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Abstract

Is there a gap between the profitability of a trading strategy “on paper” and that
which is achieved in practice? We answer this question by developing two new techniques
to measure the real-world implementation costs of financial market anomalies. The first
method extends Fama-MacBeth regressions to compare the on-paper returns to factor
exposures with those achieved by mutual funds. The second method estimates average
return differences between stocks and mutual funds matched on risk characteristics.
Unlike existing approaches, these techniques deliver estimates of implementation costs
without estimating parametric microstructure models from trading data or explicitly
specifying factor trading strategies. After accounting for implementation costs, typical
mutual funds earn low returns to value and no returns to momentum.
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I. Introduction

Empirical asset pricing overflows with explanations for differences in average returns across
securities. The proliferation of predictors distracts from bona fide market anomalies from which we
might draw lessons about risks, preferences, and beliefs. Increasing computing power accelerates
the rate of factor discovery and the urgency of separating empirical regularities from journal-
friendly fictions. Recent calls to action by Harvey, Liu, and Zhu (2016), Harvey (2017), and Hou,
Xue, and Zhang (2017) have focused on high false discovery rates and scurrilous academic practices.
Fundamentally they question whether candidate factors are real, statistical accidents, or intentional
deceptions.

We give on-paper trading strategies the benefit of the doubt and instead question whether these
are actionable in practice, thereby representing true expected return factors or market anomalies.
This line of inquiry originates with Fama (1970), who considers the role of transactions costs in
defining market efficiency and departures therefrom. Despite nearly fifty years of subsequent re-
search, accurately measuring real-world transactions costs for academic factors remains a formidable
challenge. Existing approaches generally fall into two categories. The first category entails using
proprietary trading data to analyze the transactions costs for a single firm (e.g., Keim and Mad-
havan (1997), Engle, Ferstenberg, and Russell (2012), and Frazzini, Israel, and Moskowitz (2015)).
Although selected firms are almost by definition not representative of asset managers as a whole,
such analyses provide an informative lower bound on the transactions costs of factor strategies. The
second approach uses market-wide trading data such as NYSE Trade and Quote (TAQ) to estimate
price impact functions for individual securities. These papers then accumulate simulated costs of
trades implied by dynamic factor strategies (e.g., Lesmond, Schill, and Zhou (2004), Korajczyk and
Sadka (2004), and Novy-Marx and Velikov (2016)). Papers in this camp either establish a lower
bound on trading costs by dispensing with non-proportional costs of trade or estimate parametric
price impact models and extrapolate trading costs beyond small portfolio sizes.

We introduce two new methodologies for measuring real-world implementation costs for fac-
tor trading strategies. Our approaches differ from existing methods in that they do not utilize
specialized trading data or parameteric transaction cost models, nor do they require the user to
take a stand on the exact form of factor trading strategies. This latter feature is particularly im-
portant because high-turnover academic factors like momentum may have industry variants with
significantly lower implementation costs. Together these features facilitate the estimation of the
all-in implementation costs for several academic factors and a representative population of asset
managers.

Our first approach is an extension of the familiar Fama and MacBeth (1973) procedure. Fama-
MacBeth regressions estimate factor loadings �ik with time-series regressions for each test asset
i and each factor k, and then estimate the compensation per unit of factor exposure �kt using
cross-sectional regressions at each date t. Standard test assets are based on stock portfolios, and
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the resulting estimates of of factor exposure compensation, denoted �S
kt, represent the “on-paper”

profitability of a given factor strategy. We augment the set of test assets to include all the set of all
7,331 U.S. domestic mutual funds, and we allow the compensation earned by mutual funds for the
same exposure to a given factor �MF

kt to differ from that which is available on paper. Unlike stock
portfolio returns, (gross) mutual fund returns reflect the real-world implementation costs of factor
strategies, thus the difference between mutual fund and stock portfolio compensation delivers an
estimate of implementation costs for factor k.1,2 Because costs per unit of exposure are likely to
be negatively correlated with factor exposures—funds that earn greater net returns to a factor are
more likely to take greater exposures to it—our estimate of implementation costs represents a lower
bound on the costs faced by a representative mutual fund.

The Fama-MacBeth approach described above compares slopes or incremental compensation for
risk for stocks and mutual funds. Our second approach directly compares levels of compensation
for stocks and mutual funds with similar risk characteristics. To make this comparison, we sort
stocks into quintile portfolios based on characteristics, as in portfolio sorts or “high minus low”
factor construction. Then, for each stock in quintile q at date t, we construct a matched sample
of mutual funds consisting of the three nearest mutual funds as assessed by Mahalanobis distance
on factor betas.3 The difference in returns between stocks and matched mutual funds �q

kt is our
matched pairs estimate of implementation costs associated with real-world trading in beta-quintile
q of factor k at date t. Because implementation costs are likely to be significantly higher on the
short side of factor strategies, the difference in long-only returns �5

kt delivers a lower bound on
the implementation costs of a 5–1 long-short strategy for factor k. This analysis has the ancillary
benefit of controlling for differences in the distribution of betas between stock portfolios and mutual
funds, which may be important if high compensation for factor exposure is earned only in some
segments of this distribution.

Our empirical analysis focuses on the implementation costs of mutual funds for the market
(MKT ),4 value (HML), size (SMB), and momentum (UMD). We choose these factors because
they comprise the dominant empirical models in academic finance (e.g., Fama and French (1992)
and Carhart (1997)), and they serve as the basis for guiding hundreds of billions of dollars in
quantitatively managed investments. We study mutual funds as our set of asset managers because
they collectively manage more than $16 trillion of capital in the United States,5 and the mutual fund

1We use gross returns to focus on the efficiency of mutual funds’ investing technology rather than on the distribution
of rents between managers and investors embedded in net returns.

2Our more sophisticated approaches account for time- and cross-sectional variation in implementation costs, which
we discuss further below.

3Betas for stocks and matched mutual funds do not perfectly coincide. We follow Abadie and Imbens (2006, 2011)
to shift mutual fund returns by the compensation for a “local” difference in betas. Because this return-adjustment
takes the form of a cross-sectional regression of returns on betas, our approach marries matched pairs techniques with
traditional factor models.

4We use the CRSP value-weighted market portfolio net of the one-month Treasury bill rate as our zero-cost market
factor proxy.

5Source: the 2017 Investment Company Fact Book, available at http://www.icifactbook.org/.
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industry has been better populated for a longer period of time than alternative asset managers such
as hedge funds. Our approaches are readily extended to other factors and other market participants,
however.

Our analysis delivers three new empirical facts on the implementation costs of anomalies for
typical mutual funds. First, momentum strategies suffer extreme underperformance in practice:
our estimates of annual implementation costs are in the range of 2.2%–8.3%, which eliminates most
profits accruing to momentum during the 1970–2016 period.6 We conclude—as Lesmond, Schill,
and Zhou (2004) do—that momentum strategies are unprofitable for typical asset managers. Sec-
ond, mutual fund implementation costs sharply reduce returns to the value factor, although our
approaches differ on the extent of underperformance; the corresponding average annual differences
between on-paper and mutual fund performance for value are 2.4%–5.3%.7 By contrast, mutual
funds implement market and size factor exposure relatively well compared to the academic bench-
mark, although they still underperform in capturing outsize returns to the small-size characteristic.
Third, average implementation costs are stationary despite secular declines in bid-ask spreads and
commissions since 1970. Industry inflows increase transactions costs, which neutralize reductions
in costs to the first dollar traded in factor strategies. This channel provides a non-proportional
costs of trading rationale for Pastor and Stambaugh (2012)’s industry-level diseconomies of scale
in asset management.

As a second empirical contribution, we focus on cross-sectional heterogeneity in implementa-
tion costs and demonstrate the importance of benchmarking performance and considering market
efficiency as a function of investors’ trading technology. While the typical firm’s compensation for
momentum is indistinguishable from zero, subsets of the mutual fund universe may achieve positive
returns to momentum net of costs. A focused analysis on smaller market segments is important
from an aggregate market efficiency perspective because a violation exists if the marginal investor
sees anomalous profits, even if a typical investor does not. For this purpose we segment the mutual-
fund universe by (lagged) total net assets. Size is a natural sorting dimension because Berk and
Green (2004), Pastor, Stambaugh, and Taylor (2015), Berk and van Binsbergen (2015), and others
link scale to gross-of-fees performance. We rerun our cross-sectional analysis using each mutual
fund size category separately, and we confirm that small and large mutual funds achieve differ-
ent returns to momentum from “typical” mutual funds. Using this insight we reconcile conflicting
evidence on the transactions-cost rationale for the continued existence of the momentum anomaly.

While our new approaches deliver simple, nonparametric, estimates of the implementation costs
for factor trading strategies, they do face some limitations. Firstly, as mentioned above, both
approaches deliver lower bounds on implementation costs. In our empirical analysis these bounds

6The estimated implementation gap is even larger among the set of mutual funds with strictly positive momentum
betas.

7These results are robust to the exclusion of microcap stocks. Microcap stocks explain at most 17%–27% of the
measured implementation gap.
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do not greatly limit the conclusions we can draw: the estimated costs are already so high as to
eliminate or severely attenuate the on-paper profitability of strategies like value and momentum for
typical mutual funds. For other strategies, estimates that indicate positive returns net of costs do
not necessarily imply that an anomaly can be implemented by typical investors. In this sense our
measures can diagnose an implementation problem with a factor, but they cannot deliver a clean
bill of health.

Secondly, our techniques rely on real-world asset managers to reveal implementation costs
through realized returns to their chosen factor exposures. We require a subset of asset managers
to invest in the factor of interest over an extended period of time. This requirement is not likely to
be satisfied when studying a factor that is new to the academic literature and fund managers have
not had an opportunity to trade on this factor.8

Finally, like much of the literature on performance evaluation, our methods are susceptible to
criticism of the choice of factors included in the analysis. A manager who is following a strategy
that does not correspond to an approximate linear combination of those included in the model may
appear to have high implementation costs for the included strategies, even though she has low costs
for the strategy actually being implemented. In our application we verify that omitted mutual fund
strategies do not drive our high implementation cost estimates by replicating performance gaps for
funds with returns almost completely explained by the academic factors (the average R2 of the
four-factor model for these funds’ return histories is 95%). For these funds, the scope for omitted
strategies is too small to explain the observed real-world performance gaps. In general settings,
however, our methods speak only to implementation costs of the projection of the returns to traded
strategies on the included factors.

Confronted with hundreds of cross-sectional return predictors, recent papers have proposed
techniques to help focus attention on the most robust anomalies.9 Notwithstanding the limitations
of our approach mentioned above, we recommend our methodologies as complements to these
suggestions for three reasons. First, our methodologies provide an easy test of the real-world
applicability of a conjectured factor. If mutual funds are not compensated for factor exposure,
a factor is less likely to be real or implementable. We anticipate that our implementability test
generalizes Hou, Xue, and Zhang (2017)’s suggestion to exclude microcap stocks in that strategies
relying on the smallest stocks would see large real-world performance attrition relative to paper
portfolios. Second, our approaches provide orthogonal information to existing asset pricing tests.
While it might be possible to reconfigure empirical choices to elevate a t-statistic from 2 to 3,
we view it as less likely that an entirely new hurdle can be cleared for spurious factors. Third,

8This caveat does not apply in the particular case of momentum. Grinblatt, Titman, and Wermers (1995) argue
that momentum-like strategies are endemic among mutual funds in their 1975–1984 sample, decades before the
publication of Jegadeesh and Titman (1993).

9Harvey, Liu, and Zhu (2016) advocate raising statistical significance thresholds. Harvey (2017) endorses mixing
standard thresholds with Bayesian priors on the plausibility of a factor. Giglio and Xiu (2017) suggest “cleaning”
factors of noise using variation in test asset returns.
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the computational burden of our technique is low, and mutual fund performance data is readily
available to empirical researchers. With our techniques the barriers to entry for cross-sectional
asset pricing work are not appreciably raised.

II. Related Literature

The Fama and French three-factor model has been the benchmark for empirical asset pricing
since its introduction in 1992. This empirical model supplanted the CAPM, but its new value
and size factors had little theoretical motivation.10 As factors continued to emerge over the next
quarter century—most notably, the momentum anomaly of Jegadeesh and Titman (1993)—several
strands of literature emerged in an attempt to tame the “factor zoo” (Cochrane (2011)). One
active strand investigates the implementation costs of anomalies with a particular focus on size,
value, and momentum anomalies. While transactions costs cannot explain why expected return
discrepancies come to be in the first place, this literature (reviewed below) seeks to rationalize the
continued existence of market anomalies as their byproduct. Our paper advances this line of inquiry
by introducing a new and readily generalizable approach for measuring the real-world transactions
costs of return factors and anomalies.

Existing methods for measuring implementation costs take two approaches. The first approach
uses specialized trading data to evaluate the costs of trade for large investment managers with
the implicit assumption that these managers are representative of sophisticated investment man-
agers. These papers typically assess trading costs using Perold (1988)’s implementation shortfall
measure, which captures the difference between realized profits and on-paper profits using a preset
decision price. This approach dates back at least to Keim and Madhavan (1997), who analyze
the transactions costs of a variety of investment styles for $83 billion of trades.11 A key challenge
to this method is that institutional trading is endogenous; traders are particularly aggressive in
their trading targets when liquidity is readily available, which in turn imparts a downward bias
to estimated cost functions. Frazzini, Israel, and Moskowitz (2015) overcome this challenge by
using data from an investment manager whose trading targets are model-generated and selected
irrespective of market conditions. Armed with more than $1 trillion of trades, they analyze value,
size, and momentum anomalies and find that all of them are implementable and scalable to tens
or hundreds of billions of dollars of invested capital. By their reckoning, major anomalies continue
to be anomalous if their asset manager’s costs are representative of typical investment managers’
costs.

The second approach trades off accuracy for representativeness in estimating transactions costs.

10Banz (1981) and Basu (1977) document price-earnings ratios and market capitalization as characteristics associ-
ated with deviations from the CAPM.

11Other studies use Keim and Madhavan (1997)’s calibrated transaction cost functions to decompose fund per-
formance for a larger universe of funds. For example, Wermers (2000), like our study, finds that transactions costs
meaningfully erode mutual fund returns.
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Rather than using proprietary trading data for a single asset manager to estimate costs directly,
other studies derive transactions costs using aggregate price and transaction records and extrapolate
estimated price impact functions to factor trading strategies.12 Much of this literature focuses on
the momentum anomaly because of its high turnover, and even the originating article establishing
the momentum anomaly considers a trading-costs explanation (Jegadeesh and Titman (1993) and
later Jegadeesh and Titman (2001)). Notably none of these papers use precise “all in” trading
cost measures like implementation shortfall because theoretical or “decision-date” prices are not
obtainable outside of specialized trading data.

Chen, Stanzl, and Watanabe (2002) estimate separate price impact functions for 5,173 individual
stocks and calculate the trading costs accruing to size, value, and momentum strategies. The
authors suggest that all factors have break-even carrying capacities on the order of millions of dollars
(HML) to hundreds of millions of dollars (SMB). By their calculations, factor strategies are not
investable. Lesmond, Schill, and Zhou (2004) suggest that momentum trades in “disproportionately
high cost securities” rather than the typical-transactions cost securities Jegadeesh and Titman
(1993) use for approximating the costs of trading momentum. Using effective spreads from TAQ,
commission schedules from a discount brokerage, and “all-in” frictions implied by zero-trading days
(Lesmond, Ogden, and Trzcinka (1999)), Lesmond, Schill, and Zhou (2004) argue that trading costs
erase the returns to the momentum anomaly.

Korajczyk and Sadka (2004) present more optimistic results on the investability of factor strate-
gies. Korajczyk and Sadka (2004) estimate effective and quoted spreads and non-proportional
trading costs functions of Glosten and Harris (1988) and Breen, Hodrick, and Korajczyk (2002)
using TAQ data. In utilizing different non-proportional cost functions from Lesmond, Schill, and
Zhou (2004), Korajczyk and Sadka (2004) extrapolate trade-level costs to find positive net-of-
cost returns to the momentum anomaly. They invert their cost function estimates to obtain a
break-even momentum strategy carrying capacity of $5 billion. While much smaller than Frazz-
ini, Israel, and Moskowitz (2015)’s estimates, these carrying capacities are also measured based
on older data for which transactions costs are significantly higher (Lou and Sadka (2016)). Novy-
Marx and Velikov (2016) follows a similar approach, but they focus only on proportional costs to
establish a lower bound. The authors measure trading costs using effective spreads recovered from
Hasbrouck (2009)’s Bayesian Gibbs sampler and tally costs of trading size, value, and momentum
strategies, among others. Although the paper focuses on performance evaluation, Novy-Marx and
Velikov (2016) find a momentum strategy carrying capacity of $5 billion (as in Korajczyk and Sadka
(2004)), and they find size and value carrying capacities of $170 billion and $50 billion respectively
(which are comparable to Frazzini, Israel, and Moskowitz (2015)’s estimates).

Our work complements the two existing approaches to measuring implementation costs with
new cross-sectional techniques that combine the best elements of both. Like papers that utilize

12Grundy and Martin (2001) and Barroso and Santa-Clara (2015) invert this logic and calculate the transactions
costs that would be required to wipe out the momentum anomaly.
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proprietary trading data, our estimates reflect the all-in costs of implementing factor strategies,
and they apply equally well for past and modern market environments (for which Lesmond, Og-
den, and Trzcinka (1999)’s zero-trading day measure fails). Like papers that estimate transaction
cost functions using market data, our methodology captures representative practitioners of factor
investing rather than single special investment managers. In contrast with both approaches, our
methodologies facilitate the evaluation of implementation costs (1) without specifying the precise
trades used to implement factor strategies and (2) for arbitrary subsets of the asset management
universe trading universe. This latter feature allows us to examine asset manager size strata sepa-
rately in Section VI. In so doing we reconcile the contrasting findings of Lesmond, Schill, and Zhou
(2004) and Frazzini, Israel, and Moskowitz (2015) by finding no net-of-costs return to momentum
for typical mutual funds, but positive net-of-costs returns to the marginal mutual fund investor.

In concurrent work, Arnott, Kalesnik, and Wu (2017) propose a method similar to our Fama-
MacBeth two-stage regressions. They argue, as we do, that mutual funds deliver much lower
returns on value and momentum anomalies than on-paper factor counterparts might indicate. Our
paper differs from theirs in four key respects. First, in our Fama-MacBeth approach we compare
cross-sectional slopes of mutual fund and stock portfolio returns with respect to factor exposures,
whereas Arnott, Kalesnik, and Wu (2017) compare mutual fund return slopes and on-paper time-
series return realizations. The latter comparison sheds little light on implementation costs because
realized factor slopes and factor returns may have very different means, as they do for the market
factor. Second, our procedures address the omitted variable bias resulting from comovement in
factor realizations and liquidity costs. In particular, the mismatch between first- and second-stage
Fama-MacBeth regressions is new to the implementation cost conversation. Third, we develop an
entirely new approach to measuring implementation costs based on matching stocks and mutual
funds with similar attributes to mimic the performance of characteristic-based portfolios in practice,
and this approach reveals important differences between the size factor and characteristic. Finally,
we slice the cross section of mutual funds to reconcile previous work on implementation costs, and
we connect our stationary implementation costs empirically to recent work on firm- and industry-
level diseconomies of scale in institutional investing.

III. Data

Our data primarily come from the CRSP mutual fund and stock databases. Our mutual fund
sample consists of 7,320 United States domestic equity mutual funds with at least 24 non-missing
monthly gross returns during the period January 1970 to December 2016. Our stock sample, also
monthly to match the mutual fund sample, consists of all CRSP stocks (share codes 10 or 11) for
the corresponding period and subject to the same non-missing requirement, which gives a total of
22,121 unique PERMNOs.

Appendix A details our mutual fund filtering methodology. Therein we describe a number of
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Figure I: Count of Active Domestic Equity Mutual Funds by Month

Figure plots the count of non-missing returns by month for United States domestic equity mutual
funds. The dashed line at January 1970 marks the starting point of our 1970–2016 sample. The
dashed line at July 1993 marks the midpoint of the post-1970 sample as well as the start date for
our post-Jegadeesh and Titman (1993) sample.
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data cleaning and filtering steps based on the recommendations of Berk and van Binsbergen (2015),
Pastor, Stambaugh, and Taylor (2015), and others. One data processing step bears special mention
here: we map funds delineated by share class into fund groups. Share classes for funds with identical
investments differ in fees charged to investors, but they are not otherwise economically distinct.
To aggregate returns within a fund group, we take total-net asset weighted gross-of-fee returns.
CRSP provides returns net of management and 12b-1 fees, and we convert these into gross returns
by adding expense ratios divided by 12, following Fama and French (2010).

Significant changes in the count of active mutual funds reflect both a secular growth in the
mutual fund industry and continual improvements in data quality.13 Figure I highlights these
changes by plotting the number of non-missing returns for domestic equity mutual funds by month.
The number of funds increases from 298 in January 1970 to 1,140 in July 1993 to 3,896 in December
2016. Because the number and composition of funds varies widely over time, we conduct our analysis
both on an extended sample and on a more recent subsample. Our long sample runs from January
1970 to December 2016. We discard the 1962–1969 window during which monthly returns are less
consistently provided and during which several of our liquidity proxies are not available. Our recent
subsample consists of the latter half of the long sample and runs from July 1993 to December 2016.
This start date postdates Jegadeesh and Titman (1993)’s documenting of the momentum anomaly,
the most recently discovered factor we consider. Table I reports summary statistics for the set of

13Pages 1–2 of the CRSP mutual fund database guide details the amalgamation of data sources used to construct
returns from December 1961 through the present. Page 16 discusses the merge of classifications into CRSP objective
or style codes that we use to restrict the set of funds to United States domestic equity funds.
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Table I: Domestic Equity Mutual Fund Sample Summary Statistics

Table presents summary statistics for the 1970–2016 sample of 7,331 United States domestic equity
mutual funds. The top subtable provides information on the time series of the number of active
funds for each date as well as cross-sectional information on fund lifetimes and total net assets
(TNA) at sample start, middle, and end. The bottom subtable reports distributional information
on fund excess returns. ⇢̄ is the average pairwise correlation with other mutual funds’ returns, and
⇢S&P500 is the correlation with the S&P 500.

Funds Lifetime TNA, Jan. 1970 TNA, July 1993 TNA, Dec. 2016
Unit # Years Million USD Million USD Million USD

Mean 1901 146.2 129.79 436.02 1554.00
Std. Dev. 1555 108.34 318.16 1337.10 6855.50

25% 357 64 3.81 30.47 49.80
50% 1202 119 22.78 88.00 201.40
75% 3724 200 89.60 290.26 861.70

Mean Return Return Vol. Sharpe Ratio ⇢̄MF ⇢S&P500

Unit % / Month % / Month Annualized % %

Mean 0.48 4.95 0.42 76.83 86.64
Std. Dev. 0.62 1.86 0.43 16.28 18.09

25% 0.33 3.98 0.24 74.79 84.28
50% 0.59 4.71 0.45 80.44 91.13
75% 0.80 5.61 0.61 84.49 95.25

mutual funds used in our analysis. All told the 1970–2016 sample consists of 1,071,818 fund-month
observations and the 1993–2016 sample consists of 929.446 fund-month observations.

Much of our analysis compares mutual funds with similar stocks as measured by loadings on
equity risk factors. Our Fama-MacBeth tests of Section IV combine mutual fund data with common
test portfolios. Because our factor set includes value (HML), size (SMB), and momentum (UMD),
our baseline analysis uses the Fama-French 25 size-value double-sorted portfolios plus 25 size-
beta portfolios, 25 size-prior return portfolios, and 25 size-Amihud illiquidity portfolios to ensure
adequate dispersion in loadings to identify risk premia in the cross section. We supplement this
set of test assets with an expanded cross section following the recommendation of Lewellen, Nagel,
and Shanken (2010). In our larger portfolio set, we also include 49 industry portfolios, 25 size-
operating profitability portfolios, 25 size-investment portfolios, 10 beta-sorted portfolios, 10 market
capitalization-sorted portfolios, 10 book equity to market equity ratio sorted portfolios, 10 Amihud
illiquidity-sorted portfolios, 10 operating profitability-sorted portfolios, and 10 investment-sorted
portfolios for a total of 269 portfolios. With the exception of the illiquidity-sorted portfolios, all
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portfolio data are downloaded from Ken French’s website. Decile illiquidity portfolios sort by
monthly averages of non-missing daily absolute returns over dollar volume, and stocks are assigned
for the following year using deciles the end of June, by parallel with the timing convention of the
other portfolio data. The 25 size-illiquidity portfolios sort on both lagged market capitalization
and Amihud illiquidity quintile. Our analysis uses both equal- and value-weighted stock portfolios.

We include several market and funding liquidity variables to proxy for time-varying cost fac-
tors that may affect the performance of mutual funds relative to stocks. Our market liquidity
variables are Amihud illiquidity (Amihud (2002)), Pastor-Stambaugh liquidity levels (Pastor and
Stambaugh (2003)), Corwin and Schultz (2012) NYSE-average bid-ask spreads, and the CBOE S&P
500 Volatility Index (VIX), as motivated by Nagel (2012). We use Corwin and Schultz (2012)’s
methodology to estimate bid-ask spreads because it enables measurement of market liquidity be-
fore TAQ becomes available in 1993 and because it captures average effective spread levels and
innovations better than other pre-TAQ methodologies (see Corwin and Schultz (2012) Table IV).14

We use the CBOE S&P 100 Volatility Index (VXO) in place of the VIX in the pre-1990 period for
which the VIX is not available. We compute Amihud illiquidity using CRSP daily data with values
averaged within a month as in Amihud (2002), and we obtain the Pastor-Stambaugh series and
CBOE VXO/VIX series from Robert Stambaugh’s website and the Federal Reserve of St. Louis’s
FRED database, respectively.

Our funding liquidity variables are Frazzini and Pedersen (2014)’s “betting against beta” (BAB)
factor, He, Kelly, and Manela (2017)’s intermediary capital ratio, the 10-year BAA minus 10-year
Treasury spread, and the 3-month LIBOR minus 3-month Treasury yield or “TED” spread. The
first two series are expressly designed to capture institutions’ funding liquidity constraints, and the
latter two series are common proxies in the funding liquidity literature (e.g., Brunnermeier (2009)).
We obtain BAB from AQR’s website, intermediary capital ratios from Asaf Manela’s website, and
credit and TED spreads from FRED.

IV. Fama-MacBeth Estimates of Implementation Costs

We measure the returns to factor investing using two approaches. In this section we consider
the compensation per unit of risk exposure and investigate whether mutual funds obtain the same
risk premium that academics achieve on paper. In the next section we evaluate the gross-of-fee
returns to investing in factor portfolios of stocks and mutual funds with similar risk attributes.

14Corwin and Schultz make their code available at https://www3.nd.edu/⇠scorwin/HILOW_Estimator_Sample_002.sas.
As in their paper, we compute cross-sectional averages using only NYSE-listed stocks, and we use their variant of
estimated spreads in which negative values are set to 0.

10

https://www3.nd.edu/~scorwin/HILOW_Estimator_Sample_002.sas


A. Baseline Estimates

In our baseline estimation, we assume that mutual funds have a constant per-unit cost for imple-
menting academic anomalies. Investing in a market index with �MKT = 1 results in a performance
gap of ⌘ relative to the on-paper performance of a market index, and investing in a levered version
of the market more generally results in a performance gap of ⌘�MKT . In this setting, we would
expect performance differences between stock and mutual fund portfolios to be linear in factor
exposure.

We estimate the “implementation gap” using augmented Fama and MacBeth (1973) two-stage
regressions for the Carhart four-factor model (Carhart (1997)). The time-series regression step is
standard except for the choice of test assets. As discussed in the preceding section, our sorting
characteristics pertain to each factor in fkt, and we have NS = 100 and NS = 269 stock portfolios
depending on regression specification. In addition to stock portfolios, we also include as test
assets NMF = 7, 331 mutual funds, of which several thousand are active in the typical period. As
diversified entities spanning a wide range of multifactor risk exposures, mutual funds unlike stocks
need not be grouped into portfolios via a characteristic-sorting procedure.

The NS +NMF time-series regressions are

rit = ↵i +
X

k

fkt�ik + ✏it, i = 1, . . . , NS , NS+1, . . . , NS +NMF , (1)

where rit is the month t gross return on stock portfolio or mutual fund i net of the contemporaneous
risk-free rate and fkt (for k = 1, ...,K) is the return on factor k at date t. The usual second-stage
cross-sectional regressions are extended to accommodate the possibility of differences in risk pricing
for stocks and mutual funds,

rit =
X

k

�S
kt�̂ik1i2S +

X

k

�MF
kt �̂ik1i2MF + ✏it, t = 1, . . . , T. (2)

Regression (2) is equivalent to two separate cross-sectional regressions run on stocks and mutual
funds because the indicators partition the set of observations. �S

kt is the realized price of risk for
factor k and date t based on stock returns, and �MF

kt is the corresponding estimate based on mutual
fund returns. The difference �̂�

kt ⌘ �̂S
kt��̂MF

kt is our estimate of the implementation costs for strategy
k: it is the difference between the on-paper profitability of a given strategy (“what you see”) and
the actual returns achieved by an asset manager facing real-world implementation costs (“what you
get”).15 Conceptually this difference captures both direct costs such as spreads and price impact
from factor trading as well as indirect costs such as investing in liquid versions of factors to robustify
strategies against outflows.16 Our point estimates are the average of the monthly differences in

15We account for potential cost asymmetries between funds with positive factor exposures and funds with negative
factor exposures in Section VII.A.

16Julian Robertson’s Tiger Management, one of the world’s largest hedge funds in the late 1990s, collapsed precisely
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factor compensation �̄�
k , and we construct standard errors for this difference using Newey and

West (1987) with three monthly lags to account for serial correlation and heteroskedasticity in the
�-difference series.

Throughout our analysis, we estimate cross-sectional slopes of returns on risk exposures as-
suming that risk exposures are constant. In making this assumption we prioritize minimizing the
errors-in-variables problem arising from using noisy betas as inputs in the second-stage Fama-
MacBeth regression. This problem is vitally important because we do not want to find differences
in �s simply as a byproduct of higher measurement error in mutual fund betas. However, in using
long estimation windows to estimate �s, we nonetheless take on potential measurement error arising
from time-variation in stock portfolio or mutual fund risk exposures.

Following Lettau, Maggiori, and Weber (2014) and others, we omit the constant term to force
cross-sectional average alphas to zero. Economically this omission forces the typical zero-risk se-
curity or mutual fund to have zero excess (gross) return at each point in time. We impose this
restriction because the slope on �MKT is not otherwise well identified in our stock portfolio sample,
namely the time series of the intercept ↵t and the estimated market risk premium �MKT,t are
strongly negatively correlated and of similar magnitudes. By contrast in the mutual fund sample,
�̂ik has a large and positive risk price regardless of whether a constant is included. None of the
other factor risk premia are meaningfully affected.

Table II presents estimates of Equation (2). The �� value in the upper-left corner indicates
that the difference in compensation per unit of market exposure is 0.26% per year greater for
risk exposures taken in practice via mutual funds than on paper in (100 equal-weighted) stock
portfolios. This difference changes sign to favor on-paper portfolios by 0.34% per year when assessed
against the full set of 269 portfolios because the average compensation for market beta is higher
in the larger sample. Neither effect is statistically or economically significant, and the absence of
a performance gap is robust to using value-weighted portfolios (bottom panel) rather than equal-
weighted portfolios. This result is unsurprising as mutual funds are expected to be relatively good
at implementing the market factor.

Broadening our focus to columns 1–4, we see that mutual funds underperform stocks in isolating
factor exposures for two of the other Carhart factors. The average implementation gaps for value
(HML) and momentum (UMD) range from of 50%–80% of the total on-paper return to each
factor in stock portfolios. The remaining compensation to mutual funds for HML and UMD are
positive (�MF > 0), but they are only 1%–3% per year and not statistically distinguishable from
zero. Conversely, HML and UMD factors are both highly compensated and statistically robust in
equal-weighted paper portfolios in this period. Compensation for size factor (SMB) exposure has
a small positive point estimate for mutual funds, but these values are not reliably different from
zero or from on-paper compensation for size.

because it could not continue to service outflows associated with its value investment strategy. Shleifer and Vishny
(1997) formalize the role of agency frictions in perpetuating anomalies.
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Table II: Implementation Cost Estimates in Fama-MacBeth Regressions — Baseline Specification

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes �̄k across monthly regressions of excess returns
rit on time-series betas �̂ik,

rit =
X

k

�S
kt�̂ik1i2S +

X

k

�MF
kt �̂ik1i2MF + ✏it, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and �� is defined as �S � �MF . Stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard
errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.26 5.01⇤⇤⇤ 1.74⇤ 7.34⇤⇤⇤ -0.12 4.38⇤⇤⇤ 1.92 4.91⇤⇤⇤
t-stat (-0.54) (5.65) (1.77) (5.31) (-0.17) (4.45) (1.39) (3.18)

�� 269 0.34 3.41⇤⇤⇤ 1.88⇤ 8.66⇤⇤⇤ 0.87 2.51⇤⇤ 2.03 6.94⇤⇤⇤
t-stat (0.67) (3.55) (1.76) (6.29) (1.33) (2.40) (1.36) (4.00)

�S 100 6.72⇤⇤⇤ 7.76⇤⇤⇤ 2.99 9.48⇤⇤⇤ 7.70⇤⇤ 6.57⇤⇤ 4.12 6.18
t-stat (2.77) (4.25) (1.53) (3.95) (2.32) (2.42) (1.48) (1.63)

�S 269 7.31⇤⇤⇤ 6.17⇤⇤⇤ 3.13 10.80⇤⇤⇤ 8.69⇤⇤⇤ 4.69 4.23 8.21⇤⇤
t-stat (3.04) (3.15) (1.52) (4.41) (2.65) (1.61) (1.45) (2.10)

�MF — 6.98⇤⇤⇤ 2.75 1.25 2.14 7.81⇤⇤ 2.19 2.21 1.27
t-stat (2.87) (1.61) (0.71) (0.86) (2.40) (0.79) (0.92) (0.34)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01

(b) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.35 4.31⇤⇤⇤ -0.32 7.08⇤⇤⇤ -0.38 4.00⇤⇤⇤ -0.31 4.69⇤⇤⇤
t-stat (-1.12) (5.22) (-0.45) (5.29) (-0.95) (4.68) (-0.33) (3.13)

�� 269 -0.20 2.71⇤⇤⇤ -0.49 7.00⇤⇤⇤ 0.18 2.42⇤⇤⇤ -1.03 5.40⇤⇤⇤
t-stat (-0.80) (3.86) (-0.83) (5.37) (0.77) (3.72) (-1.32) (3.37)

�S 100 6.62⇤⇤⇤ 7.06⇤⇤⇤ 0.94 9.23⇤⇤⇤ 7.43⇤⇤ 6.18⇤⇤ 1.89 5.96
t-stat (2.75) (3.81) (0.55) (3.90) (2.27) (2.20) (0.77) (1.58)

�S 269 6.78⇤⇤⇤ 5.46⇤⇤⇤ 0.77 9.14⇤⇤⇤ 7.99⇤⇤ 4.61 1.18 6.67⇤
t-stat (2.83) (2.98) (0.45) (3.91) (2.46) (1.62) (0.49) (1.80)

�MF — 6.98⇤⇤⇤ 2.75 1.25 2.14 7.81⇤⇤ 2.19 2.21 1.27
t-stat (2.87) (1.61) (0.71) (0.86) (2.40) (0.79) (0.92) (0.34)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01
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Notably the point estimates for the differences �� for HML and UMD are typically more
statistically significant than either of the components of the difference �S or �MF . This feature
reflects the netting out of common variation in factor realizations within each cross section. Ideally
the residual variation in �� captures only random variation in trading costs. In practice this
residual variation also captures idiosyncratic differences in estimated risk prices associated with
using different sets of test assets; the difference between �� estimated from the set of 100 stock
portfolios and the set of 269 stock portfolios suggests that the implementation gap depends in part
on the stock benchmarks employed.

Columns 5–8 reproduce these tests for the July 1993 to December 2016 sample. Mutual funds
achieve lower returns to HML and UMD and higher returns to SMB than in the full sample,
but these returns are now universally statistically indistinguishable from zero (in part because the
sample length is cut in half). For stock portfolios, the compensation for HML and UMD (SMB)
exposures also decrease (increase) relative to the full sample. The net effect of these changes is
a small decrease in the typical implementation gap for HML and a moderate decrease in the
implementation gap for UMD. The implementation gap is roughly unchanged for market exposure
(effectively zero) and SMB exposure (positive but insignificant). In sum, focusing on the latter
sample with a more broadly representative set of mutual funds does not change our conclusions
on the high real-world efficacy of implementing market exposure and size and the low real-world
efficacy of implementing value and momentum.

B. Time- and Mutual-Fund Varying Per-Unit Cost Estimates

Time-varying implementation costs complicate the comparison of compensation per unit of
factor risk. To see why, consider the following augmented model of mutual fund costs. As before,
let there be a set of academic factors f , where ft is a 1⇥K vector. Each mutual fund i implements
its favored version of academic factors and earns a return of

hit = ft � ⌘it, (3)

where ⌘it reflects tilts away from the academic factor on account of trading costs or factor opti-
mization. This section differs from the previous one in that we no longer assume that ⌘ is constant
across funds and time. The ⌘it term in turn has components

⌘it = ⌘i + ⌘t�i + ⌘̃it. (4)

The first component is the fixed, firm-specific cost of trading a factor. The second component is
the set of L time-varying liquidity costs ⌘t multiplied by the L⇥K loadings of all factors on these
liquidity costs �i. Finally, ⌘̃it is a 1⇥K set of idiosyncratic costs, e.g., a surprise liquidity demand
shock that thwarts or facilitates firm i’s trading strategy for factor k.
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Funds trade and earn returns

rit = ↵i + hit�i + ✏it = (↵i � ⌘i�i) + (ft � ⌘t�i)�i + (✏it � ⌘̃it�i) . (5)

An ideal test compares the average compensation ft for factor exposure for on-paper investment in
stocks against the compensation hit for factor exposure for real-world investment through invest-
ment managers. In the constant-cost setting of Section IV.A, we achieve this ideal: ⌘it simplifies
to ⌘, and Fama-MacBeth regressions with a K-factor model recovers consistent estimates of f � h

as in Equation (2).
By contrast, in this general setting we face two key challenges that complicate the straightfor-

ward comparison of ft and hit. First, trading costs vary over time, and these costs may covary
with factor realizations. For example, several measures of funding and market liquidity deteriorate
significantly during the 2007–2008 Financial Crisis, and the aggregate market return likewise is
consistently negative at that time. Omitting relevant liquidity factors thus contributes to an omit-
ted variable bias in time-series estimates of �i for investment managers, which in turn potentially
invalidates simple comparisons of second-stage slope estimates. Second, investment managers select
their risk exposures endogenously. An investor who has discovered improvements upon academic
factors or is particularly skilled at trading a given factor cost-effectively is more likely to select a
larger factor exposure, all else equal. For this reason we would expect mutual fund-specific trading
gains ⌘i to be increasing in �i, and the cross-sectional slopes of returns with respect to �i are biased
upward (�̂MF

t > �MF
t ).

We now address these two sources of bias. To address the omission of trading cost factors, we
assume that trading costs or optimization gains for mutual funds are spanned by liquidity proxies
considered in the literature and discussed in Section III. Throughout we use liquidity levels rather
than innovations because high illiquidity rather than increases in illiquidity relative to the previ-
ous month likely contribute to high factor implementation costs.17 We then run Fama-MacBeth
regressions as before, but we extend the factor model to include liquidity proxies in the time-series
regressions,

rit = ↵i +
X

k

fkt�ik +
X

l

⌘̃lt�̃il + ✏it, i = 1, . . . , NS , NS+1, . . . , NS +NMF , (6)

where ⌘̃lt are the liquidity factor proxies at time t. To avoid overfitting in the first stage by
including too many correlated liquidity proxies, we start with two:18 the first principal component
of four market liquidity variables (Amihud illiquidity, Pastor-Stambaugh liquidity, Corwin-Schultz

17By contrast, if we sought to explain returns, innovations to liquidity expectations would be the correct variable
to use (as emphasized by Pastor and Stambaugh (2003) and He, Kelly, and Manela (2017), among others).

18Ideally we would use all liquidity variables rather than their principal components because we want time-varying
determinants of ⌘it to lie in the span of the liquidity-augmented factor model. To this end we include all proxies in
a sparse regression approach in Appendix C.
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bid-ask spreads and the CBOE VIX/VXO) and the first principal component of four funding
liquidity variables (Frazzini and Pedersen (2014)’s “betting against beta” factor, He, Kelly, and
Manela (2017)’s intermediary capital risk factor, 10-year BAA minus 10-year Treasury spreads,
and 3-month LIBOR minus 3-month Treasury yield or “TED” spreads). We normalize all liquidity
variables to have unit standard deviation before taking principal components because liquidity
proxies vary widely in their scales.19

The second-stage cross-sectional regressions are exactly as in Equation (2). The mismatch in
model specification for the time-series and cross-sectional regressions is intentional. In the time-
series regressions, we recover fund exposures to the academic factors, and we need the additional
liquidity proxy variables to cleanse the estimated mutual fund factor loadings of omitted illiquidity
components. By contrast, in the second stage, we recover the cost per unit exposure to the academic
factors and do not want to include the liquidity proxy exposures. Excluding the liquidity factors
only in the second stage delivers �̂S

t = �S
t and

�̂�
t = �S

t �
cov

�
rMF
it ,�i

�

var (�i)
= �cov (↵i � ⌘it�i,�i)

var (�i)
= ⌘̄t �

cov ((⌘̄t � ⌘it)�i,�i)

var (�i)
. (7)

The final equality makes the standard assumption that alphas and betas are cross-sectionally un-
correlated. ⌘̄t represents the cross-sectional average per-unit liquidity costs to implementing the
factor. The second term is the covariance between deviations from the average costs and �s. Funds
with a particular skill in investing in a factor likely have higher exposures to it—�i are endoge-
nous—so �i is high when ⌘̄t � ⌘it is high, and �i is close to zero when ⌘̄t � ⌘it is negative (negative
betas do not reverse the sign on costs). Combining these features, the overall covariance is posi-
tive.20 Consequently �MF

kt is an upper bound on the realizable gains to factor investing per unit
risk exposure, and ��

kt is a lower bound on the costs of implementing a factor strategy.
Table III reports results using the liquidity-extended first-stage regression. Results are virtually

the same as those of the baseline specification in Table II with one exception. Mutual funds’ (already
low) annual compensation for UMD exposure decreases from 2.14% to 1.98% in the long sample
and from 1.27% to 0.27% in the recent sample, suggesting that liquidity factor exposure at least
partly explains mutual funds’ compensation for momentum. This finding extends one result of
Asness, Moskowitz, and Pedersen (2013) to the universe of mutual funds. Asness, Moskowitz, and
Pedersen (2013) find that momentum loads positively on liquidity risk, and we find that the same

19The CBOE VXO and the TED spread series start in January 1986. Our principal components procedure accom-
modates the missing liquidity proxy data using MATLAB’s alternating least squares (ALS) algorithm. ALS extracts
factors and completes missing data by conjecturing principal components and iteratively estimating principal com-
ponent loadings � and factor values g until the distance between known and fitted values achieves a local minimum.
We run PCA-ALS from 1,000 starting points and select the global distance-minimizing factors and loadings. By con-
struction illiquidity principal components have unit standard deviation, and we assign these components an illiquidity
interpretation by normalizing them to be positively correlated with the VIX/VXO.

20Including liquidity proxies in the second-stage introduces a more opaque omitted variable bias, as we discuss in
Appendix B.
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Table III: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity PCs

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes �̄k across monthly regressions of excess returns
rit on time-series betas �̂ik,

rit =
X

k

�S
kt�̂ik1i2S +

X

k

�MF
kt �̂ik1i2MF + ✏it, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and �� is defined as �S � �MF . First-stage
regression estimates include these factors, the first principal component of market liquidity proxies,
and the first principal component of funding liquidity proxies. Liquidity proxies and stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard
errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.43 5.27⇤⇤⇤ 2.06⇤⇤ 7.51⇤⇤⇤ -0.06 4.11⇤⇤⇤ 1.97 5.57⇤⇤⇤
t-stat (-0.90) (5.81) (2.10) (5.34) (-0.08) (3.97) (1.46) (3.27)

�� 269 0.15 3.85⇤⇤⇤ 2.29⇤⇤ 8.73⇤⇤⇤ 0.78 2.56⇤⇤ 2.20 6.99⇤⇤⇤
t-stat (0.30) (3.86) (2.14) (6.13) (1.17) (2.37) (1.54) (3.72)

�S 100 6.55⇤⇤⇤ 8.06⇤⇤⇤ 3.22⇤ 9.49⇤⇤⇤ 7.77⇤⇤ 5.97⇤⇤ 4.22 5.84
t-stat (2.71) (4.34) (1.67) (3.97) (2.35) (2.20) (1.54) (1.54)

�S 269 7.13⇤⇤⇤ 6.64⇤⇤⇤ 3.45⇤ 10.71⇤⇤⇤ 8.61⇤⇤⇤ 4.42 4.46 7.26⇤
t-stat (2.99) (3.31) (1.69) (4.38) (2.65) (1.50) (1.57) (1.85)

�MF — 6.98⇤⇤⇤ 2.79 1.16 1.98 7.83⇤⇤ 1.86 2.26 0.27
t-stat (2.88) (1.62) (0.66) (0.80) (2.41) (0.67) (0.93) (0.07)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01

(b) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.43 4.70⇤⇤⇤ -0.24 7.30⇤⇤⇤ -0.38 4.35⇤⇤⇤ -0.34 5.69⇤⇤⇤
t-stat (-1.36) (5.55) (-0.33) (5.40) (-0.94) (5.00) (-0.36) (3.48)

�� 269 -0.21 2.99⇤⇤⇤ -0.45 7.15⇤⇤⇤ 0.18 2.77⇤⇤⇤ -1.01 6.24⇤⇤⇤
t-stat (-0.83) (4.03) (-0.76) (5.46) (0.78) (4.09) (-1.30) (3.73)

�S 100 6.56⇤⇤⇤ 7.49⇤⇤⇤ 0.92 9.28⇤⇤⇤ 7.45⇤⇤ 6.21⇤⇤ 1.91 5.96
t-stat (2.73) (3.99) (0.54) (3.93) (2.29) (2.19) (0.78) (1.58)

�S 269 6.78⇤⇤⇤ 5.78⇤⇤⇤ 0.71 9.13⇤⇤⇤ 8.01⇤⇤ 4.63 1.24 6.52⇤
t-stat (2.83) (3.11) (0.42) (3.90) (2.48) (1.60) (0.51) (1.76)

�MF — 6.98⇤⇤⇤ 2.79 1.16 1.98 7.83⇤⇤ 1.86 2.26 0.27
t-stat (2.88) (1.62) (0.66) (0.80) (2.41) (0.67) (0.93) (0.07)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01 17



holds for mutual funds’ implementation of momentum. We examine this feature in detail in Section
VI.B.

V. Matched Pairs Estimates of Implementation Costs

The cross-sectional approach of the previous section compares the return compensation for an
incremental unit of risk exposure taken in on-paper portfolios versus in mutual funds. Such an
approach does not address the question of whether large investments by mutual funds achieve more
favorable risk-reward trade-offs than marginal factor investments. For example, mutual funds may
excel at taking on moderate risk exposures to a factor, but their performance may deteriorate
for extreme exposures for which taking on additional leverage is needed (Frazzini and Pedersen
(2014)). To answer this question, we consider the building blocks for many tradeable return factors
in academia—long-short portfolios implied by characteristic sorts—and conduct a matched pairs
analysis of characteristic-sorted stocks and matched mutual funds.21

A. Matched Pairs Methodology

We begin by constructing characteristics for each stock and sorting stocks into quintile portfolios.
Our characteristics are 60-month rolling market beta (requiring at least 24 observations), book-to-
market ratio,22 market capitalization (with scale reversed to place small stocks in the top quintile),
and prior return over the previous year, skipping the latest month (the “2-12” return). We follow
the methodology of Ken French’s website in constructing these characteristics, and we use the
provided breakpoints based on NYSE quintiles where available. In the case of rolling market betas
we construct our own quintile breakpoints. For the first three characteristics, we assign portfolios at
the end of June and retain assignments for July through the end of the following June. Momentum
is a higher-frequency anomaly, and we sort on prior returns and retain assignments for the next
month only. We then estimate two sets of betas on monthly return data for all common stocks in
the CRSP universe and all U.S. domestic equity mutual funds: univariate betas with respect to a
single factor fk and multivariate betas with respect to all four Carhart factors.

For each stock in quintile q for factor k in month t, we find the three closest mutual funds active
in that month. We assess proximity using the Mahalanobis distance on betas with covariances
estimated using the full sample,23 where �k determines distance in our univariate analysis, all four

21Our analysis is similar in spirit to Daniel, Grinblatt, Titman, and Wermers (1997), who examine the origins of
mutual fund performance by comparing mutual fund returns against those of characteristic-matched portfolios of
stocks. Rather than using holdings data to build and match with benchmark portfolios, we use a formal matched
pairs approach to directly compare mutual funds and stocks with similar multifactor betas.

22We source our book-to-market ratios from the WRDS Financial Ratios Suite. We make small modifications to
the provided code to extend the ratios to all stocks through the end of 2016.

23The Mahalanobis distance is
p

(x� y)0 ⌃�1 (x� y) for two vectors x and y and covariance matrix ⌃. When ⌃ is
diagonal, it normalizes each dimension to have a unit standard deviation, and we adopt this terminology in the main
text. It reduces to the Euclidean distance when ⌃ = I.
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�s determine distance in our multivariate analysis. Implicitly we select stocks as our matched
pairs “treatment group” because we want to mimic on-paper factor portfolios as best as possible
using mutual funds. Each stock is matched to three mutual funds rather than one to improve
precision of the average return for mutual funds with the same risk characteristics. To ensure high
match quality, we impose a maximum distance or caliper of 0.25 standard deviations for univariate
matches (following Rosenbaum and Rubin (1984)’s rule-of-thumb in the context of propensity score
matching) and 0.25 ⇥ 4 = 1 standard deviation for four-factor matching. Stocks with fewer than
three matched mutual funds within these radii are dropped.

We follow Abadie and Imbens (2006, 2011) to establish a bias-adjusted matched pairs estimator
for each month’s implementation gap by calculating the average difference between next-month
returns for stocks and mutual funds. Armed with monthly implementation gap estimates, we
take the average value as our full-sample estimate. We also consider differences in value-weighted
returns within each month using the lagged market capitalization of the matched stocks. Appendix
D provides a detailed description of the matched pairs methodology and evaluation of match quality.

Our analysis includes univariate and multivariate matches because each mimics a different
standard asset pricing approach and because each method entails making a particular set of trade-
offs. Intuitively, matching on univariate betas answers the question of whether mutual funds are
comparably good as stocks at isolating a particular characteristic; for example, do mutual funds
with high (low) “value” betas achieve the same excess returns as high (low) value beta stocks? This
analysis parallels a comparison between Q5–Q1 returns from two standard portfolio sorts, where one
set of test assets (mutual funds) is transformed to have as similar risk attributes as possible to the
other set of test assets (stocks). In favor of univariate matching is its high match rate and accurate
matches along the dimension of interest, and this approach dominates when one matching feature is
more important than others in determining stock and mutual fund returns. Matching on all betas
answers the same question when excess returns are assessed with respect to a richer, nonparametric
model that controls for possible variation in other risk factors. This multivariate-beta matching
approach parallels multifactor tests such as Fama-MacBeth cross-sectional regressions in which
we assess the returns to a single factor holding all other factors fixed. In favor of multivariate
matching is its ability to simultaneously control for several determinants of returns to conduct a
true “all else equal” analysis for stocks and mutual funds. This approach—which we favor in our
application—trades off match quality in the dimension of interest with an elimination of systematic
biases in the other dimensions. We discuss trade-offs of each approach in more detail in Appendix
D.B.

For each matched pairs analysis, we compare the performance of stocks in high-characteristic
portfolios and matched mutual funds. These differences in high-characteristic quintile returns rep-
resent a lower bound on the underperformance of mutual fund implementations of factor investing.
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To see why, consider the difference in factor returns for stocks and mutual funds,

rS � rMF =
⇣
rlongS � rshortS

⌘
�
⇣
rlongMF � rshortMF

⌘
�
⇣
rlongS � rshortS

⌘
�
⇣
rlongMF � rshortS

⌘
= rlongS � rlongMF .

(8)
The inequality in Equation (8) holds if mutual funds are weakly less able to implement the short
side of strategies than paper shorting returns would indicate. We expect underperformance on
selling the low-beta quintiles because shorting entails relatively high transaction costs. Short-side
underperformance is especially plausible if we find that mutual funds also underperform on the
long side. In addition, some firms implement positive-cost versions of anomalies such as long-only
momentum, in which only the extreme “buy” portfolio is traded.

Note that we do not directly compare the performance of long-short strategies for stocks and
mutual funds. We cannot short mutual funds, and underperformance on both ends of a long-short
strategy, for example, because of transactions costs, would be incorrectly obscured by differencing,
as such costs are additive. Instead, we settle for comparing performance on the long portfolios to
establish a lower bound on the implementation costs of asset pricing factors.

B. Results

Table IV reports the results of our matched pairs analysis. The �LMS value in the upper-left
corner indicates that mutual funds underperform stocks with the same market beta exposure by
2.5% per year when stocks are in the 60–80th percentile of the distribution of rolling market betas.
We designate “LMS” as long high-market beta stocks and short low-market beta stocks to distinguish
long-short market beta portfolios from the equity premium Rm � Rf . This implementation gap
is larger than the on-paper return to an equal-weighted long-short strategy based on market beta
quintiles, and roughly 40% of the annual equity premium over this period (6.35% per year, not
tabulated). Moving to the next column on the right, mutual funds continue to underperform stocks
by a much-smaller 1.0% per year, and this value is no longer statistically significant. Moving down
the upper-left panel we see that the implementation gap is positive and statistically significant for
all non-market factors considered. Costs are particularly high for momentum strategies, as prior
literature suggests, and they are similarly high for value strategies.

The smaller point estimates in quintile four relative to quintile five is a common feature through-
out the panels, and it reflects the balance of two competing forces. On one side, if per-unit costs
are fixed across firms (as in Section IV.A), higher betas translate into higher total implementation
gaps � (h� f). On the other side, mutual funds select into the highest � group, so high-� group
membership likely reflects lower per-unit underperformance h � f . For these reasons the product
of � (h� f) could increase or decrease as we move to more extreme � quintiles, and empirically,
the scale effect tends to dominate the selection effect.

The upper-left panel reflects performance differences between stocks and mutual funds matched
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on betas from a one-factor model of returns. This matching is akin to a portfolio sort in which
a single characteristic is used. Other return-relevant variables are not held fixed as we vary one
characteristic, so it may be that stocks and matched mutual funds vary substantially on other
dimensions. For example, mutual funds trading continuation strategies like momentum are less
likely to trade contrarian strategies like value (⇢�HML,�UMD

= �22.7%), whereas momentum and
value betas are positively correlated among stocks (⇢�HML,�UMD

= +16.1%). The bottom-left
panel addresses this concern by reporting return differences in high-characteristic portfolios between
stocks and mutual funds matched on the four Carhart (1997) factors. In this analysis we estimate
multifactor betas using four-factor time-series regressions as in Equation (1).

Controlling for the three non-sorting variables has a large effect on the statistical reliability of
the market and size factor implementation costs, which suggests that funds with high-beta strategies
likely differ from high-beta stocks on other dimensions. In the equal-weighted specification we see
that the implementation gap is large and statistically significant for quintiles four and five for all
anomalies. The implementation gaps are so large, in fact, that they swamp or severely attenuate
factor returns for all four factors considered, regardless of whether we include all stocks or focus
only on the investable set of matched stocks. In short, at least from an equal-weighted perspective,
no factors earn returns after real-world costs during the 1970–2016 period. This finding also holds
in the right panel for the 1993–2016 period, in which the four academic factors are known and the
mutual fund universe is far more developed (see Figure I).

Columns 7–12 of the top panel present value-weighted results. The contrast between equal- and
value-weighted results testifies to the importance of size in dictating the ability of mutual funds
to mimic return factors; differences in performance attenuate dramatically when small, harder-to-
access stocks are downweighted. Focusing first on the univariate matches, mutual fund underperfor-
mance on value, size, and momentum strategies falls by roughly half relative to the corresponding
equal-weighted results, and mutual fund underperformance on the long-short market beta strategy
reverts to zero or even to a significantly negative value. As we find in Section IV, mutual funds
capture returns to market beta quite well.

Turning to the multivariate matches in the value-weighted specification restores our finding that
mutual funds underperform matched stocks for the non-market factors. Implementation gaps are
again smaller than in the equal-weighted results, but the magnitudes are nonetheless economically
large for the three main anomalies: 0.1%–3.3% for value against a time-series average return of
4.8% for value-weighted HML; 3.4%–4.0% for size against a time-series average return of 1.6% for
SMB; and 1.8%–2.2% against a time-series average return of 8.8% for UMD. These differences carry
over to the more recent 1993–2016 interval, as well. In sum, we replicate the high implementation
costs of these factors, and such performance attrition is a stark departure from the muted effects
of trading costs often considered in the academic literature.

Taken together, these matched-pair results agree qualitatively with the cross-sectional results
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for three of the four factors (MKT/LMS, HML, and UMD), but they disagree for size. This
disagreement is likely attributable to the fact that SMB beta is not associated with cross-sectional
differences in average returns—and the cross-sectional approach thus reveals no difference in com-
pensation to SMB exposure—whereas the small-size characteristic is associated with higher aver-
age returns. Consequently we observe high returns on small-stock portfolios in the matched pairs
approach, and mutual funds clearly cannot capture these returns well in practice.

VI. Cost Estimates Over Time and Across Funds

A. Comparison with Previous Implementation Cost Estimates

Our analysis thus far considers the implementation costs of factor strategies for representative
mutual funds, with no attention paid to heterogeneous characteristics and costs. Variation in
investors’ trading technologies may drive a wedge between a typical asset manager and the marginal
investor in an anomaly, and by dividing asset managers into groups we can learn whether factors
are broadly (in)accessible or whether they generate positive net-of-costs returns for a subset of
managers. In this section, we briefly demonstrate the utility of our cross-sectional approach for
examining segments of asset managers.

Motivated by extensive work relating fund size to gross-of-fees performance (e.g., Berk and
Green (2004), Pastor, Stambaugh, and Taylor (2015), and Berk and van Binsbergen (2015)), we
split fund groups into groups based on lagged total net assets (TNA), analogous to the R2 splits
in the previous section. We then run our second-stage cross-sectional regressions (2) separately for
each asset manager TNA group.24 We set aside funds with less than $10 million in assets because
selection into this group implies that the fund has lost money (recall that we retain observations
only after funds reach $10 million in assets to avoid incubation bias).25

Table V presents results from these segmented regressions on the full 1970–2016 sample. As
in Tables II–A.I, mutual funds generally achieve returns to market factor exposure comparable to
those of on-paper stock portfolios. HML also earns positive compensation for most TNA groups,
and returns to HML are collectively different from zero in all specifications. Micro funds drive
our finding of low overall mutual fund compensation for value. Point estimates for returns to
SMB are positive for all fund size groups, but SMB compensation estimates are not statistically
distinguishable from zero or from each other.

24Groups are assigned separately for each date with cutoffs based on December 2016 USD. The micro-fund group
has TNAt < $10M and comprises 5.2% of the data. This group is selected in that it consists of past losers whose
assets had at one time exceeded $10M . The small-fund group has $10M < TNAt < $50M and comprises 22.8% of
the data. The medium-fund group has $50M < TNAt < $250M and comprises 31.8% of the data. The large-fund
group has $250M < TNAt < $1B. and comprises 22.5% of the data. The mega-fund group has TNAt > $1B and
comprises 17.7% of the data.

25In principle we could complement this analysis with a matched pairs approach, but dividing the set of possible
mutual funds into several groups significantly reduces match quality in the extreme-quintile portfolios.
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Focusing on momentum, differences in compensation across mutual fund size categories are sta-
tistically significant and economically large, with the smallest funds earning 9%–10% more per unit
momentum beta than the largest funds. Notwithstanding the greater momentum-strategy perfor-
mance of small funds, we nonetheless continue to reject the hypothesis that these funds perform as
well as on-paper stock portfolios. We can also reject non-monotonicity of momentum compensa-
tion across size categories using the bootstrap test of Patton and Timmermann (2010)—momentum
strategy performance is decreasing in fund size.26 This feature makes intuitive sense in that momen-
tum is a high-turnover strategy, and larger funds suffer greater market impact costs in implementing
momentum than smaller funds. We conclude that variation across mutual funds is important when
considering the net-of-costs returns to the momentum factor.

Table VI compares these real-world factor return estimates with estimates from selected influ-
ential works in the literature. Novy-Marx and Velikov (2016) estimate trading costs by summing
effective bid-ask spreads of traded securities, and by their reckoning, momentum’s trading costs
reduce the gross strategy return from 16.0% per year to 8.16% per year (Table 3 of their paper).
These positive momentum returns net-of-costs likely significantly overstate achievable returns, how-
ever, because their calculation ignores the price impact of trading that is particularly relevant to
institutional investors and is considered by others in the literature.

Papers that consider a wider range of trading costs reach mixed conclusions on the imple-
mentability of momentum. Korajczyk and Sadka (2004) suggest that momentum profits exist only
at small scales (the table reflects only proportional costs, and by their reckoning, non-proportional
costs quickly overwhelm strategy returns), and Lesmond, Schill, and Zhou (2004) argue that high
transactions costs preclude profitable momentum strategies altogether. Because these studies es-
timate transactions costs functions using all TAQ transactions, their average implementation cost
estimates are smoothed over size quintiles and over trades unrelated to momentum strategies. As
a consequence these authors find a result like the �MF of Tables II–A.I, whereby momentum has
an economically unimportant premium for real-world asset managers.

When we focus only on small asset managers, the picture looks quite different. As noted in Table
V, small funds earn nearly double the average-fund compensation to momentum, and 9%–10% more
per year than the largest funds per unit of momentum exposure. Combining these results we find
that both sets of authors are correct; longstanding disagreement on the profitability of momentum
strategies arises because market-wide and single-firm analyses, e.g., Lesmond, Schill, and Zhou
(2004) and Frazzini, Israel, and Moskowitz (2015) respectively, focus on different sets of investors.
Which momentum premium is of greater interest hinges on whether the researcher evaluates a broad
set of firms, as in benchmarking applications, or marginal investors, as in discussions of market
efficiency. Intriguingly we find that the largest mutual funds earn the most negative compensation
for momentum exposure, suggesting that the firm examined in Frazzini, Israel, and Moskowitz

26Intriguingly the Patton and Timmermann (2010) non-monotonicity test is much more sensitive to differences in
�
MF across size groups than the standard F -test for differences.
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Table VI: Comparison with Selected Factor Profitability Estimates from Prior Work

Table presents estimates of factor strategy returns. The top panel reports cross-sectional slopes
from Fama-MacBeth regressions as in Table V. For brevity we report only the estimates in which
liquidity proxy principal components appear in the time-series step, and we focus on the slopes
for the full sample of mutual funds and for small mutual funds (lagged total net assets between
$10 million and $50 million). As before, standard errors are Newey-West with three lags. The
second panel presents value-weighted momentum strategy returns from Table IV of Korajczyk and
Sadka (2004). Alphas are constructed relative to the Fama-French three factors. ↵espr.

net and ↵qspr.
net

represent excess momentum returns net of proportional costs as measured by effective spreads
and quoted spreads, respectively. The third panel reports equal-weighted strategy returns from
Table 3 of Lesmond, Schill, and Zhou (2004) (value-weighted returns are not reported). rLDV

net

and rdirectnet are momentum returns net of Lesmond, Ogden, and Trzcinka (1999)-implied costs and
“direct” costs (consisting of bid-ask spreads and trading commissions), respectively. The fourth
panel tabulates realized strategy returns from Table IV of Frazzini, Israel, and Moskowitz (2015).
The final panel reports value-weighted strategy returns net of Hasbrouck (2009)-implied effective
spreads from Table 3 of Novy-Marx and Velikov (2016). Throughout returns are annualized and t
statistics are reported in parentheses.

HML SMB UMD

�MF 2.79 1.16 1.98
Cross-Sectional Slopes w/ PCA t-stat (1.62) (0.66) (0.80)

1970–2016 �MF
small 2.84 1.34 3.54
t-stat (1.58) (0.78) (1.37)
↵gross 6.84⇤⇤⇤
t-stat (4.54)

Korajczyk and Sadka (2004) ↵espr.
net 5.40⇤⇤⇤

1967–1999 t-stat (3.59)
↵qspr.
net 4.80⇤⇤⇤
t-stat (3.17)
rgross 7.83⇤⇤⇤
t-stat (6.22)

Lesmond, Schill, and Zhou (2004) rLDV
net 0.13

1980–1998 t-stat (0.07)
rdirectnet 2.24
t-stat (1.22)
rgross 4.86 7.98⇤⇤⇤ 2.26

Frazzini, Israel, and Moskowitz (2015) t-stat (1.12) (3.01) (0.40)
1986–2013 rnet 3.51 6.52⇤⇤ -0.77

t-stat (0.80) (2.48) (-0.14)
rgross 5.64⇤⇤⇤ 3.96⇤ 15.96⇤⇤⇤

Novy-Marx and Velikov (2016) t-stat (2.68) (1.66) (4.80)
1963–2013 rnet 5.04⇤⇤ 3.36 8.16⇤⇤

t-stat (2.39) (1.44) (2.45)
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01
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(2015) is an outlier, or that non-mutual fund asset managers have different compensation schedules
for factor exposure.

B. Implementation Costs Over Time

Figure II adds a time-series dimension to the average risk price differences of Tables II–A.I.27

For each panel we plot the log return of the “on-paper” investments in each factor with a unit risk
loading minus the corresponding log return on mutual fund investments. To do this we invoke
the interpretation of Fama-MacBeth coefficients �kt as the date t return on a portfolio with a unit
loading on factor k and zero loading on all other factors. Our series is the centered rolling difference
in performance,

yk (t) =
t+6X

s=t�6

log
�
1 + �S

kt

�
� log

�
1 + �MF

kt

�
⇡

t+6X

s=t�6

��
kt. (9)

This quantity has an equivalent interpretation as the relative cost associated with real-world rather
than on-paper investment in factor strategies.

The four panels of Figure II depict factor implementation costs for each set of liquidity proxies
using the 269 stock portfolios as the on-paper return benchmark. Although magnitudes vary
slightly across specifications, the three slope series are remarkably similar for each factor. The
implementation gap is clearly rank-ordered as UMD, HML, MKT , and SMB, with large and
positive implementation gaps for UMD and HML, no implementation gap for MKT , and a small
negative implementation gap for SMB. The difference series are also affected by macroeconomic
events. All four implementation gaps fall before the end of the tech bubble of the late 1990s and rise
during the subsequent crash and/or the Great Recession of 2007–2009. One interpretation of this
feature is that factor returns are most accessible by investment managers when market liquidity is
abundant and funding constraints are unlikely to be binding.

Perhaps the most intriguing feature of Figure II is the absence of a trend in strategy implemen-
tation costs. This feature contrasts with well-documented secular declines in bid-ask spreads and
commissions since 1970 (e.g., Jones (2002) and Corwin and Schultz (2012)). An equilibrium per-
spective on the size of the asset management sector reveals why we instead obtain a stationary time
series.28 As trading technology improves and equity intermediation becomes more competitive, the
cost of trading the first dollar of a factor strategy declines. Perceived sector-level alphas increase
for factor investors, and aggregate inflows attract new entrants (as in Figure I) or contribute to the
growth of existing fund managers (as in Berk and Green (2004)). These inflows increase the scale of
factor investing, which in turn increases non-proportional transactions costs such as price impact.
In equilibrium this process continues until factor alphas fall to zero for the marginal dollar. Con-

27In the interest of brevity we suppress the corresponding plots for the matched pairs analysis.
28Augmented Dickey-Fuller tests reject the null of a unit root in implementation costs at the 0.1% significance level

in all series.
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Figure II: Rolling Performance Difference Between Mutual Funds and Stocks (� = 1)

Figures plot the rolling difference between log Fama-MacBeth cross-sectional slopes for stock port-
folios (S) and mutual funds (MF ). Each series yk (t) equals the centered rolling difference

yk (t) =
t+6X

s=t�6

log
�
1 + �S

kt

�
� log

�
1 + �MF

kt

�
,

where �kt are cross-sectional slopes from monthly regressions of excess returns rit on time-series
betas �̂ik. Each figure plots differences in slopes for which the time-series regression includes no
liquidity proxies and the first principal component for market liquidity proxies and funding liquidity
proxies. Stock portfolio slopes are estimated using all 269 portfolios described in Section III. Solid
lines depict averages of series means. NBER recessions are in gray.

(a) MKT Costs (b) HML Costs

(c) SMB Costs (d) UMD Costs
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sequently the average dollar invested in factor strategies may see no reduction in implementation
costs despite improvements in trading technology.

The conjectured equilibrium adjustment mechanism hinges on non-proportional trading costs—
omitted by studies such as Novy-Marx and Velikov (2016)—and it rationalizes industry-level de-
creasing returns to scale suggested by Pastor and Stambaugh (2012) and documented by Pastor,
Stambaugh, and Taylor (2015). It also generates a testable prediction that industry-level inflows
increase implementation costs of factor strategies.

We analyze this relationship between implementation costs, flows, and illiquidity more formally
by examining relating the cost time series with liquidity and fund flow proxies. We start by
constructing illiquidity proxies as the first principal components of market liquidity proxies and of
funding liquidity proxies, as described in Section IV.B. We also construct flow variables to capture
costs associated with fund inflows and outflows. Fund flows are the component of asset growth not
explained by returns,

flowit =
TNAit

TNAi,t�1
� (1 +Rit) . (10)

We summarize the distribution of flows with its first and second cross-sectional moments—the cross-
sectional average fund flow (MFLOW ) and the cross-sectional dispersion in fund flows (DFLOW ).
In addition to reflecting returns-to-scale, flow variables are a natural candidate for explaining
trading costs because large flows the mutual fund sector or reshuffling of assets among mutual
funds generates liquidity demands. To enhance interpretability, we normalize all right-hand-side
variables to have mean zero and standard deviation one.

Table VII reports results from a regression of ��
kt on the liquidity and fund flow proxies,

��
kt = ↵+ �MFLOWMFLOW + �DFLOWDFLOW + �MLPCML + �FLPCFL + ✏kt. (11)

We report only value-weighted results for the 269 stock portfolios because relations between costs
and liquidity proxies are quite similar for value-weighted and equal-weighted stock portfolios and
for 100 and 269 stock portfolios. Likewise to be succinct we report only implementation costs in the
baseline specification and with liquidity proxy principal components in Fama-MacBeth time-series
regression step.

We draw four lessons from Table VII.29 First, the constant terms are large and positive for
HML and UMD, confirming that the time-invariant component of implementation costs from
Equation (4) is large and positive for these factors. Second, focusing on flows, average inflows are
associated with higher implementation costs for value and momentum factors, and cross-sectional
dispersion in flows is weakly associated with lower implementation costs for these factors. We find
no or unreliable relations for market and size factors, as is expected because these costs are small

29Low R
2s throughout are attributable in large part to the noisiness of differences in monthly factor realizations

for stocks and mutual funds.
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in magnitude to begin with. We interpret these relations as suggestive evidence that (1) inflows are
expensive from a transactions-cost standpoint for funds trading value and momentum strategies,
thereby contributing to diseconomies of scale and stationary average implementation costs, and (2)
reallocation of funds within the mutual fund sector may increase other-funds’ liquidity trading (in
a Kyle (1985) sense), thereby reducing transactions costs for value and momentum traders. Third,
focusing on illiquidity principal components, market illiquidity increases implementation costs, and
particularly so for value and momentum strategies. Intuitively trading becomes more expensive
when market liquidity is low. Fourth, funding illiquidity conversely decreases implementation costs
(again most strongly for HML and UMD). We conjecture that mutual funds are insulated from
funding liquidity shocks that affect more highly levered institutional asset managers like hedge funds
(Sadka (2010) and Boyson, Stahel, and Stulz (2010), among others, discuss hedge funds’ particular
vulnerability to funding liquidity shocks), and hence mutual funds can acquire the ingredients of
factor strategies from distressed asset managers at a discount during times of strained funding
liquidity.

VII. Robustness Tests

A. Are Costs Asymmetric for Long- and Short-Factor Strategies?

The implementation gap �� reflects the difference between on-paper and real-world perfor-
mance for a factor strategy. For positive-beta funds, this difference has a clear interpretation as
implementation shortfall, but this interpretation is strained for negative-beta funds. For example a
positive �� for HML suggests that funds with negative value-factor exposure outperform on-paper
investments in growth stocks. Positive ��

HML and ��
UMD estimates therefore may signal better-

than-expected performance in growth and contrarian strategies rather than large implementation
costs in value and momentum strategies. The prevalence of dedicated “growth” mutual funds gives
credence to this alternative interpretation and motivates our examination of implementation costs
separately for funds with positive and negative factor exposures.

We adapt our Fama-MacBeth approach to accommodate different cross-sectional compensation
for positive and negative factor exposures as follows. The time-series regression step of Equation (1)
remains the same as before, whereas we adapt the cross-sectional step of Equation (2) to bifurcate
risk compensation into slopes among positive-beta and negative-beta funds and stock portfolios:

rit =
X

k

⇣
�S,+
kt 1�̂ik>0 + �S,�

kt 1�̂ik<0

⌘
�̂ik1i2S

+
X

k

⇣
�MF,+
kt 1�̂ik>0 + �MF,�

kt 1�̂ik<0

⌘
�̂ik1i2MF + ✏it, t = 1, . . . , T. (12)

The differences ��,+ ⌘ �S,+ � �MF,+ and ��,� ⌘ �S,� � �MF,� reflect implementation gaps for
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going long a factor and implementation gains for going short a factor, respectively. In estimating
Equation (12) we drop the negative-beta terms for the market factor because 99% of our mutual
funds and 100% of our stock portfolios have positive four-factor market betas.

Table VIII reports the results of this decomposition without liquidity proxies (results are similar
for principal component specifications in which these proxies are included). The first four columns
assess the implementability of factor strategies and are our focus. Here we obtain coefficients much
like those of Table II with two important differences. First, while the costs of implementing value
��,+
HML are comparable in magnitude to those of Table II, the point estimate �MF

HML is about 50%
larger in our split specification—4.2% versus 2.8% in the long sample and 3.2% versus 2.2% in
the recent sample. Conversely, the implementation costs for momentum ��,+

UMD increase from 7%
to 11%–12% in the long sample and from 5% to 10%–11% in the recent sample to completely
eliminate returns to the momentum anomaly (�MF,+

UMD ⇡ 0). We conclude that outperformance in
negative-beta strategies does not drive the low estimated compensation to value and momentum
exposure.

We obtain mixed results for implementation costs of short-factor strategies with negative on-
paper expected excess returns. For mutual funds we estimate only a 1.6% decline in average
returns associated with decreasing �HML one unit further below zero, whereas we see a decline
of 2.5%–5.6% in average returns for stock portfolios. Mutual funds thus slightly outperform on-
paper growth strategies. Conversely, mutual funds implement large-cap strategies relatively poorly,
with large negative ��,� on the order of 5%–9%. In both cases we hesitate to draw conclusions
based on these estimates because few stock portfolios have negative multifactor value betas; the
cross-sectional regression coefficients are likely to be poorly identified, and indeed, coefficients vary
substantially between 100-portfolio and 269-portfolio specifications.

By contrast, roughly half of our stock portfolios and mutual funds have negative momentum
betas. In this better-identified setting, we find no implementation costs (or gains) associated with
shorting momentum. A one-unit decline in momentum factor exposure translates into sharply lower
average returns for both real-world and on-paper portfolios. In conjunction with our positive-�UMD

results, mutual funds reap none of the upside of exploiting momentum and all of the downside of
being contrarian. This rather bleak result for typical mutual funds differs from the high premium
to momentum exposure in stock portfolios on both the long and short side, as Israel and Moskowitz
(2013) also find.

B. Do Omitted Strategies Explain High Measured Costs?

Omitted mutual fund strategies may bias our implementation cost estimates. Bias occurs if
incidental factor exposures incurred by other activities are cross-sectionally correlated with mutual
fund returns. However, the potential for meaningful contamination of cross-sectional slopes de-
creases with the power of the Carhart (1997) model for explaining time-series variation in returns.
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Table VIII: Implementation Cost Estimates in Fama-MacBeth Regressions — Asymmetric Costs

Table reports Fama-MacBeth estimates of the compensation for factor exposure for positive and
negative beta stock portfolios (second panel), domestic equity mutual funds (third panel), and
their difference (top panel). Coefficients are the average cross-sectional slopes �̄k across monthly
regressions of excess returns rit on time-series betas �̂ik,

rit =
X

k

⇣
�S,+
kt 1�̂ik>0 + �S,�

kt 1�̂ik<0

⌘
�̂ik1i2S+

X

k

⇣
�MF,+
kt 1�̂ik>0 + �MF,�

kt 1�̂ik<0

⌘
�̂ik1i2MF+✏it, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and �� is defined as �S ��MF . %�k rows indicate
the percentage of four-factor betas that are positive (left columns) or negative (right columns).
Because betas are universally positive on the market factor we drop its associated negative-beta
terms. Stock portfolio sets are described in Section III. All coefficients are annualized and reported
in percent. Standard errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios (1970 – 2016)

Positive �k Negative �k
NS MKT HML SMB UMD HML SMB UMD

�� 100 -1.08⇤ 3.54⇤⇤⇤ 0.35 12.81⇤⇤⇤ 4.00⇤⇤⇤ -5.36⇤ 1.06
t-stat (-1.71) (3.43) (0.37) (6.46) (2.99) (-1.91) (0.61)

�� 269 -1.25⇤⇤⇤ 2.57⇤⇤⇤ 0.55 11.39⇤⇤⇤ 0.86 -8.98⇤⇤⇤ 1.20
t-stat (-3.16) (2.81) (0.76) (6.38) (0.64) (-4.32) (0.72)

�S 100 6.12⇤⇤ 7.76⇤⇤⇤ 1.03 12.37⇤⇤⇤ 5.60⇤⇤⇤ 0.30 8.06⇤⇤⇤
t-stat (2.49) (4.05) (0.56) (4.61) (2.66) (0.09) (3.25)

%�S
k 100 86 82 42 14 18 58

�S 269 5.95⇤⇤ 6.80⇤⇤⇤ 1.24 10.95⇤⇤⇤ 2.46 -3.32 8.20⇤⇤⇤
t-stat (2.46) (3.70) (0.72) (4.16) (1.07) (-1.13) (3.39)

%�S
k 100 83 73 38 17 27 62

�MF — 7.20⇤⇤⇤ 4.22⇤⇤ 0.68 -0.44 1.60 5.66⇤⇤ 7.00⇤⇤
t-stat (2.98) (2.44) (0.39) (-0.17) (0.84) (2.26) (2.47)

%�MF
k 99 56 60 48 44 40 52

T 564 564 564 564 564 564 564
N̄MF 1901 1901 1901 1901 1901 1901 1901
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01

(b) Value-Weighted Stock Portfolios (1993 – 2016)

Positive �k Negative �k
NS MKT HML SMB UMD HML SMB UMD

�� 100 -1.12 3.28⇤⇤⇤ 0.32 11.37⇤⇤⇤ 4.71⇤⇤ -4.28 -0.64
t-stat (-1.40) (3.05) (0.24) (3.95) (2.49) (-1.13) (-0.31)

�� 269 -1.23⇤⇤ 2.76⇤⇤⇤ 0.19 10.09⇤⇤⇤ -0.43 -9.25⇤⇤⇤ 0.18
t-stat (-2.47) (3.15) (0.20) (3.89) (-0.36) (-3.42) (0.09)

�S 100 6.88⇤⇤ 6.48⇤⇤ 2.21 8.96⇤⇤ 5.95⇤ -0.39 5.08
t-stat (2.09) (2.21) (0.84) (2.09) (1.87) (-0.08) (1.33)

%�S
k 100 82 80 40 18 20 60

�S 269 6.77⇤⇤ 5.96⇤⇤ 2.08 7.69⇤ 0.81 -5.37 5.89
t-stat (2.07) (2.03) (0.85) (1.88) (0.27) (-1.23) (1.55)

%�S
k 100 82 71 39 18 29 61

�MF — 8.00⇤⇤ 3.20 1.89 -2.40 1.24 3.88 5.72
t-stat (2.48) (1.22) (0.80) (-0.62) (0.41) (1.27) (1.33)

%�MF
k 99 57 57 47 43 43 53

T 282 282 282 282 282 282 282
N̄MF 3299 3299 3299 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01
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For especially high R2 values in the time-series regressions, the scope for omitted variable bias is
small if coefficients are stable across specifications, as they are in our study (Oster (2017)).

We split our sample into R2 quintiles to bound potential bias arising from omitted fund strate-
gies. To perform this split, we run the time-series regressions fund-by-fund as before using the
Carhart (1997) model, and we sort funds into one of five equally-spaced bins at each date based on
the R2 of its time-series regression. Funds with high R2 have returns nearly spanned by one or more
academic strategies, and these funds have little scope for omitted strategies that might complicate
the interpretations of �MF and ��. Conversely funds with lower R2 either (1) implement academic
strategies with greater discretion and/or tracking error or (2) implement strategies that we cannot
observe. We then construct cross-sectional mutual fund factor compensation estimates for each R2

group as in Tables II–A.I.
Table IX presents results from the splits by explanatory power of the four-factor model on the

full 1970–2016 sample. The decomposition by R2 delivers two results related to omitted strategies.
First, funds with the highest R2s achieve similar performance on the market factor to the typical
mutual fund, and somewhat higher performance on all non-market factors. These differences are
not statistically distinguishable, however, nor is performance statistically distinguishable across
any set of segmented funds for any factor and first-stage specification. Second, even the funds
that most closely track the four academic factors continue to significantly underperform the on-
paper factors. Value premia are more than 1% larger among the funds most closely mimicking
academic factors, and compensation for value exposure is significantly different from zero at the
5% level for R2 quintiles four and five. Even so, the best-performing R2 segments for value still
see an implementation gap of 1%–2% relative to the stock portfolios. Returns to momentum
exposure for the highest R2 group are nearly double those of the typical mutual fund, but they
are not statistically significant in any specification, and the implementation gap for these funds
��
5 ⌘ �S � �MF

5 is different from zero at the 1% level. Taken together these findings suggest that
our results are not explained by an omitted strategies bias.

Table IX also adds color to how funds implement asset pricing factors. For the market factor,
funds with greater deviations from the academic factors typically achieve greater returns to market
beta. Small deviations from the CRSP market go a long way toward reducing implementation
costs for the aggregate market: the market factor is compensated 20–88 basis points more in
mutual funds that track the four factors less well. This finding reinforces the importance of using
omnibus approaches to measuring implementation costs that are robust to real-world departures
from the academic factors. Finally, for the non-market factors, strategy deviations from the four
factors decrease factor compensation, sometimes substantially. Funds that take on factor risk while
pursuing non-factor strategies are rarely compensated well for that risk: destroying returns relative
to an index strategy is common.
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C. Do Microcap Stocks Explain Superior On-Paper Performance?

Implementation frictions attenuate the returns to traded securities and motivate investors to
depart from prescribed factor strategies. Frictions that reduce the set of investment opportunities
are an important “shadow” implementation cost—analogous to the shadow price on a constraint on
which stocks can be included in a portfolio—faced by real-world investors and missed by existing
measures of costs. In this section we consider the role of security size in circumscribing mutual
funds’ investable universe. Security size is a natural candidate for explaining the performance gap
between on-paper and real-world factor investing because (1) the highest returns to HML exposure
are earned in the smallest stocks (Fama and French (2012), Israel and Moskowitz (2013)), and (2)
low market capitalization securities are too small to accommodate the capital of large mutual funds.

The smallest stocks or “microcaps” present especially challenging environments for asset man-
agers because of their particularly low carrying capacities and high transaction costs. Perhaps
because of the challenges facing potential arbitrageurs in this space, the majority of academic
anomalies only exist in these “dusty corners” of the stock market (Hou, Xue, and Zhang (2017)).
To evaluate the effect of microcaps on our cost estimates, we exclude microcaps from our set of
stock portfolios. We follow Fama and French (2008) and Hou, Xue, and Zhang (2017) in defining
microcaps as stocks with market capitalization less than the 20th percentile of NYSE market capi-
talization, and we implement this filter by dropping the smallest-size portfolios from double-sorted
size-value, size-beta, size-prior return, and size-Amihud portfolios. This exclusion eliminates a fifth
of the portfolios but only 3% of market capitalization (Fama and French (2008)).

Table X reports Fama-MacBeth estimates of factor premia on this set of stock portfolios. We
present only value-weighted results because we are interested in shaping our stock portfolios to
reflect the investible universe. Our main finding is that microcaps indeed explain some of the
measured performance attrition for value and momentum strategies, but not enough to close the
measured implementation gap. As a useful placebo, the gap on replicating performance on the
value-weighted market changes by at most a few basis points.

In the 1970–2016 sample, both value and momentum compensation are about 1% smaller in
the stock portfolios in which microcaps are excluded. This difference persists for value in the more
recent sample, echoing Fama and French (2012) and Israel and Moskowitz (2013), but it roughly
halves for momentum. Nevertheless, the performance gap between sans-microcap stock portfolios
and mutual funds remains economically large and statistically robust. If mutual funds indeed cannot
invest in microcap stocks, this narrowing of the investible universe explains (at most) 23%–27% of
the implementation gap for value and 17%–18% of the implementation gap for momentum.
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Table X: Implementation Cost Estimates in Fama-MacBeth Regressions — Microcaps Excluded

Table reports Fama-MacBeth estimates of the compensation for factor exposure in value-weighted
stock portfolios in the baseline regressions (top panel), regressions with liquidity principal com-
ponents (bottom panel). Coefficients are the average cross-sectional slopes �̄k across monthly
regressions of excess returns rit on time-series betas �̂ik,

rit =
X

k

�S
kt�̂ik1i2S +

X

k

�MF
kt �̂ik1i2MF + ✏it, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and �� is defined as �S��MF . First-stage regression
estimates in the second panel include these factors, the first principal component of market liquidity
proxies, and the first principal component of funding liquidity proxies. Liquidity proxies and stock
portfolio sets are described in Section III, with the important distinction that all portfolios with the
smallest market capitalization quintile are excluded in the NS = 80 specifications. All coefficients
are annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics
are reported in parentheses.

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

��
baseline 80 -0.40 3.32⇤⇤⇤ 0.33 5.85⇤⇤⇤ -0.15 3.06⇤⇤⇤ -0.59 4.26⇤⇤⇤
t-stat (-1.38) (4.17) (0.51) (4.38) (-0.38) (3.47) (-0.74) (2.67)

�S
baseline 80 6.58⇤⇤⇤ 6.07⇤⇤⇤ 1.58 7.99⇤⇤⇤ 7.67⇤⇤ 5.25⇤ 1.62 5.54
t-stat (2.72) (3.32) (0.99) (3.41) (2.33) (1.89) (0.72) (1.47)

�S
baseline 100 6.62⇤⇤⇤ 7.06⇤⇤⇤ 0.94 9.23⇤⇤⇤ 7.43⇤⇤ 6.18⇤⇤ 1.89 5.96
t-stat (2.75) (3.81) (0.55) (3.90) (2.27) (2.20) (0.77) (1.58)

��
PCs 80 -0.41 3.48⇤⇤⇤ 0.23 5.97⇤⇤⇤ -0.11 3.34⇤⇤⇤ -0.82 5.26⇤⇤⇤
t-stat (-1.38) (4.28) (0.36) (4.42) (-0.27) (3.80) (-1.00) (3.11)

�S
PCs 80 6.58⇤⇤⇤ 6.27⇤⇤⇤ 1.39 7.95⇤⇤⇤ 7.72⇤⇤ 5.20⇤ 1.44 5.53
t-stat (2.73) (3.42) (0.87) (3.39) (2.36) (1.87) (0.63) (1.47)

�S
PCs 100 6.56⇤⇤⇤ 7.49⇤⇤⇤ 0.92 9.28⇤⇤⇤ 7.45⇤⇤ 6.21⇤⇤ 1.91 5.96
t-stat (2.73) (3.99) (0.54) (3.93) (2.29) (2.19) (0.78) (1.58)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01
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VIII. Conclusion

Existing methods for assessing the implementation costs of financial market anomalies use
proprietary trading data for single firms or market-wide trading data combined with parametric
transactions cost models. We propose two new methods (an extension of the Fama-MacBeth
approach, and a matched pairs approach) to estimate implementation costs using only returns data
from stocks and mutual funds. Doing so frees us from the requirement of specifying factor trading
strategies and transaction costs models that may be incomplete or misspecified. Moreover, the ready
availability of returns data for a large number of investment managers enables the examination of
factor implementation costs for a large investment management universe.

Both of our proposed approaches demonstrate that mutual funds are generally poorly compen-
sated for exposure to common risk factors. Our estimates based on Fama-MacBeth regressions
imply that implementation costs erode almost the entirety of the return to value and momentum
strategies for typical mutual funds, but have little effect on market and size factor strategies. Our
estimates based on matched pairs suggest comparable performance attrition for value and momen-
tum strategies, and they differ in revealing high costs to investing in small-stock characteristic
portfolios.

Taken together, these results paint a sobering picture of the real-world returns to the most
important financial market anomalies. We agree with Lesmond, Schill, and Zhou (2004)’s analysis
that momentum profits in particular may be out of reach for the typical asset manager. In this
respect markets may be efficient from the perspective of representative mutual funds, even if outlier
funds see a very different picture of risk and return net-of-costs (e.g., the asset manager of Frazzini,
Israel, and Moskowitz (2015)).

Our approaches are readily extended to a wide range of candidate return factors provided that
these are reflected in mutual fund exposures. Common anomalies like size, value, and momen-
tum clearly meet this requirement. In future research we will apply these tools more broadly to
investigate whether other inhabitants of the factor zoo truly can survive in the wild.
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A. Mutual Fund Filters

We clean the CRSP mutual fund database at the individual fund and fund group levels. We
first clean at the lowest level of aggregation to deal with missing and erroneous data, and then we
filter our sample based on fund group-level information.

Cleaning Procedures at the Fund Level As a first step, we fill missing fund names using
the nearest observation with a non-missing fund name within each CRSP fund number group. Of
the 1,859,702 observations in the fund summary file, we assign fund names for 19,460 observations
and remove 242 observations without recoverable names. We then flag fund-dates with reporting
frequencies less than monthly. As discussed by Elton, Gruber, and Blake (2001) and Fama and
French (2010), about 15% of funds before 1983 report returns only annually, and we mark as missing
the fund returns for which neither adjacent observation has a nonzero value. These annual reporters
comprise 1.71% of fund-month observations.

Next we construct current and lagged total net asset (TNA) values for value-weighting fund
returns within and across fund groups. Nearly a tenth of total net asset (TNA) values are undefined,
and we interpolate TNA values to avoid discarding such a large fraction of the data. Before
interpolating we set to missing TNA values that arise because of recording errors or bottom coding.
As noted in the CRSP Mutual Fund Database documentation, entries of $100,000 denote TNAs of
less than or equal to this value. Although not documented, entries of $1,000 seem to serve a similar
role. We eliminate bottom-coded TNAs by setting to missing values less than or equal to $100,000
USD. Likewise, we set to missing TNA values exceeding $1 trillion USD, as no single fund has ever
reached this value. Imposing these filters, 14.9% of TNA observations are missing or flagged as
missing.

We interpolate TNAs in three steps. First, we compute a “predicted” TNA by multiplying
the last available TNA value by cumulative returns since that date. This predicted TNA value
misses inflows and outflows from the fund. Second, where available, we reconcile predicted TNAs
and the next filled TNA observation. The ratio of true TNA to predicted TNA (minus one) is a
discrepancy associated with fund inflows or outflows. We assume flows are constant between known
TNA values, and we multiply predicted TNA by (1 + discrepancy)s/�t, where s is the number of
months since the last known TNA value and �t is the number of months between TNA values.
We assume a discrepancy of zero if there is no next known TNA. In the third step we run the first
and second steps backward to use return data to fill in TNAs before the first reported TNA value.
Given the interpolated values, we again set as missing any TNA values smaller than $100,000 or
greater than $1 trillion. The filling and cleaning procedures reduce the number of missing TNA
values to 2.8% of the data. Lagging the TNA value by one month increases the share of missing
observations to 3.6% of data.

Share classes differ from one another in their fee structures, and we account for this variation
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before aggregating across share classes within a fund. We convert net returns to gross returns
by adding to net returns the annual expense ratio divided by 12, following Fama and French
(2010). The fund summary file has missing or non-positive expense ratios for 16.9% of observations,
however, and we take several steps to fill in the missing data. First, as before, we fill missing expense
ratios with the nearest observation with a non-missing value within each CRSP fund number group.
This operation reduces the number of missing expense ratios to 8.4% of the summary data. We then
merge the monthly return data with the summary data by fund number and calendar quarter. This
merge assigns expense ratios to 76.2% of fund-month observations. For unmerged observations,
we merge again on fund number and year, where we take the average expense ratio within the
fund number-year in the fund summary file. This operation boosts the number of fund-month
observations with an expense ratio to 88.5% of the data or 5,774,820 observations. We then drop
the 89 observations with expense ratios exceeding 50% as these are almost certainly data errors.

We then filter out extreme return observations resulting from data errors. For example, we
do not wish to include the recorded return of 533% on the Deutsche Equity 500 Index Fund
in September 1997. Berk and van Binsbergen (2015) and Pastor, Stambaugh, and Taylor (2015)
address these errors in part using external Bloomberg and Morningstar databases. We take a simpler
approach to eliminate errors. We drop the 23 observations with reported returns exceeding one (i.e.,
100%) in absolute value. This approach is inspired by the shape of the tail of extreme returns in the
data depicted in Figure A.I: the frequency of extreme returns decays roughly exponentially until
|r| = 100%, with a smattering of randomly spaced returns beyond this value. These observations
appear to come from a different distribution, and for this reason, we classify them as likely errors.

Because our analysis concerns mutual funds, we filter out exchange-traded funds (ETFs),
exchange-traded notes (ETNs), and variable annuity underlying (VAU) funds. To do this, we
discard any observations for which et_flag indicates an ETF or ETN or vau_fund indicates a VAU
at any time in a fund’s life. These exclusions total 9.1% of observations.

Aggregation into Fund Groups Having accounted for the salient variation across share classes,
we identify share class names of the same fund by extracting prefixes of CRSP fund names from
the fund summary file. Suffixes represent different share classes of the same fund, e.g., “investor”
and “admiral” shares of a Vanguard fund. We assign all funds with the same prefix to a unique
fund group.

We take the following steps to obtain fund name prefixes. First, we cut off all fund names after
a semicolon. Names after the semicolon are exclusively class names. We add to this dictionary of
possible class names the Arabic and Roman numerals 1–10, letters A–Z, and a set of known share
class markers, inv, inst, investor, institutional, trust, corp, advisor, admin, part, restricted, retail,
shares, adv, common, series, prim, and primary. Although handling semicolons is straightforward,
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Figure A.I: Distribution of Log Fund Returns

Figure plots the distribution of the log of absolute monthly mutual fund returns. We truncate the
plot to �1 on the left to maintain resolution on the extreme returns on the right. The dashed line
represents of cutoff at |r| = 100%.
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forward slashes—the other class-name delimiter used in CRSP—require more care.30 For example,
fund names include “Franklin/Templeton” and “M/M” (money market), so “/” does not serve only as
a delimiter. As a preliminary step, we replace forward slashes in T/F, T/E, M/M, L/S, Long/Short,
S/T, and L/T with backslashes in fund names. Then we mark all fund names with a “/” for which
(1) we have not already eliminated share classes under the semicolon rule and (2) the post-slash
string is in the set of available suffixes. These are the set of funds with class information, and we
clip the post-slash string for these elements. Finally we take the unique prefixes as our set of fund
names sans class information. This mapping reduces the 61,734 surviving unique fund IDs in the

30We deviate from Berk and van Binsbergen (2015)’s handling of fund subclasses because they do not properly
handle forward slashes. From their page 9:

In most cases, the only difference among subclasses is the amount of expenses charged to investors, so
simply including them as separate funds would artificially increase the statistical significance of any
identified effect. For funds that appear in the CRSP database, identifying subclasses is a relatively easy
process. CRSP provides a separator in the fund name in the form of either a colon (“:”) or
a slash (“/”). Information after the separator denotes a subclass.

We attribute the difference between “colon” and “semicolon” to a minor typographical error, as the associated data
cleaning appendix is correct. However, the claim about forward slashes is incorrect in both sources because forward
slashes often serve as abbreviations or concatenations rather than as delimiters, so we must devise new rules for
separating out fund subclasses.
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CRSP monthly returns file to 33,538 unique fund groups. Of the 6,522,095 observations in the
monthly return file, only 4,298 of these are not assigned a fund group, and these observations are
dropped.

We use fund names rather than CUSIP as our unique identifier to capture funds that have
identical or near-identical investments but different CUSIPs or CRSP portfolio numbers. Fund
names also have fewer missing values than either CUSIP (11.1% missing) or portfolio number
(27.8% missing) identifiers. This matching on name prefix also mimics the behavior of CRSP’s
Class Group code designed for this purpose, but which only becomes available in August 1998. For
the observations for which class groups are defined, matching on name prefix gives 44,218 unique
codes, whereas matching on both name prefix and class group gives 45,484 unique pairs. The
overlap between methods is quite good despite the simplicity of our prefix approach.

Cleaning Procedures at the Fund Group Level We construct fund group returns and total
net assets by taking a weighted average of the returns and a sum of TNAs across component fund
IDs. The return weights are one-month lagged TNAs. We retain observations for which the lagged
TNA is undefined but the fund group only has one fund ID, that is, the one fund ID has an effective
weight of 100%. Fund group TNAs are the sum of current TNA values for all fund IDs for which
the TNA is defined. Aggregating funds across share classes delivers 3,693,705 monthly fund-group
observations.

As Fama and French (2010) note, “incubation bias arises because funds typically open to the
public—and their pre-release returns are included in mutual fund databases—only if the returns
turn out to be attractive.” We follow their approach to countering incubation bias by keeping
observations only after a fund group achieves a TNA of at least $10 million (in December 2016
dollars).31 We retain data from funds that later drop below this threshold to avoid introducing
a selection bias. Dropping fund groups that never achieve a $10 million TNA eliminates 5.5% of
fund group-month observations. Dropping observations from potential incubation periods before
the $10 million threshold is achieved eliminates another 7.8% of the sample.

Next, we filter fund groups based on fund name and objective. We first exclude all funds with
names containing ETF, ETN, exchange-traded fund, exchange traded fund, exchange-traded note,
exchange traded note, iShares, and PowerShares (not case sensitive) as a redundant filter on top of
the CRSP-based ETF/ETN filter. These exclusions eliminate 10,823 observations. We then exclude
any funds with names that have clear international or non-equity connotations: international, intl,
bond, emerging, frontier, rate, fixed income, commodity, oil, gold, metal, world, global, China,
Europe, Japan, real estate, absolute return, government, exchange, euro, India, Israel, treasury,
Australia, Asia, pacific, money, cash, yield, U.K., UK, kingdom, municipal, Ireland, LIBOR, govt,
obligation, money, cash, yield, mm, m/m, diversified (but not diversified equity), and short term

31Our inflation index is the Consumer Price Index for All Urban Consumers (CPIAUCSL) series provided by the
Federal Reserve Bank of St. Louis’ FRED database.
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(not case sensitive). This filter complements our requirement that a fund have a domestic equity
“ED” CRSP objective code.32 These filters reduce the number of valid funds from 22,342 to 7,346,
and the corresponding number of non-missing return observations decreases to 1,088,834 for the
entire December 1961 to December 2016 CRSP Mutual Fund Database.

Lastly, we restrict the set of funds to those with at least two years of monthly data in our
1970–2016 sample period. This filter reduces our sample to 7,331 mutual funds with 1,071,818
non-missing return observations. Summary statistics for this sample are reported in Table I.

B. Bias of Symmetric Fama-MacBeth Regressions with General hit

If instead we were to include the loadings on the liquidity proxies in Equation (2), the second-
stage regression becomes

rit =
X

k

�kt�̂ik1i2S+
X

k

�MF
kt �̂ik1i2MF +

X

l

�lt�̂il1i2S+
X

l

�MF
lt �̂il1i2MF +✏it. t = 1, . . . , T. (13)

From the conjectured return process of Equation (5), �̂S
t = �S

t , �̂�
kt = ⌘̄ + cov((⌘i�⌘̄)�i,�i)

var(�i)
, and

�̂�
lt = ⌘lt. The problem with this approach is that the �̂�

lt term drops the time-varying part of ⌘it,
so we can no longer cleanly attribute time-varying costs to each return factor. Moreover the logic
of mutual funds scaling down strategies in the face of high costs applies to ⌘it rather than to ⌘i.

To resolve the first issue we need to decompose ⌘st into factor-specific parts. The sum of all
time-varying costs to factor investing using mutual funds is

TV Cit ⌘
X

l

⌘lt�il =
X

l

⌘lt

 
X

k

�ikl�ik

!
. (14)

Regressing total time-varying costs on �is decomposes costs into factor-specific time-varying parts,

TV Cit =
X

t

X

k

⌘kt�ik1t + ✏it. (15)

This regression can be interpreted as rotating the transaction cost space onto the return factor
space. However, this rotation is imperfect because of cross-sectional variation in �is. To see why
dispersion in �i is problematic, consider a single coefficient estimate in a one-return factor case of
Equation (15),

⌘̂t =
cov (

P
l ⌘lt�il,�i)

cov (�i)
=
X

l

⌘lt�̄l +
X

s

cov (�i⌘lt (�il � �̄l) ,�i)

cov (�i)
. (16)

32The CRSP objective code unifies Wiesenberger objective codes for 1962–1993 data, Strategic Insight objective
codes for 1993–1998 data, and Lipper objective codes for 1998–2016 data.
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The first term represents the average exposure to liquidity or performance factors multiplied by
the factors’ time-t realizations. This is the term of interest, but instead we identify this term plus
a cross-sectional bias term. Focusing on the bias for each l, we might expect higher-than-average
cost-factor sensitivities �il > �̄l to be associated with lower betas if firms are risk averse. Although
we would expect betas to be negatively associated with total costs per unit of risk exposure ⌘it, it
is not clear what relation the time-varying component alone should have with betas. Because of
this ambiguous sign and the additional complexity of this approach, it is preferable not to include
the liquidity exposures in the cross-sectional regression step.

C. Spanning Variation in ⌘ Using Many Liquidity Proxies

Including more covariates increases the likelihood that we span ⌘it by including all salient
liquidity proxies. At the same time, including additional highly correlated cost proxies may overfit
the first-stage regression and deliver nonsensical cross-sectional slopes in Equation (2).

Sparse regression techniques offer a solution to this challenge. We supplement the standard
first-stage regression with a Lasso or l1-penalized regression (Tibshirani (1994)). The least-squares
minimization problem of Equation (6) adds an additional term penalizing the liquidity coefficients,

min
�,�̃

1

Ti

X

t

 
rit �

X

k

fkt�ik �
X

l

⌘̃lt�̃il

!2

+ 

 
X

k

!k |�ik|+
X

l

!l |�̃il|
!
, (17)

where  represents a penalty term for coefficients different from zero, and !k and !l represent
additional relative penalties explained below. The problem reduces to least squares when  = 0;
otherwise, liquidity coefficients are compressed toward zero. Note that we do not require a penal-
ization in the cross-sectional step because the second-stage regression omits liquidity proxies. As
before, we normalize all liquidity proxies to give them similar scales and an equal chance of entering
the Lasso regression. We interpolate missing elements of the VXO/TED innovation series using
their matrix-completed values �0

V XOgML and �0
TEDgFL from the PCA-ALS procedure previously

described.
Lasso simultaneously prevents overfitting in the time-series regressions by shrinking coefficients

and selects covariates by zeroing out coefficients that would otherwise be close to zero. Both
features facilitate the use of many liquidity proxies even when a mutual fund is relatively short-
lived. Moreover, we no longer need to choose which measure(s) best approximate the costs faced
by each fund, and indeed, different liquidity measures may be more salient for different mutual
funds. First-stage penalization also knocks out spurious strategy loadings for funds that take on
risk exposures unintentionally—a small non-zero loading taken en route to implementing a different
strategy will be zeroed out.

The original Lasso implementation sets !k = !l = 1 for all k and l. Unfortunately Lasso is not
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guaranteed to deliver consistent estimates of � and �, and it does not have the “oracle property”
by which the variable selection step identifies the correct model and estimates converge at the
optimal rate. By contrast, Zou (2006)’s adaptive Lasso has these desirable features, which enables
us to construct confidence intervals for cross-sectional slopes as though the first-stage regression
were OLS. Adaptive Lasso differs from Lasso in placing higher penalties on parameters with little
explanatory power by setting ! =

����̂
���
��

. Our penalization weights are OLS �̂s (as in Zou (2006)),
and our penalty exponent is � = 1.

The obvious concern when using Lasso is the selection of the penalization parameter . Follow-
ing standard practice (e.g., Bühlmann and van de Geer (2011), Hastie, Tibshirani, and Wainwright
(2015)), we use k-fold cross-validation to select . Cross-validation works as follows. First, select
a candidate value of m and partition the sample into k equal “folds”; in our case, we choose the
MATLAB default of k = 10. Next, for each fold, estimate the model on the set difference of the full
sample and the partition. Then calculate the mean-squared error of the estimated model on the
fold that was set aside. This procedure provides k pseudo-out-of-sample (POOS) R2s as a function
of m. Finally, repeat this procedure for a range of m, and select  as the value m that maximizes
the average POOS R2. Intuitively this process tames overfitting by selecting the model with the
best out-of-sample predictive properties.33

Table A.I presents results using the adaptive Lasso first stage described by Equation (17). Most
importantly, the coefficients on �� are of similar size and statistical significance as they are in the
preceding two tables. Using the adaptive Lasso results in one key change from the prior table,
however: the point estimate for UMD compensation for mutual funds becomes negligible in the
full sample and negative in the recent sample. This feature is consistent with mutual funds earning
compensation for momentum exposure only to the extent that momentum also embeds liquidity risk.
By including a rich set of liquidity and liquidity risk proxies rather than two principal components,
we allow this source of compensation to be spanned in the first stage, thereby effectively kicking out
UMD as a priced factor on the set of mutual fund test assets. Because �MF

UMD is an upper bound
on mutual fund compensation for UMD exposure, Table (A.I) implies the absence of momentum
premia for the typical mutual fund.

33Remarkably, Chetverikov, Liao, and Chernozhukov (2017) demonstrate that time-series betas estimated using
the cross-validated Lasso converge to the true betas at rate

p
n, up to a negligible log term. Because the convergence

rate is comparable to that of OLS, using (adaptive) Lasso in the first stage does not exacerbate the errors-in-variables
problem endemic to Fama-MacBeth regression. We therefore follow standard practice in taking betas as “known”
inputs into the Fama-MacBeth cross-sectional regressions and adjust standard errors for heteroskedasticity and serial
correlation.
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Table A.I: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity Lasso

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes �̄k across monthly regressions of excess returns
rit on time-series betas �̂ik,

rit =
X

k

�S
kt�̂ik1i2S +

X

k

�MF
kt �̂ik1i2MF + ✏it, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and �� is defined as �S � �MF . First-stage
regression estimates include these factors and all market and funding liquidity proxies in an adaptive
Lasso regression with portfolio-specific penalty parameters i chosen by 10-fold cross validation.
Liquidity proxies and stock portfolio sets are described in Section III. All coefficients are annualized
and reported in percent. Standard errors are Newey-West with three lags. t statistics are reported
in parentheses.

(a) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.04 5.64⇤⇤⇤ 1.90⇤ 8.78⇤⇤⇤ 0.25 3.84⇤⇤⇤ 1.96 6.89⇤⇤⇤
t-stat (-0.09) (6.24) (1.88) (5.72) (0.34) (3.25) (1.39) (3.28)

�� 269 0.40 4.93⇤⇤⇤ 2.19⇤⇤ 9.95⇤⇤⇤ 1.05 2.35⇤ 2.14 8.14⇤⇤⇤
t-stat (0.79) (4.84) (2.02) (6.44) (1.55) (1.95) (1.46) (3.82)

�S 100 6.88⇤⇤⇤ 7.95⇤⇤⇤ 3.11 9.64⇤⇤⇤ 8.07⇤⇤ 5.41⇤ 4.25 6.44⇤
t-stat (2.85) (4.12) (1.58) (3.97) (2.46) (1.89) (1.51) (1.65)

�S 269 7.33⇤⇤⇤ 7.24⇤⇤⇤ 3.41⇤ 10.81⇤⇤⇤ 8.88⇤⇤⇤ 3.91 4.43 7.69⇤
t-stat (3.06) (3.41) (1.66) (4.41) (2.74) (1.24) (1.54) (1.95)

�MF — 6.93⇤⇤⇤ 2.30 1.22 0.86 7.83⇤⇤⇤ 1.57 2.29 -0.45
t-stat (2.85) (1.18) (0.67) (0.33) (2.41) (0.51) (0.92) (-0.11)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01

(b) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016

NS MKT HML SMB UMD MKT HML SMB UMD

�� 100 -0.10 5.29⇤⇤⇤ -0.62 8.25⇤⇤⇤ -0.28 4.64⇤⇤⇤ -0.34 6.12⇤⇤⇤
t-stat (-0.3) (6.38) (-0.87) (5.72) (-0.68) (4.89) (-0.34) (3.29)

�� 269 -0.03 3.68⇤⇤⇤ -0.75 7.86⇤⇤⇤ 0.19 3.21⇤⇤⇤ -1.06 6.68⇤⇤⇤
t-stat (-0.09) (4.87) (-1.25) (5.77) (0.75) (4.32) (-1.30) (3.67)

�S 100 6.82⇤⇤⇤ 7.59⇤⇤⇤ 0.59 9.11⇤⇤⇤ 7.54⇤⇤ 6.21⇤⇤ 1.95 5.67
t-stat (2.83) (3.94) (0.34) (3.83) (2.32) (2.10) (0.78) (1.48)

�S 269 6.90⇤⇤⇤ 5.98⇤⇤⇤ 0.47 8.72⇤⇤⇤ 8.02⇤⇤ 4.77 1.23 6.23⇤
t-stat (2.88) (3.14) (0.27) (3.71) (2.48) (1.55) (0.50) (1.65)

�MF — 6.93⇤⇤⇤ 2.30 1.22 0.86 7.83⇤⇤ 1.57 2.29 -0.45
t-stat (2.85) (1.18) (0.67) (0.33) (2.41) (0.51) (0.92) (-0.11)

T 564 564 564 564 282 282 282 282
N̄MF 1901 1901 1901 1901 3299 3299 3299 3299
⇤p < .10, ⇤⇤ p < .05, ⇤⇤⇤ p < .01
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D. Match Quality Adjustments and Reporting for Matched Pairs

A. Bias Adjustment for Imperfect Matches

Characteristics are not perfectly matched between stocks and mutual funds, and match char-
acteristics may differ systematically between stocks and matched mutual funds. We follow Imbens
and Rubin (2015)’s guidance to bias correct our matching estimator using a linear regression of
outcomes on mutual fund (“control-group”) attributes.34 For each date t, we bias-adjust mutual
fund returns using a factor model for returns in which the estimated betas serve as risk exposures,

rit = ↵i +
X

k

�kt�̂ik + ✏it, i 2 MF, t = 1, . . . , T. (18)

Despite its matched pairs origin, Equation (18) is our usual Fama-MacBeth cross-sectional regres-
sion on the set of mutual funds.

Using Equation (18), we shift our estimate of mutual fund returns by the difference in betas
between matched stocks and mutual funds multiplied by the time t return to a unit of beta exposure,

1

3

X

j2⌦(i)

X

k

�kt
�
�S
ik � �MF

jk

�
, (19)

where ⌦ (i) denotes the three-element set of mutual funds matched to stock i. In effect, bias-
correction marries the matched pairs approach with the factor model approach of Section IV. By
contrast with the cross-sectional analysis of Section IV, however, these adjustments are “local”
because differences in betas between stocks and matched mutual funds are small by construction.

B. Evaluation of Match Quality

Figure A.II plots the distribution of each matching variable (�) for unmatched stocks, matched
stocks, matched mutual funds, and all mutual funds. We see immediately that stocks have more
variable factor exposures than mutual funds, so the most extreme stocks on either side of the
beta distributions cannot be matched to mutual funds. Of stocks that are matched, their beta
distributions line up well with those of mutual funds: there are no systematic biases at any point
in the distribution of stock betas, as evidenced by the absence of over- and undershooting of the
red line by the yellow-dashed line. Matching in the tails of the stock beta distributions is achieved
by oversampling relatively extreme mutual funds. This feature manifests as a counterclockwise
rotation of the purple quantile plot for all mutual funds to achieve the yellow-dashed quantile plot
of matched mutual funds.

Table A.II quantifies match quality depicted in Figure A.II. All quintiles and factors have highly

34Bias-correction is optional in univariate matches, but it considered to be best practice. It is required to correct
for a “large-sample bias” for multivariate matches (Abadie and Imbens (2011)).
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similar means and standard deviations between matched stocks (SM ) and matched mutual funds
(SU ). All factors are matched well in quintiles one through four, and overall match percentages are
high (79%–92%). Match quality deteriorates slightly in the most extreme quintiles, and particularly
so in quintile five of market capitalization (the smallest stocks). Imperfect matching in the extreme
quintiles also manifests in the imbalance between the number of matched stocks and matched mutual
funds. For example, the typical matched mutual fund in the smallest stock group is used more than
five times: 1,295,528 stock-months are matched to three of 771,365 unique mutual fund-months.

The drawback to matching on a single variable is that other factors determining returns may
differ wildly between stocks and matched mutual funds. Figure A.III confirms this issue by plotting
bivariate distributions of four-factor betas when matches are constructed based only on �MKT .
Perfect matching between stocks and mutual funds would appear visually as complete coverage
of the green regions by the red region. Instead we see green clouds surrounding the red region,
indicating that matched mutual funds do not cover the same range of non-market betas as matched
mutual funds. Focusing on the third column of the first row as an example, we see that matched
stocks tend to have significantly larger �SMB than matched mutual funds, so the existence of a size
premium would create a positive wedge between the returns on mutual funds and stocks.

Table A.III quantifies these visual disparities. Taking the same (1,3) coordinate, we see that
the typical matched-stock size betas are consistently 0.4–0.6 larger for stocks than for mutual
funds when entities are matched exclusively on market beta. Such differences are rife throughout
the table. An apples-to-apples comparison of stocks and mutual funds thus requires multivariate
matching if the true model of average returns has factors other than the market.

Figure A.IV and Table A.IV report match quality when matching uses all four factor betas and
a wider caliper of 1�. The figure clarifies the trade-off between high multivariate match quality and
sample coverage. The blue region of unmatched stocks is quite small in the univariate matches, but
it visually dominates here. Likewise the matching along any single dimension is not quite as good
as in Figure A.II, as the red and green regions of matched mutual funds and matched stocks do
not perfectly coincide. However, these regions are much more similar than in the previous figure,
and the differences between matched stock and matched mutual fund betas are small enough to be
tamed by our local bias-adjustment methodology.

Table A.IV quantifies this trade-off. Just over half of the sample is matched (the size of the blue
region in Figure A.IV overstates the sparse-matching problem because the red and green regions
are more densely populated). The distributions of matched stocks and matched mutual funds are
mostly comparable, but they differ in the tails as more extreme stock betas are matched with less
extreme mutual fund betas within our generous caliper. The table confirms the necessity of bias
adjustment for this high-dimensional match.
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Figure A.III: Comparison of Samples on All Variables — Univariate � Matching on �MKT

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using the single match variable �MKT , and plots
depict all bivariate distributions of Carhart (1997) four-factor betas. Stocks are considered
“matched” at date t if and only if they have at least three mutual funds within a Mahalanobis
distance of 0.25� of the matching variable during month t. Covariances for the Mahalanobis
metric are calculated across all stocks and mutual funds and all dates. To enhance visual clarity
we clip the distribution of betas at the 2.5 and 97.5 percentiles and plot every 25th data point for
unmatched and matched stocks. We plot every 75th data point for matched mutual funds because
each matched stock has three associated mutual funds in its approximating set. Diagonal
elements plot univariate histograms on a single beta rather than bivariate distributions.
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Figure A.IV: Comparison of Samples on All Variables — Multivariate � Matching

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using all Carhart (1997) four-factor betas, and
plots depict all bivariate distributions of these betas. Stocks are considered “matched” at date t if
and only if they have at least three mutual funds within a Mahalanobis distance of 1� of the
matching variables during month t. Covariances for the Mahalanobis metric are calculated across
all stocks and mutual funds and all dates. To enhance visual clarity we clip the distribution of
betas at the 2.5 and 97.5 percentiles and plot every 25th data point for unmatched and matched
stocks. We plot every 75th data point for matched mutual funds because each matched stock has
three associated mutual funds in its approximating set. Diagonal elements plot univariate
histograms on a single beta rather than bivariate distributions.
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