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Abstract

Evidence of structural breaks in the historical return distribution raises concerns
about averaging a long series to estimate the current equity premium. Data before
a break are relevant if one believes that large shifts in the premium are unlikely or
that the premium is associated, to some degree, with volatility. The equity excess-
return series over two centuries exhibits multiple structural breaks, the latest of which
occurs early in the current decade. The average excess return since that break is nearly
10%, but incorporating prior beliefs as described above produces substantially lower
estimates of the equity premium.
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1. Introduction

One of the most important but elusive quantities in finance is the equity premium, the
expected rate of return on the aggregate stock market in excess of the riskless interest rate
(the expected “excess return”). It is well known that estimates of the equity premium based
on historical data can vary widely, depending on the methodology and the sample period, and
the imprecision in such estimates can figure prominently in inference and decision making.
Péastor and Stambaugh (1998) conclude, for example, that seven decades of data produce
an equity-premium estimate whose imprecision typically accounts for the largest fraction of
uncertainty about a firm’s cost of equity.! Long histories offer the prospect of increased
precision, and researchers have constructed and analyzed series of U.S. equity returns and
interest rates that begin early in the nineteenth century (e.g., Schwert (1990), Siegel (1992),
and Goetzmann and Ibbotson (1994)). Finance practitioners and academics often elect
to rely on more recent data, however, motivated in part by concerns that the probability

distribution of excess returns changes over time, experiencing shifts known as “structural

breaks.”

Discarding data before a suspected break reduces the risk of contaminating an estimate
of the equity premium with data drawn from a different distribution, possibly having a
different mean. That practice seems prudent, but it also encounters the reality that, other
things equal, shorter histories yield less precision. The decision to discard data no doubt
depends on one’s confidence that a break occurred, but it seems that additional judgment
must play a role. Suppose, to take an extreme example, that one is confident a shift in
the equity premium occurred just a month ago. Discarding virtually all of the historical
data on equity returns would certainly remove the risk of contamination by data drawn
from a pre-break distribution, but it hardly seems sensible in estimating the current equity
premium. Even if those data are thought to be drawn from a different distribution, it still
seems likely that many would judge them to be at least somewhat informative about the
current premium. After all, the historical data are still equity returns (as opposed to, say,
rainfall data), and judging them to be completely uninformative about the current equity

premium would surely be an extreme view.

As time passes since the most recent break, discarding all of the pre-break data seems less

radical, but we suggest that similar reasoning still applies. The data before the break offer a

L“Mispricing” uncertainty about whether a factor-based model correctly prices the firm’s equity can
account for a larger fraction, but generally only in cases where the mispricing uncertainty is quite large in
economic terms.



tradeoff between imprecision and contamination. Completely discarding the pre-break data
is appropriate only when one believes it likely that the break shifted the distribution to such
a degree that the pre-break data on equity returns are no more useful than any arbitrarily
chosen data set. For those with less extreme beliefs, the pre-break data provide at least
some information about the current equity premium, and this study explores methods for

incorporating that information.

A shift in equity volatility can occur at a structural break. For example, maximum-
likelihood estimation identifies a break near the end of 1991. For the 1992-96 subperiod,
the standard deviation of monthly excess market returns is less than 9% (annualized), as
compared to about 17% over the entire 1834-1996 period analyzed in this study. Does this
recently low equity volatility have implications for the current equity premium? Suppose
one believes that, across subperiods separated by structural breaks, there is at least some
association between the equity premium and volatility. Then an observation that recent
volatility is low by historical standards would tend to lower one’s estimate of the current
equity premium, relative to an estimate constructed in the absence of such a belief. Of
course, the observation that recent volatility is low by historical standards requires the use
of data from earlier subperiods. Given a belief in some degree of a premium-volatility link,
each earlier subperiod’s ratio of equity premium to variance, its “price of risk,” provides
some information about the current price of risk and, thereby, about the current equity
premium. Thus, a belief that the equity premium has a positive association with volatility
provides another reason for using data preceding structural breaks, even if one believes that
large shifts in the mean and variance could have accompanied those breaks. This study
also explores methods for estimating the equity premium when one believes it is positively

associated, to some degree, with equity volatility.

We develop and apply a Bayesian framework for estimating the equity premium in the
presence of structural breaks. Our methodology can incorporate prior beliefs that the equity
premium is associated with volatility or is unlikely to experience extremely large shifts. A
few examples illustrate the potential importance of such beliefs. The average excess stock-
market return since the most recent structural break, identified at the end of 1991, is nearly
10% (per annum). Suppose one believes that a structural break is unlikely to be accompanied
by a shift in the equity premium much greater than 4%, but that the premiums before and
after the break are otherwise unrelated. Then, as opposed to the recent 10% average, the
estimate of the current equity premium is less than 7% when based on an overall sample
beginning in 1834, even though multiple structural breaks are identified within that sample.

Suppose one believes instead that, in any earlier subperiod separated from the most recent



by one or more structural breaks, there is an 80% probability that the price of risk is equal to
the current price of risk multiplied by a number between 0.2 and 2. Then the estimate of the
current equity premium is less than 5%, as compared to the recent 10% average, even though
the premium’s link with volatility specified in the prior seems fairly weak. Combinations
of the two types of prior beliefs are also entertained. In general, our investigation reveals
the potential importance of using longer return histories, even when such histories contain

structural breaks.

The remainder of the paper is organized as follows. The methodology is developed in
Section 2, wherein we describe the stochastic setting and discuss the priors used in our
Bayesian approach. Section 3 presents the empirical results. Most of that section reports
results for a three-break model, with breaks in 1928, 1940, and 1991. We also consider
a model with a single break at the end of 1925, which is used as a starting date in many
analyses. The locations of the structural breaks, the “breakpoints,” are estimated separately
and viewed as exogenous in implementing the Bayesian approach in Sections 2 and 3. Section
4 discusses potential extensions in which the Bayesian setting incorporates uncertainty about
the number and locations of the breakpoints. As an initial exploration, we present an example

with uncertainty about the location of a single break. Section 5 reviews the conclusions.

2. Methodology

We describe here our Bayesian framework for making inferences in the presence of struc-
tural change in the distribution of excess market returns. Much of this framework is newly
developed, with the objective of incorporating prior beliefs about the equity premium’s as-
sociation with volatility and the potential magnitudes of its shifts. At the same time, our
analysis shares features with previous studies dealing with structural change. For surveys
of early studies, too numerous to list, see Zacks (1983), Broemeling and Tsurumi (1987),
Krishnaiah and Miao (1988), and Bhattacharya (1994). Some of the more recent studies in a
frequentist setting include Andrews (1993), Andrews and Ploberger (1994), Bai (1995, 1997),
Bai, Lumsdaine, and Stock (1997), Bai and Perron (1998), Diebold and Chen (1996), Liu,
Wu, and Zidek (1997), and Sowell (1996). Perhaps the first Bayesian study on structural
breaks is Chernoff and Zacks (1964), and more recent studies include Carlin, Gelfand, and
Smith (1992), Stephens (1994), and Chib (1997).? Recent studies that investigate structural

breaks in some financial time series include Inclan (1993), Chen and Gupta (1997), Viceira

2Markov switching models, proposed by Hamilton (1989), are studied in a Bayesian context by Albert
and Chib (1993) and McCulloch and Tsay (1994).



(1997), and Ang and Bekaert (1998).

This section first introduces the simple stochastic setting and discusses maximum likeli-
hood estimation. The prior distributions for the model’s parameters are then presented and
analyzed. The general approach for obtaining posterior distributions is discussed briefly at

the conclusion of this section, but the details of the computations are given in the Appendix.

2.1. Stochastic Framework

The data consist of T" observations of excess market returns. Let x; denote the excess return
for time ¢, and define © = (z1,...,27). The overall sample period includes K structural
breaks in the probability distribution of excess market returns, and the times at which the
breakpoints occur are denoted by sq,...,sg. The breakpoints divide the sample into K + 1
subperiods, and within each subperiod the excess market returns are assumed to be normally
distributed:

zy ~ N(m,of) t=1,...,5 (1)
zy ~ N(ug, 03) t=s1+1,...,59

v~ Nk, 05)  t=sg+1,...,T

The number and locations of the breakpoints are viewed as exogenous with respect to
the Bayesian setting initially developed here. In the empirical results, reported in the next
section, the breakpoints are obtained using maximume-likelihood estimation before conduct-
ing the Bayesian analysis. This treatment of the breakpoints is motivated by computational
tractability. Later in the study, Section 4 explains how the Bayesian setting can be extended

to include uncertainty about the number and locations of the breaks.

Let p = (m1,-..,x41) denote the (K + 1) x 1 vector of equity premiums, and let
0 = (01,...,0K41) denote the (K + 1) x 1 vector of standard deviations (“volatilities”).
Also define s = (s1,..., k). The likelihood function can be written as a product of (K + 1)

normal densities:

K+1 K+1 Sk Ty — [ 2
p(z|p, o,s) (H ﬁ) exp{—% >y # }, (2)

k=1 Ok k=1 t=sp_q1+1 O

where sg = 0, sy = T, and “x” denotes “proportional to” (up to a factor not involving u,



o, or s). Conditional on s, the likelihood function is maximized at

Sk

i = O w)/(ski—si) (3)
t=sk—1+1

GO (S D (s—sie) = (S @) sk — s (1)
t=sp_1+1 t=sk_1+1

for k= 1,..., K + 1. Let a® = (2, ... 3% ) and 6@ = (51%,...,6%), ). The MLE of
s, denoted by 3, is the combination of breakpoints that maximizes p(z|i®),5(), s), and 5 is
computed by searching over all possible breakpoint combinations. The MLE’s of y, and o7

are then equal to the estimators in (3) and (4) conditional on s = 8.

2.2. Prior Beliefs

The MLE’s discussed above are based only on the likelihood function in (2). In contrast,
Bayesian estimators of 4 and o combine the sample information in the likelihood function
with prior information about the values of the model parameters and the relations among
them. The prior beliefs used in this study are motivated primarily by economic arguments.
First, we impose a prior belief that the equity premium is positive. This prior reflects a simple
economic argument that, in an equilibrium with risk-averse investors, the expected return
on a value-weighted portfolio of all risky assets should exceed the risk-free rate of return.
Merton (1980), for example, argues that the non-negativity restriction on the expected excess
market return should be imposed in estimating the equity premium. As explained below, our
framework also allows informative prior beliefs about the potential magnitudes of changes

in the equity premium and about the premium’s association with volatility.

2.2.1. Beliefs About Changes in the Premium

We use a “hierarchical” prior distribution on p, given by

pul) o exp{—Su—p) Vo e-mo)}, w0, (5)

p(p) o 1,  0<p<k, (6)

where ¢ denotes a (K + 1) x 1 vector of ones. The scalar i is a “hyperparameter” that can

be interpreted roughly as a cross-period grand mean of the elements of p.® The prior for

3In the absence of truncation at zero in (5), i would equal the mean of p(u|fi).



i conditional on g is a truncated normal distribution whose location depends on fi. Since
k is set to a very large value, the uniform prior distribution of f is noninformative, except
for the positivity restriction. As a result, the unconditional variance of each element of y is

large, and the marginal prior for each element of y is noninformative.

The elements of V, can be specified such that (5) is informative about differences between
the elements of u. Define Ay = (g1 — ), k=1,..., K+ 1, and let A = (Aq,...,Agx).
The elements of A represent the magnitudes by which the market premium changes at
the breakpoints. Note that (5) implies that the prior on each Ay is centered at zero, so
the prior is noninformative about the direction of any shift in the premium. Some might
find it reasonable to believe, as we do, that extremely large shifts in the equity premium are
unlikely. For example, one could believe that the probability is only 5% that the annual equity
premium has shifted by more than 10% at any structural break. This type of prior belief
can be expressed by specifying a value for the standard deviation of the prior distribution
of each Ay, denoted by oa.* In the preceding example, oa = 5%. At one extreme, setting
oA = o0 assigns equal prior probabilities to fixed-width neighborhoods around all values of
Apg, however large. One consequence of such a noninformative belief about A is that, in
estimating the current equity premium, all data from subperiods before the last structural
break are discarded (in the absence of a volatility link, discussed below). In other words, this
prior results in a use of the data that corresponds to common practice. At the other extreme,
setting oa = 0 reflects a dogmatic belief that all A, = 0 and there has never been a change in
the equity premium, in which case data from the entire sample are simply “pooled,” roughly
speaking, to estimate the current premium (additional discussion is provided in Section 3).
In intermediate cases, the smaller the value of oa, the more attention is paid to data from
subperiods before the last break. In order to explore the effect of prior beliefs about A on

the estimates of the equity premium, this study entertains a wide range of values of oa.

The value of oA is implied by the elements of the covariance matrix V), in (5). The

4In general, the literature treats the means before and after a structural break as independent of each
other (see Carlin, Gelfand, and Smith (1992) and Barry and Hartigan (1993) for Bayesian examples and
Liu, Wu, and Zidek (1997) and Bai and Perron (1998) for frequentist examples)). An exception is the early
study by Chernoff and Zacks (1964), who, in a simpler setting, place an informative prior on the difference
in subperiod means.



following structure is imposed on V,:

A A
p 1 p - P

Vo=o2| ¥ »p 1 PR <<t (7)
pK pK—l pK—Q 1

Conditional on fi, and in the absence of truncation, the prior variance of each p; equals ai,
and the prior correlation between p; and py equals p*=Jl. The unconditional prior variance
of Ay for any k is equal to 03 = Var(ur.1 — pg). The values of O’i and p that produce a
desired value of oa are computed by simulation, using the uniform and truncated normal
distributions. For any positive value of o, there is an infinite number of such combinations
of ai and p. In the empirical results presented in the next section, we select two alternative
specifications, distinguished by the choices of p. In the first, we set p = 0 and then solve
(numerically) for ai to produce the desired oa. In the resulting prior, the equity premium
is believed to fluctuate independently across subperiods and thereby exhibit “immediate”
mean reversion to a grand mean. This setting is denoted as the “p = 07 specification, in
which the correlation between ;1 and pg, conditional on fi, is approximately equal to zero.
The correlation is not precisely zero, due to the truncation of the conditional normal density
in (5), but the difference is very small. In the alternative specification, we fix aZ at a large
value and then solve for p to produce the desired 5. The resulting values of p are very close
to 1 for the informative (finite) values of oo we consider, so this setting is denoted as the
“p~ 17 specification. With p =~ 1, the equity premium nearly follows a random walk across
subperiods and reverts only negligibly toward a grand mean. In the remainder of the paper,
we simply refer to p as the “correlation” between p;1 and py, suppressing the qualifications
that the correlation is conditioned on zi and actually deviates slightly from p, due to the
truncation. Note that the conditional correlation is quite distinct from the unconditional
correlation: for a finite oa, the latter is close to 1 for all values of p, due to the high variance

of fi.
2.2.2. Beliefs About the Premium’s Association with Volatility

In a study on estimating the equity premium, Merton (1980) proposes models in which the
equity premium is linked positively to volatility. In motivating such models, Merton notes
that, to preclude arbitrage, the equity premium must be zero if volatility is zero. Moreover,
at positive levels of market volatility, risk-averse investors must in general be compensated

by a positive equity premium. Thus, at least to this degree, a positive relation between the
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equity premium and volatility seems likely. Merton essentially proposes a positive relation
as a reasonable prior belief, as opposed to a regularity that one might verify with the data.
Attempts to do the latter, beginning with French, Schwert, and Stambaugh (1987), have
produced mixed results, but such studies have generally investigated the presence of a relation
at higher frequencies than envisioned in a structural-break setting.” One might believe
that occasional shifts in volatility at structural breaks, separated by a number of years, are
associated to some degree with shifts in the equity premium. At the same time, one might be
less inclined to believe that the equity premium changes with higher-frequency fluctuations in
volatility, which are essentially ignored in the present setting with returns assumed to be i.i.d.
within a subperiod.® Moreover, given the relatively small number of subperiods in feasible
implementations of structural-break models, the data are likely to be more informative about
the presence of a high-frequency relation, if any. The prior link between the equity premium
and volatility that we introduce below can take the form of a weak positive association,
as opposed to a strict parametric relation, and we suggest that such priors offer a sensible

framework in which to explore the potential importance of volatility.

A prior association between the equity premium and volatility is introduced as follows.

For a scalar parameter v > 0, let
pr = Yros,  k=1,...,K+1, (8)

and let ¢ = (Y1,...,¥k41). We set g1 = 1 to achieve identification, which then implies
that v is the market “price of risk” in the last subperiod, defined as the ratio of the equity
premium to the equity variance. The prior on v is specified as a gamma distribution with
parameters €/2 and 2/,

e_ YE
p(y) o< 2 1exp{—3}, v >0, (9)

where € is a positive constant close to zero. Note that, for e = 0, the above prior is a standard

diffuse or noninformative prior, p(7) o 1/7, which is improper.” When ¢ is positive, the prior

®Some examples illustrate the range of the results. French, Schwert, and Stambaugh (1987), Harvey
(1989), Turner, Startz, and Nelson (1989), and Tauchen and Hussey (1991) find a positive relation between
the conditional market premium and conditional variance, and Scruggs (1998) finds a significant positive
partial relation. Baillie and DeGennaro (1990) and Chan, Karolyi, and Stulz (1992) find that the conditional
market premium is unrelated to its own conditional variance. Whitelaw (1994) finds a weak negative relation,
and Campbell (1987) and Glosten, Jagannathan, and Runkle (1993) find a significant negative relation.

5In parameterized versions of equilibrium models in which moments of the aggregate endowment follow
Markov-switching processes, Kandel and Stambaugh (1990) and Backus and Gregory (1993) show that
the relation between the equity premium and volatility need not be positive. Campbell (1987) considers
conditions under which the intertemporal CAPM implies an approximately proportional relation between
the conditional mean and conditional variance of market returns.

“An “improper” prior density does not have a finite integral.

8



on 7 is proper, which is desirable so that Bayes factors in a later discussion can be defined.
With € close to zero, however, the above prior on + is still noninformative. In other words,
this study assumes that there is no prior information about the market price of risk. If such
prior information is available, it can easily be incorporated by adjusting the location of p(y)

and choosing a larger value of e.

In each earlier subperiod k£ = 1,..., K, the price of risk is equal to 1.y, with the 1;’s
assumed to be independent across subperiods. The prior on each 1, is a gamma distribution,

with parameters /2 and 2/v,

p(zﬁk)ocz/)k%_] exp{—%}, Y >0, k=1,...,K. (10)
The prior on 1), implies that®
E(yr) = 1 (11)
2
Var(iy) = - (12)

The desired degree of association between uy, and o7 is achieved by specifying the parameter
v. At one extreme, as v — 0, the prior on 9, approaches a standard diffuse or noninformative
prior, p(vx) o< 1/1;. With a noninformative prior on 1, no association between the elements
of p and o is imposed a priori. At the other extreme, as v — oo, it follows from (12) that
Var(yr) — 0, so ¢ = 1 for all k, which imposes a perfect link between j; and o3 of the
form ju; = yo?. A positive but finite value of v implies an intermediate degree of association
between the equity premium and volatility: the higher the value of v, the stronger the prior
belief that the equity premium is linked positively to volatility. In the empirical analysis, a
range of values for v is entertained. Figure 1 plots prior densities of 1, for different values
of v. Observe that, for v = 5, the prior density is quite disperse, so the prices of risk in
earlier periods can differ substantially from ~. As will be demonstrated, however, such a
prior can still exert a substantial influence on the posterior distribution of the current equity

premium.

Let 0 = (p, 1,7, 1). It is assumed that all the elements of 0, except for p and fi, are
independent a priori, which implies that the joint prior on all the parameters in the model

can be written as
K41

9(0) = p(ul) ) ) ( T ) ). (13

8The two moment equations follow from standard results for the gamma density, such as in Zellner (1971,
p.370). The moments exist for all v > 0, but the density has no mode for v < 2.



Recall that the densities multiplied on the right-hand side are given in equations (5), (6),
(9), and (10).

2.3. Posterior Distributions

In a Bayesian setting, a posterior probability distribution for the unknown parameters is
obtained by updating a prior distribution with the information in the data, transmitted
through the likelihood function. Substituting for the elements of o from (8), the reparame-

terized likelihood from (2) can be written as

K+1 K+1 Sk . 2
(‘QSOCW <H¢Sk8kl SkSkl)/>eXp __Z Z M ‘
k=1 t=sx_1+1 Mk
(14)
Muliplying the prior in (13) by the likelihood in (14) gives the joint posterior distribution,
p0lz, s).

Marginal posterior distributions for parameters of interest, such as the current equity
premium g, are computed numerically using a Metropolis-Hastings algorithm. (The
Appendix explains the implementation of that procedure.) The first two moments of the
posterior of g1, for example, are estimated as the sample moments of a long series of
draws from the posterior distribution of that parameter. The posterior mean provides a
point estimate of px 1, and the imprecision in that estimate is essentially the posterior

standard deviation of g ;.

3. Empirical Analysis

3.1. The Market Excess-Return Series

The data used in this study consist of monthly returns on a broadly-based equity portfolio
in excess of returns on a short-term riskless instrument. The equity-return series and the
risk-free return series, described in this subsection, cover the period from January 1834 to
December 1996. The equity series from January 1926 to December 1996 consists of returns
on the value-weighted portfolio of NYSE stocks, obtained from the Center for Research in
Security Prices (CRSP). Equity returns before 1926 are taken from Schwert (1990), who

9The posterior mean is the estimate that minimizes the expected value of a quadratic loss function. For
additional details, as well as alternative posterior estimators, see Berger (1985).
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relies on a variety of historical indexes to construct a series of U.S. monthly returns over
the past two centuries.'® Up through 1862, his index is based on the returns on financial
firms and railroads from Smith and Cole (1935). For 1863 through 1870, Schwert uses the
returns on the railroad index from Macaulay (1938), and for the 1871 through 1885 period he
uses returns on the value-weighted market index constructed by Cowles (1939). Finally, the
1885-1925 data consist of returns on the Dow Jones index of industrial and railroad stocks,
taken from Dow Jones (1972).11 Schwert adjusts the series for the effects of time averaging
present in the Cowles and Macaulay series. Also, he acknowledges that the returns on the
original Smith and Cole and Macaulay indexes do not include dividend yield, and adds the

dividend yield back based on an estimate from the Cowles series.

Although the series constructed in Schwert (1990) begins in 1802, we use the series back
only to 1834, essentially because the earlier data do not appear to capture aggregate equity
returns. Prior to 1834, the Smith and Cole index is based only on financial firms, whose
returns were much less volatile than returns on a typical industrial company. Through
1814, the Smith and Cole index is an equally weighted portfolio of only seven banks, and
those seven were chosen in hindsight from a larger group. Also, in their careful historical
account of the early years on Wall Street, Werner and Smith (1991, p. 38) note that “... in
periods of speculative fever, such as 1824 and 1825, trading volume and share prices both

Y

rose sharply...” and “Late in 1825, the securities market bubble burst.” An unusual price
increase is not evident in the Smith and Cole data, however, as the annualized mean excess
return on the index between January 1824 and August 1825 is only 1%. Also, there is only
a mild fall in the prices of the financial firms at the end of 1825. Thus, one might suspect
that the returns on a small set of financial companies fail to convey much of the information
about overall equity returns in that period. After 1834, the Smith and Cole data expand
to include a portfolio of up to 27 railroad stocks, which were among the most important
industrial companies during much of the nineteenth century. Noting different properties of
the Smith and Cole index prior to 1834, Schwert (1989) also excludes the data up to that

point.

The short-term risk-free return series is based on the data constructed by Siegel (1992).'2
From 1926 until 1996, the returns on a one-month Treasury security are taken from CRSP’s
SBBI file. For 1920 through 1925, the rates on three-month Treasuries are taken from Homer

(1963). Prior to 1920, short-term Treasury securities in their current form were non-existent.

10We thank Bill Schwert for providing these data.

U The four observations for August through November of 1914 are missing, since the stock markets were
temporarily closed due to the beginning of World War IT (see Schwert (1989)).

12We thank Jeremy Siegel for providing these data.
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As a result, most of the data on U.S. short-term interest rates prior to 1920 are based on

13 As Siegel demonstrates, however,

commercial paper rates quoted in Macaulay (1938).
commercial paper in the 19th century was subject to a high and variable risk premium,
which appears to render a raw series of returns on commercial paper a poor proxy for a
risk-free rate of return. In order to remove the risk premium on commercial paper, Siegel
constructs a synthetic “riskless” short-term interest rate series by assuming that the average
term premiums on long-term high-grade securities were the same in the United States as in
the United Kingdom.'* Monthly returns are derived from Siegel’s annual series using linear
interpolation, treating his values as corresponding to the last month of the year. Given that
the volatility of the annual series over this period is substantially lower than that of annual
equity returns, we suspect that the problems induced by this simplification are relatively

unimportant in the empirical analyses we conduct.

3.2. Specifying the Number and Locations of Breaks

This section reports results obtained in a Bayesian setting in which the number and the
locations of the breaks are specified exogenously. Section 4 discusses potential extensions
that incorporate uncertainty about the breaks. For the primary empirical analysis presented
in this section, we specify breakpoint locations that correspond to maximum likelihood
estimates. Maximum likelihood estimation of the breakpoints involves maximizing the value
of the likelihood function in (2) for each permissible set of breakpoints. With a time series of
T returns, there are (g) permissible combinations of K breakpoints. If a break is allowed to
occur in any of the T' = 1952 months used in this study, the number of permissible breakpoint
combinations becomes unmanageable even for modest values of K. With almost 2 million
combinations for K = 2 and over 1 billion combinations for K = 3, unrestricted breakpoint
estimation is computationally prohibitive. In order to work with models in which K > 1, we
restrict the permissible break locations to a smaller subset. For K < 3, maximum likelihood
estimation is manageable when breaks are permitted to occur at the end of any year, except
that no breaks are allowed in the first three and last three years of the sample, and breaks

must be at least three years apart.

13For the period 1857 through 1919, Macaulay uses prime two-month and three-month commercial paper.
For 1831 through 1856, he uses data from Bigelow (1862) on commercial paper with maturity varying between
three and six months.

14In the nineteenth century, the capital markets in the United Kingdom were far more developed than
those in the United States. Siegel motivates his assumption about the equality of the average term premiums
by noting that real returns on long-term bonds in the U.K. and in the U.S. have behaved similarly over the
past two centuries.
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In a model with three breaks, the estimated breakpoints occur at the year ends of 1928,
1940, and 1991. Figure 2 plots the time series of excess market returns for the entire sample
period and indicates the locations of the three estimated breakpoints. Note that the first
two breakpoints isolate the volatile years during and after the Great Depression, while the
third breakpoint precedes the recent period of low volatility. Specifying at least three breaks
in a sample beginning in 1834 seems reasonable, and the model with three breaks does have
a higher Schwarz criterion (SC) than do models with fewer breaks.'> With more than three
breaks, maximum-likelihood estimation becomes computationally prohibitive when breaks
are permitted in any year. To explore the effects of allowing additional breaks, we compute
maximum likelihood estimates of breakpoints in a model with six breaks, except that breaks
are allowed to occur only at the end of every fifth year, with no breaks in the first five and last
five years of the sample period and with breaks at least ten years apart. In this six-break
estimation, only three breaks are identified in the twentieth century, and the estimated
breakpoints (1930, 1940, and 1990) correspond fairly closely to those in the three-break
model. The three estimated breakpoints in the nineteenth century occur in 1855, 1865, and
1875. The subperiod defined by the first two breakpoints includes the Civil War, and the
higher volatility during that subperiod is evident in Figure 2. Volatility appears to be lower
following that subperiod than following the estimated breakpoint in 1875. Although the data
from the nineteenth century can be important in estimating the current equity premium,
as will be shown below, the results we report for the three-break model are unlikely to
be influenced greatly by specifying additional breaks in that century. Thus, a three-break
model appears to provide a tractable setting for obtaining results that are reasonably robust

to allowing additional breaks.

3.3. Results When Large Shifts Are Believed To Be Unlikely

Table 1 reports posterior means and standard deviations of y4, the equity premium following
the most recent (third) break. Results are shown for a range of values for oa, the prior
standard deviation of the shift in the equity premium associated with a break. No prior
link between the equity premium and volatility is imposed (i.e., v = 0). Part A of the table

reports two limiting cases. When oa = oo, the posterior mean of p4 equals 9.76% per annum,

15This model-selection criterion is due to Schwarz (1978). The computed values of log SC (divided by
1000) for a given number of breaks (K) are as follows:

K | o 1 2 3
logSC | 3.112 3.132 3.247 3.249
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the average excess return over the five-year period from 1992 through 1996.'% In other words,
when one believes that a structural break is likely to cause extremely large shifts in the equity
premium, then the data before the most recent break play no role in estimating the current
premium. The other limiting case in Part A is oo = 0, which corresponds to a prior belief
that structural breaks can cause shifts in volatility but not the equity premium. Inferences
about the equity premium in that case, in broad terms, are based on a pooling of the data
for the entire 163-year sample period. The posterior mean of 6.06% deviates somewhat from
the simple arithmetic average of the excess returns over the entire sample, 5.51%, in essence
because the sample averages from the four subperiods are weighted by the reciprocals of the
subperiod volatilities, in addition to the lengths of the subperiods (the weights applied in
computing the arithmetic average). Mean returns are estimated with less precision in the
more volatile subperiods, and those subperiods are given less weight (much as in weighted
least squares). When oa = oo, the posterior standard deviation of p is 3.62%, as compared
to 1.16% when o = 0. Naturally, posterior uncertainty about the current equity premium
is much lower when inferences are based on data from the entire 163-year sample as opposed

to the most recent 5-year subperiod.

Results for intermediate values of o are reported in the remainder of Table 1. The
prior correlation between premiums in adjacent subperiods, p, is equal to 0 in Part B and
approximately 1 in Part C. When o = 2%, i.e., when shifts in the equity premium larger
than 4% per annum are judged a priori to be unlikely, the posterior distribution of the
current equity premium is affected considerably by the data from earlier subperiods. When
p = 0, for example (Part B), the posterior mean of py is 6.81%, about 3% lower than the
sample average for the last subperiod. Moreover, the posterior standard deviation of p, in
that case, 1.84%, is only about half of the value obtained when oa = oo, 3.62%. As shown
later in this section, when the posterior mean of the current premium is based on the average
return since 1926, a common practice, the posterior standard deviation of the premium is
2.26%. Thus, even though the most recent subperiod is only five years long, when shifts in
the premium greater than 4% are believed unlikely, the current equity premium has a lower
standard deviation than a seventy-year average. Even for oo = 4%, the posterior mean of
ity 1s still nearly 2% lower than the subperiod average, and the posterior standard deviation

of the premium is only 2.56%.

When p is close to 1, the shift in the equity premium associated with a structural break
has a prior mean near zero, conditional on the premium before the break. That is, in contrast

to the prior in which p = 0, specifying p close to 1 corresponds to a prior belief that there

16The prior restriction that the premium is positive has a negligible effect in this period.
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is only the weakest tendency for the equity premium to revert to a “long-run” value when
a shift occurs. Results with such a prior are reported in Part C of Table 1. For a given
oa, the posterior mean of yy is higher than in Part B. For example, when oo = 2%, the
posterior mean of 114 is 7.96%, about 1.2% higher than the corresponding value in Part B. This
difference reflects the fact that the average equity premium is higher in the twentieth century
than in the nineteenth century. With p = 1, the data from the more recent subperiods are
given more weight, so the posterior mean of p, is then farther from the mean for the overall
sample period than when p = 0. Nevertheless, when on = 2%, the posterior mean of iy is

still 1.8% below the average for the last subperiod.

3.4. Results When Volatility Is Believed To Play a Role

As the results in Table 1 demonstrate, the data before a structural break are relevant for
estimating the current equity premium if one believes that extremely large shifts in the
premium are unlikely. The data before a break can also be relevant if one believes that,
across subperiods, the equity premium has at least some degree of positive association with
stock-market volatility. The sample volatility of the excess market return in the recent
subperiod (1992-96) is low by historical standards: 8.2% versus 17% for the overall sample
period. With a prior belief in a link between the equity premium and volatility, an inference
that recent volatility is lower than usual would tend to accompany an inference that the
equity premium is also lower than usual. Of course, such inferences rely on data before the
most recent break. If the data before the most recent break are discarded, then a prior belief
in a link between the equity premium and volatility cannot by itself produce a posterior
mean different from the sample average excess return, assuming prior beliefs about the price

of risk remain noninformative, as in this study.

Recall that the price of risk, defined as the ratio of the equity premium to equity variance
is equal to v in the most recent subperiod and ;v in each of the earlier subperiods, k =
1,2,3. The prior on ~ is noninformative, but the prior on 1 is specified as a gamma
density with parameters /2 and 2/v, and recall that this density becomes more tightly
concentrated around 1 as v increases (cf. Figure 1). Table 2 reports posterior means and
standard deviations of u, obtained with priors ranging from v = 0.5, which is close to the
diffuse-prior value of v = 0 used in Table 1, up to v = oo, which produces a prior spiked at
Y, = 1 and corresponds to a perfect link between the equity premium and volatility. In all
of the cases in Table 2, we specify oo = 0o in order to isolate the effect of a prior belief that

volatility plays a role.
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A striking feature of the results in Table 2 is that a prior belief in even a modest associ-
ation between the equity premium and volatility produces a posterior mean for the current
equity premium that is substantially below the average excess return in the last subperiod.
With v = 3, for example, there is a 10% prior probability that that the price of risk in any
of the other subperiods (147y) is less than one fifth of the price of risk in the last subperiod
(7), and there is also a 10% prior probability that ;v is more than twice the value of ~.
Nevertheless, the posterior mean of p, under that prior is only 4.71%, which is less than half
of the average excess return in the last subperiod. If one believes in a perfect link between
the equity premium and volatility (¥ = oo), the estimate of the current equity premium is

only 1.76%, due to the low equity volatility in the last subperiod.

The results in Table 2 clearly indicate that volatility can exert a strong effect on the
posterior mean of the equity premium. As a result, the posterior uncertainty about the
equity premium can also be substantially less than when inferences about the premium are
based solely on average returns. Note, for example, that when v exceeds 10, the posterior
standard deviation of uy can be considerably less than the value of 1.16% obtained when
oa = 0and v = 0 (Table 1). That is, if the equity premium prevailing during the latest five-
year subperiod is estimated by essentially averaging returns pooled over the entire 163-year
sample period, inferences about the current premium can still be less precise than when that
premium is allowed to differ from those in earlier subperiods but believed to obey a volatility
link, albeit an imperfect one. Important to realize is that the increased information about
the current premium provided by sample volatility comes only in the presence of structural
breaks accompanied by differences in volatility across subperiods. Recall that the prior about
the current price of risk, v, is noninformative. Thus, with no structural breaks, or with
constant volatility across subperiods, inferences about the equity premium could reflect only

the information in sample average returns. We return to this point in the next subsection.

3.5. Additional Results: Combining Both Types of Prior Beliefs

Table 3 reports results with informative prior beliefs about both the equity premium’s as-
sociation with volatility as well as the potential magnitude of its shifts. The parameter o,
which determines prior beliefs about shifts in the premium (the A.’s), is assigned values 2%,
4%, and 6%, while the parameter v, which determines the strength of the prior beliefs about
the premium’s association with volatility is assigned values 1, 5, and 30 (recall that a higher
v implies a stronger association). Part A of the table reports results with p = 0, and Part B

reports results with p near 1. The effects of both types of prior beliefs are evident in Table
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3. In all cases considered, the posterior mean of pu, is decreasing in v, as in Table 2. For
v =1 and v = 30, the posterior mean of yy is increasing in oa, as in Table 1 (where v = 0),

but the mean of p, is decreasing in oo when v = 5.

Table 4 displays results across all four subperiods for several combinations of o and v. In
the interest of space, we report results only for p = 0. Part A displays the posterior means
and standard deviations of the equity premium (), while Part B displays the posterior
means and standard deviations of equity volatility (oy). Observe in Part A that, with the
noninformative prior (6o = oo and v = 0), the most recent subperiod has the highest mean
equity premium. Hence, lowering oa, which assigns less prior probability to large shifts in
the premium, tends to lower the posterior mean of the premium in that subperiod. Observe
in Part B that the most recent subperiod also has the lowest volatility, so raising v, which
tightens the link between the premium and volatility, also tends to lower the mean of the
premium in the last subperiod. Also evident in Part B is that, within each subperiod, equity
volatility has low posterior uncertainty, and its posterior mean is affected only slightly by

the prior parameters.

Recall from the earlier discussion that, as v increases, the posterior standard deviation
of the premium in the recent five-year subperiod can be less than the standard deviation of
the premium obtained by averaging returns pooled over the entire 163-year sample period.
Observe in Table 4, for example, that the standard deviation of the post-1991 premium is
1.16% with oo = 0, the case in which the data are essentially pooled, but the post-1991
premium has a standard deviation of only 0.60% when a volatility link is imposed with
v = 30. Note, however, that such a result does not obtain in the earlier three subperiods,
wherein the posterior standard deviations all exceed 1.16%. The low standard deviation in
the last subperiod stems from the low equity volatility in that subperiod. To see the basic

point clearly, assume
pe =yor, k=1,...,K, (15)

which is the perfect volatility link corresponding to ¥ = co. Assume also that the posterior
variance of o7 is zero, so that uncertainty about volatility is ignored. (The latter assump-
tion is motivated by the observation that the available monthly data contain more precise

information about volatility than about expected returns.) Then,
Std{ux|z, s} = oiStd{~|z, s}, (16)

where “Std” denotes standard deviation. In this simplified setting, the posterior standard
deviation of the equity premium in a given subperiod is proportional to that subperiod’s

equity variance. To a rough approximation, the same reasoning applies to an imperfect
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volatility link, as when v = 30. In general, if one has noninformative beliefs about the price
of risk (), then, in an overall sense, the precision of sample information about the equity
premium cannot exceed that associated with a sample average return, but the presence of
a volatility link can produce rather sharp differences in that precision across subperiods. If,
instead, one has an informative prior belief about the price of risk, then the precision of the
equity premium in even a high-volatility subperiod could be greater than the precision of

the sample average for the overall pooled sample.

A comparison of models in a Bayesian framework is often based on the posterior odds
ratio, which is the product of the prior odds ratio and the Bayes factor. For two alternative
models, A and B, the Bayes factor is BF 45 = p(z|A)/p(x|B), where x denotes the data.'”
In a Bayesian setting, two models can differ solely in their prior densities for a common
parameter vector, §. That is, the models can share the same likelihood function, p(z|@), in

which case

J p(x|0)pa(0)dd
J p(x]0)pp(0)do’
where p4(0) and pg(f) denote the priors under each model. Table 5 presents Bayes factors

BF .5 = (17)

for the three-break models considered above, where the models are distinguished solely by
the values of the prior parameters oo and v. Reported for each case are two values, arising
from different methods of calculating the marginal likelihood, [ p(x|6)p(6)df. (Details of
the calculations are presented in the Appendix.) In all cases, “model B” is defined as the
noninformative specification, oo = oo and v = 0. With equal prior odds for that model
versus an informative specification, a Bayes factor greater than one indicates that the data
favor the informative specification, whereas a value less than one indicates the data favor
the noninformative prior. Kass and Raftery (1995) suggest that Bayes factors between one
and three are “not worth more than a bare mention,” and most of the values in Table 5, or

their reciprocals, lie within that range.

The Bayes factors for v = 30 are all 0.06 or less, so the data do not support that degree of
positive association between the equity premium and volatility. Such an outcome is probably
not surprising, given the patterns of average returns and volatilities across subperiods, as
observed in Table 4. Recall, for example, that the 1992-96 subperiod has the highest average
return but the lowest volatility. Thus, if one believes a priori that the equity premium and
volatility are positively related, that belief is not strengthened by the data. On the other
hand, a prior belief in a positive association seems reasonable (e.g., Merton (1980)), and

moderate beliefs, as with » = 5, are not much at odds with the data: the (reciprocals of

17See, for example, Poirier (1995), p.380.
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the) Bayes factors for v = 5 and p = 0 are between two and three for the finite values of oa.
Recall that such beliefs can have very substantial effects on the posterior mean of the equity

premium.

3.6. Results with a Single Break in 1925

A common empirical tradition in finance is to estimate the equity premium using data be-
ginning in January 1926, the starting date for widely used datasets produced by CRSP and
Ibbotson Associates. In essence, given the availability of the earlier data, using just the post-
1925 data is equivalent to specifying a break in December 1925 and having noninformative
priors about Ay and 1,. We investigate here the extent to which the equity premium esti-
mated in such a manner is robust to informative prior beliefs about the potential magnitude

of shifts in the premium or about the premium’s association with volatility.

Table 6 reports posterior moments obtained using the same 1834-1996 excess-return series
as before but in a model with only a single break, specified at December 1925. For this model,
the results with p =~ 1 are nearly identical to those with p = 0, so only the latter results
are reported. With non-informative priors (6o = 0o and v = 0), the equity premium for
the post-1925 period has a posterior mean of 7.97%, similar to standard textbook values.!'®
Because the posterior mean of the premium in the 1834-1925 subperiod is lower, 3.65% with
noninformative priors, specifying an informative prior for A lowers the mean of the post-
1925 equity premium compared to that produced with the noninformative prior. The mean
equity premium is lower by nearly 1% with oo = 4% and by nearly 2% with oa = 2%. Note
that such results occur even though the post-break period is seventy years in length. Thus,
the analogous results reported previously for the three-break model (Table 1) are not driven

solely by the short length of the final subperiod in that case.

The common practice of using the average post-1925 excess return overstates the equity
premium if one believes that large shifts in the premium are unlikely. At the same time,
simply averaging the data beginning in 1834 produces too low an estimate, unless one be-
lieves that a shift in the premium did not occur. These two extreme approaches essentially
correspond to the cases in Table 6 for oo = co and oo = 0. On one hand, discarding the
pre-1926 data produces an estimate closer to the posterior mean than does pooling the data

if one’s o is 4% or more. On the other hand, pooling the data is the “lesser of the two

18For example, at several places in their popular text, Brealey and Meyers (1996) use an equity premium
of 8.4%, which they report is an estimate based on the 1926-1994 period (p. 145).
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evils” if oa is 2% or less. (The “breakeven” is in the neighborhood of oo = 3%.)

Prior beliefs about the volatility link play a less important role in this single-break ex-
ample, chiefly because the estimated post-1925 volatility of about 19% is not much different
from the pre-1926 volatility estimate of about 15%. Raising v from 1 to 30 changes the mean

of the post-1925 premium by less than 40 basis points.

4. Uncertainty About the Number and Locations of
Breaks

In frequentist analyses of structural breaks, the typical approach involves estimating the
break locations first and then estimating the remaining parameters of interest conditional
on those break locations. Recent examples include Bai (1995, 1997), Bai and Perron (1998),
and Liu, Wu, and Zidek (1997). A typical argument in favor of such a two-step procedure is
that, under certain assumptions, the resulting parameter estimates are consistent. Treating
estimates of the breakpoints as true values ignores the potential error in those estimates
(“estimation risk”) and could thereby compromise inferences in finite samples. In a Bayesian
approach, one can, in principle, integrate with respect to the uncertainty about the locations

of the breakpoints, as discussed below.!?

In order to extend the Bayesian framework in the previous sections to include uncertainty
about break locations, we assume that, in the prior, the locations of the breakpoints are
independent of p and o, the vectors containing the subperiod means and standard deviations.
The prior probability that a random K-tuple of structural breaks, S, occurred at a particular

combination of break locations, s, is denoted by
p(S =s) =ps,  forall s with strictly increasing elements. (18)

In other words, a prior probability p, is assigned to every combination of K breakpoints,
and the sum of p, across all s must be equal to one. For example, if one believes that, with
K = 2, the two breaks definitely occurred in 1855 and 1925, then p, = 1 for that pair of
breakpoints and p, = 0 for all the other combinations. A noninformative prior on S can
be imposed by setting each p, to the reciprocal of the number of permissible breakpoint

combinations. The joint posterior of § and S is then given by

p(Q, S = S‘x) X p(lE‘Q, S = 3)]9(9)193, (19)

9Examples of earlier Bayesian studies that account for the uncertainty about breakpoints include Chernoff
and Zacks (1964), Hsu (1982), and Broemeling and Tsurumi (1987).
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where the prior of € and the likelihood function p(z|0,S = s) are as given earlier. The
marginal posterior probability p(S = s|z) is obtained by integrating (19) with respect to 0,
and the marginal posterior of #, which accounts for the uncertainty about break locations,

can be obtained by summing (19) over all permissible breakpoint combinations:
p(0z) = > p(0|S = s,2)p(S = s|z). (20)

Such computations can, in principle, be performed using essentially the same Metropolis-
Hastings algorithm used to obtain the previously reported results, except that, in addition
to drawing p and o, values of S must be drawn as well. Generating the latter draws is

straightforward, since the full conditional distribution p(S = s|6, x) is discrete.

Recall that, in computing maximum likelihood estimates of the breakpoints, we restrict
breakpoints to occur only at year ends. For K < 3, the number of permissible breakpoints
then becomes manageable, but our initial efforts using a noninformative prior for S reveal
slow mixing of the Metropolis-Hastings Markov chain of draws from the conditional posterior
distributions. We judge the computer time required for accurate computation of the posterior
distribution to be unreasonable as of this writing, although one can imagine that advances

in computing capabilities could soon make such an exercise feasible.

In order to illustrate the nature of the results that such an approach can provide, we
present results for a model with a single break (K = 1), where the location of the break
has a noninformative (flat) prior across all year ends in the overall 1834-1996 sample period.
(Breaks in the first and last three years of the sample are prohibited.) Figure 3 displays
marginal posterior distributions of the breakpoint. The distribution in the upper graph is
obtained using the same form of prior on p and o used in the previous analysis, with the
priors of A and v specified as noninformative (oo = 0o and v = 0). The posterior probability
for the break location is rather concentrated in a few years beginning around 1940. As a
result, uncertainty about the break location has only a modest effect on the estimate of the
current equity premium. The estimate that accounts for break uncertainty, 8.46%, is close
to 8.37%, the estimate obtained when the maximum likelihood estimate of the breakpoint is
treated as the true value. The distribution in the lower graph of Figure 3 is obtained under
the same specification, with the key exception that volatilities before and after the break are
required to be the same (0, = 03). Observe that, with the latter restriction, the posterior
distribution of the breakpoint is quite disperse, covering essentially the entire sample period.
When the single structural break is restricted to be purely a shift in the equity premium,
with no change in volatility, the return history does not provide much information about

the location of the breakpoint. The information in the data regarding a structural break
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evidently comes largely through a shift in volatility.

The methods discussed so far have conditioned on a specified value of K, as is often
done. Even though the number of structural breaks is rarely known with certainty, a common
frequentist approach is to select a model supported by one or more selection criteria and then
proceed assuming that model is the true one.?’ Such an approach ignores the potentially
substantial uncertainty about whether the selected model is indeed true. For example, if
two competing models yield similar values of model-selection criteria, choosing just one
of the models could discard useful information about the parameter of interest. Bayesian
analysis can account for model uncertainty without forcing such a choice. In our setting, the
unconditional posterior of 6 can be obtained by weighting the posterior distributions of 6 in

models with different numbers of breaks by the posterior model probabilities:
p(0lr) = 3" p(OlK = k, 2)p(K = klx). (21)
e

For example, the estimate of the current equity premium that accounts for model uncertainty
is a weighted average of estimates from different models. For each k, the model probability
is given by

_ (K =Fk)p(z|K = k)
- Yk p(K = k)p(a|K = k)’

where p(z|K = k) is the marginal likelihood, used earlier in obtaining Bayes factors for a

p(K = klz)

(22)

given K, and p(K = k) is the prior probability of a model with K breaks.

5. Conclusions

Even when a long return history contains structural breaks, the entire history can still
contain information that is useful in estimating the current equity premium. If one believes
that the shift in the equity premium accompanying a structural break is unlikely to be
extremely large, then average returns in earlier subperiods contain information about the
current premium. The earlier returns also provide information about the current premium if
one believes there exists, to at least some degree, a positive association between the equity

premium and volatility.

20Among the most common model-selection criteria are AIC, the Akaike information criterion (Akaike
(1973)), and the previously discussed Schwarz criterion, SC. Yao (1988) establishes weak consistency of an
estimator of the number of breaks based on SC. Christiano (1992) uses AIC and SC to estimate the number
of breaks and obtains conflicting signals from the two criteria. Liu, Wu, and Zidek (1997) estimate the
number of breaks using a modified SC.
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We find that prior beliefs of either type can produce estimates of the current equity
premium that are substantially less than the sample average for the subperiod following the
most recent break, estimated to occur near the end of 1991. The average return for that
recent subperiod is nearly 10%. If one believes, for example, that the premium is unlikely
to shift by more than 4%, the estimate of the current premium lies between 6.8% and 8%,
depending on one’s belief about the persistence of the premium across breaks. Greater
reductions are obtained if one believes there exists even a modest association between the
equity premium and volatility. Suppose, for example, that, with an 80% prior probability,
the price of risk before one or more structural breaks is greater than 0.2 times the current
price of risk but less than 2 times the current value. The estimate of the current equity
premium is then less than 5%. If, with the same 80% prior probability, the prices of risk
in the earlier subperiods are between 0.5 and 1.6 times the current value, then the current
equity premium is estimated to be only 2.4%. Moreover, in that case, the precision of the
estimated premium is comparable to that of the sample average computed by pooling all of
the data since 1834.

The widespread practice of averaging excess returns beginning in 1926 overstates the
equity premium if one believes that large shifts in the premium are unlikely. On the other
hand, simply averaging the data beginning in 1834 is probably too low an estimate, unless
one believes that no shift in the premium occurred. If one believes that the pre-1926 equity
premium could be lower than the more recent value, but probably not by more than, say,

4%, then the estimate of the current premium is about 2% less than the post-1925 average.

One area for potential extensions to the Bayesian framework in this study is incorporat-
ing uncertainty about the number and locations of breaks, as discussed in Section 4, but
other issues also offer potentially interesting extensions. Perhaps chief among these is per-
mitting conditional moments to depend on observable state variables. This study deals with
what are presumed to be relatively infrequent breaks in the return-generating process, but
the i.i.d. setting within each subperiod abstracts from any temporal variation in moments
between the structural breaks. The conditional distribution of returns within each subpe-
riod could instead depend on a set of state variables, which could be functions of lagged
returns or other time series. Included in such extensions are models in which the conditional
volatility fluctuates, producing fat-tailed marginal distributions of excess returns within the

subperiods.

Extending the model to a multivariate setting offers another direction for future re-

search. If, for example, structural breaks in the distribution of U.S. returns are associated
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with economic factors and events of international importance, then returns from a number
of countries could exhibit contemporaneous structural breaks, and examining those return
series in a multivatiate setting could yield more precise inferences about the parameters of
interest and the number and locations of breaks. A multivariate approach to the structural-
break problem is introduced by Bai, Lumsdaine, and Stock (1997), who develop frequentist
confidence intervals for the location of a single common break in multiple time series. They
find that a multivariate approach can yield substantial gains in inferences, and a multivariate

approach could also be pursued in our Bayesian setting.
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Appendix

Posteriors

In order to obtain draws of the parameter vector 6 from its joint posterior distribution,
we use a block-at-a-time version of the Metropolis-Hastings (MH) algorithm.?' Repeated
draws of model parameters from their full conditional distributions form a Markov chain of
parameter draws. Beyond a burn-in stage, the elements in the chain are draws from the joint

posterior distribution.

To implement the MH algorithm, we first perform the change of variables A = 1/v
and ¢? = 1/1;,. Full conditional posteriors of the model parameters are then obtained by
incorporating the change of variables and rearranging the joint posterior, a product of the

prior in (13) and the likelihood function in (14):
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where D is a (K + 1) x (K + 1) diagonal matrix whose kth diagonal element is equal to

Sk — Sk—1
dpp = ————, A5
T Med (A.5)

21The algorithm is introduced by Metropolis et al. (1953) and generalized by Hastings (1970). See Chib
and Greenberg (1995) for a detailed description of the algorithm as well as for a justification of its block-at-
a-time version.
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T isa (K 4 1) x 1 vector whose kth element is

Ty = ( i .CEt> /(Sk — Skfl), (AG)

t=s5—1+1

and 22 is a (K + 1) x 1 vector whose kth element is

?k = ( Szk LE?) /(Sk - Sk_1>. (A7>

t=sk_1+1

Each of the full conditionals above, except for that of u, corresponds to a well known
density, so draws from those densities are easily generated. In order to draw u, a candidate
value is drawn from a proposal density and accepted with a probability that ensures con-
vergence of the chain to the target distribution. If a candidate draw is not accepted, the
previous draw is retained. The proposal density for p is a product of independent inverted
gamma densities:

(Fﬁl Mk(sksk—l)/2> exp {— % {L'D(ﬁ — a)} } , (A.8)

k=1
where a is a (K + 1) x 1 vector whose k-th element ay, is a fixed point of the contraction

mapping,

i — i 2
af ™ = [(@% - a’) /O] (A.9)
where the sequence is initialized at agﬂl) = 0. This adjustment is found to increase the

acceptance rate in the chain, as opposed to setting a = 0, which appears more natural from
(A.4). The acceptance rates range from around 25% to around 97%, depending on the values

of the prior parameters.

The posterior moments of 1 and o are estimated across 10,000 posterior draws, obtained
by retaining every 250th draw from a chain of 2,500,000 draws beyond the first 5,000 draws.
In each case reported, the average of the 10,000 draws of the current equity premium, re-
ported as the posterior mean, has a standard error less than 5 basis points (per annum).
Since the Markov chain in this framework mixes fairly slowly, as many as 250 draws have to

be skipped for each draw retained in order to obtain that degree of accuracy.

Marginal Likelihood Estimates

Recall that, in order to compute the Bayes factor for one model versus another, it is necessary

to obtain estimates of the marginal likelihoods of the data under both models.?? Let p(z)

22The material in this section draws heavily on the corresponding discussions in Newton and Raftery
(1994) and Kass and Raftery (1995). See these two references for more details on the calculation of marginal
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denote the marginal likelihood of the data under a particular model. Since the subsequent
discussion pertains to that model, the dependence of the marginal likelihood on the model

is suppressed for notational convenience. In general,

~ [ plalo)p(0)av, (A.10)

where p(z|0) is the likelihood function and p(#) is the prior distribution over the set of model
parameters 6. The marginal likelihood can therefore be viewed as the expected likelihood,
where the expectation is taken with respect to the prior density. The simplest Monte Carlo
estimate of p(x) is then

1 m

— A1l
N (A1)
where {Q(i) ce=1,... ,m} is a sample from the prior distribution. A major shortcoming of
p1(z) is that, if the data are informative relative to the prior, most of the draws of § from
the prior produce small likelihood values. Since p;(x) is then dominated by a small number

of large likelihood values, the variance of the marginal likelihood estimate is large, and the

simulation can be quite inefficient.

One way to improve the precision of the simplest Monte Carlo estimate is to draw 0®
from a density p*(0) that is likely to produce higher likelihood values and then weight each
likelihood value p(z|0®) in (A.11) by p(0@)/p*(0™). This approach is known as importance
sampling, and the density p*(0) from which the 0@W’s are drawn is generally known as the
importance sampling density.?® If the data are informative relative to the prior, a good
candidate for the importance sampling density seems to be the posterior density of 6. Using

p*(0) = p(0)z) and simplifying the resulting estimate yields

{ prw(l }_], (A.12)

the harmonic mean of the likelihood values. As m — oo, po(x) converges almost surely to
the correct value p(x). The estimator py(z) does not, however, generally satisfy the Gaussian
central limit theorem. Intuitively, drawing 0 from the posterior can occasionally produce
a value of p(z|0®) close to zero, which has a large impact on py(z). Despite its instability,

po(z) has been shown to produce accurate results in many cases.

In order to avoid the instability of the harmonic mean estimator in (A.12), Newton

and Raftery (1994) recommend using a mixture of the prior and posterior densities as the

likelihood estimates.
23See, for example, Geweke (1989) for a discussion of importance sampling,.

27



importance sampling density: p*(0) = dp(0) + (1 — §)p(0|z), where 0 < § < 1. The resulting
estimator, ps(z), is more stable than p,(z) and satisfies the Gaussian central limit theorem.
Newton and Raftery ultimately propose a modification of ps(x) that avoids the need for
generating draws from the prior. Instead, all m values of 6 are drawn from the posterior,
and it is imagined that a further dm/(1 — ) values of 6 are drawn from the prior, all with
likelihoods p(x|0%) equal to their expected value p(z). The resulting marginal likelihood

estimate can be evaluated by an iterative scheme based on

oy 9m/( = 8) + X p(a]6%)/ {pa() + (1 = 8)p(x]0D) }
. sm/ (1 — 8)pa(x) + X7, {6pa(z) + (1 — &) p(x|0@)} "

The implementation of the scheme requires evaluating the likelihood at a large number of

(A.13)

posterior draws. By increasing m, the marginal likelihood can be estimated to any degree

of precision.?* This study uses m = 10, 000.

There seems to be no consensus in the statistics literature as to what value of § in (A.13)
produces the most efficient marginal likelihood estimates. On one hand, Newton and Raftery
recommend small values of § and report that ps(x) is stable and performs very well even for
0 = 0.01. On the other hand, Rosenkrantz (1992) finds that values of § close to 1.0 result in
the best performance. This study reports results (Table 5) for both § = 0.1 and § = 0.9.

24 Alternative ways of estimating marginal likelihoods are proposed by Chib (1995), Lewis and Raftery
(1997), DiCiccio, Kass, Raftery, and Wasserman (1997), and others. The method proposed by Chib (1995)
is feasible only if all integrating constants of the full conditional posterior distributions are known, which
is not the case in our problem. Both the Laplace-Metropolis estimator proposed by Lewis and Raftery
and the volume-corrected Laplace-Metropolis estimator proposed by DiCiccio et al. essentially approximate
the posterior distribution of the parameters of interest by a normal distribution centered at the posterior
mode. Another approximation to the marginal likelihood is based on the Schwarz criterion discussed earlier,
although such an approximation does not take prior beliefs into account.
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Table 1

Estimates of the Current Equity Premium with Priors About
the Magnitude of Changes in the Premium Across Breaks

The table reports posterior means and standard deviations of the current equity premium (u4)
in a model with K = 3 structural breaks, the latest of which occurs in December 1991. The overall
period extends from January 1834 through December 1996, and the break locations are determined
by maximum-likelihood estimation. The equity premium is defined as the expected rate of return
on the aggregate stock-market portfolio in excess of the short-term interest rate, and g1 denotes
the equity premium following the k-th structural break. The k-th break is associated with a shift
in the equity premium given by Ap = pg+1 — pg. For k=1..., K, the prior standard deviation of
Ay is oa (annualized in the table), and the prior correlation between py and pg41 is equal to p.
No prior link between the premium and volatility is imposed.

Posterior moments of 4
(% per annum)

Standard
oa (%) Mean deviation
A. Limiting cases
0 6.06 1.16
o0 9.76 3.62
B.p=0
2 6.81 1.84
4 7.87 2.56
6 8.62 2.98
10 9.31 3.28
C.p=1
2 7.96 2.14
4 8.97 2.83
6 9.29 3.14
10 9.62 3.40
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Table 2

Estimates of the Current Equity Premium with Priors About
the Premium’s Association with Volatility

The table reports posterior means and standard deviations of the current equity premium (p4)
in a model with K = 3 structural breaks, the latest of which occurs in December 1991. The overall
period extends from January 1834 through December 1996, and the break locations are determined
by maximum-likelihood estimation. The equity premium is defined as the expected rate of return
on the aggregate stock-market portfolio in excess of the short-term interest rate, and g1 denotes
the equity premium following the k-th structural break. The variance of the excess stock return
following the k-th break is denoted by a,% 41- In the period following the most recent break, the
price of risk is defined as v = ;LKH/UE(H. In each earlier period (k = 1,...,K), the relation
between the equity premium and variance is given by g = I/Jk’YU;%, where the prior for each 1, is
a gamma distribution with parameters v/2 and 2/v. The k-th structural break is associated with
a shift in the equity premium given by Ax = pgy1 — pg, and the prior standard deviation of Ay is
set to infinity for k=1..., K.

Posterior moments of 4

Prior for v, (% per annum)

Percentiles Standard

v 10% 90% Mean Deviation
0.5 0.00 3.00 8.88 3.70
1 0.02 2.71 7.94 3.69
2 0.10 2.30 6.03 3.38
3 0.20 2.08 4.71 2.87
5 0.32 1.85 3.26 1.81
10 0.49 1.60 2.40 1.00
30 0.69 1.34 2.00 0.65
00 1.00 1.00 1.76 0.48

30



Table 3

Estimates of the Current Equity Premium with Priors About
the Premium’s Association with Volatility and About the
Magnitude of Changes in the Premium Across Breaks

The table reports posterior means and standard deviations of the current equity premium (gu4)
in a model with K = 3 structural breaks, the latest of which occurs in December 1991. The overall
period extends from January 1834 through December 1996, and the break locations are determined
by maximum-likelihood estimation. The equity premium is defined as the expected rate of return
on the aggregate stock-market portfolio in excess of the short-term interest rate, and pg1 denotes
the equity premium following the k-th structural break. The k-th break is associated with a shift
in the equity premium given by Ax = pg+1 — px. For k= 1..., K, the prior standard deviation
of Ay is oa (annualized in the table), and the prior correlation between uy and pgy1 is equal to
p. The variance of the excess stock return following the k-th break is denoted by O%H. In the
period following the most recent break, the price of risk is defined as v = px 41 /a%( +1- In each
earlier period (k = 1,..., K), the relation between the equity premium and variance is given by
= wk’ya,%, where the prior for each 1, is a gamma distribution with parameters v/2 and 2/v.

Posterior moments of 14

Parameters in the (% per annum)
priors for Ay and vy, Standard
oa () v Mean Deviation

Ap=0
2 1 6.48 1.86
2 ) 4.49 2.00
2 30 1.32 0.63
4 6.95 2.69
4 > 3.58 1.96
4 30 1.60 0.60
6 1 7.39 3.04
6 > 3.43 1.93
6 30 1.72 0.60
B.p=1
2 1 7.33 2.26
2 D 4.26 2.23
2 30 1.42 0.60
4 7.83 2.92
4 D 3.49 2.01
4 30 1.61 0.58
6 7.87 3.23
6 D 3.31 1.92
6 30 1.72 0.59
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Table 4
Estimates of the Equity Premium and Volatility Across Subperiods

The table reports posterior moments of the equity premium and equity volatility in a model with
K = 3 structural breaks. The overall period extends from January 1834 through December 1996,
and the break locations are determined by maximum-likelihood estimation. The equity premium
is defined as the expected rate of return on the aggregate stock-market portfolio in excess of the
short-term interest rate, and py41 denotes the equity premium following the k-th structural break.
The k-th break is associated with a shift in the equity premium given by Ay = pgrr1 — px. For
k = 1...,K, the prior standard deviation of Ay is oA (annualized in the table), and the prior
correlation between p and ug11 is equal to zero. The standard deviation (volatility) of the excess
stock return following the k-th break is denoted by ox41. In the period following the most recent
break, the price of risk is defined as v = ,LLK+]/U%(+1. In each earlier period (k = 1,...,K), the
relation between the equity premium and variance is given by . = Lbk’ya,z, where the prior for each
Py is a gamma distribution with parameters v/2 and 2/v.

Parameters in the Period between breaks
priors for Ay and )y 1/1834- 1/1929— 1/1941- 1/1992—
o (%) v 12/1928  12/1940  12/1991  12/1996
A. Mean (standard deviation) of the equity premium (% per annum)
0 0 6.06 6.06 6.06 6.06
(1.16) (1.16) (1.16) (1.16)
00 0 4.17 8.83 8.25 9.76
(1.55) (6.54) (2.01) (3.62)
00 00 5.10 25.48 4.77 1.76
(1.01) (5.45) (0.96) (0.48)
4 1 4.89 7.10 7.78 6.95
(1.39) (2.96) (1.78) (2.69)
4 30 4.45 10.53 5.22 1.60
(1.24) (2.35) (1.62) (0.60)
B. Mean (standard deviation) of equity volatility (% per annum)
00 0 15.13 34.36 14.46 8.23
(0.32) (2.04) (0.41) (0.77)
4 30 15.14 32.85 14.60 8.98
(0.32) (1.82) (0.41) (0.87)

32



Table 5

Bayes Factors for Various Priors in the Three-Break Model

For various informative priors in a model with K = 3 structural breaks, the table reports Bayes
factors relative to a model with noninformative priors. The overall period extends from January
1834 through December 1996, and the break locations are determined by maximum-likelihood
estimation. The equity premium is defined as the expected rate of return on the aggregate stock-
market portfolio in excess of the short-term interest rate, and pg1 denotes the equity premium
following the k-th structural break. The k-th break is associated with a shift in the equity premium
given by Ay = piga1 — pg. For k= 1..., K, the prior standard deviation of Ay is oA (annualized
in the table), and the prior correlation between py and ppiq is equal to p. The standard deviation
(volatility) of the excess stock return following the k-th break is denoted by o41. In the period
following the most recent break, the price of risk is defined as v = 11/ a%( 41- In each earlier period
(k =1,...,K), the relation between the equity premium and variance is given by u; = 1&;@/0,%,
where the prior for each 1 is a gamma distribution with parameters v/2 and 2/v. The first value
reported is based on a 10-90 weighting of the prior and the posterior in forming the importance-
sampling density, and the second value is based on a 90-10 weighting.

14

oA 0 1 ) 30

A. Limiting cases for oa

0 0.841 — — —
0.430 — — —
00 1 0.677 0.133 0.024
1 0.771 0.161 0.026
B.p=0
2 1.509 1.348 0.376 0.008
1.064 0.954 0.400 0.023
4 1.963 1.494 0.411 0.039
1.333 1.092 0.344 0.050
6 1.921 1.438 0.361 0.054
1.301 1.081 0.293 0.052
C.p=1
2 2.307 1.693 0.245 0.017
1.543 1.336 0.343 0.030
4 2.180 1.790 0.325 0.048
1.483 1.289 0.321 0.053
6 1.813 1.572 0.330 0.056

1.359 1.197 0.284 0.055
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Table 6

Estimates of the Equity Premium and Volatility with
a Single Break Specified in December 1925

The table reports posterior moments of the equity premium and equity volatility in a model
with a single structural break specified at December 1925. The equity premium is defined as the
expected rate of return on the aggregate stock-market portfolio in excess of the short-term interest
rate, and g1 and s denote the equity premiums before and after the break. The break is associated
with a shift in the equity premium given by A = puo — ;. The prior standard deviation of A is
oa (annualized in the table), and the prior correlation between pq and ps is equal to zero. The
standard deviations (volatilities) of the excess stock return before and after the break are denoted
by o1 and o9. In the period following the break, the price of risk is defined as v = pa/03. In the
earlier period, the relation between the equity premium and variance is given by uy = ¥yo?, where
the prior for ¢ is a gamma distribution with parameters v/2 and 2/v.

Parameters in the Posterior

priors for A and 1) Posterior Mean Standard Deviation

oa (%) v 1834-1925 1926-1996 1834-1925 1926-1996

A. Equity premium (% per annum)
0 0 5.06 5.06 1.31 1.31
2 0 4.57 6.09 1.38 1.67
4 0 4.09 7.08 1.47 1.98
6 0 3.91 7.52 1.50 2.10
10 0 3.81 7.93 1.50 2.20
00 0 3.65 7.97 1.51 2.26
2 1 4.55 6.09 1.37 1.65
2 5 4.52 6.25 1.32 1.59
2 30 4.42 6.47 1.22 1.54
4 1 4.13 7.07 1.42 1.95
4 5 4.24 7.13 1.32 1.85
4 30 4.42 7.16 1.15 1.73
00 1 3.78 7.90 1.46 2.20
00 5 4.01 7.82 1.31 2.09
00 30 4.40 7.56 1.13 1.87
B. Equity volatility (% per annum)

00 0 15.16 19.01 0.33 0.46
4 30 15.16 19.03 0.32 0.45
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Figure 1. Prior densities of v, for different values of v. The prior density of v
determines the strength of the link between the equity premium and variance. In the period
following the most recent of K breaks, the price of risk is defined as v = pg41/0%, . In
each earlier period, the relation between the equity premium and variance is given by u; =

Ypyoi, k= 1,..., K, where the prior for each v is a gamma distribution with parameters
v/2 and 2/v.

35



0.4 T T T T T

0.3

0.2

0.1

Monthly Excess Market Return

-0.1

1840 1860 1880 1900 1920 1940 1960 1980

-0.3 | | | | |

Figure 2. Excess market returns and structural breaks. The plot displays the
time series of monthly excess returns on the U.S. stock market (solid line) from January
1834 through December 1996. The vertical dashed lines indicate the maximum-likelihood
estimates of the breakpoints in a three-break model.
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Figure 3. Posterior distributions for the location of a single break. The upper
graph displays the posterior when volatility is permitted to shift at the break (o1 # 03), and
the lower graph displays the posterior when volatility is restricted to be the same before and
after the break (o1 = 0y).
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