IC constraints, and hence infinitely many
collusive equilibria. Because firms maximize profits in general equilibrium, it is reasonable
for them to collude on prices as high as possible.14 We thus focus on the highest collusive
pricing schedule, under which the IC constraints are binding for all monitoring states, i.e.
PC

ij (Mi1,t, Mi2,t, Ct, θt) are determined such that

VD
ij (Mi1,t, Mi2,t, Ct, θt) = VC

ij (Mi1,t, Mi2,t, Ct, θt). (2.26)

2.6 General Equilibrium Conditions

In equilibrium, the value function of the representative household is

Ut = exp (A0 + A1θt)
W1−γ

t
1− γ

, (2.27)

13The one-shot deviation principle indicates that focusing on no one-shot-deviation is necessary and
sufficient to attain a sub-game perfect equilibrium (see Fudenberg and Tirole, 1991).

14There are two reasons why we focus on the highest collusive pricing schedule. First, non-binding IC
constraints imply that there is room to further increase both firms’ values by increasing collusive prices.
Given that firms collude with each other to maximize their values, it is a bit unreasonable to rule out a
better collusion. Second, considering the highest collusive price allows us to conduct more disciplined
comparative statics in the presence of multiple equilibria. In other words, focusing on the highest collusive
price ensures that we always pick up the same equilibrium when we compare across different industries.
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where A0 is a deterministic function of model parameters, and A1 is equal to

A1 =
ψ−1(1− γ)

h + κ
, with h = exp

(
ln C− ln W

)
. (2.28)

The equilibrium wealth-consumption ratio is

Wt

Ct
= ρ−ψ exp

[
1− ψ

1− γ
A0 +

(
1− ψ−1

h + κ

)
θt

]
. (2.29)

In equilibrium, the long-run deterministic steady-state consumption-wealth ratio is:

ln(h) = ln C− ln W = ψ ln(ρ)− 1− ψ

1− γ
A0 −

1− ψ−1

h + κ
θ. (2.30)

2.7 Price Wars and Long-Run Growth Rates

In this subsection, we illustrate price war risks in collusive equilibrium.15 We show that
price war risks endogenously arise from long-run risks and as a result, price war risks
amplify industries’ exposure to long-run risks. Moreover, our model implies that profit
margins respond more to negative long-run-risk shocks and less to positive long-run-risk
shocks. The sensitivity of profit margins to long-run-risk shocks is higher during periods
with low long-run consumption growth rates.

Price War Risks Arise from Long-Run-Risk Shocks. In our model, price war risks
endogenously arise from long-run risks. When the long-run consumption growth rate θt

declines, profit margins decline due to endogenous declines in collusive prices PC
ij . With

significant declines in long-run consumption growth rate, a full-blown price war occurs.
Intuitively, the incentive to collude on higher prices depends on the extent to which

the two firms value future revenue relative to its current revenue. By deviating from
the collusive price, firms can attain higher contemporaneous revenue and accumulate
more customer base in the short run. However, firms run into the risk of losing future
revenue because once the deviation is detected by the other firm, the non-collusive
equilibrium will be implemented as a punishment strategy. During periods with low
long-run growth rates, firms expect a relative reduction in aggregate future consumption
and the later punishment looks less costly. This makes firms more impatient for cash

15The equilibrium property of our model is discussed in Appendix D.
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flows and attain stronger incentives to undercut peers’ prices.16 Therefore, a decline
in long-run consumption growth intensifies the degree of collusive price competition,
reducing equilibrium product prices, which is broadly regarded as a price war (see, e.g.
Rotemberg and Saloner, 1986; Lambson, 1987; Haltiwanger and Harrington, 1991).

When long-run consumption growth declines significantly, firms optimally choose
not to collude with each other because the costs paid to monitor peers’ prices exceed
the potential gains from collusion. When this happens, the industry enters into a full-
blown price war, in which both firms set the non-collusive prices PN

ij (see, e.g. Friedman,
1971; Green and Porter, 1984; Porter, 1985; Abreu, Pearce and Stacchetti, 1986). Thus,
in our model, a full-blown price war is a regime shift from the collusive competition
equilibrium to the non-collusive competition equilibrium. A moderate decline in long-run
consumption growth reduces equilibrium product prices and profit margins, increasing
the risk of entering a full-blown price war.

Importantly, the decrease in profit margins after negative long-run risk shocks is owing
to intensified competition and reduced market power rather than declines in aggregate
demand. To elaborate, in Panel A of Figure 2, we plot the supply and demand curves
for firm j’s good in industry i in collusive equilibrium. Fixing firm j’s customer base
Mij, the supply curve (blue solid line) is flat because firm j agrees to sell its product
at the collusive price PC

ij irrespective of the level of its contemporaneous demand. The
demand curve (black dashed line) is downward sloping, given by equation (2.7). The
initial equilibrium is given by point O0.

A negative shock to long-run growth rate θ reduces collusion incentive and intensifies
collusive competition, shifting the supply curve downward (the blue dotted line). If
the demand curve were unchanged, the new equilibrium would feature a much lower
price and a much higher demand for firm j’s goods (point O′). However, the demand
curve also shifts downward (black dash-dotted line) because the industry’s price index
Pi endogenously declines due to intensified collusive competition. As a result, the new
equilibrium is given by point O1, featuring a price war with a much lower equilibrium
price and a slightly higher equilibrium demand for firm j’s goods. As illustrated in
Figure 3, we emphasize that the price war driven by negative long-run risk shocks to

16The intuition is related to the Folk Theorem in game theory. The Folk Theorem says that provided
players are sufficiently patient, not only can repeated interaction allow many sub-game perfect outcomes,
but actually sub-game perfection can allow virtually any outcome in the sense of average payoffs. The
effective discount rate is approximately given by r− θt. Thus, the periods with low θt feature high discount
rates and more impatience.
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Figure 2: The impact of demand and supply shocks on equilibrium prices and quantities.

consumption is initially caused by the downward shift in the supply curve owing to the
self-fulfilling declines in market power and collusion incentive. The shift in the supply
curve further induces a shift in the demand curve due to the endogenous response in the
industry’s price index.

By contrast, Panel B shows that a negative short-run demand shock (i.e. lower C) only
generates a downward shift in the demand curve, without affecting the supply curve.
As a result, the change in equilibrium price and demand purely depends on the price
elasticity of supply. Given a flat supply curve (infinite price elasticity of supply), firm
j’s price in the new equilibrium (point O1) is exactly the same as the initial equilibrium
price (point O0).17 Panel C shows that a negative short-run supply shock (i.e. higher ω)
only generates an upward shift in the supply curve, without affecting the demand curve.
As a result, the change in equilibrium demand and supply purely depends on the price
elasticity of demand. As the demand curve is downward sloping, the new equilibrium
(point O1) has a higher price and a lower demand for firm j’s goods.

Thus, the price war caused by negative long-run risk shocks involves shifts in both
the demand and the supply curves owing to intensified competition and declined market
power. Price war risks are generated by long-run risks and are fundamentally different
from the risks associated with short-run demand or supply shocks.

17If the marginal cost of production increases with output, the supply curve would be upward sloping.
Then, a negative short-run demand shock would result in a lower equilibrium price and a lower equilibrium
demand for firm j’s good. This is the standard negative effect of demand shocks on equilibrium price in
models with decreasing-return-to-scale production technology. We intentionally assume constant marginal
cost of production ω (as in textbook New Keynesian models) to eliminate this effect and cleanly present
the price war effect.
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Figure 3: An illustration of how negative long-run risk shocks result in a price war.

Price War Risks and the Exposure to Long-Run Risks. We now illustrate price war risks
numerically in Figure 4. By exploiting linearity on Mi,tCt, we reduce the model to two
state variables: Mi1,t/Mi,t and θt. We solve the normalized firm value vN

ij (Mi1,t/Mi,t, θt)

in non-collusive equilibrium and vC
ij(Mi1,t/Mi,t, θt) in collusive equilibrium.

Panel A and B plot firm 1’s equilibrium price in periods with different long-run
growth rates. The blue solid line plots the firm’s price during periods with high long-run
growth rates (i.e. θh). In Panel A, we consider a moderate decrease in the long-run growth
rate to θm < θh, and it shows that the firm’s equilibrium prices are lower. The industry
features narrowed profit margins for both firms and a price war occurs. Panel B shows
that when the long-run growth rate further drops to θl < θm, the two firms choose not to
collude with each other, and the equilibrium prices are significantly lower and equal to
non-collusive prices. The industry enters into a full-blown price war.

The endogenous movement in equilibrium prices induced by changes in long-run
growth rates generates a large variation in firms’ expected future cash flows. Thus, our
model offers a novel explanation for Larrain and Yogo (2008)’s finding that the value of
corporate assets is mostly driven by changes in expected future cash flows, instead of
changes in discount rates.

Panel C illustrates the magnitude of price war risks by plotting the difference in
collusive prices between periods with high and low long-run growth rates. It is shown
that price war risks display an inverted U-shape, and the risks are the largest when
the two firms have comparable customer base shares (i.e. Mi1/Mi ≈ 0.5). Intuitively,
collusion allows both firms to set higher prices to enjoy higher profit margins than what
they would have in the non-collusive equilibrium. However, the collusive pricing schedule
has to be chosen such that both firms have no incentive to deviate given their current
customer base shares. When firm 1 is dominating the market (i.e. with high Mi1/Mi),
forming a collusive equilibrium would be less appealing from firm 1’s perspective as it
already has high market power, which allows it to set a high price in the non-collusive
equilibrium any way (see the red dash-dotted line in Panel A). On the other hand, when
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Figure 4: Price war risks and the industry’s exposure to long-run risks.

firm 1 has low customer base share Mi1/Mi, forming a collusive equilibrium would be
less appealing from firm 2’s perspective, who already has high market power to set a
high price in the non-collusive equilibrium. In other words, when one firm dominates the
other firm in customer base share, there is not much incentive to form a collusion in the
industry; and as a result, there is not much variation in collusive prices when long-run
growth rates change.

We emphasize that long-run consumption risks play an essential role in driving
substantial price war risks in equilibrium. A moderate temporary shock to the level
of aggregate consumption demand has little impact on the potential losses caused by
the punishment, and hence, it has little impact on the deviation incentive. Therefore,
moderate temporary shocks cannot drive substantial price war risks in equilibrium. Only
persistent shocks in long-run growth can significantly change the severity of punishment
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Figure 5: Profit Margin Sensitivity to Long-Run Risk Shocks.

and thus firms’ effective discount rates. In Appendix E.2, we show that the magnitude
of price war risks declines when the growth shocks become less persistent. Specifically,
price war risks become negligible when there are only moderate temporary shocks in
consumption growth.

The time-varying collusion incentive amplifies the effect of long-run risks because
during periods with low long-run consumption growth, firms not only face low demand
but also low profit margins. To illustrate this amplification mechanism, we calculate the
industry-level beta βi(Mi1/Mi) as value-weighted firm-level betas βij(Mij/Mi)

βi(Mi1/Mi) = ∑
j=1,2

vC
ij(Mi1/Mi, θr)

vC
i1(Mi1/Mi, θr) + vC

i2(Mi1/Mi, θr)
βij(Mij/Mi), (2.31)

where βij(Mij/Mi) =
vC

ij (Mi1/Mi,θb)

vC
ij (Mi1/Mi,θr)

− 1.

Panel D shows that the industry’s beta displays an inverted U-shape (see the blue
solid line) due to the inverted-U price war risks. As a benchmark, the red dash-dotted line
plots the industry’s beta in the absence of price war risks (i.e. when collusive prices do
not change with long-run growth rates). When the two firms have comparable customer
base shares, price war risks significantly amplify the industry’s exposure to long-run
risks.

Profit Margin Sensitivity to Long-Run Risk Shocks. Our model implies that profit
margins are more sensitive to long-run-risk shocks during periods with low long-run
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growth rates. Intuitively, in periods with low long-run growth rates, firms are more likely
to abandon collusion and enter a full-blown price war if long-run growth rates further
drop. As a result, firms’ collusion incentive becomes more sensitive to long-run growth
rates, increasing the profit margin sensitivity and the exposure to price war risks.

To see this, in Figure 5, we plot firm 1’s equilibrium prices in periods with high
(blue solid line) and low long-run growth rates (black dashed line). It is shown that a
negative long-run-risk shock of magnitude ∆θ reduces the firm’s equilibrium prices more
in the latter case (black dotted line), indicating that profit margins are more sensitive to
long-run-risk shocks in periods with low long-run growth rates.

In our model, the mechanism that generates countercyclical profit margin sensitivity
crucially depends the potential regime shift from the collusive competition equilibrium
to the non-collusive competition equilibrium, or a full-blown price war. As we discussed
above, this regime shift is a direct outcome of dynamic strategic competition, in which
firms can adopt conditional punishment pricing strategies to sustain implicit collusion.
Our mechanism is different from Corhay, Kung and Schmid (2017), who emphasize that
the role of entry risks in generating countercyclical markup sensitivity.

3 The Model with Innovation

In this section, we extend the baseline model by allowing firms to conduct innovation.
There are two main reasons why we emphasize innovation activities. First, product
innovation is an important channel through which firms develop customer base, on
top of strategic pricing. We show that whether firms collude with each other crucially
depends on the extent to which they have the ability to conduct radical innovation, which
determines the future market structure (i.e. the distribution of customer base). Second,
introducing innovation yields new cross-sectional predictions and expands the scope of
testing our asset pricing theory of price war risks. Our model predicts that industries
with lower capacities of radical innovation are more exposed to price war risks, and thus
long-run risks.

3.1 Modeling Innovation

Firms conduct innovation, which succeeds independently across firms at a constant rate
µ. A successful innovation allows the innovating firm to snatch a fraction τij,t of the peer
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firm’s customer base, where τij,t takes two values,

τij,t =

{
τι, with probability λi,t,
τd, with probability 1− λi,t.

(3.1)

We assume 0 ≈ τι << τd ≈ 1 to parsimoniously capture two different types of
innovation. The event of snatching a small fraction τι of customer base captures a
successful incremental innovation which produce innovative outputs similar to existing
ones. Incremental innovation adds value to customers through incrementally introducing
new features to existing products. For example, Motorola has launched a series of
Motorola Razr since 2004, based on constant improvement of previous generations. The
event of snatching a large fraction τd of customer base captures a radical innovation
that creates newer and distinctive technology to surpass the old and disrupt existing
companies. There are quite a few examples of radical innovation, one of the more
prominent being Apple’s iPhone disruption of the mobile phone market.

In our model, the evolution of aggregate consumption Ct is exogenously specified
by equation (2.12). However, in principle, firms’ innovation can also drive the growth
of aggregate consumption. For example, Corhay, Kung and Schmid (2017) develop a
novel general equilibrium production-based asset pricing model with both extensive and
intensive margins of innovation, which endogenously drive volatility risks and long-run
risks. Different from Corhay, Kung and Schmid (2017), we emphasize that the strategic
customer-base stealing effect of innovation yields implications on industries’ exposure to
price war risks.

The innovation similarity λi,t is the only industry characteristic that is ex-ante het-
erogeneous across industries, evolving idiosyncratically according to a Markov chain on
λ = {λ1 < ... < λN} (see Section 5.1), where λ1 > 0 and λN ≤ 1. A higher λi,t implies
that firms in industry i are more likely to conduct incremental innovation at time t, which
produces products similar to existing products. On other other hand, a lower λi,t captures
the industry with a higher capacity of radical innovation at time t. In Section 4.1, We use
patent data to construct an innovation similarity measure for the industry characteristic
λi,t in our model.

With innovation, the dynamics of customer base (2.11) is modified as

dMij,t = −ρMij,tdt + z
Cij,t

Ct
dt + τij,tMij,tdIij,t − τij,tMij,tdIij,t (3.2)
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where Iij,t and Iij,t are independent Poisson processes capturing the success of firm j and
j’s innovation.

3.2 Price War Risks Across Industries

We now study the implication of innovation characteristics on the industry’s exposure
to price war risks. To fix ideas, consider two industries different in their innovation
similarity λi.

Panel A of Figure 6 plots the equilibrium collusive prices in the two industries during
periods with high and low long-run growth rates, respectively. It shows that although
firms in both industries collude on higher prices during periods with high long-run
growth rates, collusive prices are much lower in the industry with a high capacity of
radical innovation (low λi). As we discuss in section 2.7, the incentive to collude exhibits
an inverted-U shape and becomes the smallest in concentrated industries (i.e. one firm’s
customer base share is much larger than the other’s). The industry with a high capacity
of radical innovation is more likely to be concentrated in future because one firm can steal
its competitor’s customer base and almost monopolize the industry upon the success of
radical innovation. Thus, even if the two firms have comparable customer base shares
today, the possibility of having a successful radical innovation in future still largely
dampens the incentive to collude, resulting in low collusive prices.

Panel B confirms the above intuition by showing that the industry with a high capacity
of radical innovation has more dispersed market shares in future. In particular, we
consider two firms currently having equal market shares (measured by the firm’s sales
over the industry’s total sales) in each industry. We simulate the industry dynamics for 10
years and calculate the dispersion of market shares, measured by the standard deviation
of the two firms’ market shares in year 10. Panel B plots the simulated probability
density function of the dispersion of market shares across 10,000 simulations for each
industry. The industry with a high capacity of radical innovation has a more right skewed
distribution (red bars) than the industry with a low capacity of radical innovation (blue
bars). This pattern also holds for the steady-state distribution of market shares.

Not only the levels are lower, collusive prices are also less responsive to persistent
growth shocks in the industry with a high capacity of radical innovation. Panel A shows
that when the economy switches between periods with high and low long-run growth
rates, the change in collusive prices in the industry with a high capacity of radical

26



0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6: Comparing collusive prices, the dispersion of market shares, and the exposure
to long-run risks across industries with different capacities of radical innovation.

innovation (the difference between the red dash-dotted line and the red dotted line) is
much smaller compared to that in the industry with a low capacity of radical innovation
(the difference between the blue solid line and the blue dashed line). This implies that
firms in the industry with a high capacity of radical innovation face smaller price war
risks simply because collusion is difficult to form in the first place.

In Panel C, we compare the two industries’ exposure to long-run risks for different
levels of industry concentration, as reflected by firm 1’s customer base share. Conditional
on the same level of concentration, firms in the industry with a high capacity of radical
innovation are less exposed to long-run risks. The industry-level value-weighted beta
exhibits an inverted U-shape in both industries. The difference in beta across the two
industries is large when the two firms within the same industry have comparable customer
base shares (Mi1/Mi = 0.5). Thus our model implies that the industries with low
capacities of radical innovation tend to be riskier as price decreases more when the
long-run consumption growth rate declines.

3.3 Main Predictions of the Model

We summarize the main predictions of the model as follows:

(1). The profit margin sensitivity is higher during periods with low long-run growth
rates (see Figure 5).

(2). Industries with lower capacities of radical innovation are more exposed to price war
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risks (see Panel A of Figure 6). Specifically, in these industries, profit margins are
higher and decrease more after negative long-run-risk shocks.

(3). Industries with lower capacities of radical innovation are more exposed to long-run
risks (see Panel B of Figure 6). Thus, these industries are associated with higher
expected returns and higher risk-adjusted returns.

4 Empirical Analyses

In this section, we empirically test the main predictions of our model. We first use patent
data to construct an innovation similarity measure for the industry characteristic λi,t

in our model. We then test the mechanism of our model by examining the time-series
and cross-sectional property of profit margins. We find that aggregate profit margins
co-move positively with long-run-risk shocks and such co-movement is more significant
for negative long-run-risk shocks and in recessions. In the cross-section, we find that
industries with higher innovation similarity (i.e. industries with lower capacities of radical
innovation) have profit margins that are more exposed to long-run risks. We further
exploit detailed product prices data and find that industries with higher innovation
similarity are more exposed to price war risks. The product prices of these industries
decrease more in response to negative long-run-risk shocks. In particular, these industries
were more likely to engage in price wars after the Lehman crash in 2008. Finally, we
test the asset pricing implications of our model. We find that industries with higher
innovation similarity have higher average excess returns and risk-adjusted returns. The
stock returns and dividend growth of these industries are more exposed to long-run risks.

4.1 Data and the Innovation Similarity Measure

In this subsection, we first introduce the patent data and explain the method we use to
construct the innovation similarity measure. We then provide external validate tests for
our innovation similarity measure and contrast it with the product similarity measure
developed by Hoberg and Phillips (2016).

Patent Data and Our Merged Sample. We obtain the patent issuance data from
PatentView, a patent data visualization and analysis platform. PatentView contains
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detailed and up-to-date information on granted patents from 1976 onward. Its coverage
of recent patenting activities is more comprehensive than the NBER patent data (Hall,
Jaffe and Trajtenberg, 2001) and the patent data assembled by Kogan et al. (2017).18

Patent assignees in PatentView are disambiguated and their locations and patenting ac-
tivities are longitudinally tracked. PatentView categorizes patent assignees into different
groups, such as corporations, individuals, and government agencies. It also provides
detailed information of individual patents, including their grant dates and technology
classifications.

We match patent assignees in PatentView to U.S. public firms in CRSP/Compustat,
and to U.S. private firms and foreign firms in Capital IQ.19 Private firms are included
in our sample because they play an important role in industry competition (see, e.g.
Ali, Klasa and Yeung, 2008). We drop patents granted to individuals and government
agencies. We use a fuzzy name-matching algorithm to obtain a pool of potential matches
from CRSP/Compustat and Capital IQ for each patent assignee in PatentView. We then
manually screen these potential matches to identify the exact matches based on patent
assignees’ names and addresses. In Appendix C.2, we detail our matching procedure. In
total, we match 2, 235, 201 patents to 10, 139 U.S. public firms, 132, 100 patents to 3, 080
U.S. private firms, 241, 582 patents to 300 foreign public firms, and 35, 597 patents to 285
foreign private firms. The merged sample covers 13, 804 firms in 752 4-digit SIC industries
from 1976 to 2017.20

Innovation Similarity Measure. We construct our innovation similarity measure (de-
noted as “innosimm”) for the industry-level innovation similarity based on the technology
classifications of an industry’s patents. In light of previous studies (see, e.g. Jaffe, 1986;
Bloom, Schankerman and Van Reenen, 2013), we measure the cosine similarity of two
patents within the same industry based on their technology classification vectors.21

18The PatentView data contain all patents granted by the U.S. Patent and Trademark Office (USPTO)
from 1976 to 2017, while the NBER data and the data used by Kogan et al. (2017) only cover patents granted
up to 2006 and 2010, respectively.

19Capital IQ is one of the most comprehensive data that include private firms and foreign firms.
20We use 4-digit SIC codes in Compustat and Capital IQ to identify the industries of patent assignees.

Both Compustat and Capital IQ are developed and maintained by S&P Global and the SIC industry
classifications in these two datasets are consistent with each other. We verify the consistency by comparing
the SIC codes for U.S. public firms covered by both Compustat and Capital IQ. We find that the SIC codes
of these firms are virtually identical across the two data sources.

21PatentView provides both the Cooperative Patent Classification (CPC) and the U.S. Patent Classification
(USPC), the two major classification systems for U.S. patents. We use CPC for our analyses because USPC
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Specifically, the similarity between two patents, a and b, is defined by:

similarity (a, b) =
A · B
‖A‖ ‖B‖ , (4.1)

where A and B are the technology vectors of patent a and patent b. If the two patents share
exactly the same technology classifications, the cosine similarity attains the maximum
value, 1. If the two patents are mutually exclusive in their technology classifications, the
cosine similarity reaches the minimum value, 0. Because patent technology classifications
are assigned according to the technical features of patents, the cosine similarity measure
captures how similar the patents are in terms of their technological positions. Based on
the pairwise cosine similarity of patents, we take the following steps to construct the
industry-level innovation similarity measure.

First, we construct the patent-level similarity measure to capture to what extent a
patent is differentiated from other patents recently developed by peer firms. In particular,
for a patent granted to firm i in year t, the patent-level similarity measure is the average
of the pairwise cosine similarity (defined by equation 4.1) between this patent and the
other patents granted to firm i’s peer firms in the same 4-digit SIC industry from year
t− 5 to year t− 1.

Next, we aggregate patent-level similarity measures to obtain industry-level similarity
measures. For example, a 4-digit SIC industry’s similarity measure in year t is the average
of patent-level similarity measures associated with all the patents granted to firms in the
industry in year t. Because firms are not granted with patents every year, we further
average the industry-level similarity measures over time to filter noise and better capture
firms’ ability in generating differentiated innovation. In particular, our innosimm measure
in industry i and year t (i.e. innosimmit) is constructed as the time-series average of
industry i’s similarity measures from year t− 9 to year t.

Panel A of Figure 7 presents the time-series of several industries’ innosimm measure.
In the “Search, Detection, Navigation, Guidance, Aeronautical, and Nautical Systems
and Instruments” industry, the innosimm measure is low throughout our sample period,
suggesting that firms in this industry seem to be able to consistently generate radical
innovation. The innosimm measure keeps increasing for the “Drilling Oil and Gas Wells”

is not available after 2015. Our results are robust to the classification based on USPC for data prior to 2015.
There are 653 unique CPC classes (four-digit level) in PatentView. The technology classification vector for a
patent consists of 653 indicator variables that represent the patent’s CPC classes.
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industry, while it peaks in early 2000s for the “Rubber and Plastics Footwear” industry.

Validation of the Innosimm Measure. We perform two external validation tests for our
innosimm measure. In the first validation test, we examine the relation between innosimm
and the brand perception of consumers. If a higher innosimm captures a lower capacity
of radical innovation in an industry, we expect that fewer consumers would consider the
brands of high-innosimm industries as distinctive. We test this hypothesis by examining
the relation between innosimm and the relative change in brand distinctiveness over time,
measured using the BAV consumer survey data.22 We standardize innosimm using its
unconditional mean and the standard deviation of all industries’ innosimm across all
time to ease the interpretation of coefficients in our regression analyses. Column (1) of
Table 1 shows that innosimm is negatively correlated with the two-year percent change in
the industry-level brand distinctiveness, suggesting that industries with higher innosimm
are associated with lower brand distinctiveness in future.

Our innosimm measure is conceptually different from the product similarity mea-
sure (denoted as “prodsimm”) constructed by Hoberg and Phillips (2016). Innosimm
captures to what extent firms in an industry can differentiate their products from peers’
through innovation. Thus, it is a forward-looking measure that captures the (potential)
similarity/distinctiveness of firms’ businesses in the future. Product similarity, on the
other hand, is derived from text analyses based on firms’ current product description
(Hoberg and Phillips, 2016). Therefore, it reflects the similarity of products produced by
different firms as of today, rather than the potential similarity/distinctiveness of firms’
products in the future. In other words, product similarity contains littile information,
if at all, about firms’ innovation activities, which are the necessary inputs for making
products distinctive in the future. The conceptual difference between the two measures is
formally confirmed by column (2) of Table 1, which shows that innosimm is unrelated
with prodsimm.23 In Section 4.4 and 4.3, we further show that the prodsimm is neither

22The BAV database is regarded as the world’s most comprehensive database of consumers’ perception
of brands (see, e.g. Gerzema and Lebar, 2008; Keller, 2008; Mizik and Jacobson, 2008; Aaker, 2012; Lovett,
Peres and Shachar, 2014; Tavassoli, Sorescu and Chandy, 2014). The BAV brand perception survey consists
of more than 870,000 respondents in total, and it is constructed to represent the U.S. population according
to gender, ethnicity, age, income group, and geographic location. See Dou et al. (2018) for the details of the
survey.

23The correlation between innosimm and prodsimm is low. The Pearson correlation coefficient, the
Spearman’s rank correlation coefficient, and the Kendall’s τA and τB coefficients between the two variables
are 0.06, 0.02, 0.04, and 0.04, respectively.
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priced in the cross section nor related to industries’ price war risks.

Table 1: Validation of the innosimm measure (yearly analysis).

(1) (2) (3) (4)
Percent changes from year t to year t + 2 (%)

Brand distinctiveness Prodsimm The dispersion of market shares (%)

Innosimmt −0.69∗∗∗ 0.10 −1.26∗∗∗ −1.61∗∗∗

[−3.06] [0.04] [−2.60] [−3.26]

Year FE Yes Yes No Yes
Observations 2466 5906 8967 8967
R-squared 0.298 0.002 0.008 0.033

Note: This table shows the relation of our innosimm measure with measures of brand distinctiveness, product similarity, and
the dispersion of market shares at the 4-digit SIC industry level. In column (1) , the dependent variable is the two-year per-
cent change in brand distinctiveness. The percent change is computed as 100×(brand distinctivenesst+2 − brand distinctivenesst)
/brand distinctivenesst. At the brand level, brand distinctiveness is the fraction of consumers who consider a brand to be distinctive.
We first aggregate the brand-level distinctiveness measure to the firm level, and then further aggregate it to the 4-digit SIC industry
level. Prodsimm (i.e. product similarity measure) comes from Hoberg and Phillips (2016), and it is derived from text analyses based
on the business description in 10-K filings. We download the product similarity measure from the Hoberg and Phillips Data Library,
and aggregate it to the 4-digit SIC industry level. The dispersion of market shares (in percent) is defined as the standard deviation of
all firms’ market shares (measured by sales) within the 4-digit SIC industry. The sample in column (1) spans from 1993 to 2017, and
the sample in column (2) spans from 1996 to 2015. The sample in columns (3)–(4) spans from 1988 to 2017. We include t-statistics in
brackets. Standard errors are clustered by the 4-digit SIC industry and year. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels.

In the second validation test, we examine the relation between innosimm and disper-
sion of market shares. As explained in Section 3.2, we expect that firms in the industries
with lower capacities of radical innovation are more likely have comparable market shares.
If our innosimm measure captures industries’ (lack of) capacities in generating radical
innovation, we expect that high-innosimm industries to have lower dispersion of market
shares. This is indeed what we find in the data. As shown by columns (3) and (4) of Table
1, innosimm is negatively associated with the dispersion of market shares.

4.2 Sensitivity of Profit Margins to Long-Run Risks

We test our model’s mechanism in this subsection. We present several sets of empirical
results supporting the predictions of our model. First, aggregate profit margins co-move
positively with long-run risks. Profit margins are more (less) sensitive to long-run-risk
shocks during recessions (expansions). Second, firms in high-innosimm industries have
higher profit margins. Finally, profit margins are more exposed to long-run risks in
high-innosimm industries.
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Table 2: Sensitivity of aggregate profit margins to long-run risks (yearly analysis).
(1) (2) (3) (4) (5) (6) (7) (8)

ln
(

Aggregate profit marginst
Aggregate profit marginst−1

)

Measures of LRR Filtered consumption growth Realized consumption growth
Data sources of profit margins Compustat NBER-CES Compustat NBER-CES

LRRt 0.53∗∗ 0.76∗ 0.35∗∗ 0.49∗

[2.43] [1.89] [2.38] [1.84]

LRRt × indicator for expansions −0.20 −0.97 0.06 −0.41
[−1.08] [−1.56] [0.28] [−0.74]

LRRt × indicator for recessions 1.15∗∗∗ 2.01∗∗∗ 0.74∗∗ 1.46∗∗∗

[5.47] [4.43] [2.37] [3.02]

Constant 0.00∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.00∗ 0.01∗∗ 0.01∗∗ 0.01∗∗∗

[2.64] [4.25] [2.77] [3.89] [1.92] [2.07] [2.47] [2.81]

Observations 51 51 47 47 53 53 47 47
R-squared 0.115 0.288 0.064 0.268 0.080 0.142 0.042 0.155

Note: This table shows the sensitivity of aggregate profit margins to long-run risks. The aggrergate profit margin in year t is the
simple average across all industries’ profit margins in year t. We compute industry-level profit margins based on Compustat and
NBER-CES data as explained in Figure 1. The sample of the Compustat data ends at 2017, while the sample of the NBER-CES data
ends at 2011. Long-run risks are measured by the annualized filtered consumption growth in the last quarter of year t (columns
1–4), and by the average of the realized consumption growth rates in year t and year t− 1 (columns 5–8). Expansions and recessions
are defined based on the NBER Business Cycles. The sample spans from 1965 to 2015 in columns (1)–(2), and spans from 1965 to
2017 in columns (5)–(6). In columns (3)–(4) and columns (7)–(8), the sample spans from 1965 to 2011. We include t-statistics in
parentheses. Standard errors are computed using the Newey-West estimator allowing for serial correlation in returns. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels.

4.2.1 Time-Series Variation of Profit Margins

We first examine how aggregate profit margins are associated with long-run risks. We
construct two measures of aggregate profit margins based on Compustat and NBER-
CES Manufacturing Industry Database. Both data have their own advantages. The
Compustat data cover public firms from all industries, while the NBER-CES data cover
both public firms and private firms in the manufacturing sector. We measure long-run-risk
shocks using the consumption growth filtered by a Bayesian mixed-frequency approach
consumption growth as in Schorfheide, Song and Yaron (2018) (see Panel B of Figure 7).24

We find that aggregate profit margins co-move positively with long-run risks (columns
1 and 3 in Table 2). This finding is consistent with previous studies (see, e.g. Machin
and Van Reenen, 1993; Hall, 2012; Anderson, Rebelo and Wong, 2018) that show profit
margins are strongly procyclical. We further show that profit margins are more sensitive

24We are grateful to Amir Yaron for sharing data on the filtered consumption growth. The time series of
the filtered consumption growth ends at 2015.

33



to long-run-risk shocks during recessions (columns 2 and 4). These findings are consistent
with the predictions of our model.
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Note: Panel A plots the innosimm for three industries: rubber and plastics footwear (SIC 3021); drilling oil and gas wells (SIC
1381); and search, detection, navigation, guidance, aeronautical, and nautical systems and instruments (SIC 3812). Panel B plots
the annualized long-run growth rate. The red solid line represents filtered consumption growth as in Schorfheide, Song and Yaron
(2018). The black dotted line represents 8-quarter cumulative realized consumption growth. Panel C plots the long-run-risk shocks
in the post-war period (from 1947q1 to 2015q4). We construct long-run-risk shocks from the residuals of the AR(1) model for the
quarterly time series of filtered consumption growth in Schorfheide, Song and Yaron (2018). Gray dashed lines represent the 95% CI
of long-run-risk shocks. Red bars highlight the three prominent negative shocks in 1958q1, 1990q4, and 2008q3, which represent the
Eisenhower recession, the Iraq war, and the Lehman crash.

Figure 7: Examples of innosimm, consumption growth, and long-run-risk shocks.

4.2.2 Cross-Sectional Variation of Profit Margins

Next, we examine cross-sectional variation of profit margins. Our model implies that, all
else equal, firms in high-innosimm industries endogenously have higher profit margins.
In Table 3, we show that industry-level profit margins are positively associated with
innosimm. This relation is robust for the measures of profit margins constructed from
both the Compustat and NBER-CES data. The coefficient of innosimm is economically
significant and comparable across the two measures of profit margins. According to the
regressions with year fixed effects (columns 2 and 4), a one standard deviation increase
in innosimm is associated with a 2.47-percentage-point increase in the Compustat-based
profit margins and an 3.19-percentage-point increase in the NBER-CES-based profit
margin.

Our model further predicts that profit margins are more exposed to long-run risks
in high-innosimm industries. Consistent with the model, Table 4 shows that the one-
year ahead changes in industry-level profit margins are more positively correlated with
long-run risks in high-innosimm industries (columns 1 and 5). One potential alternative
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Table 3: Profit margins across industries with different innosimm (yearly analysis).

(1) (2) (3) (4)
Industry-level profit margins, Compustat (%) Industry-level profit margins, NBER-CES (%)

Innosimmt 2.57∗∗∗ 2.47∗∗ 3.29∗∗∗ 3.19∗∗∗

[4.31] [4.08] [3.65] [3.51]
Year FE No Yes No Yes
Observations 9212 9212 2787 2787
R-squared 0.017 0.019 0.063 0.072

Note: This table shows the relation of the innovation similarity with industry-level profit margins. In columns (1) and (2), the
dependent variables are the industry-level Compustat-based profit margins. In columns (3) and (4), the dependent variables are the
industry-level NBER-CES-based profit margins. Profit margins are computed as in Figure 1. The sample spans from 1988 to 2017 in
columns (1)–(2), and spans from 1988 to 2011 in columns (3)–(4). Standard errors are clustered by the 4-digit SIC industry and year.
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

explanation for this cross-sectional pattern is that innosimm may be correlated with
other industry characteristics such as income elasticity of demand and durability of
firms’ output. It is possible that these industry characteristics, rather than innosimm,
drive the heterogeneous sensitivity of profit margins to long-run risks. To rule out this
possibility, we control for the interaction between long-run-risk shocks and these industry
characteristics. We find that the coefficient of the interaction term between long-run-risk
shocks and innosimm remain positive and statistically significant (columns 2–4 and
columns 6–8).25

4.3 Sensitivity of Product Prices to Long-Run Risks

The key mechanism of our model is that high-innosimm industries collude on higher
product prices in good times, and their prices drop more in bad times due to endogenous
price wars. We test this mechanism in this subsection. In particular, we study the changes
of product prices using comprehensive product-level data. This data allow us to hold the
products (and thus their attributes) constant in examining the pricing behavior across
industries with different innosimm. Our findings suggest that high-innosimm industries

25Table 4 implies that the profit margins are less sensitive to long-run-risk shocks in luxury industries and
durable industries. The finding for luxury industries is consistent with the marketing literature (see, e.g.
Keller, 2008), which suggests that luxury goods producers tend to have stable and high product prices to
maintain their brand image and the perception of scarcity. The finding for durable industries is consistent
with the fact that the CPI index of durable goods is less volatile than that of non-durable goods (CPI
indexes are available from St. Louis Fed’s website). Yogo (2006) shows that the consumption of durable
goods is more procyclical than non-durable goods, and Ait-Sahalia, Parker and Yogo (2004) show that
luxury consumption is more procyclical than basic consumption. Different from these two papers, we focus
on the profit margins instead of consumption demand.
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Table 4: Sensitivity of profit margins to long-run risks across industries with different
innosimm (yearly analysis).

(1) (2) (3) (4) (5) (6) (7) (8)

ln
(

Profit marginst+1
Profit marginst

)

Measures of LRR Filtered consumption growth Realized consumption growth

LRRt × innosimmt 0.28∗∗ 0.28∗ 0.31∗ 0.29∗∗ 0.23∗∗ 0.21∗ 0.23∗ 0.24∗∗

[2.22] [1.75] [1.89] [2.35] [2.32] [1.71] [1.87] [2.46]

LRRt × income elasticity of demandt −0.37∗∗∗ −0.31∗∗

[−2.81] [−2.61]

LRRt × luxury industriest −0.77∗∗ −0.55∗

[−2.63] [−1.83]

LRRt × durable industriest −0.89∗∗ −0.79∗∗

[−2.59] [−2.26]

income elasticity of demandt −0.00 −0.00
[−1.01] [−0.76]

luxury industriest −0.00 0.00
[−0.23] [0.02]

durable industriest −0.01∗∗ −0.00
[−2.33] [−0.96]

LRRt 0.20 0.57 0.50 0.28 0.37 0.69 0.59 0.45
[0.47] [1.10] [0.89] [0.71] [1.07] [1.61] [1.29] [1.37]

innosimmt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[1.25] [1.36] [1.44] [1.36] [1.14] [1.22] [1.29] [1.22]

Observations 8848 6979 6979 8848 9163 7234 7234 9163
R-squared 0.001 0.002 0.002 0.001 0.002 0.003 0.002 0.002

Note: This table shows the sensitivity of industry-level profit margins to long-run risks. Profit margins are computed based on
Compustat data as explained in Figure 1. Long-run risks are measured by the annualized filtered consumption growth in the last
quarter of year t (columns 1–4), and by the average of the realized consumption growth rates in year t and year t− 1 (columns 5–8).
We estimate the income elasticity of demand based on the representative consumer’s income and expenditures on different products
(see Appendix C.4 for details). We define luxury industries as the industries with income elasticity of demand larger than one. The
durability of firms’ output comes from Gomes, Kogan and Yogo (2009). The sample spans from 1988 to 2015 in columns (1)–(4), and
spans from 1988 to 2017 in columns (5)–(8). We include t-statistics in parentheses. Standard errors are clustered by the 4-digit SIC
industry and year. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

are more exposed to price war risks. Firms in the high-innosimm industries have product
prices that decrease more in response to negative long-run-risk shocks and they are more
likely to engage in price wars in the periods after the Lehman crash.
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4.3.1 The Nielsen Data for Product Prices

We use the Nielsen Retail Measurement Services scanner data to measure product price
changes.26 The Nielsen data record prices and quantities of every unique product that
had any sales in the 42, 928 stores of more than 90 retail chains in the U.S. market from
January 2006 to December 2016. In total, the Nielsen data consist of more than 3.5 million
unique products identified by the Universal Product Codes (UPCs), and the data represent
53% of all sales in grocery stores, 55% in drug stores, 32% in mass merchandisers, 2%
in convenience stores, and 1% in liquor stores (see, e.g. Argente, Lee and Moreira, 2018).
We use the product-firm links provided by GS1, the official source of UPCs in the U.S.,
to match products in the Nielsen data to firms in CRSP/Compustat and Capital IQ. In
Appendix C.3, we detail the matching procedure. Our merged data cover the product
prices of 472 4-digit SIC industries.

4.3.2 Product Prices around the Lehman Crash

To begin, we examine the changes in media coverage about price war around the Lehman
crash, the period during which the U.S. economy experienced a prominent negative
long-run-risk shock (see Panel C of Figure 7). Because the Nielsen data mainly cover
consumer goods sold by retailers and wholesalers, we focus on media coverage of the
consumer goods sector and the retail/wholesale sector. Panel A of Figure 8 shows that,
after the Lehman crash, the number of articles covering price wars increased dramatically.
This pattern remains robust when we normalize the number of articles covering price
wars using the total number of news articles (see Panel B of Figure 8).

Next, we examine the changes in product prices around the Lenman crash. We sort
all industries into tertiles based on innosimm. Table 5 quantifies the changes in product
prices among high-innosimm industries (Tertile 3) relative to low-innosimm industries
(Tertile 1) around the Lehman crash. In particular, we restrict the sample to industries in
Tertile 1 and Tertile 3, and create a Tertile-3 indicator for the latter group. We also create
a post-Lehman indicator that equals one for observations in Oct. 2008 and thereafter.
We then regress the percent change in product prices on the Tertile-3 indicator, the

26We obtain the Nielsen data from the Kilts Center for Marketing at the University of Chicago Booth
School of Business (https://www.chicagobooth.edu/research/kilts/datasets/nielsen). The data have
been widely used in the macroeconomics literature (see, e.g. Aguiar and Hurst, 2007; Broda and Weinstein,
2010; Hottman, Redding and Weinstein, 2016; Argente, Lee and Moreira, 2018; Jaravel, 2018).
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D. Price-innosimm sensitivity
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F. Price-prodsimm sensitivity

Note: Panel A plots the number of articles (quarterly) that contain the term “price war” or “price wars” published in the Wall Street
Journal, the New York Times, and the Financial Times around the Lehman crash. We require that the articles cover the US region
and cover either the consumer goods sector or the retail/wholesale sector. The black dashed and red solid lines represent the mean
number of articles before and after the Lehman crash. Panel B plots the price war media coverage (in percent), which is the number
of articles that contain the term “price war” or “price wars” normalized by the number of articles published in the Wall Street Journal,
the New York Times, and the Financial Times. We apply the same region/industry filters as those in Panel A. Panel C plots the
difference in the percent change in product prices between high-innosimm (i.e. Tertile 3) and low-innosimm (i.e. Tertile 1) industries
around the Lehman crash. The percent change in product prices is annualized from monthly data. The gray vertical bar represents
the Lehman crash. The black circles and red triangles represent the difference in annualized monthly percent price changes between
high-innosimm and low-innosimm industries in the 18 months before and after the Lehman crash. The black dashed and red solid
lines represent the mean values of the differences before and after the Lehman crash. Panel D shows the price-innosimm sensitivity
around the Lehman crash. The black circles and red triangles represent the monthly estimates of the price-innosimm sensitivity
in the 18 months before and after the Lehman crash. The black dashed lines and red solid lines represent the mean values of the
price-innosimm sensitivity before and after the Lehman crash. Panel E plots the difference in the percent change in product prices
between high-prodsimm (i.e. Tertile 3) and low-prodsimm (i.e. Tertile 1) industries. Panel F shows the price-prodsimm sensitivity.
We estimate confidence intervals using the bootstrapping method. Specifically, for each panel, we construct 1,000,000 time series by
randomly drawing (with replacement) from a sample pool that contains observations both before and after the Lehman crash. We
then estimate the 95% CI (dotted dashed lines) for the difference between the mean values before and after the Lehman crash. The
differences between the mean values before and after the Lehman crash are statistically significant (insignificant) if the red solid lines
are outside (within) the 95% CI.

Figure 8: Changes of price war news index and product prices around the Lehman crash.

post-Lehman-crash indicator, and an interaction term between these two indicators. The
coefficient of the interaction term is negative and statistically significant across different
regression specifications, suggesting that product prices in high-innosimm industries
reduce significantly relative to those in low-innosimm industries after the Lehman crash.
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The difference in product prices is economically significant. According to the regression
without industry fixed effects (column 1 of Table 5), product prices decrease by 4.98%
in high-innosimm industries after the Lehman crash, relative to those of low-innosimm
industries.

Panel C of Figure 8 visualizes the difference in average product prices between low-
innosimm and high-innosimm industries in the 36-month period around the Lehman
crash. The plot clearly shows that product prices in high-innosimm industries reduced
more relative to those of low-innosimm industries after the Lehman crash. The above
findings support our model’s prediction that high-innosimm industries are more likely
to engage in price wars following negative long-run-risk shocks.

Table 5: Product prices around the Lehman crash (monthly analysis).
(1) (2) (3) (4)

Percent change in product prices (monthly, annualized, %)

Similarity measure Innosimm Prodsimm

Tertile-3 similarityt−1 × post Lehman crasht −4.98∗∗∗ −5.12∗∗ −2.02 −1.48
[−2.85] [−2.64] [−1.33] [−0.78]

Tertile-3 similarityt−1 −2.32 −4.73 −2.25 −3.17
[−1.05] [−0.93] [−1.07] [−1.58]

Post Lehman crasht 0.40 1.03 −0.82 −0.74
[0.19] [0.50] [−0.59] [−0.44]

Industry FE No Yes No Yes
Observations 5106 5106 4809 4809
R-squared 0.003 0.053 0.001 0.041

Note: This table shows the changes in product prices around the Lehman crash. The dependent variable is the annualized monthly
percent change in product prices of 4-digit SIC industries. Product prices are obtained from the Nielsen Data. To compute the
monthly percent change in product prices for 4-digit SIC industries, we first compute the transaction-value weighted price for each
product across all stores in each month. We then calculate the monthly percent change in prices for each product. Finally, we
compute the value-weighted percent change in product prices for each 4-digit SIC industry based on the transaction values of the
industry’s products. In columns (1) and (2), the similarity measure is innosimm. In columns (3) and (4), the similarity measure is
prodsimm. We consider the 36-month period around the Lehman crash. In Appendix F.1, we perform the analysis by considering
the 24-month period around the Lehman crash and find similar results. We include t-statistics in parentheses. Standard errors are
clustered by the 4-digit SIC industry and month. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

We continue to extend our analysis to all industries. According to the theory, the
Lehman crash brings about product price changes in all industries, but with different
magnitudes presumably depending on the industry’s innosimm. To understand how
the percent change in product prices varies with industry-level innosimm, or what we
call the price-innosimm sensitivity, we regress the percent change in product prices on
innosimm, the post-Lehman indicator, and an interaction term between innosimm and
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Table 6: Price-similarity sensitivity around the Lehman crash (monthly analysis).
(1) (2) (3) (4)

Percent change in product prices (monthly, annualized, %)

Similarity measure Innosimm Prodsimm

Similarityt−1 × post Lehman crasht −3.04∗∗∗ −2.84∗∗∗ −0.07 −0.35
[−3.19] [−2.79] [−0.20] [−1.15]

Similarityt−1 −1.00 −2.05 −0.01 −5.90∗∗∗

[−1.32] [−1.45] [−0.01] [−3.95]

Post Lehman crasht −1.61 −1.64 −2.25∗ −2.35∗

[−1.44] [−1.47] [−1.80] [−1.87]

Industry FE No Yes No Yes
Observations 7641 7641 7192 7192
R-squared 0.004 0.040 0.001 0.039

Note: This table shows the price-similarity sensitivity around the Lehman crash. The dependent variable is the annualized monthly
percent change in product prices of 4-digit SIC industries. We consider the 36-month period around the Lehman crash. In Appendix
F.1, we perform the analysis by considering the 24-month period around the Lehman crash and find similar results. We include
t-statistics in parentheses. Standard errors are clustered by the 4-digit SIC industry and month. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels.

the post-Lehman indicator. The regression results are presented in columns (1) and
(2) of Table 7. The change in price-innosimm sensitivity owing to the Lehman crash is
given by the coefficient on the interaction term. Table 7 shows that the coefficient of the
interaction term is negative, indicating that high-innosimm industries are more affected
by the Lehman crash and their product prices decrease relatively more compared to
low-innosimm industries, which again suggests that high-innosimm industries are more
likely to engage in price wars following negative long-run-risk shocks. Panel D of Figure
8 visualizes the monthly price-innosimm sensitivity. It is evident that the price-innosimm
sensitivity reduces significantly after the Lehman crash.

We also examine the product prices around the Lehman crash for industries with
different prodsimm. We find that product prices do not move differently for high-
prodsimm industries and low-prodsimm industries (Panel E of Figure 8, columns 3 and 4
in Table 5). Moreover, we observe little change in price-prodsimm sensitivity following
the Lehman crash (Panel F of Figure 8, columns 3 and 4 in Table 6). These findings
suggest that, unlike innosimm, prodsimm does not appear to be related to the price war
risks that endogenously arise from long-run risks.
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4.3.3 Sensitivity of Product Prices to Long-Run Risks Across Industries

Having conducted an event-type study by focusing on the time period around the
Lehman crash, we now extend our analysis to the whole time series covered by the
Nielsen data from 2006 to 2016. Specifically, we regress the percent change in product
prices on innosimm, long-run growth rate, and the interaction term between innosimm
and the long-run growth rate. Table 7 shows that the coefficient of the interaction term
is positive and statistically significant. This result remain robust when we control for
various industry characteristics such as the income elasticity of demand and durability of
industry’s outputs. The above findings suggest that the product prices of high-innosimm
industries are more sensitive to long-run risks and hence these industries are more
exposed to price war risks.

4.4 Asset Pricing Tests

We now test the asset pricing implications of our model. We find that high-innosimm
industries have higher average excess returns and risk-adjusted returns. The spreads
between high-innosimm industries and low-innosimm industries (denoted as innosimm
spreads) remain robust after controlling for various related measures. Moreover, the
innosimm spreads become much weaker among the industries that experience antitrust
enforcement in recent years. Finally, we show that the stock returns and dividend growth
of the high-innosimm industries are more exposed to long-run risks.

4.4.1 Innosimm Spreads Across Industries

We examine whether innosimm is priced in the cross section. Panel A of Table 8 presents
the value-weighted average excess returns and alphas for the 4-digit SIC industry port-
folios sorted on innosimm. It shows that the portfolio consisting of high-innosimm
industries (i.e. Q5) exhibits significantly higher average excess returns and alphas. The
annualized spread in average excess returns between Q1 and Q5 is 3.41% and the annual-
ized spreads in alphas are 5.22% and 4.75% for the Fama-French three-factor model and
the Carhart four-factor model. We also perform the same analysis for prodsimm. We
find that prodsimm is not priced in the cross section. The return difference between the
high-prodsimm portfolio and the low-prodsimm portfolio is statistically insignificant (see
Panel B of Table 8).
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Table 7: Price-innosimm sensitivity and long-run growth rate (quarterly analysis).
(1) (2) (3) (4) (5) (6) (7) (8)

One-year ahead percent change in product prices (∑4
j=1 price_grt+j)

Measures of LRR Filtered consumption growth Realized consumption growth

LRRt × innosimmt 1.17∗∗ 1.13∗ 1.17∗∗ 1.16∗∗ 0.80∗∗ 0.75∗ 0.81∗∗ 0.79∗∗

[2.37] [2.24] [2.34] [2.35] [2.36] [2.15] [2.33] [2.28]

LRRt × income elasticity of demandt −0.36 −0.77∗∗∗

[−0.75] [−5.69]

LRRt × luxury industriest −0.52 −0.91∗∗∗

[−1.56] [−3.92]

LRRt × durable industriest −1.27∗ 0.52
[−2.14] [0.51]

income elasticity of demandt 0.01 −0.00
[0.52] [−0.68]

luxury industriest −0.00 −0.01
[−0.22] [−0.94]

durable industriest −0.10∗∗∗ −0.05∗∗

[−5.29] [−2.71]

LRRt −0.20 0.26 0.07 −0.02 0.11 1.07∗∗ 0.58 0.07
[−0.13] [0.17] [0.05] [−0.02] [0.23] [3.07] [1.20] [0.15]

Innosimmt 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00
[0.17] [0.18] [0.17] [0.17] [−0.24] [−0.21] [−0.13] [−0.25]

Observations 7338 7338 7338 7338 8208 8208 8208 8208
R-squared 0.002 0.003 0.002 0.006 0.004 0.006 0.005 0.010

Note: This table shows the sensitivity of percent changes in product prices to consumption growth across the 4-digit SIC industries
with different innosimm. The dependent variable is the industry-level annualized percent change in product prices from quarter
t + 1 to quarter t + 4. Long-run risks are measured by annualized filtered consumption growth in quarter t in columns (1)–(4), and
by the average realized consumption growth from quarter t− 7 to t (annualized). We estimate the income elasticity of demand based
on the representative consumer’s income and expenditures on different products (see Appendix C.4 for details). We define luxury
industries as the industries with income elasticity of demand larger than one. The durability of firms’ output comes from Gomes,
Kogan and Yogo (2009). The sample period of columns is from 2006 to 2016. We include t-statistics in parentheses. Standard errors
are clustered by the 4-digit SIC industry and year. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

4.4.2 Double-Sort Analyses

Profit margins. We have shown that profit margins of high-innosimm industries are
more exposed to long-run risks. According to our theory, innosimm is priced in the cross
section because it captures the sensitivity of profit margins to long-run risks. Previous
studies have shown that profitability is strongly related to asset returns (see, e.g. Novy-
Marx, 2013; Fama and French, 2015; Hou, Xue and Zhang, 2015). Since innosimm is
positively related to profit margins (see Table 3), it is possible that innosimm is priced
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Table 8: The average excess returns and alphas of portfolios sorted on innovation similarity
and product similarity (monthly analysis).

1 (Low) 2 3 4 5 (High) 5 − 1

Panel A: Portfolios sorted on innosimm

Average excess returns
E[R]− r f (%) 6.13∗∗∗ 8.37∗∗∗ 7.35∗∗∗ 8.62∗∗∗ 9.54∗∗∗ 3.41∗∗∗

[2.74] [3.73] [3.01] [4.42] [3.17] [2.71]
Fama-French three-factor model (Fama and French, 1993)

α (%) −2.51∗∗ 0.07 −1.34 1.08 2.71∗∗ 5.22∗∗∗

[−2.48] [0.10] [−0.69] [1.21] [2.49] [3.54]
Carhart four-factor model (Carhart, 1997)

α (%) −2.47∗∗∗ 0.09 −1.25 1.43 2.28∗∗∗ 4.75∗∗∗

[−2.70] [0.18] [−0.78] [1.50] [2.63] [4.01]

Panel B: Portfolios sorted on prodsimm

Average excess returns
E[R]− r f (%) 4.94∗∗ 6.44∗∗ 8.07∗∗ 6.25∗ 6.19∗ 1.25

[2.29] [2.05] [2.59] [1.77] [1.91] [0.42]
Fama-French three-factor model (Fama and French, 1993)

α (%) −0.89 0.03 2.21∗∗ 0.08 0.82 1.70
[−0.48] [0.01] [2.53] [0.06] [0.86] [0.64]

Carhart four-factor model (Carhart, 1997)
α (%) −0.57 0.42 2.19∗∗ 0.69 0.70 1.26

[−0.36] [0.20] [2.43] [0.68] [0.75] [0.53]

Note: This table shows the value-weighted average excess returns and alphas for the 4-digit SIC industry portfolios sorted on
innosimm. In June of year t, we sort the 4-digit SIC industries into five quintiles based on this industry’s innosimm in year t− 1.
Once the portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1. The sample period is
from July 1988 to June 2018. We exclude financial firms and utility firms from the analysis. We include t-statistics in parentheses.
Standard errors are computed using the Newey-West estimator allowing for serial correlation in returns. We annualize average
excess returns and alphas by multiplying by 12. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

via its correlation with the level of profit margins instead of via the sensitivity of profit
margins to long-run risks. We present two sets of evidence that argue against this
alternative explanation. First, the innosimm spreads documented in Table 8 are robust
when we control for the profitability factor using the Fama-French five-factor model
(Fama and French, 2015) and the Hou-Xue-Zhang q factor model (Hou, Xue and Zhang,
2015). The annualized spreads in alphas between the high-innosimm industries (Q5) and
the low-innosimm industries (Q1) are 9.24% and 8.88%, while the t-statistics are 4.11
and 6.38, for these two models. Second, the innosimm spreads remain robust after we
double sort on the profit margins (see Table 9). These findings suggest that innosimm
and profitability are priced for different underlying economic mechanisms, which is not
surprising given that profitability is affected by many other factors besides its sensitivity
to long-run risks.

43



Other related variables. Besides the level of profitability, we also conduct a number
of double-sort analyses for other related variables. innosimm spreads are robust after
controlling for prodsimm, innovation originality, asset growth rate, income elasticity of
demand, and the durability of firms’ outputs (see Table 9).

Table 9: Double-sort analyses (monthly analysis).

Double-sort variables Excess returns (%) Fama-French three-
factor alpha (%)

Carhart four-factor alpha (%)

Profit margins 2.53∗∗∗ 4.43∗∗ 4.14∗∗∗

[2.80] [5.00] [4.42]

Prodsimm 2.15∗ 3.81∗∗∗ 3.72∗∗∗

[1.92] [4.27] [4.81]

Innovation originality 2.83∗∗∗ 4.31∗∗∗ 3.70∗∗∗

[3.36] [3.27] [3.59]

Asset growth rate 3.37∗∗∗ 4.91∗∗ 4.54∗∗∗

[2.60] [3.75] [4.12]

Income elasticity of demand 3.76∗∗∗ 5.45∗∗∗ 4.78∗∗∗

[2.98] [3.20] [3.29]

Durability of firms’ outputs 3.66∗∗ 3.96∗∗ 3.69∗∗

[2.27] [2.07] [2.48]

Note: This table shows the average excess returns and alphas from double-sort analyses. In the double-sort analyses, we first sort the
4-digit SIC industries into three groups based on measures of profit margins, product similarity, innovation originality or durability
of firms’ outputs in June of year t. We then sort firms within each group into five quintiles based on innosimm in year t− 1. Once
the portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1. Industry-level profit margins
are computed based on Compustat data as explained in Figure 1. Prodsimm is the product similarity measure as in (Hoberg
and Phillips, 2016), which is derived from text analysis based on the business deription in 10-K filings. Innovation originality is
constructed following Hirshleifer, Hsu and Li (2017) to capture the patents’ originality. In particular, we count the number of unique
technology classes contained in a patent’s citations/reference list. We then obtain the industry-level innovation originality measure
by averaging the number of classes across all patents in a 4-digit SIC industry every year. Asset growth rate is the growth rate of the
total asset. We obtain the industry-level asset growth rate by averaging the firm-level asset growth rate in a 4-digit SIC industry every
year. We estimate the industry-level income elasticity of demand based on the representative consumer’s income and expenditures
on different products (see Appendix C.4 for details). The durability of firms’ output comes from Gomes, Kogan and Yogo (2009),
who classify each SIC industry into six categories (durables, non-durables, services, private domestic investment, government, and
net exports) based on its contributions to final demand. We exclude financial firms and utility firms from the analysis. We include
t-statistics in parentheses. Standard errors are computed using the Newey-West estimator allowing for serial correlation in returns.
We annualize average excess returns and alphas by multiplying by 12. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% levels.

4.4.3 The Impact of Antitrust Enforcement

We now test whether innosimm spreads are related to the difference in industries’
collusion incentive (see Appendix E.3 for model implications). We exploit the variation in
collusion incentive due to antitrust enforcement, which punishes collusive behavior and
thus dampens firms’ incentive to collude.
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To examine the impact of antitrust enforcement on innosimm spreads, we split all
industries in each year into two groups based on whether they have experienced any
antitrust enforcement in the past ten years.27 As shown in Table 10, the innosimm spreads
are much smaller in the industries that have recently experienced antitrust enforcement,
suggesting that innosimm spreads are driven by heterogeneous collusion incentive across
industries with different innosimm as illustrated by our model.

Table 10: Antitrust enforcement and innosimm spreads (monthly analysis).

Excess returns (%) Fama-French three-factor alpha (%) Carhart four-factor alpha (%)

Panel A: Industries with antitrust enforcement in the past 10 years
−0.81 0.59 −0.44
[−0.33] [0.24] [−0.21]

Panel B: Industries without antitrust enforcement in the past 10 years
3.27∗∗ 5.44∗∗ 5.54∗∗∗

[2.01] [2.91] [3.00]

Note: This table presents the average excess returns and alphas (both in percent) of the value-weighted long-short 4-digit SIC
industry portfolio sorted on innosimm in the sub-samples with (Panel A) and without (Panel B) antitrust enforcement in past ten
years. We exclude financial firms and utility firms from the analysis. We include t-statistics in parentheses. Standard errors are
computed using the Newey-West estimator allowing for serial correlation in returns. We annualize the average excess returns and
the alphas by multiplying by 12. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels.

4.4.4 The Exposure of Stock Returns and Dividend Growth to Long-Run Risks

Finally, we show that the stock returns and dividend growth of high-innosimm industries
have higher exposure to long-run risks. We first examine the exposure of stock returns
to long-run risks. We sort all industries into quintile portfolios based on innosimm, and
regress the cumulative portfolio returns of each portfolio on long-run risks, following
Dittmar and Lundblad (2017). We use two measures of long-run risks in our analyses:
the cumulative realized consumption growth as in Dittmar and Lundblad (2017), and
the filtered consumption growth as in Schorfheide, Song and Yaron (2018). Table 11
tabulates the coefficients of long-run risks across the quintile portfolios sorted on in-
nosimm (denoted as LRR beta). The LRR beta for the long-short portfolio is positive and
statistically significant, suggesting that the stock returns of high-innosimm industries are
more exposed to long-run risks.

27The antitrust enforcement cases are hand collected from the websites of the U.S. Department of Justice
(DOJ) and the Federal Trade Commission (FTC). DOJ provides 4-digit SIC codes for the firms in some of
the cases. For the rest of DOJ cases and all FTC cases, we match the firms involved in antitrust enforcement
to CRSP/Compustat and Capital IQ, from which we collect the 4-digit SIC codes of these firms.
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Table 11: Long-run-risk exposure of portfolios sorted on innosimm (quarterly analysis).

Portfolios sorted on innosimm 1 (Low) 2 3 4 5 (High) 5 − 1

Panel A: Long-run risks measured by 8-quarter cumulative realized consumption growth

LRR betas 1.78 6.55∗∗∗ 3.48∗∗∗ 5.51∗∗∗ 5.24∗∗∗ 3.46∗∗

[1.58] [5.09] [3.12] [3.73] [4.03] [2.09]

Panel B: Long-run risks measured by 8-quarter cumulative filtered consumption growth

LRR betas −0.05 4.45∗∗∗ −0.62 3.57∗∗ 4.69∗∗ 4.75∗∗

[−0.05] [3.16] [−0.52] [2.57] [2.41] [2.61]

Note: This table shows the exposure to long-run risks for industry portfolios sorted on innosimm. In June of year t, we sort industries
into five quintiles based on innosimm in year t− 1. Once the portfolios are formed, their monthly returns are tracked from July of
year t to June of year t+ 1. In Panel A, following Dittmar and Lundblad (2017), we regress the 8-quarter cumulative portfolio returns
on the 8-quarter cumulative realized consumption growth: ∏7

j=0 Ri,τ−j = αi + βi ∑7
j=0 η̂τ−j + ei,τ , where η̂τ is the consumption growth

shock, measured by the difference between the log consumption growth in quarter τ and the unconditional mean of log consumption
growth over 1947–2018. We measure consumption using per-capita real personal consumption expenditures on non-durable goods
and services. Ri,τ is the gross real return of the industry portfolio i in quarter τ. Consumption and returns are deflated to real terms
using the personal consumption expenditure deflator from the U.S. Bureau of Economic Analysis (BEA). The analysis is conducted
at quarterly frequency for the sample period from 1988 to 2018. In Panel B, we replace realized cumulative consumption growth
(∑7

j=0 η̂τ−j) in the above regression with cumulative filtered consumption growth (∑7
j=0 x̂τ−j) as in Schorfheide, Song and Yaron

(2018). The sample period in Panel B is from 1988 to 2015 because data on the filtered consumption growth end in 2015. We exclude
financial firms and utility firms from the analysis. We include t-statistics in parentheses. Standard errors are computed using the
Newey-West estimator allowing for serial correlation in returns. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels.

We further examine the exposure of real dividend growth to long-run risks for the long-
short portfolio sorted on innosimm. We construct real dividend growth rate following
previous literature (see, e.g. Campbell and Shiller, 1988; Bansal, Dittmar and Lundblad,
2005; Hansen, Heaton and Li, 2005, 2008; Bansal, Kiku and Yaron, 2016). We detail the
construction method in Appendix C.5. Importantly we account for stock entries and exits
when computing a portfolio’s dividend growth rate. Table 12 shows that the dividend
growth of high-innosimm industries is also more exposed to long-run risks.

5 Quantitative Analyses

In this section, we conduct quantitative analyses. We calibrate the extended model’s
parameters and examine whether our model can replicate the main asset pricing patterns
from the data.

5.1 Calibration

We solve the model numerically (see Appendix G). The model’s parameters are calibrated
based on both existing estimates and micro data (see Table 13) without referring to asset
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Table 12: Long-run-risk exposure of real dividend growth for the long-short industry
portfolio sorted on innosimm (Q5−Q1) (quarterly analysis).

Spreads of dividend growth (annualized, %) 2.09
[0.48]

Exposure to LRR measured by realized consumption growth 7.68∗∗∗

[4.75]

Exposure to LRR measured by filtered consumption growth 6.23∗∗∗

[4.72]

Note: This table shows the exposure of real dividend growth to long-run risks for the long-short industry portfolios sorted
on innosimm. We measure long-run risks using both realized consumption growth and filtered consumption growth as in
Schorfheide, Song and Yaron (2018). For the first LRR measure, we regress the 4-quarter cumulative dividend growth of the
long-short innosimm portfolios on the lagged 8-quarter cumulative realized consumption growth (annualized): ∑4

j=1(DQ5 ,t+j −
DQ1 ,t+j) = α+ β ∑7

j=0 η̂t−j/2+ et, where η̂t is the realized consumption growth shock. For the second LRR measure, we replace

the 8-quarter realized cumulative consumption growth in the above regression (∑7
j=0 η̂t−j/2) with annualized quarterly filtered

consumption growth. We exclude financial firms and utility firms from the analysis. We include t-statistics in parentheses.
Standard errors are computed using the Newey-West estimator allowing for serial correlation in returns. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels.

pricing information, and we examine whether the calibrated model can quantitatively
explain the observed asset pricing patterns.

The process of aggregate consumption is calibrated following Bansal and Yaron (2004).
We set the persistence of expected growth rate to be κ = 0.49, so that the auto-correlation
of annual consumption growth rates is 0.49. We set θ = 0.018 and σc = 0.029 so that the
average annual consumption growth rate is 1.8% and its standard deviation is about 2.9%.
Following Bansal and Yaron (2004), we set ϕθ = 0.044, indicating that the predictable
variation in consumption growth is 4.4%. Following the standard practice, we set the
subjective discount factor β = 0.976, the risk aversion parameter γ = 10, and the inter-
temporal elasticity of substitution ψ = 1.5.

We set the within-industry elasticity of substitution η = 10 and the across-industry
elasticity of substitution to be ε = 2, broadly consistent with the values of Atkeson and
Burstein (2008). The unit flow cost of production ω is normalized to be one. The success
rate of innovation is set to be µ = 0.4. We set the customer base depreciation rate to
be ρ = 0.15, within the range of 15%-25% estimated by Gourio and Rudanko (2014).
We choose a low z = 0.05 to capture sticky customer base (Gourio and Rudanko, 2014;
Gilchrist et al., 2017).

We allow the industry characteristic λi,t to take 11 values, i.e. λi,t ∈ {0.9, 0.91, 0.92, ..., 1}.
The characteristic λi,t remains the same unless it is hit by a Poisson shock with rate ε.
Conditional on receiving the Poisson shock, a new characteristic is randomly drawn with
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Table 13: Calibration and parameter choice.

Parameters Symbol Value Parameters Symbol Value

Average long-run consumption growth rate θ 0.018 Persistence of expected growth rate κ 0.49

Exposure to long-run growth risks ϕθ 0.044 Volatility of consumption growth σc 0.029

Customer base adjustment friction χ 0.3 Cost of production ω 1

Customer base accumulation rate z 0.05 Customer base depreciation rate ρ 0.15

Across-industry elasticity of substitution ε 2 Within-industry elasticity of substitution η 10

Customer base stealing (incremental) τι 0.15 Customer base stealing (radical) τd 0.90

Punishment rate φ 0.15 Risk aversion γ 10

Inter-temporal elasticity of substitution ψ 1.5 Subjective discount factor β 0.976

Persistence of industry characteristics ε 0.03 Innovation success rate µ 0.4

equal probabilities of each value. Across all industries, incremental innovation occurs
every 6 months and radical innovation occurs every 10 years on average. We set ε = 0.05
to make λi,t a persistent industry characteristic. The within-industry customer base
stealing due to incremental and radical innovation are set to be τι = 0.15 and τd = 0.90.
The punishment rate is set to be φ = 0.15, implying that the difference in price changes
between Tertile 1 and Tertile 3 innosimm portfolios is about 1% for a one-percent change
in long-run consumption growth rates, roughly consistent with Table 7.

5.2 Quantitative Results

Now we check whether our model can quantitatively replicate the main asset pricing
patterns presented in Table 8. In each year t, we sort the simulated firms into five quintiles
based on their λi,t at the beginning of the year. We then compute the value-weighted
average excess return of each quintile’s portfolio. Table 14 shows that the model-implied
difference in the annualized average excess returns between Q1 and Q5 is about 3.28%.
These numbers are quantitatively consistent with the findings in Table 8. If we simulate
the model without price war risks (by focusing on constant collusive prices), the average
risk premium decreases by about 33%, and the model-implied spread is largely reduced
to 0.43%.

6 Conclusion

In this paper, we explore the the implication of price war risks. We develop a general-
equilibrium asset pricing model incorporating dynamic supergames of price competition
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Table 14: Average excess returns of portfolios in data and model.

E[R]− r f Data Model
Baseline No price war risks

Quintile 1 (%) 6.13 4.02 3.63
Quintile 5 (%) 9.54 7.30 4.06
Q5 – Q1 (%) 3.41 3.28 0.43

among firms. In our model, price wars can arise endogenously from declines in long-run
consumption growth, since firms become effectively more impatient for cash flows and
their incentives to undercut prices become stronger. The exposure to price war risks reflect
predictable and persistent heterogeneous industry characteristics. Firms in industries
with higher capacities of radical innovation are more immune to price war risks due to
the higher likelihood of creative destruction and market disruption. Exploring detailed
patent and product price data, we found evidence for the existence of price war risks.
Moreover, that endogenous price war risks are priced in the cross section.
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Appendix

A Headline Quotes for Price Wars and Stock Returns
We cite a few recent media headlines on how price wars can depress firms’ stock returns.

• “Best Buy Co. shares plunged 11% Tuesday, after the electronics chain warned investors about price
war fears.” – The Wall Street Journal on November 20th of 2013.

• “Target shares dive as it shifts to cut-price strategy.” – Financial Times on February 28th of 2017.

• “Price war eats into the profits of pharmaceutical wholesalers and manufacturers alike and erases
billions of dollars of the market value in recent days” – The Wall Street Journal on August 5th of 2017.

• “Airline stocks plunge on price war fears.” – Financial Times on January 24th of 2018.

• “Investors Purge Infinera Stock on Price War Concerns, Ignore Q1 Results.” – SDxCentral on May
10th of 2018.

• “A fierce price war between consumer goods giants hit Unilever shares hard.” – The Wall Street
Journal on July 19th of 2018.

• “Coffee price war takes jolt out of Dunkin’ results.” – Financial Times on September 27th of 2018.

B Analyst Report Coverage on Price Wars
We cite a few analyst reports that provide coverage and comments on price wars.

• Figure B.1 shows Credit Suisse’s coverage on the food retail industry.

• Figure B.2 shows MF Global’s coverage on Apple Inc.

• Figure B.3 shows Salomon Smith Barney’s coverage on Compaq.

• Figure B.4 shows Indigo Equity Research’s coverage on AT&T.

• Figure B.5 shows Cowen’s coverage on Dick’s Sporting Goods.

C Data

C.1 Industry Concentration Ratio
We use the U.S. Census concentration ratio data from 1987, 1992, 1997, 2002, 2007, and 2012 to compute
the time-series maximal and mean revenue shares for the top 4 firms (CR4) and top 8 firms (CR8) in each
4-digit SIC industry. The concentration ratios are at the 6-digit NAICS level after 1997. We follow Ali, Klasa
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Figure B.1: Credit Suisse’s coverage on the food retail industry.

and Yeung (2008) and convert the ratios to 4-digit SIC levels. Figure C.6 plots the histogram of the max
CR4 (Panel A1), max CR8 (Panel B1), mean CR4 (Panel A2), and mean CR8 (Panel B2) in all 4-digit SIC
industries. Red vertical lines represent the cross-sectional mean values.
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Figure B.2: MF Global’s coverage on Apple Inc.

Figure B.3: Salomon Smith Barney’s coverage on Compaq.
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Figure B.4: Indigo Equity Research’s coverage on AT&T.

Figure B.5: Cowen’s coverage on Dick’s Sporting Goods.
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Note: This figure plots the histogram of the top 4 and top 8 firms’ total revenue share in 4-digit SIC industries. We use the U.S.
Census concentration ratio data from 1987, 1992, 1997, 2002, 2007, and 2012 to compute the time-series maximal and mean revenue
shares for the top 4 firms (CR4) and top 8 firms (CR8) in each 4-digit SIC industry. The concentration ratios are at the 6-digit NAICS
level after 1997. We follow Ali, Klasa and Yeung (2008) and convert the ratios to 4-digit SIC levels. We plot the histogram of the max
CR4 (Panel A1), max CR8 (Panel B1), mean CR4 (Panel A2), and mean CR8 (Panel B2) in all 4-digit SIC industries. Red vertical lines
represent the cross-sectional mean values.

Figure C.6: Top 4 and top 8 firms’ revenue share in 4-digit SIC industries.

C.2 Match PatentView with CRSP/Compustat/Capital IQ
In this Appendix, we detail the matching procedure for the data from PatentView, CRSP/Compustat, and
Capital IQ.28 We first drop patent assignees that are classified as individuals and government agencies by
PatentView, because these assignees are not associated with any particular industry. We then clean assignee
names in PatentView and firm names in CRSP/Compustat and Capital IQ following the approach of Hall,
Jaffe and Trajtenberg (2001). To elaborate, we remove punctuations and clean special characters. We then
transform the names into upper cases and standardize them. For example, “INDUSTRY” is standardized
to be “IND”; and “RESEARCH” is standardized to be “RES”; and corporate form words (e.g. “LLC” and
“CORP”) are dropped, etc.

28The PatentView data are available at http://www.patentsview.org/download/.
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Match PatentView with CRSP/Compustat. We match patent assignees in PatentView with
firms in CRSP/Compustat based on standardized names. We use the fuzzy name matching algorithm
(matchit command in Stata), which generates the matching scores (Jaccard index) for all name pairs between
patent assignees in PatentView and firms in CRSP/Compustat.29 We obtain a pool of potential matches
based on two criteria: (1) we require the matching score to be higher than 0.6; (2) we require the first three
letters of patent assignees to be the same as those of firms in CRSP/Compustat.30 We then go through all
potential matches to manually identify exact matches.31

As pointed out by Lerner and Seru (2017), one major challenge for linking patent data to CRSP/Compustat
is that some patent assignees are subsidiaries of firms in CRSP/Compustat. For these assignees, we cannot
directly match them with CRSP/Compustat based on firm names. To deal with this challenge, the NBER
patent data (Hall, Jaffe and Trajtenberg, 2001) use the 1989 edition of the Who Owns Whom directory (now
known as the D&B WorldBase R©- Who Owns Whom) to match subsidiaries to parent companies. Kogan
et al. (2017) purged the matches identified by the NBER patent data, and extended the matching between
patent data and CRSP/Compustat to 2010. For those patent assignees who are subsidiaries of firms in
CRSP/Compustat, we augment our matches by incorporating the data of Kogan et al. (2017) for patents
granted before 2010. For patents granted after 2010, we use the subsidiary-parent link table from the 2017
snapshot of the Orbis data to match subsidiaries in PatentView to their parent firms in CRSP/Compustat.

Match PatentView with Capital IQ. We match the remaining patent assignees in PatentView
with firms in Capital IQ following the same matching procedure. To keep the workload manageable, we
drop firms in Capital IQ whose assets are worth less than $100 million (in 2017 dollars). Because we focus
on the U.S. product market, we also drop foreign firms whose asset values are below the 90th percentile of
the asset value distribution among firms in the CRSP/Compustat sample in each year, respectively. This is
because small foreign firms are less likely to have a material impact on the competition environment of the
U.S. product market. We match PatentView to Capital IQ directly using the information on subsidiaries
provided by Capital IQ.

C.3 Match Nielsen with CRSP/Compustat/Capital IQ
We follow previous studies (see, e.g. Hottman, Redding and Weinstein, 2016; Argente, Lee and Moreira,
2018; Jaravel, 2018) to find the companies that own the products in the Nielsen data using the product-firm
link table in the “GS1 US Data Hub | Company” data, which is provided by GS1 – the official source of

29Jaccard index measures the similarity between finite sample sets, and is defined as the size of the
intersection divided by the size of the union of the sample sets. Jaccard index ranges between 0 and 1,
reflecting none to perfect similarity.

30These two matching criteria are sufficiently conservative to ensure that exact matches are included in
the pool of potential matches. For example, among all the exact matches in the first quarter of 2016, 98% of
them satisfy the two matching criteria and are included in our pool of potential matches.

31We rely on assignee names in PatentView and firm names in CRSP/Compustat to identify matches. In
addition, we use location information in both datasets to facilitate the matching process.
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UPCs in the U.S.32 We match 95.3% of the products in the Nielsen data with firms in the GS1 data. Our
matching rate is the same as those reported by Argente, Lee and Moreira (2018) and Jaravel (2018). We
further match the companies in the GS1 data to CRSP/Compustat and Capital IQ to find their SIC industry
codes. The matching procedures are the same as patent matching. Our merged data cover products in 472
SIC industries.

C.4 Income Elasticity of Demand
We estimate the income elasticity of demand at the 4-digit SIC industry level using the Consumer Ex-
penditure Surveys from the Bureau of Labor Statistics (BLS) and the Nielsen data. We first obtain the
representative consumer’s income and annual expenditures on various products (such as bread, ice cream,
etc.) from the All CU Prepublication Means, Variances, and Percent reporting Tables. We calculate the
income elasticity of demand (i.e. the percentage change in expenditure divided by the percentage change
in income) for each product category. Next, we merge the product-category level income elasticity data
from the BLS survey with the Nielsen data based on product descriptions, which allows us to link product
categories to SIC industries. Finally, we compute the income elasticity of demand at the 4-digit SIC
industry level by averaging the elasticities across all product categories in the same industries. Because
the product-level Consumer Expenditure Surveys data are only available from 2013 to 2017, we make the
assumption that the industry-level income elasticity of demand is a constant overtime.

C.5 Construct Dividend Growth
We follow previous studies (see, e.g. Campbell and Shiller, 1988; Bansal, Dittmar and Lundblad, 2005;
Hansen, Heaton and Li, 2005, 2008; Bansal, Kiku and Yaron, 2016) to contrust dividend growth rates of
portfolios.

Denote V0t as the market value of all firms in a given portfolio. Denote the value of this portfolio at
date t + 1 to be Vt+1. The aggregate dividends for data t + 1 for this portfolio is Dt+1. The total return on
the portfolio between t and t + 1 is:

Rt+1 =
Vt+1 + Dt+1

V0t
= ht+1 + dt+1. (C.1)

where ht+1 is the price appreciation, which represents the ratio of the value at time t + 1 to time t (i.e.,
Vt+1
V0t

), while dt+1 is the dividend yield, which represents the total dividends paid by at time t + 1 divied by

portfolio value at time t (i.e., Dt+1
V0t

).
Holding the portfolio composition constant (i.e., no exits and entries), the real dividend growth rate is:

Dt+1/PCEt+1

Dt/PCEt
=

dt+1V0t

dtV0(t−1)

PCEt

PCEt+1
=

dt+1ht

dt

PCEt

PCEt+1
=

(Rt+1 − ht+1)ht

Rt − ht

PCEt

PCEt+1
, (C.2)

32The “GS1 US Data Hub | Company” data provide the company names, company addresses, and the
UPC prefixes owned by the companies. More information about the “GS1 US Data Hub | Company” is
available at: https://www.gs1us.org/tools/gs1-us-data-hub/company.
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where PCE is the personal consumption expenditure deflator from the U.S. BEA.
Because stocks move in and out of portfolios, we account for the entries and exits following the literature

(see, e.g. Hansen, Heaton and Li, 2005, 2008; Bansal, Kiku and Yaron, 2016) by adding an adjustment term.
Specifically, the real dividend growth rate for a portfolio is:

Vt

V0t

Dt+1/PCEt+1

Dt/PCEt
, (C.3)

where Vt is exit value of the portfolio at time t (i.e., the time t market value of firms in the portfolio formed
at time t− 1), and V0t is the market value of firms in the new position we initiate at time t. Plug equation
C.2 into C.3, the real dividend growth rate for a portfolio is:

Vt

V0t

Dt+1/PCEt+1

Dt/PCEt
=

Vt

V0t

(Rt+1 − ht+1)ht

Rt − ht

PCEt

PCEt+1
. (C.4)

We calculate portfolio Rt and ht by computing the value-weighted RET and RETX (both from CRSP)
across firms within the portfolio. Since share repurchases are prevelant in our sample period, we follow
Bansal, Dittmar and Lundblad (2005) and adjust the capital gain series for a given firm as following:

RETX∗t+1 = RETXt+1 min
[(

nt+1

nt

)
, 1
]

, (C.5)

where nt is the number of shares after adjusting for splits, stock dividends, etc using the CRSP share
adjustment factor.

D Illustration of Equilibrium Concepts
Our model is based on a general equilibrium framework with a continuum of industries. Within each
industry, we formulate the two firms’ dynamic competition using stochastic game-theoretic models. In
this Appendix, we illustrate the dynamic game-theoretic equilibrium within an industry in our baseline
model. We start by illustrating the non-collusive equilibrium in Section D.1. We highlight that the
strategic complementarity embedded in the non-collusive equilibrium is a crucial force that generates
price wars during periods with low long-run consumption growth. In Section D.2, we illustrate the
collusive equilibrium that naturally arises from the dynamic repeated interaction between the two firms.
The collusive equilibrium is a sub-game perfect equilibrium that is endogenously sustained by using
the non-collusive equilibrium as punishment. In Section D.3, we illustrate the IC constraints and the
determination of collusive prices in the collusive equilibrium.

D.1 Non-Collusive Equilibrium
In the non-collusive equilibrium, the two firms simultaneously set prices, taking the other firm’s price
as given. Thus, the equilibrium prices are determined by the intersection of the two firms’ optimal price
as a function of the other firm’s price. Denote P̂N

i1 (Mi1/Mi; Pi2) as firm 1’s optimal price as a function of
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Figure D.7: Prices and firm values in the non-collusive equilibrium.

its customer base share Mi1/Mi and firm 2’s price Pi2. Similarly, we denote P̂N
i2 (Mi1/Mi; Pi1) as firm 2’s

optimal price as a function of firm 1’s customer base share Mi1/Mi and price Pi1.
In Panel A of Figure D.7, the blue solid line plots firm 1’s optimal price as a function of firm 2’s price

Pi2, when the two firms have equal customer base shares (i.e. Mi1/Mi = 0.5). The black dash-dotted
line plots firm 2’s optimal price as a function of firm 1’s price Pi1 for the same customer base share. The
intersection of the two curves (the blue filled circle) determines the equilibrium prices, i.e. PN

i1 (0.5) and
PN

i2 (0.5):
PN

i1 (0.5) = P̂N
i1 (0.5; PN

i2 (0.5)) and PN
i2 (0.5) = P̂N

i2 (0.5; PN
i1 (0.5)). (D.1)

The two firms set exactly the same prices when they have the same customer base shares. Both
curves are upward sloping, indicating that there exists strategic complementarity in setting prices in the
non-collusive equilibrium: both firms tend to set lower prices when the other firm’s price is lower. This
is because when the other firm’s price is lower, the price elasticity of demand endogenously increases,
motivating the firm to lower its own price. Because of such strategic complementarity, the non-collusive
equilibrium features low prices and hence low profit margins for both firms. To see it clearly, suppose firm
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2 sets Pi2 = 1.6, then firm 1’s best response is to set Pi1 = 1.4 (A1). Given that firm 1’s price is lower than
firm 2’s, firm 2 will further lower its price to Pi2 = 1.28 (A2). But then firm 2’s price is lower than firm 1’s,
which triggers firm 1 to lower its price to Pi1 = 1.23 (A3), and so on, until the prices reach equilibrium
values. Such price adjustments happen instantaneously in rational expectation equilibrium.33

In Panel B, we investigate how firms change prices when their customer base shares change. The blue
solid line and black dash-dotted line represent the same benchmark case (i.e. Mi1/Mi = 0.5) as in Panel
A. The red dashed and red dotted lines refer to the prices set by the two firms when firm 1’s customer
base share Mi1/Mi increases from 0.5 to 0.8 (thus firm 2’s customer base share decreases from 0.5 to 0.2
accordingly). It is shown that firm 1’s optimal price function shifts upward and firm 2’s optimal price
function shifts to the left, implying that both firms tend to set higher prices when their own customer base
shares increase. Intuitively, there are two main reasons. First, when the customer base share is higher,
setting low prices to further compete for customer base is relatively more costly compared to setting
high prices to profit from inertial customers. Second, the firm’s influence on the equilibrium price index
increases with its customer base share (see equation 2.8). Therefore, a higher customer base share increases
the firm’s market power and lowers the price elasticity of demand, resulting in higher prices.

Panel B also clearly illustrates the implication of strategic pricing. In the benchmark equilibrium (N0),
the prices are Pi1,N0 and Pi2,N0 . A higher customer base share Mi1/Mi shifts the equilibrium to N2, and the
new equilibrium prices satisfy Pi1,N2 > Pi1,N0 and Pi2,N2 < Pi2,N0 . However, if firm 2 were to hold its price
decisions unchanged (at the black-dashed line), the new equilibrium would be N1, with Pi1,N1 > Pi1,N2 ,
indicating that firm 1 would raise its price more in response to the increase in its customer base share
Mi1/Mi. Therefore, firm 1’s price is less responsive precisely because it anticipates that firm 2 would lower
its price Pi2 (as captured by the red dotted line). Such strategic concerns result in a smaller increase in firm
1’s price Pi1, which helps prevent too much loss in its customer base share Mi1/Mi.

Panel C shows that when firm 1’s customer base share increases, firm 1 sets higher prices (blue solid
line) and firm 2 sets lower prices (black dashed line) symmetrically in equilibrium. This is because firm
1 gains market power whereas firm 2 loses market power (see equation 2.8). Moreover, both firms have
higher values when their customer base shares increase (see Panel D).

D.2 Collusive Equilibrium
We now turn to the illustration of the collusive equilibrium. In the collusive equilibrium, both firms set
prices according to the collusive pricing schedule Pij(Mi1/Mi, θt).

In Panel A of Figure D.8, we compare the firm’s prices in the collusive equilibrium and the non-collusive
equilibrium. As the two firms are symmetric, we only focus on illustrating firm 1’s price. The black dashed
line plots firm 1’s price in the non-collusive equilibrium (as in Panel C of Figure D.7). The blue solid line
plots firm 1’s price in the collusive equilibrium. It is shown that due to collusion, firm 1 sets higher prices
than what it would set in the non-collusive equilibrium. When firm 1’s customer base share increases
from 0 to 0.8, firm 1’s collusive price increases because of the increasing market power. However, firm

33The dynamics of price adjustment is related to the old tradition that used Tâtonnement or Cobweb
dynamics to capture the off-equilibrium adjustment of prices in Walrasian economies.
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Figure D.8: Comparing prices and firm values in the collusive and non-collusive equilibria.

1’s colusive price starts to decrease when its customer base share further increases from 0.8 to 1. This is
because when the customer base share becomes more unevenly distributed between firm 1 and firm 2,
the two firms are more likely to enter into a full-blown price war when long-run growth rates decline
(see Figure 4). The increased risk of entering into a full-blown price war significantly dampens the initial
collusion incentive and depresses collusive prices.

Interestingly, Panel B shows that the ability to collude on higher prices, as reflected by the difference
between the collusive price and the non-collusive price exhibits an inverted-U shape. The increase in
prices due to collusion is the largest when the two firms have comparable customer base shares (i.e.
Mi1/Mi ≈ 0.5). Intuitively, collusion allows both firms to set higher prices to enjoy higher profit margins
than what they would have in the non-collusive equilibrium. However, the collusive pricing schedule has
to be chosen such that both firms have no incentive to deviate given their current customer base shares.
When firm 1 is dominating the market (i.e. with high Mi1/Mi), forming a collusive equilibrium would be
less appealing from firm 1’s perspective as it already has high market power, which allows it to set a high
price in the non-collusive equilibrium any way (see the black dashed line). On the other hand, when firm 1
has low customer base share Mi1/Mi, forming a collusive equilibrium would be less appealing from firm
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2’s perspective which already has high market power to set a high price in the non-collusive equilibrium.
Thus, it is easier to collude on relatively higher prices when firm 1 and firm 2 have comparable customer
base shares.

The above intuition is more clearly seen in two extreme cases. When firm 1’s customer base share
Mi1/Mi ≈ 1, Panel A shows that it sets a price close to ε

ε−1 ω = 2. This is the price that firm 1 would choose
facing a price elasticity of demand ε. In this case, firm 1 essentially acts almost as a monopoly in industry i
and sets prices to compete with firms in other industries. Thus, the constant across-industry price elasticity
of demand is what determines firm 1’s optimal price in both the collusive and the non-collusive equilibria.
By contrast, when firm 1’s customer base share Mi1/Mi ≈ 0, Panel A shows that it sets a price close to

η
η−1 ω = 1.11. This is the price that firm 1 would choose facing a price elasticity of demand η. In this case,
firm 1 essentially acts almost as a price taker in industry i because it has little market power to influence the
industry’s price index. Thus, the constant within-industry price elasticity of demand is what determines
firm 1’s optimal price in both the collusive and the non-collusive equilibria.

Panel C compares firm 1’s value in the collusive and the non-collusive equilibria. Colluding on higher
prices increases firm 1’s profit margins, leading to higher firm values. Not surprisingly, due to the inverted-
U collusive prices, the difference in firm values displays a similar inverted-U shape (Panel D) when the
customer base share Mi1/Mi varies.

D.3 Determination of Collusive Prices
In this section, we clarify how the collusive prices are determined in equilibrium. In Panel A of Figure D.8,
the red line plots the optimal price that firm 1 would choose conditional on its deviation from the collusive
pricing schedule.34 It shows that the optimal deviation price is always lower than the collusive price. This
is intuitive because firms collude on higher prices relative to what they would set in the non-collusive
equilibrium, and thus both firms have the incentive to undercut the other firms in order to increase both
contemporaneous demand and gain more customer base. Whether firm 1 would deviate depends on
what deviation value firm 1 would obtain by setting the optimal deviation price. Intuitively, there are
countervailing forces that determine the gains from deviation. If deviation is not detected by firm 2, then
firm 1 would gain by stealing customer base from firm 2 through lower prices. However, if deviation
is detected by firm 2, then firm 1 will be punished by switching to the non-collusive equilibrium which
features low prices and low profit margins.

Whether the collusive equilibrium can be sustained depends on the level of collusive prices. A higher
collusive price increases the profits from deviation and is more difficult to be sustained in equilibrium.
The collusive prices we choose are the highest prices subject to the IC constraints that both firms have no
incentive to deviate in the collusive equilibrium. In Panel C of Figure D.8, the red dash-dotted line plots
the deviation value that firm 1 would obtain by setting the optimal deviation price (the red dash-dotted

34Here, we follow the standard game theory by considering one-shot deviation. That is, we consider
what the deviation price that firm 1 would choose conditional on firm 2 not deviating from the collusive
equilibrium. The one-shot deviation property ensures that no profitable one-shot deviations for every
player is a necessary and sufficient condition for a strategy profile of a finite extensive-form game to form a
sub-game perfect equilibrium.
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Figure D.9: An illustration of non-incentive compatible collusive prices.

line in Panel A). It is shown that firm 1’s deviation value is exactly the same as firm 1’s value in the
collusive equilibrium, indicating that firm 1 is indifferent between setting the collusive price or deviating
from the collusive equilibrium. In other words, firm 1’s IC constraints are binding. Because the collusive
and deviation values are equal for any customer base share, firm 2 is also indifferent about collusion and
deviation.

The IC constraints are violated, if firms choose collusive prices higher than the blue solid line in Panel
A. We illustrate this in Figure D.9. To obtain a stark comparison, we assume that the collusive price is
set equal to ε

ε−1 ω = 2 (as shown by the blue solid line in Panel A), which is the price that maximizes the
contemporaneous demand if the two firms can perfectly collude with each other and act like a monopoly.

The red dash-dotted line indicates that when firm 1’s customer base share Mi1/Mi is lower than 0.6, it
would set a significantly lower price to steal firm 2’s customer base share. As a result, firm 1’s deviation
value is strictly larger than its collusion value (see the red dash-dotted line in Panel B) when Mi1/Mi < 0.6,
indicating that the IC constraint is violated. Thus, requiring the two firms to collude on a higher price like
what is considered here does not form a sub-game perfect equilibrium because one of the firms (or both
firms) will deviate by setting a lower price.

E Discussions on Model Ingredients
In this Appendix, we discuss the role played by within- and between- elasticities, long-run risks, and
antitrust enforcement on our model’s implications.

E.1 Discussions on Elasticities
The parameter η and ε capture the elasticity of substitution of goods produced within the same industry
and the elasticity of substitution of goods produced in different industries. In this section, we discuss the
role of the two elasticities on collusion incentives and prices. To fix ideas, we shut down the price channel
for customer base accumulation by setting z = 0.
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Figure E.10: The role of price elasticities of demand on collusive prices.

In our baseline calibration, we set η > ε to be consistent with empirical estimates. As we vary η and
ε, the model can capture different degrees of within- and between-industry competition. As we show in
equation (2.9), the price elasticity of demand for firm 1 depends on both the within-industry elasticity η

and the between-industry elasticity ε because firm 1 simultaneously faces within-industry competition
from firm 2 as well as the between-industry competition from firms in other industries.

With η > ε, within-industry competition is more fierce than between-industry competition due to
the higher elasticity of substitution among goods produced in the same industry. Thus, essentially the
within-industry elasticity η gives the upper bound of competition, and hence determines the lower bound
of prices; whereas the between-industry elasticity ε gives the lower bound of competition, and hence
determines the upper bound of prices.

In particular, the highest level of competition is obtained by firm 1 when it becomes atomic in industry
i (i.e. Mi1/Mi = 0). In this case, firm 1 would set the lower-bound price η

η−1 ω, determined by the
within-industry elasticity η. However, when firm 1 is atomic, firm 2 is essentially the monopoly in industry
i, facing the minimal level of competition due to the absence of within-industry competition. Thus, firm
2 would set the upper-bound price ε

ε−1 ω, determined by the between-industry elasticity ε. Because firm
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2 already sets its price equal to the upper bound, there is no incentive for firm 2 to collude with firm 1,
although firm 1 wants to collude due to its low price.

Thus, the two firms have the incentive to collude with each other only when neither firm is the monopoly
in industry i. In this case, collusion benefits both firms by alleviating within-industry competition so that
prices become higher, more reflecting the between-industry elasticity ε. Therefore, the existence of collusion
incentive crucially depends on the assumption that η > ε. If η = ε, the level of competition does not change
with the customer base share. And the firm would always set the upper bound price ε

ε−1 ω, determined by
the between-industry elasticity ε.

Specifically, if we set η = 2 (= ε), Panel B of Figure E.10 shows that firm 1 always sets its price equal
to ε

ε−1 ω = 2. In this case, achieving the collusive equilibrium does not further increase the two firms’
prices because they already set the upper bound price consistent with what is implied by between-industry
competition.35 Firm 1’s value increases linearly with its customer base share Mi1/Mi (see Panel E). In
Panels C and F, we further increase η = ε = ∞ to mimic an economy with perfect competition. The infinite
elasticity results in zero profit margins. Both firms set their prices equal to the marginal costs (see Panel C)
and attain zero values (see Panel F) in equilibrium regardless of their customer base shares.

E.2 Discussions on Long-Run Risks
We emphasize that long-run risks play a crucial role in generating price war risks. In our model, firms
collude more during periods with high long-run growth rates precisely because they know that the growth
rate of consumption is persistent. In Figure E.11, we compare the baseline calibration with a 0.49 auto-
correlation of annual consumption growth rates to an economy with a 0.049 auto-correlation of annual
consumption growth rates, featuring less persistent expected growth rate component. Panel A shows that,
in the economy with less persistent expected growth rate component, there is almost no change in collusive
prices between periods with high and low long-run growth rates, and this is true regardless of the capacity
of radical innovation (see the red dash-dotted line and the red dotted line). Moreover, Panel B shows that
the industry’s exposure to long-run risks is much smaller in the economy with less persistent expected
growth rate component. Importantly, there is virtually no difference in the exposure to long-run risks
across the two industries. Thus, the model suggests that the persistence of expected growth rate component
is crucial in generating both the high magnitude of price war risks and the variation in the exposure to
long-run risks across industries with different capacities of radical innovation.

Intuitively, with long-run risks in consumption, what determines the collusion incentive is not only
the current level of aggregate consumption, but also the expected change in aggregate consumption in the
future. Firms that expect a relative increase in aggregate consumption are able to sustain higher collusive
prices now because none of the firms want to deviate and be punished later by their competitors in periods
with higher aggregate consumption. On the contrary, during bad times, firms expect a relative decrease
in aggregate consumption and the later punishment looks less costly. Consequently, declines in long-run

35 In fact, when the two elasticities are the same (η = ε), the two layers of CES aggregation collapses to
a single between-industry CES aggregation, and within-industry competition would not matter for price
setting.
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Figure E.11: Illustrating the importance of long-run risks in generating price war risks.

consumption growth generate price wars, amplifying firms’ exposure to long-run risks.

E.3 Discussions on Antitrust Enforcement
Our model predicts that antitrust enforcement reduces price war risks. Intuitively, with stronger laws
against collusion, it is more difficult for firms to conduct collusive pricing, resulting in lower collusive
prices and less variation in collusive prices with long-run growth rates. In our model, the parameter φ

controls the ability for firms to collude with each other. A smaller φ makes it harder to implement higher
collusive prices, which is equivalent to the effect of implementing more stringent antitrust enforcement. In
the extreme case with φ = 0, there is no way to implement the punishment strategy, and as a result, there is
no way to sustain an incentive compatible collusive equilibrium.

In Figure E.12, we compare our baseline calibration with φ = 0.15 to an economy with φ = 0.05. The
magnitude of price war risks is significantly lower in the latter economy (see Panel A). As a result, the
industry’s exposure to long-run risks is much smaller when collusion is more difficult to implement. Across
the two industries, our model implies that antitrust enforcement has larger effects in the industry with no
radical innovation, as this is the industry with the highest collusion incentive to begin with.

F Supplementary Empirical Results

F.1 Product Prices in the 24-month Period Around the Lehman Crash
In the main text, we have analyzed the changes of product prices in the 36-month period around the
Lehman crash. Here, we show that our findings remain robust for a narrower time window (i.e., 24-month
period around the Lehman crash). Specifically, after the Lehman crash, the product prices of high-innosimm
industries drop significantly relative to those of the low-innosimm industries (see Table F.1), and the
price-similarity sensitivity reduces significantly (see Table F.2).

75



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure E.12: Antitrust enforcement, price war risks, and the exposure to long-run risks.

Table F.1: Product prices around the Lehman crash (monthly analysis).
(1) (2)

Percent change in product prices (monthly, annualized, %)

Tertile-3 innosimmt−1 × post Lehman crasht −6.04∗∗∗ −6.64∗∗∗

[−3.14] [−3.23]

Tertile-3 innosimmt−1 −1.44 −5.79
[−0.57] [−0.99]

post Lehman crasht 1.50 2.62
[0.58] [1.08]

Industry FE No Yes
Observations 3398 3398
R-squared 0.003 0.055

Note: This table shows the changes in product prices around the Lehman crash. The dependent variable is the annualized monthly
percent change in product prices of 4-digit SIC industries. Product prices are obtained from the Nielsen Data. To compute the
monthly percent change in product prices for 4-digit SIC industries, we first compute the transaction-value weighted price for each
product across all stores in each month. We then calculate the monthly percent change in prices for each product. Finally, we
compute the value-weighted percent change in product prices for each 4-digit SIC industry based on the transaction values of the
industry’s products. We consider we consider the 24-month period around the Lehman crash. We include t-statistics in parentheses.
Standard errors are clustered by the 4-digit SIC industry and year. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% levels.

G Numerical Algorithm
In this section, we detail the numerical algorithm that solves the model. We solve the model in risk-neutral
measure. By Girsanov’s theorem, we have

dZc,t =− λcdt + dZ̃c,t, (G.1)

dZθ,t =− λθdt + dZ̃θ,t. (G.2)
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Table F.2: Price-innosimm sensitivity around the Lehman crash (monthly analysis).
(1) (2)

Percent change in product prices (monthly, annualized, %)

innosimmt−1 × post Lehman crasht −2.52∗∗ −2.32∗∗

[−2.52] [−2.27]

innosimmt−1 −1.02 −3.02∗

[−1.35] [−2.02]

post Lehman crasht −2.09 −1.92
[−1.49] [−1.36]

Industry FE No Yes
Observations 5086 5086
R-squared 0.003 0.043

Note: This table shows the price-innosimm sensitivity around the Lehman crash. The dependent variable is the annualized monthly
percent change in product prices of 4-digit SIC industries. We consider we consider the 24-month period around the Lehman crash.
We include t-statistics in parentheses. Standard errors are clustered by the 4-digit SIC industry and year. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels.

Under the risk-neutral measure, the dynamics of aggregate conditions are

dCt

Ct
=θtdt + σcdZ̃c,t, (G.3)

dθt =κ
(

θ
Q − θt

)
dt + ϕθσcdZ̃θ,t, (G.4)

where
θ

Q
= θ − λcσc − κ−1λθ ϕθσc. (G.5)

To give an overview, our algorithm proceeds in the following steps:

(1). We solve for the non-collusive equilibrium. This requires us to solve the Markov-Perfect equilibrium
of the dynamic game played by two firms. The simultaneous-move dynamic game requires us to
solve the intersection of the two firms’ best response (i.e. optimal price) functions, which themselves
are optimal solutions to coupled PDEs.

(2). We solve for the collusive equilibrium using the value functions in the non-collusive equilibrium as
punishment values. Because we are interested in the highest collusive prices with binding incentive-
compatibility constraints, this requires us to solve a high-dimensional fixed-points problem. We thus
use an iteration method inspired by Abreu, Pearce and Stacchetti (1986, 1990), Ericson and Pakes
(1995), and Fershtman and Pakes (2000) to solve the problem.

(3). After solving the baseline model, we solve the extended model with endogenous cash holdings by
repeating steps (1) and (2). The extended model is more challenging because it involves solving
PDEs with free boundaries (due to endogenous payout boundaries). We employ the piecewise
multilinear interpolation method of Weiser and Zarantonello (1988) to obtain accurate interpolants
in a 3-dimensional space.
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Note that standard methods for solving PDEs with free boundaries (e.g. finite difference or finite
element) can easily lead to non-convergence of value functions. To mitigate such problems and obtain
accurate solutions, we solve the continuous-time game using a discrete-time dynamic programming method.
In Appendix G.1, we present the discretized recursive formulation for the baseline model, including firms’
problems in non-collusive equilibrium, collusive equilibrium, and deviation. In Appendix G.2, we discuss
how we discretize the stochastic processes, time grids, and state variables in the model. Finally, in Appendix
G.3, we discuss the details on implementing our numerical algorithms, including finding the equilibrium
prices in the non-collusive equilibrium and solving the optimal collusive prices.

G.1 The Baseline Model
Because firm 1 and firm 2 are symmetric, one firm’s value and policy functions are obtained directly given
the other firm’s value and policy functions. In this section, we illustrate firm 1’s problem in our baseline
model. We first illustrate the non-collusive equilibrium and then we illustrate the collusive equilibrium.

G.1.1 Non-Collusive Equilibrium

Below, we present the recursive formulation for the firm’s value in the non-collusive equilibrium. Then we
exploit linearity to simplify the problem and present the recursive formulation for the normalized firm
value. Finally, we present the conditions that determine the non-collusive (Nash) equilibrium.

Recursive Formulation for The Non-Collusive Firm Value. The industry’s state is charac-
terized by four state variables, firm 1’s customer base Mi1,t, firm 2’s customer base Mi2,t, the aggregate
consumption Ct, and the long-run growth rate θt. Denote the value functions in the non-collusive equilib-
rium as VN

ij (Mi1,t, Mi2,t, Ct, θt) for j = 1, 2.
To characterize the equilibrium value functions, it is more convenient to introduce two off-equilibrium

value functions. Let V̂N
ij (Mi1,t, Mi2,t, Ct, θt; Pik,t) be firm j(= 1, 2)’s value when its peer firm k’s price is set

at any (off-equilibrium) value Pik,t.
Firm 1 solves the following problem:

V̂N
i1 (Mi1,t, Mi2,t, Ct, θt; Pi2,t) =max

Pi1,t
(Pi1,t −ω)

(
Pi1,t

Pi,t

)−η

P−ε
i,t Ct Mi1,t∆t

+ Et

[
Λt+∆t

Λt
VN

i1 (Mi1,t+∆t, Mi2,t+∆t, Ct+∆t, θt+∆t)

]
, (G.6)

subject to the evolution of state variables. (1). The evolution of the customer base is

Mij,t+∆t = Mij,t +

[
z
(Cij,t

Ct

)α

M1−α
ij,t − ρMij,t

]
∆t, for j = 1, 2, (G.7)
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where firm-level demand is given by

Cij,t =

(Pij,t

Pi,t

)−η

P−ε
i,t Ct Mij,t, for j = 1, 2, (G.8)

and the industry’s price index

Pi,t =

(
Mi1,t

Mi,t
P1−η

i1,t +
Mi2,t

Mi,t
P1−η

i2,t

) 1
1−η

. (G.9)

(2). The evolution of aggregate consumption Ct is

Ct+∆t = (1 + θt∆t + σ∆Zc,t)Ct. (G.10)

(3). The long-run growth rate θt evolves according to the discrete Markov chain specified in Appendix
G.2.

Recursive Formulation for The (Normalized) Non-Collusive Firm Value. Exploiting the
linearity, we normalize the firm’s value by Mi,tCt. Firm 1’s customer base share is mi1,t = Mi1,t/Mi,t; firm
2’s customer base share is mi2,t = Mi2,t/Mi,t = 1−mi1,t. Define

vN
ij (mi1,t, θt) =

VN
ij (Mi1,t, Mi2,t, Ct, θt)

Mi,tCt
(G.11)

v̂N
ij (mi1,t, θt; Pik,t) =

V̂N
ij (Mi1,t, Mi2,t, Ct, θt; Pik,t)

Mi,tCt
(G.12)

Firm 1 solves the following normalized problem:

v̂N
i1(mi1,t, θt; Pi2,t) =max

Pi1,t
(Pi1,t −ω)

(
Pi1,t

Pi,t

)−η

P−ε
i,t mi1,t∆t

+ Et

[
Λt+∆t

Λt

Mi,t+∆t

Mi,t
(1 + θt∆t + σ∆Zc,t)vN

i1(mi1,t+∆t, θt+∆t)

]
, (G.13)

subject to the evolution of state variables. (1). The evolution of firm 1’s customer base share is

mi1,t+∆t
Mi,t+∆t

Mi,t
= mi1,t +

[
z
(

Pi1,t

Pi,t

)−ηα

P−εα
i,t − ρ

]
mi1,t∆t, (G.14)

where the industry’s price index is given by

Pi,t =
[
mi1,tP

1−η
i1,t + (1−mi1,t)P1−η

i2,t

] 1
1−η . (G.15)
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(2). The evolution of the industry’s customer base is

Mi,t+∆t

Mi,t
=1 +

[
z
(

Pi1,t

Pi,t

)−ηα

P−εα
i,t − ρ

]
mi1,t∆t +

[
z
(

Pi2,t

Pi,t

)−ηα

P−εα
i,t − ρ

]
(1−mi1,t)∆t. (G.16)

(3). The long-run growth rate θt evolves according to the discrete Markov chain specified in Appendix
G.2.

Non-Collusive (Nash) Equilibrium. Denote the equilibrium price functions as PN
ij (mi1,t, θt) and the

off-equilibrium price functions as P̂N
ij (mi1,t, θt; Pik,t). Exploiting the symmetry between firm 1 and firm 2,

we can obtain firm 2’s off-equilibrium value and policy functions as

v̂N
i1(mi1,t, θt; Pi2,t) =v̂N

i2(1−mi1,t, θt; Pi1,t), (G.17)

P̂N
i1 (mi1,t, θt; Pi2,t) =P̂N

i2 (1−mi1,t, θt; Pi1,t). (G.18)

Given j = 1, 2’s price Pij, firm k optimally sets the price Pik. The non-collusive (Nash) equilibrium is
derived from the fixed point—each firm’s price is optimal given the other firm’s optimal price:

PN
i1 (mi1,t, θt) =P̂N

i1 (mi1,t, θt; PN
i2 (mi1,t, θt)), (G.19)

PN
i2 (mi1,t, θt) =P̂N

i2 (mi1,t, θt; PN
i1 (mi1,t, θt)). (G.20)

The equilibrium value functions are given by

vN
i1(mi1,t, θt) =v̂N

i1(mi1,t, θt; PN
i2 (mi1,t, θt)), (G.21)

vN
i2(mi1,t, θt) =v̂N

i2(mi1,t, θt; PN
i1 (mi1,t, θt)). (G.22)

After solving the equilibrium value and policy functions above, we can verify that the following
conditions are satisfied due to symmetry,

vN
i1(mi1,t, θt) =vN

i2(1−mi1,t, θt), (G.23)

PN
i1 (mi1,t, θt) =PN

i2 (1−mi1,t, θt). (G.24)

G.1.2 Collusive Equilibrium

Below, we present the recursive formulation for the firm’s value in the collusive equilibrium. Then we
present the recursive formulation for the firm’s value when the firm deviates from the collusive equilibrium.
Finally, we present the incentive compatibility constraints and the conditions that determine the optimal
collusive prices.

Recursive Formulation for The Collusive Firm Value. In the collusive equilibrium, we can still
exploit the linearity property and solve firms’ values as a function of customer base shares. Specifically,
denote v̂C

ij(mi1,t, θt; P̂C
ij ) as firm j’s value in the collusive equilibrium with collusive prices P̂C

ij (mi1,t, θt). Note
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that because the two firms in the same industry are symmetric, the collusive prices satisfy P̂C
i1(mi1,t, θt) =

P̂C
i2(1−mi1,t, θt).

Firm 1 solves the following normalized problem:

v̂C
i1(mi1,t, θt; P̂C

ij ) =
(

P̂C
i1(mi1,t, θt)−ω

)( P̂C
i1(mi1,t, θt)

Pi,t

)−η

P−ε
i,t mij,t∆t

+ Et

[
Λt+∆t

Λt

Mi,t+∆t

Mi,t
(1 + θt∆t + σ∆Zc,t)v̂C

i1(mi1,t+∆t, θt+∆t; P̂C
ij )

]
, (G.25)

subject to the evolution of state variables. (1). The evolution of firm 1’s customer base share is

mi1,t+∆t
Mi,t+∆t

Mi,t
= mi1,t +

z

(
P̂C

i1(mi1,t, θt)

Pi,t

)−ηα

P−εα
i,t − ρ

mi1,t∆t, (G.26)

where the industry’s price index is given by

Pi,t =
[
mi1,t P̂C

i1(mi1,t, θt)
1−η + (1−mi1,t)P̂C

i2(mi1,t, θt)
1−η
] 1

1−η . (G.27)

(2). The evolution of the industry’s customer base is

Mi,t+∆t

Mi,t
= 1 +

z

(
P̂C

i1(mi1,t, θt)

Pi,t

)−ηα

P−εα
i,t − ρ

mi1,t∆t +

z

(
P̂C

i2(mi1,t, θt)

Pi,t

)−ηα

P−εα
i,t − ρ

 (1−mi1,t)∆t.

(G.28)
(3). The long-run growth rate θt evolves according to the discrete Markov chain specified in Appendix

G.2.

Recursive Formulation for The Deviation Value. The deviation value is obtained by assuming
that firm j optimally sets its price conditional on firm k following the collusive pricing rule P̂C

ik(mi1,t, θt).
We exploit the linearity property and solve firms’ deviation values as a function of customer base shares.
Denote v̂D

ij (mi1,t, θt; P̂C
ij ) as firm j’s deviation value.

Firm 1 solves the following normalized problem:

v̂D
i1(mi1,t, θt; P̂C

ij ) = max
Pi1,t

(Pi1,t −ω)

(
Pi1,t

Pi,t

)−η

P−ε
i,t mij,t∆t

+ Et

[
Λt+∆t

Λt

Mi,t+∆t

Mi,t
(1 + θt∆t + σ∆Zc,t)

[
(1− φ∆t)v̂D

i1(mi1,t+∆t, θt+∆t; P̂C
ij ) + φ∆tvN

i1(mi1,t+∆t, θt+∆t)
]]

,

(G.29)

subject to the evolution of state variables. (1). The evolution of firm 1’s customer base share is

mi1,t+∆t
Mi,t+∆t

Mi,t
= mi1,t +

[
z
(

Pi1,t

Pi,t

)−ηα

P−εα
i,t − ρ

]
mi1,t∆t, (G.30)
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where the industry’s price index is given by

Pi,t =
[
mi1,tP

1−η
i1,t + (1−mi1,t)P̂C

i2(mi1,t, θt)
1−η
] 1

1−η . (G.31)

(2). The evolution of the industry’s customer base is

Mi,t+∆t

Mi,t
= 1 +

[
z
(

Pi1,t

Pi,t

)−ηα

P−εα
i,t − ρ

]
mi1,t∆t +

z

(
P̂C

i2(mi1,t, θt)

Pi,t

)−ηα

P−εα
i,t − ρ

 (1−mi1,t)∆t. (G.32)

(3). The long-run growth rate θt evolves according to the discrete Markov chain specified in Appendix
G.2.

Incentive Compatibility Constraints and Optimal Collusive Prices. The collusive equilib-
rium is a sub-game perfect equilibria if and only if the collusive prices P̂C

ij (mi1,t, θt) satisfy the following
incentive compatibility constraints:

v̂C
ij(mi1,t, θt; P̂C

ij ) ≥ v̂D
ij (mi1,t, θt; P̂C

ij ), (G.33)

for all mi1,t ∈ [0, 1], θt, and j = 1, 2.
There exist infinitely many sub-game perfect collusive equilibrium. We focus on the collusive equilib-

rium with the highest collusive prices (denoted by PC
ij (mi1,t, θt)), which are obtained when all incentive

compatibility constraints are binding, i.e.

v̂C
ij(mi1,t, θt; PC

ij ) = v̂D
ij (mi1,t, θt; PC

ij ), (G.34)

for all mi1,t ∈ [0, 1], θt, and j = 1, 2. We denote vC
ij(mi1,t, , θt) as firm j’s value in the collusive equilibrium

with collusive prices PC
ij (mi1,t, θt). Thus, by definition

vC
ij(mi1,t, θt) = v̂C

ij(mi1,t, θt; PC
ij ). (G.35)

G.2 Discretization
We discretize the unpredictable consumption growth shocks dZc,t based on nc grids spanning from −3σc

and 3σc using the method of Tauchen (1986). We use the method of Rouwenhorst (1995) to approximate
the persistent AR(1) process of long-run risks θt using nθ discrete states. The time line is discretized into
intervals with length ∆t.

We use collocation methods to solve each firm’s problem. Let Sm × Sθ be the grid of collocation nodes
for a firm’s equilibrium value, and Sm × Sθ × Sp be the grid of collocation notes for a firm’s off-equilibrium
value. We have Sm = {m1, m2, ..., mnm}, Sθ = {θ1, θ2, ..., θnθ

}, Sp = {p1, p2, ..., pnp}.
We approximate the firm’s value function v(·) on the grid of collocation notes using a linear spline

with coefficients corresponding to each grid point. We first form a guess for the spline’s coefficients, then
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we iterate to obtain a vector that solves the system of Bellman equations.

G.3 Implementation
The numerical algorithms are implemented using C++. The program is run on the server of MIT Economics
Department, supply.mit.edu and demand.mit.edu, which are built on Dell PowerEdge R910 (64 cores, Intel(R)
Xeon(R) CPU E7-4870, 2.4GHz) and Dell PowerEdge R920 (48 cores, Intel(R) 4 Xeon E7-8857 v2 CPUs). We
use OpenMP for parallelization when iterating value functions and simulating the model.

Selection of Grids We set nc = 11, nm = 21, ∆t = 1/24, np = 11. The gird for long-run risks Sθ

is determined by applying the method of Rouwenhorst (1995). The grid for unpredictable consumption
growth shocks Sc is determined by applying the method of Tauchen (1986). The grid of customer base
share Sm is discretized into 21 nodes from 10−7 to 1− 10−7 with equal spaces. We do not set Sm from 0 to 1
to avoid the indeterminacy of optimal price with m = 0. The time interval ∆t is set to be 1/24. A higher
∆t implies faster convergence for the same number of iterations but lower accuracy. We checked that the
solution is accurate enough for ∆t = 1/24, further reducing ∆t would not improve the accuracy much.
With ∆ = 1/24, 5000 times iterations allow us to achieve convergence in value functions. The industry
characteristic grid is discretized into 11 nodes from 0 to 1 with equal spaces. The price grid is discretized
into 11 nodes from 1 to 2 with equal spaces. The upper bound is chosen according to ε/(ε− 1)×ω = 2,
which is the highest price a firm will set.

Calculating Iterations and Searching For the Nash Equilibrium. Given the value functions
from the previous iteration, we use the golden section search method to find the equilibrium prices. The
computational complexity of this algorithm is at the order of log(n), much faster and more accurate than a
simple grid search.

Searching for the equilibrium price is very challenging because we have to solve a fixed-point problem
(equations G.19-G.22) that involves both firms’ simultaneous prices decisions. Our solution technique is to
iteratively solve the following three steps.

First, given vN
i1(mi1, θ), we solve for the off-equilibrium value v̂N

i1(mi1, θ; Pi2) and the off-equilibrium
policy function P̂N

i1 (mi1, θ; Pi2). Exploiting symmetry, we obtain v̂N
i2(mi1, θ; Pi1) and P̂N

i2 (mi1, θ; Pi1). Second,
for each (mi1, θ) ∈ Sm × Sθ , we use a nonlinear solver knitro to solve equations (G.19-G.20) and obtain the
equilibrium prices PN

i1 (mi1, θ), PN
i2 (mi1, θ). Third, we solve equations (G.21-G.22) and obtain equilibrium

value functions vN
i1(mi1, θ) and vN

i2(mi1, θ).

Searching For Collusive Prices. We modify the golden section search method to find the highest
collusive prices PC(mi1, θ) by iterations. Within each iteration, we solve firms’ collusion value and deviation
value using standard recursive methods given P̂C

ij (mi1, θ).
There are two key differences between our method and a standard golden section search method. First,

to increase efficiency, we guess and update the collusive pricing schedule P̂C
ij (mi1, θ) simultaneously for

all (mi1, θ) ∈ Sm × Sθ , instead of doing it one by one for each state. A natural problem introduced by
the simultaneous updating is that there might be overshooting. For example, if for some particular state
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(m∗, θ∗), we updated a collusive price P̂C
ij (m

∗, θ∗) too high in the previous iteration, the collusive price for
some other states (m, θ) 6= (m∗, θ∗) might be affected in this iteration and never achieve a binding incentive
compatibility constraint. Eventually, this may lead to non-convergence.

We solve this problem by gradually updating the collusive prices. In particular, in each round of
iteration, we first compute the updated collusive pricing schedule P̂C′

ij (mi1, θ) implied by the golden
section search method. Then, instead of changing the upper search bound or lower search bound to
P̂C′

ij (mi1, θ) directly, we change it to (1− adj)× P̂C
ij (mi1, θ) + adj× P̂C′

ij (mi1, θ), a weighted average of the

current collusive price P̂C
ij (mi1, θ) and the updated collusive price P̂C′

ij (mi1, θ). For our baseline model, we
set adj = 0.15 to ensure perfect convergence.
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