
How Important are Inflation Expectations for the

Nominal Yield Curve?∗

Roberto Gómez-Cram
University of Pennsylvania

Amir Yaron
University of Pennsylvania

NBER

This version: November 2018

Abstract

Less than you think. Standard macro-finance term structure models rely too heavily on the volatility

of expected inflation news as a source for variations in nominal yield shocks. This paper develops and

estimates a nonlinear Bayesian state-space macro-finance model featuring inflation non-neutrality,

as well as (preference) demand shocks. Stochastic volatility of inflation and consumption govern

time variation in bond risk premia, while demand shocks primarily affect variation in bond yields.

These channels allow the model to account for key bond market features, without resorting to

an expected inflation channel that overly dominates the variation in nominal yield shocks. The

estimated preference shocks seem to be associated with market illiquidity and distress factors.

The estimation shows that in the last two decades, inflation-related risk factors have not played a

predominant role in driving either expected excess bond returns or the term premium component

of the nominal yield curve. (JEL C11, C32, C58, E43, E44, G12)
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1 Introduction

Macro-finance term structure models are designed to interpret and quantify the economic mecha-

nisms underlying the substantial variation in nominal yields and risk premia in bond markets. To

this end, economists have used long-run risk (e.g., Piazzesi and Schneider 2007; Bansal and Shalias-

tovich 2013; Song 2017), New Keynesian (e.g., Rudebusch and Swanson 2012; Kung 2015), and

habit formation (e.g., Wachter 2006) models. However, in order to match the empirical volatility

of nominal yields these models rely on expected inflation news that are too volatile relative to the

data (see Duffee (2016) for extended discussion). In the data, the variance of expected inflation

news accounts for about 20 percent of the variance of nominal yield shocks, which is strongly at

odds with model-implied ratios which often exceed 100 percent.1

In this paper, we develop and estimate a nonlinear Bayesian state-space macro-finance endow-

ment model that accounts for key bond market features, without resorting to an expected inflation

channel that overly dominates the variation in nominal yield shocks. The model features recur-

sive preferences, inflation non-neutrality, multiple stochastic volatility processes, time preference

shocks, and time-aggregation of consumption. Specifically, we build on the long-run risks setup of

Bansal and Shaliastovich (2013) and Schorfheide, Song, and Yaron (2017) in which time variation

in expected consumption and inflation and their respective volatilities are key in accounting for

bond risk premia dynamics and matching standard bond market moments. The shocks to time rate

of preference, on the other hand, primarily affect real rate fluctuations and thus limit the role of

expected inflation shocks in driving nominal yield innovations. To assess the empirical validity of

these different channels, we estimate the model using a Bayesian MCMC particle filter approach. To

the best of our knowledge, this model is the first one that does not rely too heavily on the volatility

of inflation expectations to fit the nominal yield curve.

The model can account for myriad of macro and bond market features. Specifically, the model

is able to match standard moments such as the unconditional level, slope, and standard deviation

of nominal yields. In addition, it generates sizable variation in bond risk premia, that is, it is able
1For example, in New Keynesian and Long Run Risks Models these variance ratios can exceed 100 percent.

While habit formation models fare somewhat better with variance ratios of around 50 percent, they lack a consistent
channel for predictability in bond and currency returns (e.g., Wachter (2006) requires a counter-cyclical interest rates
to account for bond return predictability, while Verdelhan (2010) relies on a pro-cyclical interest rates to account for
the violations of uncovered interest parity in currency markets).
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to generate time-varying term premium that mimics the estimates based on reduced-form Gaussian

affine term structure models (e.g., Adrian, Crump, and Moench 2013; Kim andWright 2005) without

distorting its macroeconomic fit or requiring a large coefficient of relative risk aversion (roughly

8). Moreover, it quantitatively matches the evidence of bond return predictability documented

in Cochrane and Piazzesi (2005) and the failure of the expectation hypothesis, as identified in

Campbell and Shiller (1991). Importantly, the model is able to match these term structure features

with expected inflation innovations that, as in the data, do not dominate variations in yield news.

In this regard, we show that the inflation variance ratios (for different horizons), defined as the

variance of expected inflation news relative to the variance of yield shocks, are indeed smaller than

existing structural models ascribe, yet the point estimates are larger than initially viewed once

appropriate econometrics accounts for stochastic volatility in inflation and bond yields.2

The model estimation allows us to decompose the risk premia into their economic components

in real time. These estimates suggest that over time inflation-related risks, while important, have had

a declining effect on risk premia movements in bond yields. Specifically, while the term premium

and expected excess bond returns are on average positive, primarily due to inflation-related risk

premia, they have been negative for the last decade due to variations in real uncertainties.

The model features two key mechanisms. The first and most important one, builds on the long-

run risks model of Bansal and Yaron (2004) and follows the formulation in Bansal and Shaliastovich

(2013) in assuming that consumption growth and inflation contain a small predictable component

with time-varying conditional volatilities. With preferences for early resolution of uncertainty,

variations in bond risk premia are driven entirely by these volatilities. Specifically, an increase in real

volatility (uncertainty) lowers bond risk premia, whereas nominal volatility raises it, provided that

expected inflation shocks are negatively correlated with expected consumption growth (inflation non-

neutrality). In such a setting, nominal shocks are priced, which makes long-term bonds particularly

risky since innovations that produce a persistent increase in expected inflation generate persistently

low real yields and low expected consumption growth. This mechanism is important for generating
2To compute the data-implied inflation variance ratios for long horizons, we rely on a statistical model of inflation

and bond yields. We extend the unconditional inflation variance ratios proposed by Duffee (2016) by modeling
the dynamics of conditional inflation variance ratios. Accounting for conditional information (stochastic volatility)
improves the statistical model’s fit and better aligns the data and structural model implied inflation variance moments.
The fraction of yield news variation that is attributable to variation in inflation news is higher when conditional
information is accounted for. Nevertheless, these larger estimates still pose a challenge for existing macro-finance
models that rely heavily on the expected inflation channel for yield news innovations.
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a positive slope in the nominal yield curve and crucial for movements and predictability of bond

risk premia.

The time preference shocks provide the second mechanism. In this model, time preference

shocks arise from stochastic changes in agents’ discount factor and determine how they trade off

current versus future utility. Albuquerque, Eichenbaum, Luo, and Rebelo (2016), and Schorfheide

et al. (2017), also include time preference shocks in their model specification to better account

for the risk free rate dynamics and its relatively low correlation with consumption growth – a

feature preserved in this model. Furthermore, with preference for early resolution of uncertainty, the

exposure to these shocks is an increasing function of the bond’s maturity and generate an upward-

sloping real yield curve. Hence, it complements the first mechanism in producing an upward-sloping

nominal yield curve. Time preference shocks also generate volatile and persistent fluctuations in

expected short-term real rates. This in turn allows the model to match the empirical volatility

of nominal yield shocks without resorting to innovations in inflation expectations that vary too

much relative to the data. However, it is important to recognize that although time preference

shocks help generate news about real rates, they deteriorate the model implications for bond return

predictability. This crucial trade-off is one important dimension the estimation of the model is

addressing.

Time preference shocks determine the attitudes of the representative household towards sav-

ings, and are by assumption, one that we subsequently show is supported empirically, orthogonal to

the real economy. Interestingly, and in line with this reasoning, the filtered time preference shocks

series is highly correlated with the adjusted National Financial Conditions Index published by the

Federal Reserve of Chicago, which measures risk, liquidity, and leverage in money, debt, and equity

markets that is uncorrelated with economic conditions.3

The model contains several other ingredients such as time-varying volatilities in the iid com-

ponent of consumption growth and inflation, and time-aggregation of consumption. These features

are negligible for the nominal yield curve but are important for the tracking the macroeconomic

series. Moreover, monthly measurement errors in the process of consumption that average out at

the quarterly frequency aid the identification of the persistent parameter of expected consumption
3The Adjusted National Financial Conditions Index is provided by the Federal Reserve Bank of Chicago published

at https://alfred.stlouisfed.org/series?seid=ANFCI.
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growth. Importantly, we show that these features lead to remarkably similar estimates of macroe-

conomic series when bond yields are or are not used in the estimation.4 Finally, we show that there

is enough information in the macroeconomic series, over the sample period 1960 to 2014, to identify

a significant negative non-neutral effect of inflation on growth.

This paper is organized as follows. In Section 2, we introduce the model and cast it into

a state-space form. Section 3 describes the Metropolis-Hastings sampler used for Bayesian infer-

ence, the data set, and prior and posterior distribution of model parameters. Section 4 analyzes

the importance of inflation expectations for the nominal yield curve. Finally, Section 5 provides

concluding remarks.

2 Model specification

In this section, we present the macro-finance model and cast it into a state-space form. In Section

2.1, we describe the preference of the representative household. In Section 2.2, we present the

exogenous dynamics of consumption growth and inflation. In Section 2.3, we characterize the

model solution and the equilibrium nominal yield curve. Finally, in Section 2.4, we cast the model

into a state-space form.

2.1 Preferences

The representative household has Epstein and Zin (1989) recursive preferences and maximizes life-

time utility which is a function of current utility and the certainty equivalent of future utility V ∗t+1:

Vt = max
Ct

[(1− δ)λtC
1− 1

ψ

t + δ(V ∗t+1)
1− 1

ψ ]
1

1− 1
ψ (1)

where Ct denotes consumption at time t, ψ is intertemporal elasticity of substitution, δ is the

discount factor, and λt denotes a time-varying preference parameter. The certainty equivalent of

future utility is the guaranteed value of lifetime utility at time t+ 1 given by V ∗t+1 = (EtV
1−γ
t+1 )

1
1−γ ,

where the parameter γ represents the coefficient of relative risk aversion.
4This result is important as it shows that the parameter estimates are not driven to merely fit the bond yields

or are fundamentally disconnected from macroeconomic aggregates. Adding the bond prices primarily reduces the
credible intervals of the parameter estimates.
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As in Albuquerque et al. (2016) and Schorfheide et al. (2017), we also allow for time preference

shocks to the time rate of preferences given by xλ,t = log(λt+1) − log(λt), which determines how

the household trades off current versus future utility. These shocks evolve according to:

xλ,t+1 = ρλxλ,t + σληλ,t+1 with ηλ,t+1 ∼ i.i.d.N(0, 1) (2)

and can be thought of as demand shocks that capture changes in the household attitudes towards

savings. The representative household is subject to the following budget constraint: Wt+1 = (Wt−

Ct)Rc,t+1, where Wt denotes its wealth at time t and Rc,t+1 is the return on an asset that pays

aggregate consumption as dividends.

2.2 Consumption and inflation dynamics

The exogenous dynamics of the logarithm of consumption growth, ∆ct+1 = log(Ct+1) − log(Ct),

and the logarithm of the inflation rate, πt+1, are written as follows:

∆ct+1 = µc + xc,t + σc,tηc,t+1

πt+1 = µπ + xπ,t + σπ,tηπ,t+1

(3)

where the process of conditional expectations is given by

xc,t+1 = ρccxc,t + ρcπxπ,t + σxc,tηxc,t+1

xπ,t+1 = +ρππxπ,t + σxπ,tηxπ,t+1

and volatilities evolve according to exponential Gaussian processes

σi,t = ϕiσexp(hi,t), with hi,t+1 = ρhihi,t + σhiωi,t+1. (4)

We normalize ϕc = 1 and all innovations are distributed according to

ηi,t+1, ωi,t+1, εi,t+1 ∼ i.i.d.N(0, 1) for i = {c, π, xc, xπ}.

Specification (3) is based on Bansal and Yaron (2004), Piazzesi and Schneider (2007), and
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Bansal and Shaliastovich (2013), and decomposes real consumption growth and inflation into pre-

dictable (xc,t, xπ,t) and transitory (σc,tηc,t+1, σπ,tηπ,t+1) components. We assume that the pre-

dictable components, that is expected consumption growth, xc, and expected inflation, xπ, follow a

bivariate VAR(1) process, with time-varying volatilities given by σ2xc,t and σ2xπ,t, respectively. We

allow for expected inflation to directly feed into expected consumption growth via the parameter

ρcπ. This parameter characterizes the nonneutrality of inflation. In contrast to Bansal and Shalias-

tovich (2013), we consider four separate volatility processes. The long-run stochastic volatilities

σ2xc,t and σ2xπ,t are the drivers of bond risk premia, while the short-run volatilities σ2c,t and σ2π,t are

negligible for bond prices, but are important for tracking the consumption growth and inflation se-

ries. Furthermore, the logarithm of the volatility process is assumed to be normal, which guarantees

that σi,t is positive throughout.

2.3 Model solution

The Euler equation associated with any continuous real return, rt+1, can be written as

Et[exp(mt+1 + rt+1)] = 1 (5)

where the logarithm of the real stochastic discount factor (SDF) implied by the assumed household

preferences is

mt+1 = θlogδ + θxλ,t −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1 with θ =

1− γ
1− 1

ψ

. (6)

Note that when γ = 1
ψ the utility function is of the constant relative risk aversion form and the SDF

becomes independent of the log return on the consumption claim denoted by rc,t+1 = log(Rc,t+1).

To price nominal payoffs it is useful to specify the nominal discount factor which is equal to the

real one minus the inflation rate:

m$
t+1 = mt+1 − πt+1 (7)

To entertain an analytical model solution we use two different approximations. The first,

proposed by Campbell and Shiller (1988), involves a log-linear Taylor expansion rc,t+1 ≈ κ0 +
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κ1pct+1−pct+∆ct+1, where κ0 and κ1 are constants determined endogenously by the unconditional

mean of the price-consumption ratio, pct, given in Appendix A.1. To obtained an analytical solution

for asset prices, the second approximation follows Schorfheide et al. (2017) and takes a linear

approximation of the volatility process around the unconditional mean of hi, given by σ2i,t+1 ≈ σ2i,0+

νi(σ
2
i,t − σ2i,0) + σωiωi,t+1 for i = {c, π, xc, xπ} with νi = ρhi , σ

2
i,0 = (ϕiσ)2, and σωi = 2(ϕiσ)2σhi .

5

The first approximation allows us to write innovations to the real SDF as a linear combination

in shocks,

mt+1 − Etmt+1 = −λcσc,tηc,t+1︸ ︷︷ ︸
short-run consumption risk

−λπσπ,tηπ,t+1︸ ︷︷ ︸
short-run inflation risk

−λλσλ,tηλ,t+1︸ ︷︷ ︸
preference risk

−λxcσxc,tηxc,t+1︸ ︷︷ ︸
long-run consumption risk

−λxπσxπ,tηxπ,t+1︸ ︷︷ ︸
long-run inflation risk

−
∑

i∈{σc,σπ ,σxc,σxπ}

λiσωiωi,t+1︸ ︷︷ ︸
Volatility risk

(8)

which determine the sources and compensation for risks. The λs denote the equilibrium market

prices of risk and are equal to

λc = γ, λπ = 0, λλ =
κ1ρλ − θ
1− κ1ρλ

, λxc =
(γ − 1

ψ
)κ1

1− κ1ρcc
, λxπ = ρcπ

(γ − 1
ψ

)κ2
1

(1− κ1ρcc)(1− κ1ρππ)
, (9)

λσc =
(γ − 1

ψ
)(1− γ)κ1

2(1− κ1νc)
, λσπ = 0, λσxc =

(γ − 1
ψ

)(1− γ)κ3
1

2(1− κ1ρcc)2(1− κ1νxc)
, λσxπ = ρ2cπ

(γ − 1
ψ

)(1− γ)κ5
1

2(1− κ1ρcc)2(1− κ1ρππ)2(1− κ1νxπ)
.

Note that the market price of short-run consumption risk, λc, is equal to the coefficient of

relative risk aversion. Since current inflation is independent from the real economy, the prices of risk

associated with it (λπ, λσπ) are zero. In addition, when agents have preference for early resolution of

uncertainty (γ > 1
ψ ), the market price of expected consumption growth risk, λxc, is positive and λxπ

is negative whenever expected inflation is bad news for the real economy (ρcπ < 0). Furthermore,

the market prices of short-, λσc , and long-run, λσxc , real uncertainties are negative, as well as the

market price of the long-run inflation volatility, λσxπ . The price of the time preference shocks risk,

λλ, is guaranteed to be positive whenever θ ≤ 0 provided that ρλ > 0. Note that when γ = 1
ψ all

5It is important to note that in the estimation the process for the volatilities is log-normal and given in equation
(4). The approximation serves only to obtain an analytical solution for bond prices, which facilitates the state-space
representation and estimation of the model. For a detail discussion of these two approximations see Schorfheide et al.
(2017).
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prices with the exception of λc and λλ are zero. Finally, the nominal market prices of risk are all

equal to their real counterparts except for λ$π, which now equals one.

We proceed to price the equilibrium nominal bond yields, while Appendix A.2 provides a

solution to pct and shows an analytical expressions for the equilibrium nominal SDF in terms of the

state variables of the economy.

2.3.1 Equilibrium nominal bond yields. Let P $
t,n be the price at time t of an n-period zero-

coupon nominal bond that pays one unit of the numeraire in n periods. Using the Euler equation,

the price can be written recursively as

P $
t,n = Et[M

$
t+1P

$
t+1,n−1] (10)

and can be solved by conjecturing that the logarithm of the nominal bond yields, y$t,n = − 1
n logP

$
t,n,

is linear in the state variables:

y$t,n =
1

n
((B$

0,n +B$
c,nxc,t +B$

π,nxπ,t +B$
λ,nxλ,t +B$

σc,nσ
2
c,t +B$

σπ,nσ
2
π,t +B$

σxc,nσ
2
xc,t +B$

σxπ,nσ
2
xπ,t). (11)

In Appendix A.4 we provide an analytical expression for the Bs, which measure the sensitivity of

bond prices to systemic risks. In order to develop economic intuition in terms of the size and sign

of each of these coefficients, Figure 1 shows the equilibrium nominal bond yield loadings (evaluated

at the posterior median estimates) as a function of bond maturity n.

[Place Figure 1 about here]

Nominal bonds hedge expected consumption risk. A higher expected consumption growth

today decreases bond prices and increases nominal yields (B$
c,n>0), due to the agent’s motive to

smooth consumption intertemporally. In this scenario, the agent wants to borrow to increase today’s

consumption and since bonds are in zero net supply, aggregate borrowing cannot increase. In

equilibrium, returns on bonds must increase to induce the agent to borrow less. Alternatively, with

preference for early resolution of uncertainty (γ > 1
ψ ), shocks to expected consumption growth

are priced. An increase in real volatility increases the agent’s uncertainty about future growth

and as a result wants to hedge by buying risk-free assets, and in equilibrium, bond yields fall

(B$
σc,n, B

$
σxc,n < 0). Since shocks to expected consumption growth have larger long-term effects, the
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sensitivity of bond prices to this risk is an order of magnitude larger (in absolute value) than the

beta of short-run real volatility risk (see the straight black line in panels (b) and (c) of Figure 1).

Furthermore, the longer the bond maturity, the higher the insurance the bond provides against these

types of risks and hence the higher its price. This mechanism generates a downward-sloping nominal

yield curve. In contrast, the nominal and preference risk channels counteract this mechanism and

generate an upward-sloping yield curve.

To understand the nominal channel as described by Bansal and Shaliastovich (2013) and

Eraker, Shaliastovich, and Wang (2016), it is useful to consider the following Fisher-type equation:

y
$,(n)
t = y

(n)
t +

1

n
Etπt→t+n −

1

2

1

n
V artπt→t+n +

1

n
Covt(mt→t+n, πt→t+n),

The expected inflation term, Etπt→t+n, directly impacts the valuation of nominal bond prices;

nominal yields rise with positive shocks to expected inflation (B$
π,n>0). In addition, if expected

inflation reduces expected consumption growth (ρcπ < 0), times of high long-term inflation rates are

times of low consumption growth. Hence, the covariance term in the above equation is positive and

increases with maturity. This term captures the inflation premium in the economy. With preference

for early resolution of uncertainty, shocks to expected inflation are also priced, which makes long-

term bonds particular risky since shocks that produce a persistent increase in this component

generate persistently low real yields and low expected consumption growth. This mechanism is

crucial for generating an upward-sloping nominal yield curve.

In contrast to Bansal and Shaliastovich (2013), in this model we include an extra state variable

determined by the time preference shocks. As shown in panel (a) of Figure 1, nominal yields

are decreasing functions of xλ,t. When xλ,t rises, the representative household values tomorrow’s

consumption more, relative to the present, and wants to increase savings. In equilibrium, bond

prices have to rise (B$
λ,n < 0) to clear bond markets. This model is also able to generate an upward-

sloping nominal yield curve (note that B$
λ,m > B$

λ,n if m > n) via the time preference shocks risk,

given that longer maturity bonds have a higher exposure to it. This implies that the model does not

rely entirely on the expected inflation channel to reproduce this feature of the data. Furthermore,

time preference shocks are a promising mechanism to drive volatile and persistent fluctuations in

expected short-term real rates which in turn might generate sizable variations in nominal yield

shocks without requiring large fluctuations in expected inflation news. We turn to this issue next.
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2.3.2 Inflation variance ratios. Following Campbell and Ammer (1993) and Duffee (2016), we

decompose an n-period yield into expectations of average ex-ante real rates, future average inflation,

and average expected excess returns over the life of the bond:

y$t,n =
1

n

n∑
i=1

Etrt+i−1,1 +
1

n

n∑
i=1

Etπt+i +
1

n

n∑
i=1

Etrx
$
r→t+1,n−i+1, (12)

where the ex-ante real rate is defined as the yield on a one period nominal bond minus expected

inflation rt = y$t,1 − Etπt+1. The last term on the right is often described as the bond’s nominal

term premium, which we write as tp$t,n.

Innovations to the n-maturity yield from t− 1 to t are equal to the sum of news about these

three components:

ε
(n)

y$,t
= ε

(n)
r,t + ε

(n)
π,t + ε

(n)

tp$,t
(13)

where the shocks are defined as

ε
(n)

y$,t
= Ety

$
t,n − Et−1y

$
t,n, ε

(n)
r,t = 1

n

∑n
i=1Etrt+i−1,1 − 1

n

∑n
i=1 Et−1rt+i−1,1.

ε
(n)

tp$,t
= Ettp

$
t,n − Et−1tp$t,n, ε

(n)
π,t = 1

n

∑n
i=1Etπt+i −

1
n

∑n
i=1Et−1πt+i.

Appendix A.7 provides an analytical expression for these shocks in terms of model parameters.

Duffee (2016) defines the unconditional inflation variance ratio of an n-period nominal bond as the

ratio of variance of inflation news to the variance of yield shocks:

inflation variance ratio ≡
V ar(ε

(n)
π,t )

V ar(ε
(n)

y$,t
)
, (14)

and measures the size of expected inflation shocks relative to nominal yield shocks. As shown

by Duffee (2016), at quarterly frequency, variances of news about expected inflation account for

around 20 percent of variances of yield shocks. This percentage is strongly at odds with standard

macro-finance model-implied ratios which often exceed 100 percent. The main problem is that these

models do not allow for a large real-rate or excess return channel to generate variations in yield

shocks.

This model generates variations in shocks to real rates via four components. To see this it is
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useful to explicitly write the model-implied expressions for ε(n)r,t as

ε
(n)
r,t =

1

n

1

ψ

1− ρncc
1− ρcc

σxc,t−1ηxc,t +
1

n

ρcπ
1− ρcc

1

ψ
[(1− ρn−1

cc ) + ρππ(1− ρn−2
cc ) + · · ·+ ρn−2

ππ (1− ρcc)]σxπ,t−1ηxπ,t

+
1

n

∑
i∈{c,π,xc,xπ}

B$
σi,1

1− νni
1− νi

σωiωi,t −
1

n
ρλ

1− ρnλ
1− ρλ

σληλ,t
(15)

The first component is related to persistent movements in expected consumption growth. If σxc,t−1

is small and the intertemporal elasticity of substitution, ψ, is high, then short-term real rates do not

vary much via this component. The second component is associated with the nonneutral effect of

expected inflation on expected consumption growth. Bad news for expected inflation translates into

bad news for expected consumption growth, which in turn lowers expected future real rates. Hence,

variations in nominal yields via this component are mitigated by the negative covariation that it

shares with expected inflation shocks, ε(n)π,t , provided that ρcπ < 0 (i.e., cov(ε
(n)
r,t , ε

(n)
π,t ) < 0). In some

models, this negative covariance is able to decrease the volatility of nominal yield shocks below the

volatility of inflation news, which generates inflation variance ratios above 100 percent. The third

component comes from shocks to the volatility processes and affects shocks to real rates through the

precautionary savings channel. However, since σωi are usually small, they do not contribute much

to variations in nominal yield shocks. Finally, the last component is associated with innovations

to the time preference shocks. Innovations to xλ affect the agents’ decisions towards saving, which

in turn move short-term real rates. If these innovations are volatile and persistent, then they will

generate similar movements in real rates. Section 4.2 shows that this is an important mechanism to

match the observed volatility of yield shocks without requiring a counterfactually high volatility of

inflation expectations innovations. It also highlights that there is a clear trade-off between matching

the inflation variance ratios and other bond market features such as the mean, standard deviation

and slope of the nominal interest.

2.3.3 Expected excess bond returns. The presence of stochastic volatility gives rise to time

variations in bond risk premia. To see this, consider the one-period excess log return on buying an

n-period bond at time t and selling it at time t+ 1 as an n− 1 period bond:

rx$t→t+1,n = ny$t,n − (n− 1)y$t+1,n−1 − y$t,1
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The one-period expected excess return on nominal bonds is determined by the negative of the

covariance between the innovations to excess log returns and the innovations to the nominal SDF:

Etrx
$
r→t+1,n +

1

2
Vtrx

$
r→t+1,n = −covt(m$

t+1, rx
$
r→t+1,n)

= −
∑

i∈{σc,σπ,σxc,σxπ}

B$
i,n−1λiσ

2
ωi︸ ︷︷ ︸

Volatility risk

−B$
λ,n−1λλσ

2
λ︸ ︷︷ ︸

Preference risk

−B$
c,n−1λxcσ

2
xc,t︸ ︷︷ ︸

long-run growth risk

−B$
π,n−1λxπσ

2
xπ,t︸ ︷︷ ︸

long-run inflation risk

(16)

Hence, the one-period conditional excess return on nominal bonds can be attributed to (i) short- and

long-run volatility risks, (ii) preference risk, iii) long-run growth risk, and (iv) long-run inflation risk.

The bond risk premium is time-varying and driven by compensations for expected consumption and

inflation shocks. Note that nominal bond risk premium decreases with real uncertainty (B$
c,n > 0

and λxc > 0) and increases at times of high inflation uncertainty (B$
π,n > 0 and λxπ < 0). In

addition, long-term bonds also command a constant positive risk premium induced by the time

preference shocks risk (B$
λ,n−1 < 0 and λλ > 0).

2.3.4 Term premium. Solving tp$t,n in equation (12) delivers an expression for the n-maturity

nominal bond term premium:

tp$t,n = const +
1

n
(B$

σxc,n −B
$
σxc,1

1− νnxc
1− νxc

)σ2xc,t +
1

n
(B$

σxπ ,n −B
$
σxπ ,1

1− νnxπ
1− νxπ

)σ2xπ,t (17)

The term premium measures the additional compensation a risk averse investor needs to be indif-

ferent between purchasing an n-period bond and holding it until maturity or rolling over one-period

bonds for a total of n periods. Under the expectation hypothesis the term premium is constant.

In this model, the term premium is time-varying due to variations in bond risk premia driven by

long-run real and nominal uncertainties. In Section 4.4, we show that the term premium implied by

the model is able to account for the evidence of bond return predictability documented in Cochrane

and Piazzesi (2005) and for the failure of the expectation hypothesis, as identified in Campbell and

Shiller (1991). Furthermore, in Section 4.6, we show that the model is able to generate sizable vari-

ations in term premium. Finally, note that from this expression it is straight forward to compute
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the term premium shocks component, ε(n)
tp$,t

, given by

ε
(n)

tp$,t
=

1

n

∑
i∈{xc,xπ}

(B$
σi,n −B

$
σi,1

1− νni
1− νi

)σωiωi,t. (18)

This channel cannot contribute much to the variance of yield shocks, since, as described before, σωi

is usually small. Moreover, note that time preference shocks do not contribute to the term premium

given the assumption of homoskedastic innovations in agents’ rate of preferences.

2.4 State-space representation of the model

The state-space representation of the model consists of two equations. The first is the measurement

equation, which links the observed variables with the model-implied ones and adds measurement

errors to capture discrepancies that might be present between these two components. In addition,

measurement errors account for the stochastic singularity problem that arises when the number

of observables is greater than the number of state variables. The second is the state transition

equation, which describes the law of motion of the state variables.

2.4.1 Measurement equation. To distinguish observed variables from model-implied ones, we

use the superscript o. The observables are consumption growth, ∆co, inflation, πo, and zero-coupon

nominal bond yields, y$,o.

Measurement equation for consumption growth. To aid the identification of time-varying

volatilities, we use the highest frequency available which is monthly (e.g., Drost and Nijman 1993).

However, monthly consumption data has nontrivial measurement errors masking the actual dynam-

ics of consumption (e.g., Wilcox 1992). Following Schorfheide et al. (2017), we include monthly

measurement errors in the process of consumption that average out at the quarterly frequency

and which allow the identification of the persistent component of consumption growth as well as

time-varying short- and long-run volatilities.

Let the subscript t represent the monthly time as t = 3(j − 1) + m, where m indexes the
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month within quarter j and m = 1, 2, 3. Specifically, we assume that:

∆co3(j−1)+1 = ∆c3(j−1)+1 + σε(ε3(j−1)+1 − ε3(j−2)+3)

− 1

3

3∑
m=1

σε(ε3(j−1)+m − ε3(j−2)+m) + σqε (ε
q
(j) − ε

q
(j−1))

∆co3(j−1)+m = ∆c3(j−1)+m + σε(ε3(j−1)+m − ε3(j−2)+m−1) for m = 2, 3 and ε, εq ∼ N(0, 1).

(19)

σε and σ
q
ε denote the standard deviation of monthly and quarterly consumption measurement errors.

Note that under this specification, aggregating the monthly consumption series to the quarterly

frequency according to

∆cq,oj = cq,oj − c
q,o
j−1 =

5∑
τ=1

3− |τ − 3|
3

∆co3j−τ+1

averages out the monthly measurement errors; ∆cq,oj = ∆cqj +σqε (ε
q
(j)− ε

q
(j−1)). Under this specifica-

tion, the levels of monthly consumption are constructed by distributing quarterly consumption over

the three months of a quarter; this distribution is based on a noisy monthly proxy series. Further-

more, monthly consumption growth rates are proportional to the growth rates of the proxy series

and monthly consumption adds up to quarterly consumption. At quarterly frequency, consumption

growth is strongly positively autocorrelated, while, at the monthly frequency, it exhibits a significant

negative autocorrelation, which provides evidence for a negative moving average component. The

assumed measurement error model for consumption is able to reconcile these features.

Measurement equation for inflation. We assume that inflation is measured without any errors

and define

πot+1 = πt+1 (20)

because, at the estimation stage, there was no clear way to disentangle the measurement errors from

the transitory iid shocks.

Measurement equation for Nominal bond yields. We assume that nominal bond yields are

contaminated by iid measurement errors and define

y$,ot+1,n = y$t+1,n + σynεyn,t+1, with εyn,t+1 ∼ N(0, 1) (21)
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where σyn denotes the standard deviation of the yields measurement error. Assuming small yield

measurement errors is not a strong modeling assumption, since zero-coupon Treasury yields are not

directly observed for long maturities and have to be bootstrapped from observed bond prices.

Altogether, the measurement equation of the state-space representation stacks each particular

measurement equation and is given by:

Y o
t+1 = At+1(D + Zst+1 + Zvsvt+1(ht+1) + Σuut+1), with ut+1 ∼ N(0, I) (22)

where the vector of observables Y o
t+1 contains consumption growth, ∆co, inflation, πo, and nomi-

nal bond yields, y$,o. The assumed measurement errors and the model solution provide the link

between Y o
t+1 and the vectors of state variables st+1 and svt+1(ht+1). Broadly, st+1 includes the

predictable components of consumption growth, xc,t, and inflation, xπ,t, as well as the time prefer-

ence shocks, xλ,t, innovations to fundamentals, and the measurement errors of consumption. The

vector svt+1(ht+1) is a function of the log volatilities ht+1 = [hxc,t+1, hxπ,t+1, hc,t+1, hπ,t+1]
′ and

stacks the short-, and long-run real and nominal uncertainties. The vector ut+1 consists of bond-

specific measurement errors where the diagonal of Σu contains the standard deviation of the yields

measurement errors, σyn . Finally, At+1 is a selection matrix that accounts for changes in the data

availability induced by the specification of the measurement error model of consumption growth.

2.4.2 State transition equation. The state transition equation provides the dynamics of the

state variables broadly given by the assumed process of the time preference shocks in (2) and by

the predictable component of consumption growth and inflation in (3). It can be written as:

st+1 = Φst + vt+1(ht), and ht+1 = Ψht + Σhωt+1 with ωt+1 ∼ N(0, I) (23)

where the variance of vt+1(ht) depends on the log volatilities at time t. In Appendix B, we describe

each particular component of the state-space representation in detail. We now proceed to describe

the estimation procedure and results.
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3 Estimation

In Section 3.1 and 3.2, we present the estimation procedure and the data set used. In Section 3.3,

we analyze the prior and posterior distribution of the model parameters, while in Section 3.4, we

describe the smoothed latent state estimates.

3.1 Estimation procedure

We use a Metropolis-Hastings sampler for posterior inference. We make inference on two different

sets of parameters. One set corresponds to the assumed process for the macroeconomic dynamics

denoted by:

Θmacro = {Θcπ,Θh} with

Θcπ = {µc, σ, ϕxc, ρcc, ρcπ, µπ, ϕπ, ϕxπ, ρππ, σε, σqε}, and Θh = {ρhc , σhc , ρhπ , σhπ , ρhxc , σhxc , ρhxπ , σhxπ}.

The second set of parameters is related to the preference of the representative household:

Θpref = {δ, ψ, γ, ρλ, σλ, σyn}

We include the yields measurement errors in this second set, and define the union of Θmacro and

Θpref as follows:

Θ = {Θmacro,Θpref}.

It is important to differentiate these two sets of parameters since we estimate Θmacro with and

without considering bond prices in the estimation. If Θmacro does not change much between these

two different informational contends, this suggests that there is enough information in the macroe-

conomic variables to price the nominal yield curve. However, if the difference in parameter estimates

is large, the estimation might be achieving a better fit for bond yields while sacrificing the fit of

consumption growth and inflation.

To make Bayesian inference about Θ and the latent state vectors, we adopt the econometric

approach proposed by Schorfheide et al. (2017). We specify a prior distribution p(Θ) and update

our a priori beliefs about the parameter vector Θ, in view of the sample information Y o. The state

of knowledge regarding Θ is summarized by the posterior distribution p(Θ|Y ) and Bayes Theorem
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provides the formal link:

p(Θ|Y o) =
p(Y o|Θ)p(Θ)

p(Y o)
. (24)

Given the presence of nonlinearities induced by the volatility states it is not possible to directly

evaluate the likelihood function, p(Y o|Θ), via the Kalman filter. Instead, we use a sequential Monte

Carlo filter to approximate p(Y o|Θ). In essence, we represent the distribution of volatilities using a

swarm of particles; conditional on these particles, the model has a linear and Gaussian state-space

representation that allows us to apply the Kalman filter to equation (22) and (23). Once we are

able to draw from the posterior distribution p(Θ|Y o), we use a random-walk Metropolis-Hasting

algorithm to draw the parameter vector {Θ(s)}Nsims=1 as in Fernández-Villaverde and Rubio-Ramírez

(2007) and Andrieu, Doucet, and Holenstein (2010). Detailed steps of the algorithm are available

in Appendix B.3 and for further reference regarding the implementation of the particle filter see

Herbst and Schorfheide (2015).

3.2 Data

The data is standard in the literature and consists of monthly observations of real per-capita con-

sumption growth, inflation, and nominal bond yields with maturities of between one and five years.

The sample period is determined by the availability of the consumption growth series and spans

from 1960:M1 to 2014:M12.6 Specifically, we use the per-capita series of real consumption expendi-

ture on nondurables and services from the National Income and Product Account published by the

Bureau of Economic Analysis. We downloaded CPI inflation from the Federal Reserve Bank of St.

Louis. We constructed growth rates for consumption and inflation by computing the differences of

the log series. Lastly, monthly nominal bond yields were obtained from the CRSP Fama-Bliss zero

coupon bond files.

3.3 Prior and posterior distribution

We will first describe our choice of priors and then we proceed to analyze the posterior estimates.
6Monthly consumption growth starts in 1959:M2. However, to have non-missing values for all years we decided to

start in 1960:M1.
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3.3.1 Prior distribution. In general, we attempted to restrict the parameter space to econom-

ically plausible values while at the same time be as uninformative as possible. For example, our

prior distribution for the persistence parameter of the predictable component of consumption growth

cover values that imply a near iid or a unit root process for consumption growth. Similarly, we

do not restrict the preference of the representative household to have early, θ < 0, or late, θ > 0,

resolution of uncertainty. The first columns of Table 1 show the assumed prior distribution, as well

as the 5 and 95 percentiles, while we relegate to Appendix B.4 a detail discussion of the priors.

[Place Table 1 about here]

3.3.2 Posterior distribution. The last six columns of Table 1 show the 5, 50, and 95 percentiles

of the posterior distribution under two different scenarios. Columns 5 to 7 show the posterior

distribution if bond prices are included in the estimation, while columns 8 to 10 only consider the

information contained in macro data.7 It is important to highlight that the posterior intervals are

considerably narrower if bond prices are considered in the estimation, suggesting that bond yields

provide additional information that reduces the parameters posterior uncertainty. We will first

describe the parameters related to the agent’s preference, Θpref , and then proceed to analyze the

parameter estimates in Θmacro.

The coefficient of risk aversion, γ, and the elasticity of substitution, ψ, have a posterior median

value of around 8.0 and 1.80, respectively. These estimates are consistent with the parameter values

highlighted in the long-run risk literature and imply preferences for early resolution of uncertainty.

It is also worth noting that the posterior median value of the persistence parameter of the time

preference shocks, xλ,t, is around 0.95. Furthermore, a value of ϕλ ≈ 0.25 suggests that they are

considerable less volatile than consumption growth.

With respect to the parameters associated with the macroeconomic dynamics, Θmacro, we

found that the parameter estimates that incorporate bond prices in the estimation are in close
7To estimate the model that only includes macro data in the estimation, we cast equation 3 into a state-space form

and use Metropolis-within-Gibbs sampler for posterior inference iterating over the three conditional distributions. In
Appendix C.3 we provide detailed steps of the Metropolis-within-Gibbs sampler algorithm. We also assume a common
stochastic volatility process (i.e., hc,t = hxc,t and hπ,t = hxπ,t). Allowing for four different stochastic volatilities, the
90 percent confidence interval increased considerably for most of the parameters and the log marginal data density
decreased from 6055 to 5761. With these evidence, we conclude that there seems not to be enough information in
consumption growth and inflation to reliably identify four different stochastic volatilities.
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agreement with the ones that only consider macro variables. Some features are worth noting. First,

the posterior median estimates of (ρcc, ρcπ, ρππ) are remarkably similar with (0.96, −0.01, 0.99)

or without (0.95, −0.02, 0.98) considering bond prices in the estimation. In all cases, the posterior

confidence interval of the latter contains the confidence interval of the former, suggesting that there

is enough information in the macro data to identify them (adding the information in bond prices

sharpens inference). This result is driven mostly by the measurement error model of consumption

and the assumed stochastic volatility processes for consumption growth and inflation. Appendix

B.5 shows that accounting for measurement errors in consumption reveals a persistent component

in consumption growth: In the absence of measurement errors ρcc drops to -0.20 (See Table B1).

Appendix B.5 also shows that adding stochastic volatility to the process of the macro variables

improves the model fit considerably (measured by the log marginal data density) and decreases the

posterior uncertainty of the parameter estimates (measured by the 90 percent credible interval).

Furthermore, there is enough information in the macro data to identify ρcπ, which is negative and

significant as suggested by the 95 percentile in column 10 of Table 1. This negative nonneutral effect

of inflation on growth is consistent with Piazzesi and Schneider (2007) and Bansal and Shaliastovich

(2013), who used bond yields to identify ρcπ.

In the model, time-variation in term premia is driven by the stochastic volatilities of expected

consumption growth and expected inflation. Once bond prices were included in the estimation, the

parameters governing the persistence and standard deviation of the long-run volatility processes

(i.e., (ρhxc , σhxc) and (ρhxπ , σhxπ)) increased somewhat in order to match the sizable variations

observed in the term premia dynamics. Starting from an agnostic prior, σhxc and σhxπ increased

from an approximate value of 0.11 and 0.30 to 0.13 and 0.33, respectively. Similarly, ρhxc and

ρhxπ increased from 0.97 and 0.81 to approximately 0.98 and 0.96, respectively. Alternatively, since

the high-frequency movements in consumption growth and inflation are negligible for asset prices

but important for tracking the macroeconomic data, we should not expect similar changes in the

posterior parameter estimates governing these dynamics.8 Consistent with this idea, the posterior

median estimates of (ρhc , σhc) and (ρhπ , σhπ) were quite similar between these two scenarios.
8By adding short-run conditional heteroskedasticity by allowing for time variation in σc,t and σπ,t and shutting

down the variation in σxc,t and σxπ,t, the log marginal data density increased from 5870 to 6054, which is almost as
high as the value obtained by assuming a common stochastic volatility process (i.e., hc,t = hxc,t and hπ,t = hxπ,t)
equal to 6055. Hence, we conclude that short-run conditional heteroskedasticity improves considerably the model fit
of the assumed process of the macro variables.
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Finally, the scale variance parameters associated with consumption growth and inflation de-

creased in order to counteract the increased variation of the predictable components of consumption

growth and inflation: The posterior median of ϕxc, ϕxπ, and ϕπ, decreased from 0.22, 0.22, and

0.98 to 0.19, 0.1, and 0.98, respectively. Table 2 illustrates this point by showing the 5, 50, and

95 percentiles of the implied unconditional mean of the stochastic volatilities, E[σi,t], which is a

function of ρhi , σhi , and ϕi, and can be written as:

E[σi,t] = ϕiσcexp

(
0.5

σ2hi
1− ρ2hi

)
. (25)

For instance, note that although the estimates of ρhxc and σhxc increased once we consider bond

prices in the estimation to better capture the dynamics of the term premium, ϕxc, decreased enough

such that the unconditional mean of the process of σxc,t remained remarkable similar to the estimates

that do not consider the information contained in bond prices: The 90% credible interval contains

the posterior median of E[σxc,t] from the macro-only estimation. The same holds for the remaining

three volatility process.

[Place Table 2 about here]

Overall, the parameter estimates that incorporate bond prices in the estimation are in close

agreement with the ones that only consider macro aggregates. The fact our macro based estimates

are similar to those that also incorporate bond yields is important since it demonstrates they are

not completely driven by the financial variables.9 Specifically, adding bond prices contributes to

smaller credible intervals and allows the identification of four separate volatility components: two

drive the dynamics of the predictable components of consumption growth and inflation, and the

remaining two govern temporary and independent shocks to the realization of the macro aggregates.

The former two are important for bond prices, while the latter ones are important for tracking the

macro data. Next we show that the filtered macro state variables follow very closely the dynamics

of the observed macro data, while in Section 4 we show the model is able to match a rich set of

macro and bond market features.
9Relative to Creal and Wu (2016) this result is primarily driven by incorporating the measurement error structure

and accounting for temporal aggregations. They also primarily focus on the term premium properties while our
estimation also successfully targets the failure of the expectation hypothesis, risk premia predictability and inflation
variance ratios.
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3.4 Latent state variables

This section describes the filtered estimates of the latent state variables. In panels (a) and (b) of

Figure 2, we show the smoothed expected consumption growth, xc,t, and expected inflation, xπ,t,

obtained from the estimation that includes bond prices. We also overlay the observed monthly

consumption growth and inflation series. In addition, the shaded areas denote the National Bureau

of Economic Research (NBER) recession dates. xc,t exhibits declines during each recession, with

the largest decline during the recent financial crisis. On the other hand, xπ,t has its highest point

during the Great Inflation period and decreases afterwards. Note that recessions during the 1970s

and 1980s were accompanied by an increase in the expected inflation component, and that this

behavior suddenly reversed during the last three crises, where xπ,t remained constant or slightly

declined.

[Place Figure 2 about here]

In panels (c) and (d) of Figure 2, we plot the volatilities of the long-run growth, hxc, and in-

flation rate, hxπ, respectively. Both series vary considerably: hxc starts high and shows a decreasing

trend with spikes during the crises of 1975 and 1980. It remained at low levels until the late 1990s,

after which it started to increase and has stayed at relatively high levels ever since. hxπ displays

different properties. In the 1960s it was at low levels; it jumped around during the 1970s with peaks

between 1980 and 1985 and remained at high values until 1990, when it started to decrease with

wide fluctuations around 2000. Similarly, in panels (e) and panel (f), we plot the smoothed series

for the high frequency components of consumption growth, hc, and inflation, hπ. The first thing to

note is that the magnitude of both series is remarkably smaller. Also of note is that hc captures

the drop in growth volatility that occurred around the 1980s, also known as the Great Moderation

period and it shows a decreasing pattern from that date onwards. On the other hand, hπ practically

spikes at every recession, but periods of an increase in hπ also occur during expansions.

[Place Figure 3 about here]

Time preference shocks determine the attitudes of the representative household towards sav-

ings and they are, by assumption, orthogonal to the real economy. With this in mind, an interesting
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candidate to correlate the smoothed demand shocks estimates is the adjusted National Financial

Conditions Index (adjusted FCI) published by the Federal Reserve of Chicago. This index measures

risk, liquidity, and leverage in money, debt, and equity markets, and isolates a component of finan-

cial conditions uncorrelated with economic conditions.10 Figure 3, shows the posterior median of

the smoothed time preference shocks along with the negative value of the adjusted FCI divided by

a constant to have similar magnitudes.11 Given these adjustments, a positive value of the adjusted

FCI index suggests loose financial markets relative to an historical average. The correlation between

these series is remarkably high, with a value of around 50 percent,12 suggesting that tighter financial

conditions today are associated with a lower willingness of the agents to save for future periods.

We assume that the time preference shocks are orthogonal to consumption growth and to its

predictable component. In a general equilibrium framework this will not likely be the case, since in-

novations to the time preference parameter will affect the household decisions towards consumption,

saving, and investment, which in turn will affect production outcomes and the expected path of con-

sumption growth. To address this concern, we computed the 90 percent confidence interval of the

correlation between innovations to the time preference shocks, σληλ,t+1, and shocks to consumption

growth, σc,tηc,t+1, and between σληλ,t+1 and shocks to expected consumption growth, σxc,tηxc,t+1.

These correlations are small, ranging from -0.08 to 0.10 and from 0.01 to 0.15, respectively. These

results are consistent with Schorfheide et al. (2017), who also assume uncorrelated shocks between

the preference shocks and the cash flow components and conclude that there is no strong evidence

against the assumption of orthogonal preference shocks.

In sum, the latent state variables are directly linked to macroeconomic risk factors or are

correlated to measures of risk, liquidity, and leverage in financial markets uncorrelated with economic

conditions. In lieu of these findings, we now turn to analyze how well does the model match key

features of the term structure.
10The Adjusted National Financial Conditions Index is provided by the Federal Reserve Bank of Chicago; the series

starts in 1973 and can be downloaded at https://alfred.stlouisfed.org/series?seid=ANFCI
11In sum, we divided the original adjusted FCI series by -1200.
12This correlation increases to 65 percent if we remove the high frequency components of the series by taking a

twelve month moving average.
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4 Asset pricing implications

In Section 4.1, we analyze how well the model matches standard macro and bond yield moments. In

Section 4.2, we quantify to what extent the volatility of nominal yield shocks is due to the volatility

of expected inflation news. In Section 4.3, we analyze the relative contribution of each risk factor to

movements in nominal bond yields. In Section 4.4, we study the bond predictability results implied

by the model. Sections 4.5 and 4.6 show the relative contribution of risk factors to movements in

expected excess bond returns and term premium, respectively.

4.1 Model Implications for macro and bond yield moments

While we are targeting the joint distribution of macroeconomic and bond yield variables, it is

informative to document how close the model-implied moments are to those observed in the data.

Table 3 shows the percentiles of the posterior predictive distribution for several sample moments,13

based on parameters drawn from the posterior distribution that considers bond prices (columns 3

to 5), and from that which only considers macro data (columns 6 to 8). For the latter, we use the

posterior medians of the preference parameters Θpref . Finally, in the second column, we show the

same moments computed from the observed series. All moments are annualized.

[Place Table 3 about here]

The model does a good job of reproducing the macro moments while at the same time account-

ing for the level and slope of the nominal yield curve as well as the standard deviation of nominal

yields. All of the data moments are well within the 90 percent credible interval. In the results

of the estimation that includes bond prices, the model performs well in matching the macroeco-

nomic moments: the model-implied posterior median values are fairly close to their data estimates.

Regarding the bond yield moments, the model-implied posterior medians match the decreasing

pattern in the standard deviation of bond yields across maturities and at the same time captures

the upward-sloping unconditional mean of the nominal term-structure. It also does a good job in

accounting for the difference between the long and the short end (i.e., slope) of the yield curve: in
13To this end, we sampled M draws of Θ from its posterior distribution and simulated the model for 660 periods,

which corresponds to the number of monthly observations in our estimation sample. This gave us M simulated
trajectories of Y o. For each one of them, we computed several statistics. In the implementation we set M = 10, 000.
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the data and in the model it is around 60 and 80 basis points, respectively. In the results of the

estimation that does not include bond prices, the model is still able to match these features of the

data and generate credible intervals that contain the sample data moments, as shown in the last

three columns of Table 3, although the standard deviation of the nominal yields is somewhat lower

than the moments obtained by also including bond prices in the estimation.

4.2 Model implications for inflation variance ratios

To compute the data-implied inflation variance ratios for long horizons, we need to rely on a sta-

tistical model for expected inflation and bond yields. In Section 4.2.1, we extend Duffee’s analysis

by assuming heteroskedasticity in both inflation news and yield shocks, instead of splitting the es-

timation in different subperiods, and increase the frequency of the data from quarterly to monthly

observations. Accounting for conditional information brings the data and model implied moments

in closer agreement. Overall, we show that conditional inflation variance ratios tend to be higher

(around 33 percent) than unconditional inflation variance ratios (around 26 percent). Finally, in

Section 4.2.2, we present the model-implied inflation variance ratios.

4.2.1 Inflation variance ratios: Data. Since survey inflation forecasts are focused at relatively

short horizons (usually less than one year), we obtained data estimates of the inflation variance ratios

from a statistical model. For consistency, and following Stock and Watson (2007), we extracted one-

to five-year inflation forecast innovations, ε(n)π,t , from the process of inflation specified in equation (3).

Following Duffee (2016), we also included information from the surveys of market practitioners that

are released at a different (quarterly) frequency. As argued by Ang, Bekaert, and Wei (2007), survey-

based inflation forecasts are more accurate than model-based ones, which sharpens the inference

about ε(n)π,t . Specifically, we used the CPI forecast from the Survey of Professional Forecasters (SPF)

of one to four quarters ahead. Since this series starts in 1983Q3 and the estimation period of the

structural model begins in 1960Q1, we also include one to four quarter ahead SPF forecasts of the

Price Index for Gross National Product (PGDP) from 1968Q to 1983Q2.14 Hence, the estimation

period of the statistical model goes from 1968Q4 to 2014Q14.
14Although these two different price forecasts are highly autocorrelated (around 0.97), we allow for different mea-

surement errors once we cast the model into the State-space form. Appendix C provides further details.
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Similarly, to compute shocks to the n-period yield, ε(n)
y$,t

, we follow Duffee (2016) and assume

that bond yields follow martingales

y
(n)
t+1 = y

(n)
t + σy(n),tηy(n),t+1 and ηy(n),t+1 ∼ i.i.d.N(0, 1) where (26)

σy(n),t = σy(n)exp(hy,t), hy(n),t+1 = ρ
h
(n)
y
hy(n),t + σ

h
(n)
y
ωy(n),t+1, and ωy,t+1 ∼ i.i.d.N(0, 1),

where ε(n)
y$,t

= σy(n),tηy(n),t+1. For bond yields, the martingale assumption generates lower forecast

errors than both, survey based (e.g., Cieslak 2016) and parametrized models (e.g., Duffee 2002). We

also allow for bond yield shocks, ηy(n),t+1, and expected inflation shocks, ηxπ,t+1, to be correlated.

Finally, given an estimate of ε(n)π,t and ε(n)
y$,t

, it is straightforward to compute the inflation variance

ratios. In Appendix C, we provide details with respect to the estimation procedure.

[Place Table 4 about here]

The last three columns of Table 4 shows the inflation variance ratios along with the 90

percent confidence interval for maturities of one to five years. For the sake of completeness, we

also report the estimates based on the homoskedastic version of the model and, in Appendix C.3,

we provide the parameter estimates together with the assumed prior distribution. In the case of

homoskedastic innovations, the posterior medians of the unconditional inflation variance ratios for

all bond maturities were around 26 percent whereas the 95 percentiles were below 37 percent. These

results are by and large consistent with the estimates reported by Duffee (2016), and can be viewed

as a corroboration of his findings. Nevertheless, a careful inspection of the innovations suggests

that these vary through time and exhibit heteroskedasticity. Therefore, instead of doing subperiod

analysis, in the last three columns of Table 4 we report the estimates of the model that allows for

stochastic volatility. Allowing for heteroskedasticity in inflation shocks and innovations to bond

yields improves the model fit significantly, as evidenced by the log marginal data density reported

at the end of Table C1. It also shifts the distribution of the unconditional inflation variance ratios

towards higher values: the posterior medians were around 32 percent for a one-year bond and 34

percent for a five-year bond. However, the 95 percentiles were all below 62 percent. These ratios

are still at odds with corresponding values from standard macro-finance term structure models.15

15The inflation variance ratios are expected to increase under the stochastic volatility case due to a Jensen’s term,
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Robustness. As a robustness check on our findings, we repeated the same exercise for a quarterly

version of the statistical model considering different measures of inflation expectations reported by

SPF. In Appendix C.4, we report the estimates in detail, while briefly describing the results here.

Overall, for all bond maturities considered, expected inflation news does not contribute much to

the variation of bond innovations. The posterior medians were around 12 percent. Allowing for

stochastic volatility almost doubles the inflation variance ratios relative to the homoskedastic case,

improves the model fit; furthermore, the 95 percentile of the inflation variance ratios for all SFP

measures considered are below 50 percent.

4.2.2 Inflation variance ratios: Model-implied. In panel (a) through (e) of Figure 4, we

plot the probability density distribution of the predictive distribution of the model-implied inflation

variance ratios for the one to five year bond, respectively.16 The dark shaded density is based on the

macro-finance model that includes time preference shocks (Model w/ TPS), while the light shaded

density does not include them (Model w/o TPS).17 The straight and dashed black lines denote the

posterior median inflation variance ratios from the statistical model that assumes homoskedastic

(Data w/o SV) and heteroskedastic shocks (Data w/ SV) also reported in Table 4.

[Place Figure 4 about here]

The model-implied inflation variance ratios from the model that assumes time preference

shocks are in close agreement with the data estimates. Based on this evidence, we conclude that the

model does not resort to an expected inflation channel that counterfactually dominates the variation

in nominal yield shocks. Interestingly, if we turn the time preference shocks channel off, the model

provided that the correlation between V art(ε(n)π,t ) and V art(ε(n)y$,t
) is not too high. To see this, note that

E

 V art−1(ε
(n)
π,t )

V art−1(ε
(n)

y$,t
)

 ≈ E[V art−1(ε
(n)
π,t )]

E[V art−1(ε
(n)

y$,t
)]

+
E[V art−1(ε

(n)
π,t )]

E[V art−1(ε
(n)

y$,t
)]3

V ar(V art−1(ε
(n)

y$,t
))

1− ρ
ε
(n)
π,t ,ε

(n)

y$,t

√√√√√√ V ar(V art−1(ε
(n)
π,t ))

V ar(V art−1(ε
(n)

y$,t
))

E[V art−1(ε
(n)

y$,t
)]

E[V art−1(ε
(n)
π,t )]


where ρ

ε
(n)
π,t ,ε

(n)

y$,t

denotes the correlation between the corresponding variance terms. The first term on the right hand

side corresponds to the inflation variance ratios under homoskedastic shocks.
16Specifically, we sample M draws of Θ from its posterior distribution and simulate the models for 660 periods,

which corresponds to the number of monthly observations in the estimation sample. For each one of these simulated
trajectories and for each time period t we computed the implied inflation variance ratio and took the average across
time for a total of M inflation variance ratios. We set M = 10, 000.

17To this end, we solved the model without time preference shocks, cast it into the state-space form, and estimated
it under the same estimation procedure. We made sure that the model estimation matched the same data moments
and predictability results as the model that assumes time preference shocks. Results available upon request.
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is not able to match this moment of the data. Note that the probability density distributions shift

to the right (light shaded area) to inflation variance ratios values centered approximately around 80

percent. Furthermore, the posterior median population values also increased from 17 and 39 percent

to 69 and 86 percent for the one and five year bond, respectively. These values are somewhat smaller

than the ones implied in the estimation of Bansal and Shaliastovich (2013), which range from 76 to

113 percent.

4.2.3 Standard Deviation of Inflation and Yield News: Model-implied. So far we have

shown that the model is able to match the sample inflation variance ratios. Now we ask if the

model is also able to match the sample volatilities of inflation and yield shocks. To this end, Table 5

reports the 5, 50, and 95 percentiles of the posterior distribution of the standard deviation of shocks

to average expected inflation over the life of the bond (SD Inflation News), standard deviation of

yield shocks (SD Yield News), and the inflation variance ratios. We report these estimates for the

model that includes time preference shocks. For completeness, we also report the posterior median

values computed from the statistical model that does not assume (w/o SV) and does assume (w/

SV) stochastic volatility. These latter values are also reported in Table 4.

[Place Table 5 about here]

In the model and in the data, the standard deviation of inflation and yield shocks decline

as maturity increases. Regarding the standard deviation of expected inflation news, note that the

credible intervals contain the data moments. With respect to the standard deviation of yield news,

we observe that the data moments are slightly to the left of the 5 percentile obtained from the

structural model. At this point is important to recall that the inflation variance ratios are not

readily available and require the use of a statistical model to compute them, which is also subject

to parameter uncertainty as well as uncertainty about the latent state variables. Next we show that

the macro-finance model is also able to match these two moments once we take these uncertainties

into account.

Figure 5 plots the joint distribution of the annualized standard deviation of inflation and yield

news implied by the statistical model. Each point in the scatter plot is obtained by computing the

standard deviation of these two shocks from a single model simulation from the posterior distribution
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of the statistical model. The solid and dash ellipsoids indicate the 90% posterior coverage for the

statistical model that assumes homoskedastic (Data w/o SV) and heteroskedastic shocks (Data w/

SV), respectively. Finally, the intersection of the dashed lines denote the posterior median value of

the macro-finance model that assumes time-preference shocks (Model w/ TPS).

[Place Figure 5 about here]

Many aspects of this plot are noteworthy, here we just mention two. First, the standard

deviation of inflation and yield news computed from the statistical model are reliable, in the sense

that the 90% posterior coverage are reasonably tight. Second, for every bond maturity, the standard

deviations from the macro-finance model are well inside the ellipsoids that assume heteroskedastic

shocks. These results suggest that the model is also able to jointly generate plausible values of the

numerator and denominator of the inflation variance ratios.

4.2.4 Importance of the time preference shocks. It can be argued that the model will be

able to generate sufficiently small inflation variance ratios by including persistent-enough shocks to

the investors’ time rate of preference. To address this concern, it is important to recognize that

the time preference shocks not only generate news about real rates, but also affect other bond

market features such as the mean, standard deviation and slope of the nominal interest rates as

well as the predictability of bond returns. Appendix B.6 provides precise evidence on the trade-off

between enlarging the role of the time preference shocks to match the inflation variance ratios and

the model fit along other important bond yield moments. These other moments can be seen as the

over-identifying restrictions that would lead us to reject the time preference shocks that allowed the

model to match the inflation variance ratios.

Overall, in the data and in the model, shocks to expected inflation are not the main driver

of yield innovations. We now proceed to analyze the relative contribution of each risk factor to

movements in the nominal yield curve.

4.3 Model implications for bond yield dynamics

Even though variations in innovations to expected inflation play a limited role in driving yield shocks,

the estimation of the model matches the yields well. The mean absolute pricing errors range from
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4.3 to 6.3 basis points for the different bond yields considered. These values are comparable with

the pricing errors reported in the literature on macro-finance term structure models (e.g., Bikbov

and Chernov 2010; Doh 2013). To highlight the importance of each state variable, in Figure 6, we

show the contribution of expected consumption growth, xc,t, expected inflation xπ,t, time preference

shocks, xλ,t, and long-run real, σ2xc,t, and nominal, σ2xπ,t, uncertainties to the 5-Year bond yield. We

do not explicitly show the contribution of the short-run real, σ2c,t, and nominal, σ2π,t, uncertainties

because their share is too small (less than 0.5 percent) to distinguish them clearly in the graph.

[Place Figure 6 about here]

The unconditional mean of the 5-Year bond yield is 5.97 percent; however, the yield exhibits

substantial variations induced by movements in the state variables. The constant 1
nB

$
0,n sets the

level at roughly 5.93 percent, and from there on the yield goes up or down depending on the relative

contribution of each risk factor. In the 1970s, the decade of inflation in the United States, the

5-Year bond yield was primarily above 5.93 percent due to a rise in inflation expectations (recall

that B$
π > 0). In the 1980s, inflation expectations began to decline (see Figure 2) as a result of

the program of disinflation under Chairman Volcker; however, nominal uncertainty, σ2xπ,t, was at an

historic high level which moved the long-term yields (B$
σxc,n > 0 for high n) in the opposite direction.

During that period, time preference shocks were big and negative (see Figure 3), probably related to

tighter financial conditions, which increased the nominal yield even more. The 1990s and 2000s were

periods of relative stability in prices and, as such, xπ,t and σ2xπ,t took a secondary role in explaining

movements in bond yields. The 2000s were characterized by high real volatility (see Figure 2) which

increased the uncertainty about future growth. To hedge this risk, the demand for risk-free assets

increased, and in equilibrium, pushed the yield below 5.93 percent. σ2xc,t was the dominant risk

factor during the 2000s. A similar reasoning applies to the remaining bond maturities. Now we

proceed to analyze the model implications for bond risk premia.

4.4 Model implications for bond return predictability

The model is also able to match the bond predictability results documented in Campbell and Shiller

(1991) and Cochrane and Piazzesi (2005). Table 6 shows that the model-implied distribution of the

slope coefficients in the term spread regression of Campbell and Shiller (1991) are in line with
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the estimates based on observed data. The posterior median estimates are negative, decline with

maturity, and are considerably close to the point estimates obtained from observed bond yields.

Furthermore, we ran the same regressions as in Cochrane and Piazzesi (2005) and concluded that

the model-simulated yields also exhibit excess bond return predictability. The posterior median

coefficients were able to match the sign, pattern, and magnitude of the point estimates based on

observed bond yields. The same holds for the R2, although the posterior median estimates are

somewhat larger than the ones based on observed yields.

[Place Table 6 about here]

In Section 3.3, we document that in order to match the large variations observed in the

term premium dynamics, the parameters governing the standard deviation of the volatility process

increased. To assess the asset pricing implications of these parameter differences, the last three

columns of Table 6 replicate the same set of regressions considering only information contained

in the macroeconomic variables.18 Regarding the Campbell-Shiller regressions slope, the model is

unable to replicate the sign nor the increasing pattern (in absolute value) observed in the data

estimates. In fact, the posterior median estimates are close to one, which is exactly the value

predicted by the expectation hypothesis. However, the model is still able to generate some excess

return predictability as evidenced by the R2, though the level is considerably smaller than the one

estimated with bond prices. The inclusion of asset prices in the estimation alleviates these problems

by generating the extra variability needed in the stochastic volatilities of expected consumption

growth and expected inflation to match the term premium dynamics.

4.5 Model implications for expected excess returns

In the model, movements in the one-period expected excess nominal bond returns reflect compen-

sation for innovations to expected consumption growth and to expected inflations driven by their

stochastic volatilities. Figure 7 depicts the posterior median contribution of preference risk, long-

run real and inflation risk for a one-period expected excess return on a 5-Year bond.19 The total
18To this end, we use the posterior medians of the preference parameters Θpref along with the posterior distribution

of Θmacro obtained by only considering macro data in the estimation.
19We do not explicitly show the contribution of volatility risk since its share is too small (less than 0.55 percent)

to distinguish it clearly in the graph.
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annualized unconditional expected excess return is positive at around 0.062 percent. However, the

conditional return varies substantially in the time period considered, ranging from -0.23 percent to

0.33 percent. In the 1980s to early 1990s the major source of risk premium for holding long maturity

bonds was long-run inflation risk, which accounted for approximately 71 percent of the expected

excess bond returns. However, inflation-related risk premia has been practically zero since 1995.

In the 1960s and 2000s the risk premium was negative and driven mostly by long-run real risk.

In a stable inflation environment, interest variation comes mostly from changes in the real rates

which makes long-term bonds safer assets for long-term investors. Short term bonds have higher

exposure to the reinvestment risk caused by changes in the short-term real rates, and as such, they

should bear a bond risk premia. As explained in the model section, bonds also command a positive

risk premium driven by the preference shocks. This source of risk is constant across time and its

contribution to the expected excess return is around 0.065 percent.

[Place Figure 7 about here]

4.6 Model implications for bond term premium

As in Bansal and Shaliastovich (2013), this model generates variability in term premia through

time-varying quantity of risk driven by the long-run real and inflation volatilities. Conversely,

reduced form Gaussian affine term structure models (ATSM) produce time-variation in term premia

via time-varying prices of risk (e.g., Kim and Wright 2005; Bauer, Rudebusch, and Wu 2012;

Adrian et al. 2013). Central banks around the world rely on reduced form models because of their

tractability and reliability. It is still an empirical open question whether time-varying quantity of

risk is able to mimic the term premia dynamics based on reduced form models.

In panel (a) of Figure 8, we start by plotting the one- to five-years estimated posterior median

term premiums. As expected, the level and variation of the term premium increases with the

maturity of the bond. During most of the 1960s the term premium component was practically zero;

it increased throughout the 1970s, peaked in the early 1980s, and then began a declining trend for

the rest of the time period. According to our estimates, the term premium became negative since

the onset of the financial crisis which might be traced back to a flight to quality effect or to the

large-scale asset purchases by the Federal Reserve. In this environment, negative term premium
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makes sense. We should expect a positive term premium in periods with unstable inflation and

relative constant real rates such as during the 1970s and 1980s, since short-term bonds have a lower

exposure to the former and a higher loading on the latter (see Figure 1). In this environment, it is

safer to roll over short-term bonds that adapt faster to inflation news, than to buy long term bonds.

[Place Figure 8 about here]

In panel (b), we plot the 5-Year term premium from the model along with the estimates of

Adrian et al. 2013 (ACM) and Kim and Wright 2005 (KW) for the same bond maturity. These

last two models belong to ATSM class and are published by the Federal Reserve Banks of New

York and St. Louis, respectively.20 Panel (b) shows that the model is able to account for the level

and variability of the term premium and even matches the estimates of reduced form ATSM. In

fact, the correlation between the long-run risk model-implied term premium and the estimates of

ACM and KW is about 80 and 98 percent, respectively. The correlation between ACM and KW is

69 percent. Note that the ACM estimate has been considerably higher since the last crisis, which

implies a lower future path of short-term interest rates, relative to KW or our estimates.

An advantage of using a macro-finance model is that we are able trace back the movements in

the term premium to changes in macroeconomic risks, while ACM and KW have to rely on correla-

tions. With this in mind, panel (c) of Figure 8, depicts the contribution of long-run real, σ2xc,t, and

nominal uncertainties, σ2xπ,t, to the 5-Year nominal term premium. Without stochastic volatilities,

the term premium is constant at around 1 percent. From the 1970s to the late 1990s, long-run

inflation uncertainty increased the term premium above that threshold, while real uncertainties de-

creased it to below 1 percent during the 1960s and even to negative values in the late 2000s. Finally,

in panel (d) we show the decomposition of the 5-Year yield into the term premium component and

the expected path of short-term Treasury yields over the next five years. On average, the term

premia is positive and accounts for 6 percentage of the 1-Year bond yield; it goes up to 18 percent

for the 5-Year bond yield. It is instructional to note that the term premium for all bond maturities

considered strongly co-moves with observed yields, which can be seen as a graphical and informal

way to corroborate the failure of the expectations hypothesis presented in Table 6.
20The term premium based on Adrian et al. 2013 can be found here:

https://www.newyorkfed.org/research/data_indicators/term_premia.html, while the the term premium based
on Kim and Wright 2005 can be found here: https://fred.stlouisfed.org/series/THREEFYTP5
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Overall, recursive preference with time-varying quantity of risk is able to generate plausible

term premia dynamics without compromising the fit of the macroeconomic variables. The term

premium is driven by real and nominal uncertainties and the key driver is time dependent. For the

last two decades, however, nominal uncertainties have not played an important role in driving bond

risk premia dynamics, while real uncertainties have played the predominant role.21

5 Conclusion

We develop and estimate nonlinear Bayesian state-space macro-finance endowment model that ac-

counts for key bond market features, without resorting to an expected inflation channel that overly

dominates the variation in nominal yield shocks and without sacrificing the fit of the macroeco-

nomic aggregates. The key ingredients of the model include time preference shocks, time variation

in the predictable component of consumption growth and inflation, non-neutral effects of inflation

on growth, multiple stochastic volatility processes, and measurement errors and time-aggregation of

consumption. With preference for early resolution of uncertainty, variations in bond risk premia are

driven entirely by fluctuations in expected growth and expected inflation uncertainty. The shocks to

time rate of preference, on the other hand, generate volatile and persistent fluctuations in expected

short-term real rates. This in turn, allows the model to match the empirical volatility of nominal

yield shocks without relying too much on the volatility of expected inflation news. Finally, we show

that the time-varying volatilities in the iid component of consumption growth and inflation, the

measurement error structure, and time-aggregation of consumption are negligible features for the

nominal yield curve but are important for the tracking the macroeconomic series.

To assess the empirical validity of these different channels, we estimate the model using a

Bayesian MCMC particle filter approach, which, among other things, addresses one crucial trade-

off inside the model: Although time preference shocks help generate news about real rates, they

significantly deteriorate the model implications for bond return predictability. Importantly, the

model estimation delivers smoothed estimates of the state variables, which allows us to decompose
21For parsimony, and to be conservative about the ability of macro-finance models to match term structure facts

with low inflation variance ratios, our analysis has focused on the term structure market without resorting to further
movements in both equity and bond market that might arise from changes in monetary policy (e.g., Campbell,
Pflueger, and Viceira 2014; Song 2017) – as this is beyond the scope of this paper and, moreover, these models with
monetary regimes still seem to rely too heavily on the expected inflation channel.
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the risk premia into their economic components in real time. We find that, for the last two decades,

inflation-related risk factors have not played a predominant role in driving either expected excess

bond returns or the term premium component of the nominal yield curve. The main driver seems

to come from the real side of the economy.

Finally, we show that the smoothed time preference shocks series is highly correlated with the

adjusted National Financial Conditions Index published by the Federal Reserve of Chicago, which

measures liquidity and stresses in financial markets. Such information can be used, for instance,

to help model a liquidity provider intermediary-sector to New Keynesian asset-pricing models (e.g.,

Kung 2015; Rudebusch and Swanson 2012) which might enlarge the real-rate channel without

distorting the model implications along other dimensions. Thus, the estimation output is helpful

not only for economic interpretation, but also for guiding future research by shedding light on the

type of features that are worth pursuing in macro-finance models.

Appendix

A Economic Model

Appendix A is organized as follows. In Section A.1, we introduce the model set-up. In Section A.2,

we present the solution to the price-consumption ratio. In Section A.3, we write the equilibrium real

and nominal stochastic discount factor (SDF). In Section A.4, we solve the equilibrium nominal bond

yield loadings. In sections A.5 and A.6, we derive the equilibrium expected excess bond returns and

the term premium dynamics. Finally, in Section A.7, we solve the model-implied inflation variance

ratios.

A.1 Model set-up

In this section, we provide a solution for the economic model. The assumed stochastic process for

the logarithm of consumption growth, ∆ct+1 = logCt+1

Ct
, and the logarithm of the inflation rate,

πt+1 are:

∆ct+1 = µc + xc,t + σc,tηc,t+1

πt+1 = µπ + xπ,t + σπ,tηπ,t+1

(A.1)
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where the process for the predictable components and the stochastic volatilities are given by:

xc,t+1 = ρccxc,t + ρcπxπ,t + σxc,tηxc,t+1

xπ,t+1 = +ρππxπ,t + σxπ,tηxπ,t+1

(A.2)

and

σi,t = ϕiσexp(hi,t), with hi,t+1 = ρhihi,t + σhiωi,t+1

All innovations are distributed according to

ηi,t+1, ωi,t+1, εi,t+1 ∼ i.i.d.N(0, 1) for i = {c, π, xc, xπ}

Given the assumed preference for the representative agent, the logarithm of the real stochastic

discount factor (SDF) is given by

mt+1 = θlogδ + θxλ,t −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1 (A.3)

with θ defined as

θ =
1− γ
1− 1

ψ

and where the time preference shocks evolve as:

xλ,t+1 = ρλxλ,t + σληλ,t+1 with ηλ,t+1 ∼ i.i.d.N(0, 1) (A.4)

To entertain an analytical model solution we rely on two different approximations. The first, pro-

posed by Campbell and Shiller (1988), involves a log-linear Taylor expansion to rc,t+1 :

rc,t+1 = κ0 + κ1pct+1 − pct + ∆ct+1 (A.5)

where pct+1 is the log price-to-consumption ratio, and κ0 and κ1 are constants determined endoge-

nously by the unconditional mean of the price-consumption ratio, p̄c, in the economy and are given

by

κ1 =
exp(p̄c)

1 + exp(p̄c)
and κ0 = log(1 + exp(p̄c))− κ1p̄c
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The second approximation, considers a linear approximation of the volatility process around the

unconditional mean of h as in Schorfheide et al. (2017):

σ2i,t+1 ≈ (ϕiσ)2 + 2(ϕiσ)2hi,t+1

= (ϕiσ)2 + 2(ϕiσ)2ρhihi,t + 2(ϕiσ)2σhiωi,t+1

≈ (ϕiσ)2 + ρhi(σ
2
i,t − (ϕiσ)2) + 2(ϕiσ)2σhiωi,t+1

= σ2i,0 + νi(σ
2
i,t − σ2i,0) + σωiωi,t+1 for i = {c, π, xc, xπ}

(A.6)

where we defined

νi = ρhi , σ2
i,0 = (ϕiσ)2, and σωi = 2(ϕiσ)2σhi

The Euler equation is

Et[exp(mt+1 + rc,t+1)] = 1 (A.7)

which can be used to price any asset in the economy.

A.2 Solution for the price-consumption ratio

In equilibrium, the price-consumption ratio is linear in the state variables:

pct = A0 +Acxc,t +Aπxπ,t +Aλxλ,t +Aσcσ
2
x,t +Aσπσ

2
π,t +Aσxcσ

2
xc,t +Aσxπσ

2
xπ,t

(A.8)

To solve for the coefficients As we use the log-linear approximation for rc,t+1 in (A.5) and substitute

it along with the SDF in (A.3) in the Euler equation in (A.7). Using the method of undetermined

coefficient it follows that:

Ac =
1− 1

ψ

1− κ1ρcc
, Aπ = κ1ρcπ

1− 1
ψ

(1− κ1ρcc)(1− κ1ρππ)
, Aλ =

ρλ
1− κ1ρλ

(A.9)

Aσc =
(1− γ)(1− 1

ψ )

2(1− κ1νc)
, Aσπ = 0, Aσxc = θ

(κ1Ac)
2

2(1− νxc)
, Aσxπ = θ

(κ1Aπ)2

2(1− νxπ)

and the constant is given by

A0 = (1− κ1)−1{logδ + (1− 1

ψ
)µc + κ0 +

1

2
θ(1 + κ1Aλ)2σ2

λ + κ1[
∑

i∈{σc,σπ,σxc,σxπ}

(1− νi)Aiσ2
0,i +

1

2
κ1θA

2
iσ

2
ωi ]}

(A.10)
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To complete the derivation of the equilibrium price-consumption ratio we need to solve for steady

state value of pct. To this end, we need to solve the following system of equations:

p̄c = A0(κ1, κ0) +
∑

i∈{σc,σπ ,σxc,σxπ}

Ai(κ1)σ
2
i,0

κ1 =
exp(p̄c)

1 + exp(p̄c)

κ0 = log(1 + exp(p̄c))− κ1p̄c

which can be done numerically. Having solved these constants, we now proceed to derive an expres-

sion for the SDF which we will use to price the term structure of interest rates.

A.3 Expression for the real and nominal SDF

Evaluating rc,t+1 with the solution that we just derived for pct in (A.9) and (A.10) and using the

assumed process for consumption growth we can rewrite the real SDF in terms of the state variables

and the underlying shocks (risk). In particular, we have:

mt+1 = m0 +mcxc,t +mπxπ,t +mλxλ,t +mσcσ
2
x,t +mσπσ

2
π,t +mσxcσ

2
xc,t +mσxπσ

2
xπ,t

− λcσc,tηc,t+1 − λπσπ,tηπ,t+1 − λλσλ,tηλ,t+1 − λxcσxc,tηxc,t+1 − λxπσxπ,tηxπ,t+1

−
∑

i∈{σc,σπ ,σxc,σxπ}

λiσωiωi,t+1

(A.11)

Where the λ’s represent the market price of each source of risk. The discount factor parameters

and market price of risks are equal to:

mc = − 1
ψ , mπ = 0, mλ = ρλ, mσc = (1− θ)(1− κ1νc)Aσc , mσπ = 0 (A.12)

mσxc = (1− θ)(1− κ1νxc)Aσxc , mσxπ = (1− θ)(1− κ1νxπ)Aσxπ

the constant is given by

m0 = logδ − 1

ψ
µc +

1

2
(1− θ)θ(1 + κ1Aλ)2σ2λ +

1

2
(1− θ)θκ21[

∑
i∈{σc,σπ ,σxc,σxπ}

A2
iσ

2
ωi ] (A.13)
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and the market prices of risk are

λc = γ, λπ = 0, λλ =
κ1ρλ − θ
1− κ1ρλ

, λxc = (1− θ)κ1Ac, λxπ = (1− θ)κ1Aπ (A.14)

λσc = (1− θ)κ1Aσc , λσπ = 0, λσxc = (1− θ)κ1Aσxc , λσxπ = (1− θ)κ1Aσxπ

To price nominal payoffs is useful to specify the nominal discount factor which is equal to the real

one minus the inflation rate:

m$
t+1 = mt+1 − πt+1 (A.15)

We can derive a similar expression for m$
t+1 as in equation (A.11), where the nominal discount

factor parameters and the nominal market price of risks are equal to the real counterparts with the

exception of m$
0, m

$
π and λ$π, which are equal to:

m$
0 = m0 − µp, m$

π = mπ − 1 and λ$π = λπ + 1

For convenience, it is useful to express the nominal version of equation (A.11) in terms of a time t

expected component and innovations to the nominal SDF:

m$
t+1 − Etm$

t+1 = −λ$
cσc,tηc,t+1︸ ︷︷ ︸

short-run consumption risk<0

−λ$
πσπ,tηπ,t+1︸ ︷︷ ︸

short-run inflation risk>0

−λ$
λσλ,tηλ,t+1︸ ︷︷ ︸

preference risk <0

−λ$
xcσxc,tηxc,t+1︸ ︷︷ ︸

long-run consumption risk<0

−λ$
xπσxπ,tηxπ,t+1︸ ︷︷ ︸

long-run inflation risk>0

−
∑

i∈{σc,σπ,σxc,σxπ}

λ$
iσωiωi,t+1︸ ︷︷ ︸

Volatility risk>0

(A.16)

Using the nominal discount factor in equation (A.15), we can solve the equilibrium nominal yields

in the economy.

A.4 Solution for equilibrium nominal bond yields

In this section we solve the yields of nominal zero-coupon bonds of different maturities. Let P $
t,n

be the time-t price of an n-period zero-coupon nominal bond that pays one unit of numeraire in n
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periods. Using the Euler equation we can write the price in logs recursively as

p$t,n = logEtexp(m
$
t+1 + p$t+1,n−1) (A.17)

where we define p$t,n = logP $
t,n. Conjecture that p$t,n is a linear function of the state variables

p$t,n = −(B$
0,n +B$

c,nxc,t +B$
π,nxπ,t +B$

λ,nxλ,t +B$
σc,nσ

2
x,t +B$

σπ ,nσ
2
π,t +B$

σxc,nσ
2
xc,t +B$

σxπ ,nσ
2
xπ,t)

(A.18)

To solve the Bs we again use the method of undetermined coefficients and it follows that:

B$
c,n = B$

c,n−1ρcc −m$
c

B$
π,n = B$

c,n−1ρcπ +B$
π,n−1ρππ −m$

π

B$
λ,n = B$

λ,n−1ρλ −m$
λ

B$
σc,n = B$

σc,n−1νc −
1

2
(λ$
c)

2 −m$
σc

B$
σπ,n = B$

σπ,n−1νπ −
1

2
(λ$
π)2 −m$

σπ

B$
σxc,n = B$

σxc,n−1νxc −
1

2
(λ$
c +B$

c,n−1)2 −m$
σxc

B$
σxπ,n = B$

σxπ,n−1νxπ −
1

2
(λ$
π +B$

π,n−1)2 −m$
σxπ

B$
0,n = B$

0,n−1 −
1

2
(λλ +B$

λ,n−1)2σ2
λ −

∑
i∈{σc,σπ,σxc,σxπ}

[(B$
i,n−1)σ2

i,0(1− νi) +
1

2
(λi +B$

i,n−1))2σ2
ωi ]−m

$
0

(A.19)

with initial conditions B$
c,n = B$

π,n = B$
λ,n = B$

σc,n = B$
σπ ,n = B$

σxc,n = B$
σxπ ,n = B$

0,n = 0. Given

the price of a zero-coupon bond, bond yields are defined y$t,n = − 1
n lnP

$
t,n. Hence,

y$t,n =
1

n
(B$

0,n +B$
c,n︸︷︷︸
>0

xc,t +B$
π,n︸ ︷︷ ︸
>0

xπ,t +B$
λ,n︸ ︷︷ ︸
<0

xλ,t +B$
σc,n︸ ︷︷ ︸
<0

σ2
c,t +B$

σπ,n︸ ︷︷ ︸
<0

σ2
π,t +B$

σxc,n︸ ︷︷ ︸
<0

σ2
xc,t + B$

σxπ,n︸ ︷︷ ︸
>0 for high n

σ2
xπ,t)

A.5 Expected excess bond returns

Define the excess log return on buying an n period bond at time t and selling it at time t+ 1 as an

n− 1 period bond:

rx$r→t+1,n = ny$t,n − (n− 1)y$t+1,n−1 − y$t,1

As we did for the nominal SDF, the excess log return can be expressed in terms of a time t expected

component and return innovations:

rx$r→t+1,n − Etrx$r→t+1,n = −B$
c,n−1σxc,tηxc,t+1 −B$

π,n−1σxπ,tηxπ,t+1 −B$
λ,n−1σληλ,t+1 −

∑
i∈{σc,σπ,σxc,σxπ}

B$
i,n−1σωiωi,t+1
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In the model, one-period expected excess return on nominal bonds is determined by the negative

covariation between the innovations to excess log returns and the innovations to the nominal SDF

in equation (A.16):

Etrx
$
r→t+1,n +

1

2
Vtrx

$
r→t+1,n = −covt(mt+1, rx

$
r→t+1,n)

= −
∑

i∈{σc,σπ,σxc,σxπ}

B$
i,n−1λiσ

2
ωi︸ ︷︷ ︸

Volatility risk

−B$
λ,n−1λλσ

2
λ︸ ︷︷ ︸

Preference risk

−B$
c,n−1λxcσ

2
xc,t︸ ︷︷ ︸

long-run growth risk

−B$
π,n−1λxπσ

2
xπ,t︸ ︷︷ ︸

long-run inflation risk

(A.20)

A.6 Term Premium

We can decompose the n-period yield into expectations of average expected future short rates and

average excess returns over the life of the bond:

y$t,n =
1

n

n∑
i=1

Ety
$
t+i−1,1 +

1

n

n∑
i=1

Etrx
$
r→t+1,n−i+1 (A.21)

The last term on the right is often described as the bond’s nominal term premium, and we will

denote it as tp$t,n. In this model, the term premia is time-varying due to variations in bond risk

premia driven by short and long-run real and inflation volatilities. Specifically,

tp$t,n = y$t,n −
1

n

n∑
i=1

Ety
$
t+i−1,1

=
1

n
B$

0,n −B$
0,1 −

1

n

∑
i∈{c,π,xc,xπ}

B$
σi,1(n− νi

1− νni
1− νi

)σ2
i,0 +

1

n

∑
i∈{xc,xπ}

(B$
σi,n −B

$
σi,1

1− νni
1− νi

)σ2
i,t

(A.22)

A.7 Inflation variance ratios: Model-implied

Equation (A.21) decomposes an n-period yield into expectations of average expected future short

rates and a term premium component. If we define the ex-ante real rate as the yield of a one-period

nominal bond minus expected inflation,

rt = y$t,1 − Etπt+1

We can further decompose the bond yield as

y$t,n =
1

n

n∑
i=1

Etrt+i−1,1 +
1

n

n∑
i=1

Etπt+i + tp$t,n (A.23)
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From this last equation it is clear that innovations in the n- maturity yield from t− 1 to t are equal

to the sum of news about ex-ante real rates, expected average inflation and term premium shocks:

ε
(n)

y$,t
= ε

(n)
r,t + η

(n)
π,t + ε

(n)

tp$,t
(A.24)

with

ε
(n)

y$,t
= Ety

$
t,n − Et−1y

$
t,n, ε

(n)
r,t = 1

n

∑n
i=1Etrt+i−1,1 − 1

n

∑n
i=1 Et−1rt+i−1,1.

ε
(n)

tp$,t
= Ettp

$
t,n − Et−1tp

$
t,n, ε

(n)
π,t = 1

n

∑n
i=1Etπt+i −

1
n

∑n
i=1Et−1πt+i.

Given the equilibrium solution of bond yields and the assumed process for the inflation rate we are

able to derive analytical expressions for each one of this shocks. In particular, ex-ante real rates are

given by

1

n

n∑
i=1

Etrt+i−1,1 =
1

n
(B$

0,1 − µπ +
∑

i∈{c,π,xc,xπ}

B$
σi,1(n− νi

1− νni
1− νi

)σ2
i,0) +

1

n
B$
c,1

1− ρncc
1− ρcc

xc,t +
1

n
B$
λ,1

1− ρnλ
1− ρλ

xλ,t

+
1

n

ρcπ
1− ρcc

B$
c,1[(1− ρn−1

cc ) + ρππ(1− ρn−2
cc ) + ρ2ππ(1− ρn−3

cc ) + · · ·+ ρn−2
ππ (1− ρcc)]xπ,t

+
1

n

∑
i∈{c,π,xc,xπ}

B$
σi,1

1− νni
1− νi

σ2
i,t

Thus, we can write the innovations to this component as

ε
(n)
r,t =

1

n
B$
c,1

1− ρncc
1− ρcc

σxc,t−1ηxc,t +
1

n
B$
λ,1

1− ρnλ
1− ρλ

σληλ,t

+
1

n

ρcπ
1− ρcc

B$
c,1[(1− ρn−1

cc ) + ρππ(1− ρn−2
cc ) + ρ2ππ(1− ρn−3

cc ) + · · ·+ ρn−2
ππ (1− ρcc)]σxπ,t−1ηxπ,t

+
1

n

∑
i∈{c,π,xc,xπ}

B$
σi,1

1− νni
1− νi

σωiωi,t+1

(A.25)

Similarly, expected average inflation is equal to

1

n

n∑
i=1

Etπt+i = µπ +
1

n
B$
π,1

1− ρnππ
1− ρππ

xπ,t

with shocks given by

ε
(n)
π,t =

1

n
B$
π,1

1− ρnππ
1− ρππ

σxπ,t−1ηxπ,t (A.26)

Furthermore, equation (A.22) provides an expression for the term premia. It follows that shocks

to this component are
ε
(n)

tp$,t
=

1

n

∑
i∈{xc,xπ}

(B$
σi,n −B

$
σi,1

1− νni
1− νi

)σωiωi,t+1 (A.27)
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It is straightforward to show that the sum of ε(n)r,t , ε
(n)
π,t and ε

(n)

tp$,t
(given by equations (A.25), (A.26)

and (A.27)) is equal to innovations in the n- maturity yield:

ε
(n)

y$,t
= B$

c,nσxc,t−1ηxc,t +B$
π,nσxπ,t−1ηxπ,t +B$

λ,nσληλ,t +
∑

i∈{c,π,xc,xπ}

B$
σi,nσωiωi,t+1 (A.28)

Finally, the model-implied inflation variance ratios are equal to the variance of (A.26) divided by

the variance of (A.28).

B State-space representation of the macro-finance model

In this section we describe a state-space representation of the model and its estimation procedure. In

Section B.1, we derive the measurement equation, while in Section B.2, we show the state transition

equation. In Section B.3, we describe the algorithm for posterior inference. Section B.4 discusses

the assumed priors for the model parameters. Section B.5 and B.6 highlight the importance of the

measurement error model of consumption and stochastic volatility, and the time-preference shocks,

respectively.

B.1 Measurement equation

The goal of this section is to derive the coefficients of the measurement equation described in Section

2.4.1 given by:

Y o
t+1 = At+1(D + Zst+1 + Zvsvt+1(ht+1) + Σuut+1), with ut+1 ∼ N(0, I) (B.1)

To have an expression of the observed variables in terms of model parameters and measurement

errors, recall the assumed process for the macroeconomic variables and the equilibrium solutions

for bond yields presented in section A, together with the measurement-error structure described in

Section 2.4.1. In particular suppose that t+ 1 is the last month of quarter m and write:
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∆cot+1 = µc + xc,t + σc,tηc,t+1 + σε(εt+1 − εt)

∆cot = µc + xc,t−1 + σc,t−1ηc,t + σε(εt − εt−1)

∆cot−1 = µc + xc,t−2 + σc,t−2ηc,t−1 −
1

3
σε(εt+1 + εt) +

2

3
σεεt−1 −

2

3
σεεt−2 +

1

3
σε(εt−3 + εt−4) + σqε (εqt+1 + εqt−2)

πot+1 = µπ + xπ,t + σπ,tηπ,t+1

y$,ot+1,n =
1

n
((B$

0,n +B$
c,nxc,t+1 +B$

π,nxπ,t+1 +B$
λ,nxλ,t+1 +B$

σc,nσ
2
c,t+1 +B$

σπ,nσ
2
π,t+1 +B$

σxc,nσ
2
xc,t+1 +B$

σxπ,nσ
2
xπ,t+1) + σynεyn,t+1

where to simplify, the notation y$,ot+1,n denotes the one- to five-year zero-coupon bonds. Given these

expressions, it is just a matter of ordering all the pieces adequately. The state vector st+1 and svt+1

are given by:

st+1 = [xc,t+1, xc,t, xc,t−1, xc,t−2 σc,tηc,t+1, σc,t−1ηc,t, σc,t−2ηc,t−1, σεεt+1, σεεt, σεεt−1, σεεt−2, σεεt−3, σεεt−4,

σqε ε
q
t+1, σ

q
ε ε
q
t , σ

q
ε ε
q
t−1, σ

q
ε ε
q
t−2, xπ,t+1, xπ,t, σπ,tηπ,t+1, xλ,t+1, xλ,t]

′,

and

svt+1 = [σ2
xc,t+1, σ

2
xπ,t+1, σ

2
c,t+1, σ

2
π,t+1]′.

Given these state vectors, we write the matrices D, Z, Zv and Σu as follows:

Z =


0 1 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 − 1

3
− 1

3
2
3
− 2

3
1
3

1
3

1 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1
n
B$
c,n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

n
B$
π,n 0 1

n
B$
λ,n 0



D =


µc
µc
µc
µπ

1
n
B$

0,n

 , Zv =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
n
B$
σxc,n

1
n
B$
σxπ,n

1
n
B$
σc,n

1
n
B$
σπ,n

 , Σu =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 σyn


Finally, the vector of observables Y o

t+1 and the selection matrix At+1 can be written as:

• If t+1 is the last month of the quarter:

Y ot+1 =


∆cot+1

∆cot
∆cot−1

πot+1

y$t+1,n

 , At+1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


′

• If t+1 is not the last month of the quarter:

Y ot+1 =

[
πot+1

y$t+1,n

]
, At+1 =

[
0 0 0 1 0
0 0 0 0 1

]
.
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B.2 State transition equation

The goal of this section is to derive the coefficients of the measurement equation described in Section

2.4.2 given by:

st+1 = Φst + vt+1(ht) (B.2)

and

ht+1 = Ψht + Σhωt+1, ht+1 = [hxc,t+1, hxπ,t+1, hc,t+1, hπ,t+1]
′ with ωt+1 ∼ N(0, I). (B.3)

The state variables evolve according to

xc,t+1 = ρccxc,t + ρcπxπ,t + σxc,tηxc,t+1

xπ,t+1 = +ρππxπ,t + σxπ,tηxπ,t+1

xλ,t+1 = ρλxλ,t + σληλ,t+1

Hence, Φ and vt+1(ht) just make sure that these dynamics are preserved with zeros and ones in the

adequate places:

Φ =



ρcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρcπ 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρππ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



, vt+1(ht) =



σxc,tηxc,t+1

0
0
0

σc,tηc,t+1

0
0

σεεt+1

0
0
0
0
0

σqε ε
q
t+1

0
0
0

σxπ,tηxπ,t+1

0
σπ,tηπ,t+1

0
σληλ,t+1


Finally, Ψ, Σh and ωt+1 can be written as
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Ψ =


ρhxc 0 0 0

0 ρhxπ 0 0
0 0 ρhc 0
0 0 0 ρhπ

 , Ψ =


σhxc 0 0 0

0 σhxπ 0 0
0 0 σhc 0
0 0 0 σhπ

 , ωt+1 =


ωxc,t+1

ωxπ,t+1

ωc,t+1

ωπ,t+1


with

σi,t = ϕiσexp(hi,t), for i = {c, π, xc, xπ}

and we normalized ϕc = 1.

B.3 Posterior inference

For posterior inference we use a Bayesian MCMC particle filter to the state-space representation

described by equations B.1, B.2 and B.3, which is linear conditional on the log volatilities ht. We

briefly summarize the main steps below; for further details, refer to Algorithm 13 in Herbst and

Schorfheide (2015).

1. We initialize the Markov Chain at some parameter values Θ0.
2. Given Θk

(a) Initialization. At time t = 0, we draw M particles {hj0}Mj=1 from the unconditional
distribution of equation B.3. Conditional on each particle hj0, we generate sj0 from the
unconditional distribution of equation B.2. We set each particle weight to πj0 = 1

M ,
j = 1, . . . ,M .

(b) Recursion. For t = 1, . . . , T :
i. Forecasting st. We propagate each particle hjt−1 using the law of motion in equation

B.3 to get hjt . Given sjt−1 and (hjt−1, h
j
t ) we run one iteration of the Kalman filter

using the state-space system given by equations B.1 and B.2, which is conditionally
linear. This step delivers the distribution of sjt , denoted by p(st|yot , s

j
t−1, h

j
t−1, h

j
t ),

which is normal with mean sjt|t and variance P jt|t. Hence,

sjt ∼ N(sjt|t, P
j
t|t).

ii. Forecasting yt. We compute the incremental weights ω̃jt according to

π̃jt = πjt−1 × p(y
o
t |ỹ

j
t|t−1, F

j
t|t−1)

where the Kalman filter step in i delivers ỹjt|t−1 and F
j
t|t−1. The likelihood p(y

o
t |ỹ

j
t|t−1, F

j
t|t−1)

is conditionally Gaussian and follows from the measurement equation B.1.
iii. Updating. We define the normalized weights by

πjt =
π̃jt∑M
i=1 π̃

i
t
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and resample the particles hjt and states sjt using multinomial resampling with
weights πjt .

(c) Likelihood Approximation. The approximation of the log-likelihood function is given
by

lnp̂(yot |Y o
1:t−1) = lnp̂(yot−1|Y o

1:t−2) + ln(
M∑
i=1

π̃jt )

(d) Metropolis-Hastings algorithm Once we are able to approximate the likelihood func-
tion, we use a standard random walk Metropolis-Hastings algorithm to obtain a new
parameter draw Θk+1. See Algorithm 18 in Herbst and Schorfheide (2015) for further
details regarding this step.

(e) We repeat steps (a) to (b) Nsim times.

In the implementation, we used 10,000 particles (M = 10, 000), generated 50, 000 draws

(Nsim = 50, 000) and set the burn in period at 25, 000. We targeted an acceptance rate of ap-

proximately 30 percent. In addition, we checked that the results do not changed if we increase the

number of particles.

B.4 Prior distribution

In general, we attempted to restrict the parameter space to economically plausible values while at

the same time be as uninformative as possible. The first columns of Table 1 show the assumed prior

distribution, as well as the 5 and 95 percentiles. We will first discuss the priors of the macroeconomic

parameters, Θmacro, and then continue with the priors of the preference parameters Θpref .

The priors for the persistence parameters of the predictable components of consumption

growth, ρcc, and inflation, ρπ,π, as well as the prior for the parameter that measures the non-

neutral effect of inflation on growth, ρcπ, are distributed uniformly over the interval (−1, 1). This

range includes magnitudes that imply a zero effect of expected inflation on expected consumption

growth, as well as a near iid or unit root process for the macroeconomic variables. The parameter

ϕπ sets the standard deviation of the iid component of inflation relative to consumption growth.

Here we use a prior that is uniform on the interval (0, 3) and encompasses values that allows πt

to be more or less volatile than ∆ct. A similar logic applies for ϕxc and ϕxπ with respect to the

conditional means of consumption, xc,t, and inflation, xπ,t, respectively. The priors for average

annualized consumption growth, µc, and inflation, µπ, are normally distributed with a 90 percent

interval ranging from ±10 percent.
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Regarding the preferences parameters, Θpref , our priors are quite agnostic in that they cover

values commonly reported in other studies and try not to affect the asset pricing implications of

the model. For instance, we do not restrict the preference of the representative household to have

early, θ < 0, or late, θ > 0 , resolution of uncertainty: the prior for the intertemporal elasticity of

substitution, ψ, and the risk aversion coefficient, γ, cover values below and above one. The prior

for the discount factor, δ, covers steady state annualized values for the one period risk free rate

between 0.5 and 5 percent. Furthermore, the priors for ρλ and ϕλ have the same support as the

persistence and standard deviation parameters of the macroeconomic dynamics, where we defined

σλ = ϕλσc in (2). Finally, we fixed the standard deviation of the yields measurement error, σyn ,

at 10 percent of the yields’ sample standard deviation, a value consistent with the work of Bekaert,

Hodrick, and Marshall (1997).

B.5 Role of measurement error model of consumption and stochastic volatility

In Section 3.3.2 of the main text, we documented that the posterior median estimates of {ρcc, ρcπ, ρππ}

are remarkably similar with or without including bond prices in the estimation. The result is mostly

driven by the assumed measurement error model for consumption. To see this, in Table B1, we

show the 5, 50, 95 percentiles of the posterior distribution of the persistent parameters under three

different specifications of the consumption growth and the inflation process. In (a) we assume ho-

moskedastic innovations and that consumption growth is measured without any errors, (i.e., cot = ct).

In (b) we add the measurement error model of consumption, while in (c), we assume the measure-

ment error model of consumption and consider short- and long-run stochastic volatility. In the last

specification, we impose a common stochastic volatility process (i.e., hc,t = hxc,t and hπ,t = hxπ,t).

Furthermore, in the last column of the table, we report the log marginal data densities to provide

formal support in terms of model fit for each specification. In all cases we only consider macro data

in the estimation.

[Place Table B1 about here]

Without the measurement error model, the posterior median ρcc is equal to −0.20 in order to

match the monthly negative autocorrelation observed in the data of−0.17. Nevertheless, this version

of the model cannot reconcile the monthly negative autocorrelation with a positive autocorrelation
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observed at a quarterly or annual frequency. Accounting for measurement errors in consumption

that average out every quarter alleviates this problem. Under this specification, the posterior

median of ρcc jumps to 0.90, and the fit of the model measured by the log marginal data density

improves significantly from 5855 to 5870. At the same time, the persistence parameter associated

with expected inflation, ρππ, remains largely unchanged at a value of 0.91, while the parameter

that measures the effect of expected inflation on expected growth, ρcπ, increases from -0.13 to

-0.02. Adding stochastic volatility to the process of the macro variables improves the model fit

considerably, the posterior uncertainty decreases (tighter credible intervals) and the persistence

parameters ρcc and ρππ jump to 0.94 and 0.98, respectively.22 ρcπ remained at -0.02. In terms of

model fit, adding stochastic volatility increases the log marginal data density from 5870 to 6055.23

Finally, it is important to highlight that under the three different specification, ρcπ, is negative and

significant as suggested by the 90 percent credible interval.

B.6 The importance of the time preference shocks in the nominal yield curve.

In this subsection we provide specific evidence on the tradeoff between enlarging the role of the time

preference shocks to match the inflation variance ratios and the model fit along other important

bond yield moments. These other moments serve as the overidentifying restrictions that would lead

us to reject the time preference shocks that allowed the model to succeed.

In this paper, the time preference shocks evolve according to:

xλ,t+1 = ρλxλ,t + σληλ,t+1 with ηλ,t+1 ∼ i.i.d.N(0, 1) (B.4)

The exercise consist of gradually increasing the persistence parameter, ρλ , and the standard devi-

ation of the shocks, σλ, from relatively small to large values in order to analyze their effect on the

dynamics of the nominal term structure. To this end, we fixed the remaining parameters at their

posterior median values.
22The intuition for why the ρcc and ρππ increases goes as follows. The presence of stochastic volatility allows for

sharp fluctuations in ∆cot+1 and πot+1 by incurring in similar movements in their conditional variance without the
need of large temporary shocks by increasing σ and ϕπ and reducing the estimates of the persistent parameters.

23In specification (Me. Sv.) We impose a common stochastic volatility process (i.e.hc,t = hxc,t and hπ,t = hxπ,t). If
we allow for four different stochastic volatility processes, the confidence interval for most of the parameters increased
considerably and the log marginal data density decreases to 5761. With these evidence, we conclude that there is not
enough information in consumption growth and inflation to identify four different stochastic volatilities
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B.6.1 The inflation variance ratios are decreasing in ρλ and σλ. Panel A) of Table B2

shows that by making the shocks big enough and their persistence large enough, the model is able to

match the model inflation variance ratios. For example, if ρλ increases from 0.5 to 0.999 the inflation

variance ratio for the 5-Year bond decreases from 73 to 11 percent. However, enlarging these shocks

have first order effects on other important bond yield moments. We will briefly describe how

enlarging the time preference shocks channel distorts the slope of the term structure and decreases

the model-implied predictability of bond returns.

[Place Table B2 about here]

B.6.2 The slope of the nominal term structure is increasing in ρλ and σλ. Panel B) of

Table B2 shows that enlarging the time preference shocks channel generates an increasingly steep

term structure. Section 2.3.2 of the paper provides the theoretical reason for this result. The slope

is defined as the difference between the mean of the five-year and one-year bond yield. For example,

if we increase ρλ from 0.5 to 0.999 the slope increases from 16 to 418 basis points, which is clearly

at odds with the value observed in the data of 67 basis points.

B.6.3 Bond risk premia is decreasing in ρλ and σλ. Panel C) of Table B2 shows that

enlarging the time preference shocks channel mutes the model-implied predictability of bond returns.

This mechanism is more subtle and we address this issue next. Campbell and Shiller (1991) test

the expectation hypothesis by running the following regression

yt+12,n−12 − yt,n = αn + βn
12

n− 12
(yt,n − yt,12) + εt+12 for n ∈ {24, 36, 48, 60},

Under the expectation hypothesis βn = 1 which relates the slope of the term structure to expected

changes in the bond yield, yt,n, from time period t to t+ 12. The second column of panel C) shows

that in the data βn is not only different from 1, but it is also negative. This result implies that a

positively sloped term structure predicts a decrease in future bond yields. It follows that on average

the bond term premium has to be positively related to the slope of the nominal yield curve. To see
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this note that that the following equation holds

Et[yt+12,n−12 − yt,n] + tpt,n =
12

n− 12
(yt,n − yt,12).

Since time preference shocks affect the slope of the yield curve, yt,n−yt,12, but do not affect the

bond term premium, tpt,n,24 it has to be the case that an increase in the slope via this channel (say

by increasing ρλ and σλ to match the inflation variance ratios) will also increase the expected change

in the bond yield, Et[yt+12,n−12 − yt,n], which in turn will move the estimated slope, βn, towards

one. Panel C) of Table B2, shows these movements in the slope of the Campbell- Shiller regression.

For example, if we increase ρλ from 0.5 to 0.999, the slope βn for the five-year bond increases from

-1.68 to 0.08. Hence, the model could fail to simultaneously match the inflation variance ratios

proposed by Duffee (2016) and quantitatively account for the failure of the expectation hypothesis

as identified in Campbell and Shiller (1991).

In sum, these two exercise show that there is a clear tradeoff in matching the inflation variance

ratios and other bond market features.

C Inflation variance ratios: Data

In this section we provide further details on how to compute the inflation variance ratios from the

data. In Section C.1, we show how to compute news to expected average inflation and to nominal

bond yields, which are the main ingredients for the inflation variance ratios derived from the data.

In Section C.2, we write the state-space representation of the model, while in Section C.3, we present

the estimation procedure and the prior and posterior distribution of the model parameters. Finally,

in Section C.4, we carry out some robustnesses checks based on a quarterly version of the model.

C.1 News to expected average inflation and to nominal bond yields

From equation (12) in Section 2.3.2, we showed that innovations to the n- maturity yield from

t−1 to t are equal to the sum of news about ex-ante real rates, expected average inflation and term
24In the model, variations in bond term premium are driven entirely by time-varying conditional volatilities of

the predictable components of consumption growth and inflation and are not affected by the time preference shock
channel.
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premium shocks:

ε
(n)

y$,t
= ε

(n)
r,t + ε

(n)
π,t + ε

(n)

tp$,t
(C.1)

Next we provide further details on how to obtained an estimate of ε(n)π,t . For consistency, we extracted

one- to five-year inflation forecasts from the same model assumed in the macro-finance model:

πt+1 = µπ + xt + σπ,tηπ,t

xt = ρxt−1 + σx,tηx,t

(C.2)

with

ηπ,t, ηx,t ∼ i.i.d.N(0, 1)

Given this process for inflation, time t inflation expectations for j months ahead is given by

Etπt+j = µπ + ρj−1xt

Hence the expected inflation innovation from t to t+ 1 in period t+ j can be written as

Et+1 − Etπt+j = ρj−1σx,tηx,t+1

From here, we can express the innovations to expected average inflation as

ε
(n)
π,t = Et+1 − Et

1

n

m∑
i=1

πt+j =
1

n

1− ρn

1− ρ
σx,tηx,t,t+1 (C.3)

Alternatively, to compute shocks to the n-period yield, ε(n)
y$,t

, we assume that bond yields follow

martingales

y
(n)
t = y

(n)
t−1 + σy(n),tηy(n),t+1 with ηy(n),t+1 ∼ i.i.d.N(0, 1) (C.4)

where

ε
(n)

y$,t
= σy(n),tηy(n),t,t+1

(C.5)
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Finally, the process for the stochastic volatilities is also the same as in the baseline model

σi,t = σiexp(hi,t), with hi,t+1 = ρhihi,t + σhiωi,t+1 and ωi,t+1 ∼ i.i.d.N(0, 1) for i = {π, x, y}

assuming a common volatility structure for the bond yields.

C.2 State-space representation

The state-space representation is given by the measurement equation:

Y o
t+1 = At+1(D + Zαt+1 +Hεt+1) with εt+1 ∼ N(0, I) (C.6)

and the state transition equation is

αt+1 = Tαt + ηt+1(ht) and ht+1 = Ψht + Σhωt+1 with ωt+1 ∼ N(0, I) (C.7)

with ht+1 = [hπ,t+1, hx,t+1, hy,t+1]
′.

Following Duffee (2016), we include information from the surveys of market practitioners that

are released in a different (quarterly) frequency to sharpen inference. In particular, we consider

the CPI forecasts from the Survey of Professional Forecasters of one to four quarters ahead. To

this end, we assume that the forecasts are published at the second month of the quarter, which is

consistent with the release date of the Federal Reserve Bank of Philadelphia. To gain some insight

into how to include this information, let t be the second month of the quarter. Then the market

practitioners make an inflation forecast for say, one quarter ahead, starting from period t+1, which

we label as π̃o,1t+1. Using the process for inflation in equation C.2 the following relation follows:

π̃o,1t+1 = Et[πt+2 + πt+3 + πt+4] = 3µp + ρ̃1xt

where to simplify the notation we defined ρ̃1 = ρ+ρ2+ρ3. The same applies for the inflation forecasts

of two π̃o,2t+1, three π̃
o,3
t+1 and four π̃o,4t+1 quarters ahead. Following this notation, the observed variables
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in terms of the state variables are given by

πot+1 = µ+ xt + σπ,tηπ,t+1

π̃o,1t+1 = 3µ+ ρ̃1xt + σ1ε ε
1
t+1

π̃o,2t+1 = 3µ+ ρ̃2xt + σ2ε ε
2
t+1

π̃o,3t+1 = 3µ+ ρ̃3xt + σ3ε ε
3
t+1

π̃o,4t+1 = 3µ+ ρ̃4xt + σ4ε ε
4
t+1

y$,ot+1,n = y$t+1,n + σε,ynεyn,t+1

where to simplify the notation y$,ot+1,n denotes the one- to five-year zero-coupon bonds and we as-

sumed that the survey consensus forecasts are measured with errors. The standard deviation of

the measurement errors are free parameters given by σiε. To be consistent with the macro-finance

model, we set the standard deviation of the yield’s measurement error, σε,yn , at 10 percent of their

sample standard deviation, similar to the assumed value for the macro-finance model. Furthermore,

we defined

ρ̃2 = ρ4 + ρ5 + ρ6, ρ̃3 = ρ7 + ρ8 + ρ9, and ρ̃4 = ρ10 + ρ11 + ρ12.

The state vector can be written as

αt+1 =
[
xt+1 xt σπ,tηπ,t+1 σ1

ε ε
1
t+1 σ2

ε ε
2
t+1 σ3

ε ε
3
t+1 σ4

ε ε
4
t+1 yt+1,n yt,n

]′
.

Hence, the D, Z and H can be written as

D =


µ
3µ
3µ
3µ
3µ
0

 , Z =


0 1 1 0 0 0 0 0 0
0 ρ̃1 0 1 0 0 0 0 0
0 ρ̃2 0 0 1 0 0 0 0
0 ρ̃3 0 0 0 1 0 0 0
0 ρ̃4 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

 , H =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 σε,yn


Finally, the vector of observables Y o

t+1 and the selection matrix At+1 can be written as:

• If t+1 is the last month of the quarter:

Y ot+1 =



πot+1

π̃o,1t+1

π̃o,2t+1

π̃o,3t+1

π̃o,4t+1

y$,ot+1,n

 , At+1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



′
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• If t+1 is not the last month of the quarter:

Y ot+1 =

[
πot+1

y$t+1,n

]
, At+1 =

[
1 0 0 0 0 0
0 0 0 0 0 1

]
.

Regarding the coefficients associated with the state transition equation, we write T and ηt+1(ht) as

follows

T =



ρ 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0


, ηt+1(ht) =



σx,tηx,t
0

σπ,tηπ,t+1

σ1
ε ε

1
t+1

σ2
ε ε

2
t+1

σ3
ε ε

3
t+1

σ4
ε ε

4
t+1

σy(n),tηy(n),t+1

0


Finally, the matrices associated with the log volatility process are:

Ψ =

ρhπ 0 0
0 ρhx 0
0 0 ρhy

 , Ψ =

σhπ 0 0
0 σhx 0
0 0 σhy

 , ωt+1 =

ωπ,t+1

ωx,t+1

ωy,t+1


with

σi,t = σiexp(hi,t), for i = {π, x, y(n)}.

C.3 Posterior inference

We use a Metropolis-within-Gibbs sampler for posterior inference. To this end, it is useful to sample

from the conditional distributions for a subset of parameters and latent variables conditional on all

the remaining ones. In particular, we iterate over three conditional distributions. We summarize

the parameters and latent volatilities accordingly:

Θπ = {µ, σπ, ρ, σx, σy(12) , σy(24) , σy(36) , σy(48) , σy(60) , σ
1
ε , σ

2
ε , σ

3
ε , σ

4
ε , }, (C.8)

Θh = {ρhπ , σhπ , ρhx , σhx , ρhy , σhy}, H1:T = {h1:Tπ , h1:Tx , h1:Ty }

We use Markov chain Monte Carlo (MCMC) algorithm that iterates over the three conditional

distributions to generate a sequence of draws

{Θ(s)
π , (H1:T )(s),Θ

(s)
h }

Nsim
s=1
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from the posterior distribution defined by Bayes’ Theorem as:

p(Θπ,Θh, H
1:T |Y o) ∝ p(Y o|Θπ,Θh, H

1:T )p(H1:T |Θπ,Θh)p(Θπ,Θh)

The main steps of the Metropolis-within-Gibbs sampler are as follows:

1. We initialize the sample starting from{(H1:T )(0),Θ
(0)
h }.

2. We use a random walk Metropolis-Hastings step to draw from the posterior of Θπ conditional
on {Y o, (H1:T )(s−1),Θ

(s−1)
h }. For the covariance matrix of the proposal distribution, we follow

Schorfheide (2005) and use the negative inverse of the posterior density Hessian evaluated at
the mode. We target an acceptance rate of approximately 30 percent by adjusting the scaling
factor of the proposal distribution accordingly.

3. We sample the stochastic volatilities using the procedure of Kim, Shephard, and Chib (1998)
conditioning on {Y o,Θ

(s)
π ,Θ

(s−1)
h }.

4. We draw Θh using a standard Gibbs sampling approach conditional on {(H1:T )(s)}. We retain
draws that imply roots inside the unit circle.

We generated 50, 000 draws and we set the burn in period at 25, 000 draws. Table C1 shows

the prior and posterior distribution.

[Place Table C1 about here]

C.4 Robustness

As a robustness check, we repeated the same exercise for a quarterly version of the homoskedastic

and heteroskedastic model considering three different measures of inflation expectations reported

by SPF. Table C2 shows the estimated inflation variance ratios.25 In panel (a) we replicate the

same exercise as in Table 4, but using quarterly frequency instead of using mix-frequency data.

In panel (b), we use the GDP deflator (PGDP) as the measure of the inflation rate and we use

the survey consensus forecasts of current-quarter inflation (nowcasts) rather than actual observed

inflation as our measure of πo. In panel (c), we repeated the same exercise as in panel (b) with

CPI inflation instead of PGDP. Overall, expected inflation news does not contribute much to the

variation of bond innovations (below 30 percent) for all bond maturities considered. Allowing for
25Parameter estimates are available upon request.
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stochastic volatility almost doubles the inflation variance ratios relative to the homoskedastic case,

and increases the model fit; furthermore, all inflation variance ratios are below 50 percent.

[Place Table C2 about here]
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Figure 1.
Equilibrium nominal bond yield loadings. This figure shows model implied nominal bond
yield loadings evaluated at posterior median values reported in Table 1. Panel (a) shows the loadings
with respect to expected consumption growth, xc,t, expected inflation, xπ,t and time preference
shocks, xλ,t, respectively. Panel (b) shows the loadings with respect to long-run real, σ2xc,t, and
nominal, σ2xπ,t, uncertainties. Panel (c) shows the loadings with respect to short-run real, σ2c,t and
nominal, σ2π,t, uncertainties. Maturity is in months.
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Figure 2.
Macroeconomic latent state variables. This figure shows the smoothed mean and volatility
states filtered from the macro-finance model. In panels (a) and (b), we overlay include the observed
series of consumption growth and inflation, respectively. In panel (c), (d), (e), and (f) we plot
the filtered log volatilities. Dark gray shaded areas correspond to the 90 percent credible intervals.
Light shaded bars represent recessions as defined by the National Bureau of Economic Research.
The estimation sample is from 1960:M1 to 2014M12.
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Figure 3.
Time preference shocks and financial condition Index. This figure shows the latent time
preference shocks state variable filtered from the macro-finance model along with the adjusted
National Financial Conditions Index published by the Federal Reserve Bank of Chicago. Light
shaded bars represent recessions as defined by the National Bureau of Economic Research. The
estimation sample is from 1960:M1 to 2014M12. The adjusted National Financial Conditions Index
starts in 1973 and is published at https://alfred.stlouisfed.org/series?seid=ANFCI.
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Figure 4.
Inflation variance ratios: Macro-finance model. This figure shows the probability density
function of the inflation variance ratios obtained from two different versions of the macro-finance
model and for different bond maturities. The dark shaded density is based on the macro-finance
model that includes time preference shocks (Model w/ TPS), while the light shaded density does not
include them (Model w/o TPS). The straight and dashed black lines denote the posterior median
inflation variance ratios from the statistical model that assumes homoskedastic (Data w/o SV)
and heteroskedastic shocks (Data w/ SV), respectively. To compute these estimates, we draw the
parameters from their posterior distribution and simulate 10,000 data sets of 660 (555) periods for
the macro-finance model (statistical models).
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Figure 5.
Standard deviation of yield and inflation shocks. This figure shows the model-implied joint
distribution of the standard deviation of shocks to average expected inflation (SD Inflation News)
and the standard deviation of yield shocks (SD Yield News) for the statistical model. Each dot is
obtained by computing the standard deviation of these two shocks from a single model simulation.
The solid and dash lines indicate 90% posterior coverage ellipsoids for the statistical model that
assumes homoskedastic (Data w/o SV) and heteroskedastic shocks (Data w/ SV), respectively. The
dashed lines denote the posterior median value of the macro-finance model that assumes time-
preference shocks (Model w/ TPS). Standard deviations are in annualized percent/month. To
compute these estimates, we draw the parameters from their posterior distribution and simulate
10,000 data sets of 660 (555) periods each for the macro-finance models (statistical models).
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Figure 6.
Decomposition of the 5-Year bond. This figure shows the model-implied nominal bond yields.
We show the posterior median contribution of each state variable to the 5-Year bond yield. Light
shaded bars represent recessions as defined by the National Bureau of Economic Research. The
annualized mean absolute pricing errors E(|uy,t||Y o) in basis points are equal to 5.66 (for the 1-
Year bond, 1y), 5.97 (2y), 5.71 (3y), 4.26 (4y) and 6.26 (5y). The estimation sample is from 1960:M1
to 2014M12.
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Figure 7.
Decomposition of one period expected excess bond returns for the 5-Year bond. This
figure shows the contribution of long-run growth risk, long-run inflation risk, and preference risk
to the one-period expected excess bond returns for the 5-Year bond. Light shaded bars represent
recessions as defined by the National Bureau of Economic Research. The estimation sample is from
1960:M1 to 2014M12.
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Figure 8.
Model-implied term premium. This figure shows the model-implied bond term premium.
Panel (a) shows the posterior median term premium for different bond maturities. Panel (b) shows
the posterior median model-implied term premium for the 5-Year bond together with the term
premium estimated by Kim and Wright (2005) (gray line, Federal Reserve Bank of St. Louis) and
Adrian et al. (2013) (black dashed line, Federal Reserve Bank of New York) for the same bond
maturity. Panel (c) decomposes the posterior median of the 5-Year bond term premium into its
different sources of risk. Panel (d) decomposes the 5-Year bond into expected average short-term
rates and the term premium component. Light shaded bars represent recessions as defined by the
National Bureau of Economic Research. The estimation sample is from 1960:M1 to 2014M12.
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Prior Distribution Macro data Macro data
and bond prices

Distr. 5% 95% 5% 50% 95% 5% 50% 95%

Household Preferences
δ B 0.99680 0.99997 - 0.99900 - - - -
ψ G 0.65840 3.85547 1.50216 1.80972 2.00021 - - -
γ G 0.50489 17.34338 5.81235 8.01729 11.48261 - - -

Time preference shocks
ρλ U -0.89959 0.89988 0.94206 0.95506 0.96498 - - -
ϕλ U 0.14879 2.85044 0.21457 0.25022 0.31030 - - -

Consumption growth
µc N -0.00667 0.00984 0.00150 0.00164 0.00181 0.00011 0.00133 0.00203
σc IG 0.00079 0.00611 0.00152 0.00162 0.00175 0.00124 0.00162 0.00207
ϕxc U 0.14874 2.84802 0.14997 0.19007 0.21532 0.14766 0.22489 0.34413
ρcc U -0.89986 0.89978 0.94056 0.96301 0.97471 0.89076 0.94603 0.97630
ρcπ U -0.89934 0.89950 -0.01585 -0.00906 -0.00505 -0.04398 -0.02090 -0.00209

Inflation
µπ N -0.00512 0.01132 0.00289 0.00314 0.00320 0.00122 0.00284 0.00403
ϕπ IG 0.14962 2.85048 0.80065 0.98890 1.25322 0.75878 0.98835 1.26624
ϕxπ IG 0.14937 2.84935 0.08481 0.10016 0.12068 0.16288 0.22976 0.33315
ρππ U -0.89975 0.90004 0.98001 0.99005 0.99508 0.96405 0.98199 0.99485

Long-run volatility
ρhxc N

T 0.71771 0.99215 0.97161 0.98049 0.99075 0.85926 0.97316 0.99478
σhxc IG 0.00335 0.59617 0.11009 0.13958 0.15478 0.05908 0.11694 0.35035
ρhxπ N

T 0.71793 0.99224 0.95141 0.96183 0.97563 0.70757 0.81366 0.89535
σhxπ IG 0.00333 0.59384 0.26966 0.30004 0.32003 0.21978 0.30999 0.41028

Short-run Volatility
ρhc NT 0.71771 0.99215 0.87385 0.97301 0.98978 0.85926 0.97316 0.99478
σhc IG 0.00335 0.59617 0.07027 0.11690 0.24964 0.05908 0.11694 0.35035
ρhπ NT 0.71793 0.99224 0.75864 0.81348 0.87055 0.70757 0.81366 0.89535
σhπ IG 0.00333 0.59384 0.24959 0.31007 0.38971 0.21978 0.30999 0.41028

Consumption measurement errors
σε IG 0.00079 0.00612 0.00133 0.00145 0.00165 0.00129 0.00155 0.00175
σqrtε IG 0.00067 0.03898 0.00062 0.00080 0.00936 0.00055 0.00084 0.00111

Table 1.
Prior and posterior model estimates. This table reports the 5 and 95 percentiles of the prior
distribution of the model parameter along with the 5, 50, and 95 percentiles of their posterior
distribution. We present the posterior distribution with (Macro data and bond prices) and without
(Macro data) bond prices included in the estimation. The assumed prior distributions are the
following: B - beta , G - gamma , IG - inverse gamma, N -normal , NT - truncated normal outside
of the (−1, 1) interval and U - uniform. We assume that the measurement errors of consumption
average out every quarter. We also assume a common stochastic volatility process (i.e., hc,t = hxc,t
and hπ,t = hxπ,t) in the estimation with only considering macro data. The estimation sample is
from 1960:M1 to 2014M12.
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Macro data Macro data
and bond prices

E[σi,t] 5% 50% 95% 5% 50% 95%

Unconditional long-run volatilities
E[σc,t] 0.00160 0.00184 0.00356 0.00157 0.00191 0.00248
E[σπ,t] 0.00137 0.00185 0.00252 0.00171 0.00184 0.00198
E[σxc,t] 0.00037 0.00040 0.00045 0.00031 0.00043 0.00062
E[σxπ,t] 0.00024 0.00030 0.00043 0.00034 0.00043 0.00055

Table 2.
Unconditional mean volatilities This table reports the 5, 50, and 95 percentiles of the posterior

distribution of unconditional mean of the volatility process E[σi,t] = ϕiσcexp

(
0.5

σ2hi
1− ρ2hi

)
implied

by the posterior distribution of the model parameters. We present the posterior distribution with
(Macro data and bond prices) and without (Macro data) bond prices included in the estimation.
The estimation sample is from 1960:M1 to 2014M12.
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Parameters Estimates are based on
Macro data & Macro data
and bond prices

Macroeconomic Moments
∆c Data 5% 50% 95% 5% 50% 95%

Mean 1.95 0.40 1.96 3.53 0.11 1.68 3.05
Std. Dev. 1.31 1.15 1.96 3.56 0.85 1.37 2.41
AC(1) 0.52 0.43 0.70 0.86 0.37 0.64 0.85
π

Mean 3.84 0.18 3.75 7.29 0.39 3.26 5.75
Std. Dev. 2.76 1.35 2.78 6.85 1.45 2.14 3.57
AC(1) 0.73 0.44 0.77 0.91 0.52 0.74 0.89
Corr(∆c, π) -0.04 -0.65 -0.23 0.21 -0.68 -0.30 0.15

Bond Yield Moments
Mean Data 5% 50% 95% 5% 50% 95%

1y 5.31 1.94 5.18 8.03 2.04 4.45 6.60
2y 5.51 2.61 5.43 8.53 2.55 4.80 6.84
3y 5.70 3.03 5.68 8.85 2.86 5.06 7.06
4y 5.86 3.34 5.86 9.05 3.11 5.24 7.24
5y 5.97 3.59 5.98 9.15 3.28 5.37 7.40
Std. Dev.
1y 3.18 1.75 3.03 6.32 1.48 2.04 3.19
2y 3.13 1.55 2.89 6.47 1.18 1.70 2.90
3y 3.04 1.41 2.83 7.90 0.96 1.46 2.70
4y 2.96 1.31 2.77 8.79 0.80 1.27 2.54
5y 2.88 1.22 2.69 9.27 0.67 1.13 2.41

Table 3.
Moments of macroeconomic variables and bond yields: Data and model. This table
reports descriptive statistics for consumption growth, inflation, and nominal yields. We included
the sample data moments and the 5, 50, and 95 percentiles of the model-implied moments based on
10,000 parameter draws of the posterior distribution with and without bond prices in the estimation.
We simulated the series for 660 periods, which equals the number of periods in the sample. To
compute the bond yield moments with only considering macroeconomic data, we set the preference
parameters δ, ψ, γ, ρλ and ϕλ to the posterior median estimates from Table 1. The estimation
sample is from 1960M1 to 2014M12.
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SD Inflation News SD Yield News Inflation Variance Ratios

5% 50% 95% 5% 50% 95% 5% 50% 95%

Without Stochastic Volatility
1y 0.15 0.17 0.19 0.33 0.36 0.41 0.16 0.21 0.28
2y 0.14 0.16 0.18 0.29 0.33 0.37 0.17 0.24 0.32
3y 0.14 0.15 0.17 0.27 0.30 0.34 0.19 0.26 0.35
4y 0.13 0.15 0.16 0.25 0.28 0.32 0.19 0.27 0.36
5y 0.13 0.14 0.16 0.24 0.27 0.30 0.20 0.27 0.37

With Stochastic Volatility
1y 0.15 0.18 0.21 0.35 0.41 0.48 0.20 0.32 0.62
2y 0.14 0.17 0.21 0.30 0.35 0.41 0.23 0.34 0.61
3y 0.14 0.16 0.20 0.27 0.31 0.36 0.22 0.33 0.56
4y 0.13 0.15 0.19 0.25 0.29 0.33 0.22 0.33 0.54
5y 0.13 0.15 0.18 0.24 0.27 0.31 0.23 0.34 0.53

Table 4.
Inflation variance ratios: Statistical model. This table reports the posterior distribution of
the standard deviation of shocks to average expected inflation over the life of the bond (SD Inflation
News), standard deviation of yield shocks (SD Yield News), and the inflation variance ratios. We
include the 5, 50, and 95 percentiles based on 10,000 parameter draws of the posterior distribution
from a statistical model that does not include (top panel) and does include (bottom panel) stochastic
volatility. Standard deviations are in annualized percent/month. To compute these estimates, we
draw the parameters from their posterior distribution and simulate 10,000 data sets of 555 periods.
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With Time Preference Shocks
SD Inflation News SD Yield News Inflation Variance Ratios

Data Model Data Model Data Model

w/o SV w/ SV Pop. 5% 50% 95% w/o SV w/ SV Pop. 5% 50% 95% w/o SV w/ SV Pop. 5% 50% 95%

1y 0.17 0.18 0.18 0.16 0.32 0.78 0.37 0.41 0.44 0.46 0.60 0.99 0.21 0.32 0.17 0.14 0.28 0.49
2y 0.16 0.17 0.17 0.15 0.30 0.70 0.33 0.35 0.36 0.38 0.50 0.84 0.24 0.33 0.23 0.17 0.33 0.55
3y 0.15 0.16 0.16 0.14 0.28 0.64 0.30 0.31 0.31 0.32 0.44 0.74 0.26 0.35 0.28 0.20 0.37 0.60
4y 0.15 0.16 0.16 0.13 0.27 0.60 0.28 0.29 0.27 0.28 0.39 0.66 0.27 0.33 0.34 0.22 0.41 0.65
5y 0.14 0.15 0.15 0.12 0.25 0.56 0.27 0.27 0.24 0.24 0.35 0.60 0.27 0.33 0.39 0.25 0.45 0.69

Table 5.
Inflation variance ratios: Macro-finance and statistical model. This table reports the
posterior distribution of the standard deviation of shocks to average expected inflation over the
life of the bond (SD Inflation News), standard deviation of yield shocks (SD Yield News), and the
inflation variance ratios. We include the 5, 50, and 95 percentiles based on 10,000 parameter draws
of the posterior distribution from a macro-finance model that does include time preference shocks.
Pop. denotes the population estimates. We also report the posterior median values computed from
the statistical model that does not assume (w/o SV) and does assume (w/ SV) stochastic volatility.
Standard deviations are in annualized percent/month. To compute these estimates, we draw the
parameters from their posterior distribution and simulate 10,000 data sets of 660 (555) periods for
the macro-finance model (statistical models).
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Parameters Estimates are based on
Macro data Macro data

and bond prices

n Data 5% 50% 95% 5% 50% 95%
Campbell-Shiller Regression: Slope
2y -0.67 -1.59 -0.37 1.31 0.32 1.00 1.83
3y -1.07 -2.32 -0.72 1.28 0.40 1.12 2.05
4y -1.47 -3.09 -0.99 1.31 0.43 1.15 2.12
5y -1.50 -3.88 -1.18 1.39 0.45 1.16 2.15
Cochrane-Piazzesi Regression: Slope
2y 0.45 0.32 0.42 0.52 0.50 0.60 0.71
3y 0.86 0.76 0.83 0.90 0.86 0.94 1.03
4y 1.25 1.18 1.21 1.23 1.08 1.16 1.23
5y 1.44 1.40 1.54 1.69 1.15 1.30 1.46
Cochrane-Piazzesi Regression: R2

2y 0.21 0.06 0.32 0.83 0.00 0.03 0.10
3y 0.23 0.09 0.36 0.80 0.00 0.03 0.10
4y 0.26 0.10 0.36 0.72 0.00 0.03 0.10
5y 0.24 0.10 0.35 0.66 0.00 0.03 0.10

Table 6.
Bond risk premia: Data and model. This table reports bond return predictability evidence.
We included the 5, 50, and 95 percentiles of the model-implied estimates based on two different
regressions as well as the estimates obtained from observed bond yields. The model-implied bond
yield series is based on 10,000 parameter draws of the posterior distribution with and without
considering bond prices in the estimation. We simulated the series for 660 periods, which equals
the number of periods in the sample. To compute the model-implied bond yields based only on
macro data, we set the preference parameters δ, ψ, γ, ρλ and ϕλ to the posterior median estimates
from Table 1. For the Campbell-Shiller regression we report the slope, βn, from the following
regression: yt+12,n−12 − yt,n = αn + βn

12
n−12(yt,n − yt,12) + εt+12 for n ∈ {24, 36, 48, 60}. For

the Cochrane-Piazzesi regression wereport the slope, bn, and R2 from the following regression:
rx$r→t+12,n = an + bnr̂xt + εt+1,n where r̂xt is the fitted value from 1

4

∑5y
n=2y rx

$
r→t+1,n = γ0 +

γ1f
$
t,1y + γ2f

$
t,2y + γ3f

$
t,3y + γ4f

$
t,4y + γ5f

$
t,5y + εt+1. rx$r→t+1,n denotes the excess log return on

buying an n period bond at time t and selling it at time t + 1as an n − 1 period bond defined by
rx$r→t+1,n = ny$t,n − (n− 1)y$t+1,n−1 − y$t,1 for n ∈ {24, 36, 48, 60}. f$ denotes the corresponding
forward rates. The estimation sample is from 1960M1 to 2014M12.
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Macro data
Posterior Distribution

ρcc ρcπ ρππ lnp(Y o)

5% 50% 95% Width 5% 50% 95% Width 5% 50% 95% Width

(a) No Me. -0.286 -0.206 -0.130 0.156 -0.223 -0.128 -0.0392 0.184 0.849 0.912 0.963 0.1139 5855
(b) Me. 0.828 0.892 0.941 0.112 -0.041 -0.019 -0.0008 0.040 0.873 0.9363 0.972 0.098 5870
(c) Me. Sv. 0.890 0.946 0.976 0.085 -0.044 -0.021 -0.002 0.041 0.964 0.9820 0.994 0.030 6055

Table B1.
Posterior estimates of the persistence parameters. This table reports the 5, 50, and 95 per-
centiles of the posterior distribution for the persistent parameters ρcc, ρcπ and ρππ for the monthly
version of the model. We also include the 90% confidence width and the log marginal data den-
sity. We consider three different specifications of the process of consumption growth and inflation.
No Me., consumption growth is measured without any errors, (i.e., cot = ct), and homoskedastic
innovations; Me. assumes the measurement error model of consumption; Me. Sv., assumes the
measurement error model of consumption and short- and long-run stochastic volatility imposing a
common stochastic volatility process (i.e.hc,t = hxc,t and hπ,t = hxπ,t ). The estimation sample is
from 1960:M1 to 2014M12.

Data Posterior Median Different values for ρλ Different values for σλ

w/o SV w/ SV ρλ = 0.95, σλ = 0.25 0.50 0.90 0.99 0.999 0.02 0.12 0.42 0.62

A) Inflation Variance Ratios
1y 0.21 0.32 0.17 0.53 0.36 0.08 0.04 0.53 0.36 0.08 0.04
2y 0.24 0.33 0.23 0.60 0.44 0.11 0.05 0.60 0.44 0.11 0.05
3y 0.26 0.35 0.28 0.65 0.51 0.14 0.07 0.65 0.51 0.14 0.07
4y 0.27 0.33 0.34 0.70 0.56 0.18 0.09 0.70 0.56 0.18 0.09
5y 0.27 0.33 0.39 0.73 0.61 0.21 0.11 0.73 0.61 0.21 0.11
B) Slope
Mean 0.67 0.83 0.16 0.40 2.03 4.21 0.15 0.28 2.05 4.18
C) Campbell-Shiller Regression Slope
2y -0.67 -0.33 -0.69 -0.58 -0.03 0.29 -0.62 -0.55 0.02 0.35
3y -1.07 -0.65 -1.09 -0.98 -0.25 0.17 -1.02 -0.94 -0.19 0.20
4y -1.47 -0.88 -1.44 -1.29 -0.43 0.06 -1.34 -1.20 -0.33 0.13
5y -1.50 -1.03 -1.68 -1.52 -0.54 0.00 -1.53 -1.41 -0.45 0.08

Table B2.
The importance of the time preference shocks in the nominal yield curve. This table
shows data and model-implied inflation variance ratios, slope of the term structure, as well as the
Campbell-Shiller regression slope. For the inflation variance ratios we report population values.
For the slope and Campbell-Shiller Regression Slope we report the 50% percentile of the finite
sample distribution. In all cases we used the posterior median of the parameter estimates. We are
also simulating the moments by gradually varying ρλ and σλ. The column labeled "Data" shows
the moments based on observed data. The column labeled "Posterior Median" shows the model-
implied moments evaluated at the posterior median parameters. These model-implied moments
differ slightly from the ones reported in the actual paper because in this exercise we are not taking
parameter uncertainty into account.

75



Posterior Median Estimates

Without Stochastic Volatility With Stochastic Volatility

1y 2y 3y 4y 5y 1y 2y 3y 4y 5y
Inflation and Bond Yields

µ 4.28e-03 4.19e-03 4.23e-03 4.22e-03 4.23e-03 4.07e-03 3.90e-03 3.70e-03 3.80e-03 4.14e-03
σπ 2.70e-03 2.69e-03 2.70e-03 2.68e-03 2.70e-03 1.97e-03 1.97e-03 1.96e-03 1.99e-03 1.96e-03
ρ 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
σx 1.46e-04 1.46e-04 1.46e-04 1.47e-04 1.47e-04 1.16e-04 1.09e-04 1.12e-04 1.09e-04 1.18e-04
σy 3.04e-04 2.72e-04 2.49e-04 2.37e-04 2.23e-04 2.62e-04 2.43e-04 2.31e-04 2.22e-04 2.13e-04
corrx,y 0.51 0.52 0.51 0.52 0.52 0.51 0.52 0.51 0.52 0.52

Stochastic volatilities
ρhπ - - - - - 0.90 0.90 0.90 0.90 0.90
σhπ - - - - 5.43e-02 5.57e-02 5.83e-02 5.49e-02 5.69e-02
ρhx - - - - - 0.96 0.94 0.96 0.95 0.95
σhx - - - - - 1.99e-02 3.92e-02 2.19e-02 3.35e-02 2.59e-02
ρhy - - - - - 0.98 0.98 0.97 0.95 0.91
σhy - - - - - 9.46e-03 7.36e-03 5.68e-03 5.23e-03 5.66e-03

Measurement error SPF
σsCPI 4.61e-04 4.63e-04 4.63e-04 4.61e-04 4.62e-04 4.64e-04 4.66e-04 4.70e-04 4.69e-04 4.63e-04
σsPGDP 1.27e-03 1.27e-03 1.27e-03 1.26e-03 1.27e-03 1.23e-03 1.21e-03 1.19e-03 1.21e-03 1.24e-03
lnp(Y o) 10053 10082 10102 10112 10124 10075 10104 10125 10135 10145

Table C1.
Posterior median estimates from the statistical models. This table reports the 50 percentiles
of their posterior distribution of the statistical model that does not assume and does assume stochas-
tic volatility. We assume non-informative priors for the model parameters. The statistical model
assumes that inflation is the sum of a constant and an AR(1) component. Shocks to bond yields
are computed assuming they are martingales. See main text for details. The estimation sample is
from 1968M10 to 2014M12.
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Quarterly Frequency

Homoskedastic Heteroskedastic
5% 50% 95% 5% 50% 95%

(a) π - SPF for observed quarter CPI
Time period 1981Q3-2014Q4

1y 0.075 0.103 0.142 0.164 0.236 0.327
2y 0.082 0.108 0.145 0.164 0.230 0.333
3y 0.091 0.119 0.163 0.167 0.225 0.325
4y 0.087 0.121 0.168 0.145 0.203 0.292
5y 0.084 0.120 0.167 0.136 0.193 0.274
lnp(Y o) 7088.304 7422.010
(b) π - PGDP

Time period 1968Q1-2014Q4

1y 0.095 0.124 0.162 0.188 0.274 0.394
2y 0.102 0.134 0.174 0.208 0.292 0.420
3y 0.102 0.139 0.182 0.198 0.285 0.402
4y 0.101 0.137 0.181 0.165 0.242 0.352
5y 0.097 0.131 0.174 0.141 0.211 0.307
lnp(Y o) 9499.774 10115.738
(c) π - SPF for current quarter CPI

Time period 1981Q3-2014Q4

1y 0.078 0.104 0.137 0.163 0.240 0.342
2y 0.080 0.110 0.145 0.161 0.235 0.341
3y 0.090 0.120 0.158 0.157 0.226 0.328
4y 0.087 0.122 0.163 0.151 0.213 0.299
5y 0.087 0.118 0.158 0.139 0.201 0.288
lnp(Y o) 7197.171 7558.242

Table C2.
Unconditional inflation variance ratios. This table reports the population values of inflation
variance ratios for three different measures of inflation forecasts. The inflation variance ratio is
computed as the ratio of the variance of shocks to expected inflation to the variance of yield shocks.
We include the 5, 50, and 95 percentiles of the moments based on 10,000 parameter draws of the
posterior distribution. The model assumes that inflation is the sum of a constant and an AR(1)
component. Shocks to the yields are computed assuming they are martingales. The table reports
inflation variance ratio under the assumption of homoskedastic and heteroskedastic innovations.
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