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Abstract

We examine the intertemporal optimal consumption and investment problem in a conti-
nuous-time economy with a divisible durable good. Consumption services are assumed
to be proportional to the stock of the good held and adjustment of the stock is costly,
in that it involves the payment of a proportional transaction cost. For the case in
which the investor has an isoelastic utility function and asset prices follow a geomet-
ric Brownian motion, we establish the existence of an optimal policy and provide an
explicit representation for the value function. We show that the investor acts so as to
maintain the ratio of the stock of the durable to total wealth in a fixed (nonstochastic)
range and that the optimal investment policy involves stochastic portfolio weights. The
dependence of the optimal policies on the parameters of the model is also discussed.
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1. Introduction

This paper studies, in a continuous-time economy with constant price coefficients, the in-
tertemporal optimal consumption and investment problem of an infinitely-lived investor
with an isoelastic utility function for the services provided by a perfectly divisible durable
good. The consumption services provided by the durable good are assumed to be propor-
tional to the current holdings of the good (net of depreciation), and thus depend on past
purchasing decisions. Investments in the durable good are reversible, but a proportional
transaction cost has to be paid whenever the good is bought or sold. We allow for different
transaction cost rates on purchases and sales.

In the absence of transaction costs, the solution to the problem we study can be easily
obtained through a straightforward change of variables from the classical model with a
perishable good (Merton (1971)). The investor would continuously adjust the stock of the
durable good so as to maintain the marginal utility of consumption equal to the marginal
utility of wealth. With the prices of risky assets following geometric Brownian motions,
this amounts to keeping a constant fraction of wealth invested in the durable. Similarly,
the optimal portfolio policy would involve constant weights.

In the presence of transaction costs, adjusting the stock of the durable continuously
would lead to incurring infinitely large transaction costs. Therefore, the stock of the durable
is adjusted only infrequently: transaction costs introduce a wedge between the marginal
utility of consumption and the marginal utility of wealth, and the optimal consumption
policy involves possibly a discrete change (jump) in the initial stock of the durable, followed
by the minimal amount of transactions necessary to maintain the fraction of wealth invested
in the durable in a given constant range. The optimal portfolio policy involves investing in
the same portfolio of risky assets (the mean-variance efficient portfolio) as in the Merton
case (no transaction costs), but the fraction of wealth allocated to stocks becomes stochastic.

As in the literature dealing with optimal consumption in the presence of proportional
costs for transactions in the risky assets (e.g., Davis and Norman (1990), Shreve and
Soner (1994), Akian, Menaldi and Sulem (1996)) or with optimal investment in the pres-
ence of costly reversibility (e.g., Bertola and Caballero (1994), Abel and Eberly (1996)),
the problem we study amounts to a singular stochastic control problem. We show that the
same condition on the parameters of the model that is necessary and sufficient to guarantee
the existence of an optimal policy in the Merton case is also sufficient to guarantee the
existence of an optimal policy in the presence of proportional transaction costs. Moreover,
we show that the boundaries of the optimal range for the fraction of wealth invested in the
durable good can be determined by solving a system of nonlinear equations, and we provide
an explicit representation for the value function for the problem. For the case in which the
transaction cost rate for durable sales is 100%, i.e., purchases are irreversible, we provide
a closed-form expression for the boundaries of the optimal consumption range and for the
value function.

As expected given the nature of the problem (cf. Øksendal (1997)), we find that small
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transaction costs can induce large deviations from the amount of durable consumption that
would be optimal in the Merton case. The extent of these deviations depends critically
on the depreciation rate of the durable good: the optimal policy for short-lived durables
involves much more frequent purchases than the one for longer-lived durables. Surprisingly,
the boundaries of the optimal range for the fraction of wealth invested in the durable are
not necessarily monotonic functions of the transaction cost rates, and the fraction of wealth
invested in the durable good can be uniformly (i.e., throughout the optimal range) lower
than what would be optimal in the Merton case, due to additional savings by the investor
to meet future transaction costs. We provide a simple necessary and sufficient condition on
the parameters of the model for this to happen.

We also show that the optimal proportional investment in the durable good converges to
a steady-state distribution, which we obtain in closed-form. Numerical computations show
that, even in cases where the size of the no-transaction region is monotonically increasing
in the transaction cost rates, the steady-state average investment in the durable is always
monotonically decreasing in the transaction cost rates.

While transaction costs in the market for the consumption good can induce large de-
viations of the holdings of the good from the Merton case, deviations of the fraction of
wealth invested in risky assets are by comparison more limited. We show that this fraction
is always higher than in the Merton case when the investor’s wealth is high relative to the
current stock of durable (i.e., immediately before or after a purchase), and is always lower
when the investor’s wealth is low (i.e., immediately before or after a sale). As a result, the
investor can behave in either a more or a less risk-averse manner than in the absence of
transaction costs, depending on his current wealth and durable holdings, even though the
steady-state average investment in stocks is monotonically decreasing in the transaction cost
rates. Since two-fund separation holds, the standard CAPM would characterize equilibrium
prices in this economy. On the other hand, the consumption-based CAPM (CCAPM) would
fail to hold due to the possible divergence between the marginal utility of consumption and
the marginal utility of wealth.

Closely related models of optimal consumption of a durable good have been previously
analyzed by Grossman and Laroque (1990) and Hindy and Huang (1993).

Grossman and Laroque (1990) consider an economy similar to ours, but in which the
durable good comes in stocks of various sizes and is indivisible once bought. Moreover,
the consumer does not derive additional utility from holding multiple units of the good.
Therefore, in order to change his durable consumption beyond what is caused by depre-
ciation, the consumer must sell the existing stock and buy a new one. Accordingly, any
adjustment in the stock of the durable held involves the payment of a transaction cost that
is proportional to the existing stock. As Grossman and Laroque point out, this transaction
cost acts as a fixed cost in an optimal stopping problem. The optimal consumption policy
again involves only infrequent adjustments, but the corresponding durable holding process
is discontinuous, as the investor makes discrete (rather than continuous) adjustments to the
durable stock at the boundaries of the no-transaction region.

The analysis in Grossman and Laroque (1990) and the one in this paper are thus com-
plementary, the first conforming closer to the case of an indivisible durable good such as a
house or a car, and the second being a more natural modeling choice for divisible durable
goods such as furniture or clothing. This appears to be consistent with the empirical evi-

2



dence in Caballero (1993). In examining the extent to which models of durable consumption
based on the presence of fixed costs can explain the behavior of aggregate expenditure on
cars and furniture, Caballero reports that expenditure on furniture is much smoother than
expenditure on cars: for this aggregate behavior to be consistent with the presence of fixed
costs (which induce lumpy expenditure at the microeconomic level), one must assume that
the optimal no-transaction region (and hence, the average time between purchases or sales)
is much larger for furniture than for cars. In particular, Caballero reports an implied aver-
age time between individual car transactions of 4.35 years, versus an implied average time
between furniture transactions of 13.5 years. Caballero points out that the latter estimate
seems too large and that “allowing for other realistic features like habit formation (e.g.,
Constantinides (1990), Heaton [1993]) and nonseparabilities across goods and time (e.g.,
Eichenbaum and Hansen (1987), Heaton [1993]) should [. . .] reduce the need for large in-
action range estimates”. We conjecture that an alternative explanation might lie in the
presence of proportional (rather than fixed) transaction costs for furniture expenditure and
in the ensuing continuity in the optimal holding process at the microeconomic level.1 In ad-
dition, divisibility is a natural assumption in models with a single (i.e., composite) durable
good.

Hindy and Huang (1993) study, in a general continuous-time Markovian economy, the
optimal consumption problem of an investor with preferences over the service flows from
irreversible purchases of a durable good. They provide sufficient conditions for a consump-
tion and portfolio policy to be optimal and derive a closed-form solution for the case in
which the investor has isoelastic preferences and asset prices follow a geometric Brownian
motion. Their closed-form solution is a special case of ours when the transaction cost rate
for sales equals 100% (as in this case reselling the durable would clearly never be optimal)
and there are no transaction costs for purchases.2

Also closely related to our analysis is the work of Dybvig (1995), who studies the op-
timal intertemporal consumption of a perishable good given extreme habit formation that
prevents consumption from ever falling. His closed-form solution for this problem can also
be obtained as a special case of ours when the transaction cost rate for sales is 100% and
there are no transaction costs for purchases, by a straightforward change of variables that
sets the instantaneous consumption rate of the perishable good in Dybvig’s model equal to
the instantaneous durable rental rate in our model.

The rest of the paper is organized as follows. Section 2 describes in more detail the
economy we consider. Section 3 solves the investor’s optimal consumption problem in
the absence of transaction costs. This provides a benchmark for the subsequent analysis.
Section 4 contains a heuristic derivation of the optimal policies in the presence of transaction

1In comparing the model with proportional adjustment costs to the one with fixed costs, it may also be
worth pointing out that the solution for the former model is much easier to compute numerically and, as
we show in the paper, can be reduced to finding the zero of a continuous real-valued function that changes
sign at the boundaries of a given finite interval. It is thus straightforward to implement numerical solution
algorithms that always converge.

2Detemple and Giannikos (1996) have recently considered a model with irreversible durable purchases in
which the durable provides “status” as well as consumption services. The latter are assumed as usual to be
proportional to the stock of the durable held, while “status” is related to contemporaneous purchases. As
a result, in the model they consider the investor’s preferences are affected by both the stock of the durable
held and current purchases.
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costs and provides sufficient conditions under which the conjectured policies are indeed
optimal. Section 5 shows that an optimal policy exists and derives an explicit representation
for the value function. Section 6 contains an analysis of the optimal policies. Section 7
concludes the paper and points to some possible extensions.

2. The Economy

We consider an infinite-horizon, continuous-time stochastic economy, with the uncertainty
represented by a filtered probability space (Ω,F ,F, P ) on which is defined a d-dimensional
Brownian motion w.

The investment opportunities are represented by n + 1 long-lived securities. The first
security (the “bond”) is a money market account growing at a continuously compounded
interest rate r > 0. The other n assets (the “stocks”) are risky and their price process S
(inclusive of reinvested dividends) is a n-dimensional geometric Brownian motion with drift
vector µ and diffusion matrix σ, i.e.,

St = S0 +
∫ t

0
ISs µds+

∫ t

0
ISs σ dws,

where ISt denotes the n × n diagonal matrix with elements St. We assume without loss of
generality that 1 ≤ n ≤ d and that rank(σ) = n.3 Also, letting

κ =
1
2

(µ− r1̄)>(σσ>)−1(µ− r1̄), (1)

where 1̄ = (1, 1, . . . , 1)> ∈ IRn, we assume that κ > 0.4 Notice that if n < d the market
is dynamically incomplete. Trading in the bond and in the stocks takes place continuously
and is frictionless (in particular, there are no transaction costs in the securities market).
There is a single durable consumption good and holding a stock K of the good provides a
consumption service flow s(K) that is proportional to the stock, i.e., s(K) = αK, where
α > 0. The good depreciates at a rate β ≥ 0. Adjusting the stock of the durable is costly
and involves the payment of a proportional transaction cost, at a rate ι ≥ 0 for purchases
and δ ∈ [0, 1] for sales.5 A consumption and investment strategy is then characterized by a
triple (I,D, θ), where θ is an n-dimensional adapted process with∫ ∞

0
|θt|2 dt <∞ a.s.

representing portfolio holdings of the risky assets, and I and D are non-decreasing, right-
continuous adapted processes with I0 = D0 = 0 representing, respectively, cumulative
purchases and sales of the durable good.

3If n > d or rank(σ) < n, some stocks are redundant and can be omitted from the analysis.
4If κ = 0 (i.e., µ = r1̄), then the optimal investment policy involves no investment in the risky assets and

the optimal consumption policy is deterministic.
5While assuming that ι = 0 can be done without loss of generality, by taking as numeraire the purchase

price of the good inclusive of any non-monetary search or adjustment costs, we prefer to capture these
additional costs explicitly.
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Now consider an investor who starts with an initial total wealth of W0 ≥ 0, of which
an amount K0 ≥ 0 is invested in the durable good and the remainder W0 −K0 in financial
assets. Given the choice of a consumption and investment strategy (I,D, θ), the investor’s
stock of the consumption good at time t equals the initial stock, plus purchases, minus sales
and depreciation, i.e.,

Kt = K0 −
∫ t

0
βKs ds+ It −Dt, (2)

while his total wealth equals the initial wealth, plus the portfolio gains, minus depreciation
and total transaction costs paid, i.e.,

Wt = W0 +
∫ t

0

(
r(Ws −Ks) + θ>s (µ− r1̄)− βKs

)
ds+

∫ t

0
θ>s σ dws − ιIt − δDt. (3)

A consumption and investment strategy is admissible if it satisfies the solvency constraint

Wt − δKt ≥ 0 ∀t ≥ 0

(i.e., if total wealth after liquidating the stock of the durable good is nonnegative) and

Kt ≥ 0 ∀t ≥ 0.

The investor’s preferences are represented by a time-additive, isoelastic, von Neumann-
Morgenstern utility function

U(K) = E
[∫ ∞

0
e−ρtu(s(Kt)) dt

]
, (4)

where ρ > 0 is a time-preference parameter and u(c) = c1−γ/(1−γ) for some γ > 0, γ 6= 1.6

The investor’s consumption/investment problem is then that of choosing an admissible
trading strategy (I∗, D∗, θ∗) so that the corresponding durable holding process K∗ in (2)
maximizes his lifetime expected utility (4).

Remark 1. The solution of the linear stochastic differential equation (2) is given by

Kt = K0e
−βt +

∫ t

0
e−β(t−s) (dIs − dDs).

It is then immediate to see that the infinite-horizon model considered in Hindy and Huang
(1993), in which the investor’s preferences are defined over an exponentially-weighted aver-
age of past purchases (to capture durability and local substitution), is a special case of the
model we consider with α = β, ι = 0 and δ = 1 (in which case D∗ ≡ 0).

Remark 2. Letting α = r, β = ι = 0, δ = 1 and c = rK, the investor’s problem can be
rewritten as

max
(I,θ)

E
[∫ ∞

0
e−ρtu(ct) dt

]
,

6The case of logarithmic preferences (γ = 1) can be analyzed along similar lines. To avoid redundancies,
we report all the results for this case (without proofs) in Appendix B.
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subject to

ct = c0 + rIt,

Wt = W0 +
∫ t

0

(
rWs + θ>s (µ− r1̄)− cs

)
ds+

∫ t

0
θ>s σ dws,

Wt ≥
ct
r
.

This is the problem studied by Dybvig (1995), who considered optimal consumption of a
perishable good under absolute intolerance for any decline in consumption.

Remark 3. The general consumption/investment problem we consider is feasible if and
only if W0− δK0 ≥ 0, since it is always possible to liquidate the initial assets and invest all
the proceeds in the durable (in which case Wt = Kt ≥ δKt for all t > 0). Moreover, if along
any feasible strategy W (t, ω)− δK(t, ω) = 0 for some (t, ω) ∈ [0,∞)× Ω, then K(s, ω) = 0
for all s ≥ t, unless δ = 1. This can be seen by noticing that (2) and (3) imply

d(Wt − δKt) =
(
r(Wt − δKt) + θ>t (µ− r1̄)− (1− δ)(r + β)Kt

)
dt+ θ>t σ dwt − (ι+ δ) dIt.

Therefore, if W (t, ω)−δK(t, ω) = 0 and δ < 1, the only way to avoid a positive probability of
violating the solvency constraint immediately afterward is to have θ(t, ω) = 0 and K(t, ω) =
0. On the other hand, if δ = 1, then the only rational continuation strategy would involve
θ(s, ω) = 0 and K(s, ω) = K(t, ω)e−β(s−t) for all s ≥ t.

To rule out the special case noticed in Remark 3, we assume unless otherwise noted
that δ < 1.7 Moreover, we assume that W0 − δK0 > 0, so that the investor can afford
a strictly positive durable-holding process. Since limc↓0 uc(c) = ∞, we can then restrict
ourselves without loss of generality to admissible trading strategies (I,D, θ) for which the
corresponding optimal wealth and durable-holding processes (W,K) are strictly positive and
satisfy Wt − δKt > 0 for all t ≥ 0. We let Θ(W0,K0) denote this set of trading strategies.

3. Optimal Policies with No Transaction Costs

For purpose of comparison, let us consider first the case of no transaction costs (i.e., ι =
δ = 0). In this case, letting c = (r + β)K denote the instantaneous durable holding cost,
we can rewrite the investor’s problem as8

max
(c,θ)

E
[∫ ∞

0
e−ρtu

(
α

r + β
ct

)
dt

]
s.t. Wt = W0 +

∫ t

0

(
rWs + θ>s (µ− r1̄)− cs

)
ds+

∫ t

0
θ>s σ dws,

ct ≥ 0, Wt ≥ 0.

7The optimal policies and the value function for the case δ = 1 are given at the end of Section 5.
8We allow in this case durable holding processes K that are not necessarily of finite variation, i.e., that

do not necessarily have the representation (2) for some non-decreasing processes I and D. Durable holding
processes of infinite variation are suboptimal in the presence of a proportional adjustment cost, as they
involve an infinite cost.

6



The above problem is formally similar to the one studied by Merton (1971). An optimal
policy exists if and only if either W0 = 0 or the following assumption, which will be main-
tained for the rest of the paper, is satisfied (otherwise arbitrarily large expected utility can
be obtained by postponing consumption and investing in the stock market).

Assumption 1. The investor’s impatience parameter ρ satisfies

ρ >
(
1− γ

)(
r +

κ

γ

)
,

where κ is the constant in (1).

We summarize the main result for the case of no transaction costs in the following
theorem.

Theorem 1. Suppose that δ = ι = 0 and let

r∗ =
γ(r + β)

ξ
, (5)

where
ξ = ρ− (1− γ)(r + κ/γ) > 0. (6)

Then the optimal policies are

K∗t =
1
r∗
W ∗t

and

θ∗t =
(σσ>)−1(µ− r1̄)

γ
W ∗t

for all t > 0. The lifetime expected utility is

v(W0) =
α1−γ(r∗)γ

(1− γ)(r + β)
W 1−γ

0 .

Thus, with no transaction costs, the optimal policy involves investing a constant fraction
of total wealth in the durable good and in each of the traded assets. Moreover, the value
function v depends only on the investor’s initial total wealth W0.

4. Optimal Policies with Transaction Costs

Suppose from now on that δ + ι > 0 and let

v(w, k) = sup
(I,D,θ)∈Θ(w,k)

U(K)

denote the value function for the investor’s problem in this case (we will prove later that,
under Assumption 1, the value function is finite for w > δk > 0).
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It follows immediately from the concavity of the utility function u, the convexity of the
set of admissible strategies Θ(w, k) and the fact that Θ(λw, λk) = λΘ(w, k) for all λ > 0
that the value function v is concave and homogeneous of degree 1 − γ (cf. Fleming and
Soner (1993), Lemma VIII.3.2). This in turn implies that

v(w, k) = k1−γψ
(
w

k

)
(7)

for some concave function ψ : (δ,∞)→ IR.
To get some idea on the shape of the optimal policies, let us consider first, as in Davis

and Norman (1990), a restricted class of policies in which I and D are required to be
absolutely continuous with bounded derivatives, i.e.,

It =
∫ t

0
is ds

and
Dt =

∫ t

0
ds ds

for some processes i, d with 0 ≤ it, dt ≤ η for some η < ∞ and all t > 0. The Hamilton-
Jacobi-Bellman (HJB) equation for the investor’s problem is then

0 = max
(i,d,θ)

[
1
2
|θ>σ|2vww + [r(w − k) + θ>(µ− r1̄)− βk]vw

− βkvk + (vk − ιvw)i− (vk + δvw)d− ρv +
(αk)1−γ

1− γ

]
.

The maximum is achieved by

θ = −(σσ>)−1(µ− r1̄)
vw
vww

,

i = η1{vk≥ιvw},
d = η1{vk≤−δvw}.

Thus, the agent tries to adjust the stock of durable so as to keep the marginal utility of
durable consumption between (1− δ) times the marginal utility of liquid wealth and (1 + ι)
times the marginal utility of liquid wealth.9 As a result, the optimal durable adjustment
policies are bang-bang (that is, adjustments in the stock of durable only take place at the
maximum possible rate) and the solvency region

S =
{

(w, k) : k > 0, w − δk > 0
}

splits into three regions: “buy” (B), “sell” (S) and “no transaction” (NT ). At the boundary
between S and NT vk = −δvw, while at the boundary between NT and B vk = ιvw.

If the restriction that the optimal policies be absolutely continuous is removed, transac-
tions in the durable will take place at infinite speed: that is, the investor will make an initial

9Since we define the investor’s wealth w to include investment in the durable, the marginal utility of
durable consumption equals vw + vk.
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1
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w

Figure 1: The Solvency Region and Directions of Finite Transactions.

discrete transaction to the boundary of NT , and after that all subsequent transactions will
take place at the boundary and involve the minimum amount necessary to maintain the
durable stock in the NT region.

Also, it follows from the homogeneity of the value function that if v is continuously
differentiable, then

vw(λw, λk) = λ−γvw(w, k)

and
vk(λw, λk) = λ−γvk(w, k)

for all λ > 0, so that the boundaries between the B and NT regions and between the NT
and S regions are straight lines through the origin in the (w, k) space. Call the slopes of
these lines 1/r∗1 and 1/r∗2, respectively, with 1/r∗1 < 1/r∗2 < 1/δ.

Since the optimal policy in S or B is to immediately proceed to the boundary with NT
by moving along a line of slope 1/δ in S or −1/ι in B, the value function is constant along
these lines. In terms of the function ψ in (7), this amounts to

ψ(x) =


A

1−γ (x− δ)1−γ for δ < x < r∗2,
B

1−γ (x+ ι)1−γ for x > r∗1
(8)

for some constants A,B.
On the other hand, in NT the value function satisfies the HJB equation

−κ v
2
w

vww
+ [r(w − k)− βk]vw − βkvk − ρv +

(αk)1−γ

1− γ = 0.

Equivalently, since
vw = k−γψ′,

vww = k−(1+γ)ψ′′
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and
vk = (1− γ)k−γψ − wk−(1+γ)ψ′,

the above HJB equation translates into an ordinary differential equation for ψ:

− κ(ψ′)2

ψ′′
+ (r + β)(x− 1)ψ′ − (ρ+ (1− γ)β)ψ +

α1−γ

1− γ = 0 for r∗2 ≤ x ≤ r∗1. (9)

The following verification theorem formalizes the previous heuristic discussion. For
simplicity, we only consider investment policies involving bounded portfolio weights. We let

Θ̂(W0,K0) =
{

(I,D, θ) ∈ Θ(W0,K0) : |θt| ≤ ηWt for some η <∞ and all t ≥ 0
}

denote this restricted class of policies.

Theorem 2. Suppose that there exists an increasing, strictly concave, twice continuously
differentiable function ψ : (δ,∞)→ IR satisfying

− κ(ψ′)2

ψ′′
+ (r + β)(x− 1)ψ′ − (ρ+ (1− γ)β)ψ +

α1−γ

1− γ ≤ 0 on S, (10)

(ψ′)2

ψ′′
+

1− γ
γ

ψ ≥ 0 on S (11)

and (8)–(9) for some constants A,B, r∗1, r
∗
2 with r∗1 > r∗2 > δ. Let

NT = {(w, k) : k > 0, r∗2k ≤ w ≤ r∗1k}

and for (w, k) ∈ NT set

θ∗(w, k) = −(σσ>)−1(µ− r1̄)k
ψ′(w/k)
ψ′′(w/k)

. (12)

Then, for any initial endowment (W0,K0) ∈ NT , there exist unique continuous processes
(W ∗,K∗, I∗, D∗) with I∗, D∗ nondecreasing such that

W ∗t = W0 +
∫ t

0

(
r(W ∗s −K∗s ) + θ∗(W ∗s ,K

∗
s )>(µ− r1̄)− βK∗s

)
ds

+
∫ t

0
θ∗(W ∗s ,K

∗
s )>σ dws − ιI∗s − δD∗s ,

K∗t = K0 −
∫ t

0
βK∗s ds+ I∗t −D∗t ,

I∗t =
∫ t

0
1{W ∗s =r∗1K

∗
s } dI

∗
s ,

D∗t =
∫ t

0
1{W ∗s =r∗2K

∗
s } dD

∗
s ,

and the policy (I∗, D∗, θ∗) is optimal in Θ̂(W0,K0). Otherwise, as long as (W0,K0) ∈ S, the
optimal policy consists of an immediate transaction to the closest boundary of NT, followed
by an application of the policy (I∗, D∗, θ∗). The maximal lifetime expected utility is

v(W0,K0) = K1−γ
0 ψ

(
W0

K0

)
. (13)
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Remark 4. As shown in the proof, condition (11) is equivalent to the concavity of the value
function v.

Proof. See Appendix A.

5. Existence and Explicit Solution

In this section we use Theorem 2 to derive an explicit representation for the value function
and to prove the existence of an optimal policy.

Differentiating the HJB equation (9) once with respect to x and dividing by ψ′′ gives a
first-order differential equation in ϕ(x) = −ψ′(x)/ψ′′(x) > 0:

κϕϕ′ − (ρ− r − γβ + κ)ϕ− (r + β)(x− 1) = 0. (14)

Integrating the above ODE leads to the following result.

Lemma 1. For ν ≥ 0, x ∈ IR, let ϕν(x) ≥ max[α1(x − 1), α2(x − 1)] denote the unique
solution of the equation[

ϕν(x)− α1(x− 1)
]β1
[
ϕν(x)− α2(x− 1)

]β2
= ν, (15)

where

α1 =
ρ+ κ− r − γβ −

√
(ρ+ κ− r − γβ)2 + 4(r + β)κ

2κ
< 0,

α2 =
ρ+ κ− r − γβ +

√
(ρ+ κ− r − γβ)2 + 4(r + β)κ

2κ
> 0,

β1 = α1/(α1 − α2) ∈ (0, 1) and β2 = 1 − β1 ∈ (0, 1). If ψ satisfies the assumptions of
Theorem 2, then

− ψ′(x)
ψ′′(x)

= ϕν(x) (16)

for all x ∈ (r∗2, r
∗
1) and some ν ≥ 0.

Proof. See Appendix A.

Integrating equation (16) twice and recalling (8) gives an explicit representation for ψ
(and hence for the value function v) up to the five constants A,B, ν, r∗1, r

∗
2, plus two addi-

tional constants of integration. However, these can be determined using the HJB equation
(9) and smooth-pasting of ψ and of its first two derivatives at the boundaries of the NT
region.

Theorem 3. Suppose that δ < 1 and there exist constants r∗1 > r∗2 and ν∗ > 0 solving[
1
γ

(r∗1 + ι)− α1(r∗1 − 1)
]β1
[

1
γ

(r∗1 + ι)− α2(r∗1 − 1)
]β2

= ν∗, (17)[
1
γ

(r∗2 − δ)− α1(r∗2 − 1)
]β1
[

1
γ

(r∗2 − δ)− α2(r∗2 − 1)
]β2

= ν∗, (18)

11



and

r∗2 − δ + (1− γ)
∫ r∗1

r∗2

exp
(
−
∫ y

r∗2

dz

ϕν∗(z)

)
dy = (r∗1 + ι) exp

(
−
∫ r∗1

r∗2

dz

ϕν∗(z)

)
. (19)

Then the function

ψ(x) =



A

1− γ (x− δ)1−γ if δ < x < r∗2

C1 − C2

∫ r∗1

x
exp

(∫ r∗1

y

dz

ϕν∗(z)

)
dy if r∗2 ≤ x ≤ r∗1

B

1− γ (x+ ι)1−γ , if x > r∗1

(20)

where

A =
α1−γ

η

(
r∗2 − δ

)γ
exp

(∫ r∗1

r∗2

dz

ϕν∗(z)

)
,

B =
α1−γ

η

(
r∗1 + ι

)γ
,

C1 =
α1−γ

η(1− γ)

(
r∗1 + ι

)
,

C2 =
α1−γ

η

and
η = ξ(r∗1 + ι) + (1− γ)(r + β)(1 + ι), (21)

satisfies the conditions of Theorem 2.

Proof. See Appendix A.

Before establishing the existence of a solution to (17)–(19), we record some useful in-
equalities.

Proposition 1. If r∗1 and r∗2 satisfy the conditions of Theorem 3, then

γ(r + β)(1 + ι)
ξ

− ι < r∗1 < 1− 1 + ι

1− γα2
(22)

and
1− 1− δ

1− γα1
< r∗2 ≤

γ(r + β)(1− δ)
ξ

+ δ. (23)

Moreover, the constant η in (21) is strictly positive.

We are now ready to show that, under Assumption 1, the nonlinear system (17)–(19)
always has a solution.10 This establishes the existence of an optimal policy.

Theorem 4. If δ < 1, there exist constants r∗1 > r∗2 and ν∗ > 0 solving (17)–(19).

Proof. See Appendix A.
10The proof of the theorem also reveals that the solution of the system is easily computed once the zero

12



Remark 5. Since the function ψ in (20) solves the HJB equation (9), we have

0 = −κψ
′(r∗2)2

ψ′′(r∗2)
+ (r + β)(r∗2 − 1)ψ′(r∗2)− [ρ+ (1− γ)β]ψ(r∗2) +

α1−γ

1− γ

=
α1−γ

(1− γ)η
exp

(∫ r∗1

r∗2

dz

ϕν∗(z)

)[
η exp

(
−
∫ r∗1

r∗2

dz

ϕν∗(z)

)
− ξ(r∗2 − δ)− (1− γ)(r + β)(1− δ)

−
(
ρ+ (1− γ)β

)(
r∗2 − δ + (1− γ)

∫ r∗1

r∗2

exp
(
−
∫ y

r∗2

dz

ϕν∗(z)

)
dy

− (r∗1 + ι) exp
(
−
∫ r∗1

r∗2

dz

ϕν∗(z)

))]
,

so that equation (19) is equivalent to

ξ(r∗2 − δ) + (1− γ)(r + β)(1− δ) = η exp
(
−
∫ r∗1

r∗2

dz

ϕν∗(z)

)
(24)

provided that ρ 6= (γ − 1)β. If the latter condition is satisfied, equation (24) is more
convenient to use than equation (19) in numerical search algorithms for (r∗1, r

∗
2, ν
∗), since

it involves a single, rather than a double, integration.

We conclude this section by providing an explicit solution for the case δ = 1.
Clearly, in this case it is never optimal to sell the durable, so that the solvency region

contains only a “no transaction” (NT ) and a “buy” (B) region (i.e, r∗2 = δ = 1). Also, if
W ∗(t, ω) = K∗(t, ω) for some (t, ω) ∈ [0,∞)×Ω, then, as already observed in Remark 3, the
only rational continuation strategy involves θ∗(s, ω) = 0 and K∗(s, ω) = K∗(t, ω)e−β(s−t)

for all s ≥ t. Thus, ψ satisfies the ODE (9) in NT , with the boundary condition

ψ(1) =
∫ ∞

0
e−ρt

(αe−βt)1−γ

1− γ dt.

To ensure that the above value is finite, assume that ρ > (γ − 1)β. We can then obtain
the value function for this case from Theorem 3. Since r∗2 = δ = 1, we have from (18) that
ν∗ = 0. Equation (17) then gives

r∗1 =
γα2 + ι

γα2 − 1
> 1.

Also, since ϕ0(x) = α2(x− 1) for x ≥ 1, we have from (20)

ψ(x) =


α1−γ

(1− γ)(ρ+ (1− γ)β)
+
α1−γ

η
(r∗1 − 1)

1
α2

(x− 1)1− 1
α2

1− 1
α2

if 1 ≤ x ≤ r∗1

α1−γ

η
(r∗1 + ι)γ

(x+ ι)1−γ

1− γ if x > r∗1,

of a real-valued continuous function h (defined in equation (43)) has been found. Moreover, it is shown that

h

(
1− 1− δ

1− γα1

)
> 0 > h

(
γ(r + β)(1− δ)

ξ
+ δ

)
.

Thus, it is trivial to implement numerical search procedures that always converge to the constants r∗1 , r∗2
and ν∗ identifying the optimal policies.

13



where η is the constant in (21). While our verification result (Theorem 2) does not apply
directly to this case (since r∗2 = δ), it is straightforward to use a similar argument to show
that the value function for this case is indeed given by

v(w, k) = k1−γψ
(
w

k

)
,

with ψ as above. Moreover, the optimal investment policy is given by

θ∗t = −(σσ>)−1(µ− r1̄)K∗t
ψ′(W ∗t /K

∗
t )

ψ′′(W ∗t /K∗t )
1{W ∗t >K∗t },

and the optimal consumption policy involves only purchasing the durable when K∗t = 1
r∗1
W ∗t

(and never selling it).

6. Analysis of Optimal Policies

Recall from Theorem 2 that the optimal consumption policy consists of maintaining the
fraction K∗t /W

∗
t of total wealth invested in the durable in the range [1/r∗1, 1/r

∗
2], while the

optimal portfolio weights are given by

θ∗t
W ∗t

= −(σσ>)−1(µ− r1̄)
K∗t
W ∗t

ψ′(W ∗t /K
∗
t )

ψ′′(W ∗t /K∗t )
=

(σσ>)−1(µ− r1̄)
Γ(W ∗t /K∗t )

, (25)

where

Γ(x) = − xψ
′′(x)

ψ′(x)

denotes the Arrow-Pratt relative risk aversion coefficient of the indirect utility function ψ.
In the case of no transaction costs (δ = ι = 0),

1
r∗1

=
1
r∗2

=
1
r∗

=
ρ− (1− γ)(r + κ/γ)

γ(r + β)

and
θ∗t
W ∗t

=
(σσ>)−1(µ− r1̄)

γ
.

6.1. The No-Transaction Region

Table 1 shows the optimal ranges for the fraction of wealth invested in the durable good for
different levels of the relative risk aversion coefficient γ and of the transaction cost rates δ
and ι. As in Grossman and Laroque (1990), we assume that n = 1, µ = .069, σ = .22 and
r = .01. Moreover, we take ρ = .01 and β = 0 (no depreciation), so as to allow a direct
comparison between the values in the table and those reported in Table I in Grossman and
Laroque (1990).

As expected, a small percentage transaction cost can induce large deviations of optimal
consumption from the Merton line. For example, in the absence of transaction costs an

14



γ = .9

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (0.556, 0.556) (0.394, 0.765) (0.259, 1.057) (0.210, 1.210) (0.145, 1.481) (0.065, 2.045)

δ = .005 (0.395, 0.767) (0.360, 0.828) (0.253, 1.076) (0.207, 1.222) (0.144, 1.486) (0.065, 2.039)

δ = .05 (0.265, 1.063) (0.258, 1.081) (0.215, 1.210) (0.185, 1.313) (0.136, 1.520) (0.064, 1.984)

δ = .10 (0.220, 1.209) (0.216, 1.220) (0.189, 1.305) (0.167, 1.380) (0.128, 1.542) (0.063, 1.920)

δ = .25 (0.161, 1.382) (0.160, 1.386) (0.147, 1.421) (0.136, 1.454) (0.110, 1.532) (0.059, 1.731)

δ = 1 (0.094, 1.000) (0.094, 1.000) (0.090, 1.000) (0.086, 1.000) (0.077, 1.000) (0.049, 1.000)

γ = 1

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.000, 1.000) (0.731, 1.326) (0.497, 1.744) (0.409, 1.947) (0.290, 2.284) (0.136, 2.901)

δ = .005 (0.732, 1.325) (0.672, 1.416) (0.486, 1.764) (0.403, 1.956) (0.288, 2.279) (0.135, 2.879)

δ = .05 (0.503, 1.693) (0.492, 1.716) (0.415, 1.874) (0.361, 1.995) (0.271, 2.227) (0.133, 2.686)

δ = .10 (0.421, 1.805) (0.414, 1.817) (0.366, 1.911) (0.328, 1.990) (0.255, 2.153) (0.130, 2.497)

δ = .25 (0.312, 1.779) (0.310, 1.783) (0.287, 1.811) (0.267, 1.838) (0.221, 1.899) (0.123, 2.045)

δ = 1 (0.185, 1.000) (0.184, 1.000) (0.178, 1.000) (0.171, 1.000) (0.154, 1.000) (0.102, 1.000)

γ = 1.1

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.297, 1.297) (0.974, 1.671) (0.681, 2.119) (0.568, 2.326) (0.412, 2.653) (0.200, 3.208)

δ = .005 (0.973, 1.666) (0.900, 1.766) (0.666, 2.134) (0.560, 2.328) (0.409, 2.640) (0.199, 3.178)

δ = .05 (0.684, 2.019) (0.669, 2.041) (0.572, 2.195) (0.503, 2.311) (0.384, 2.523) (0.195, 2.920)

δ = .10 (0.576, 2.078) (0.568, 2.089) (0.507, 2.175) (0.458, 2.247) (0.362, 2.390) (0.191, 2.676)

δ = .25 (0.432, 1.918) (0.429, 1.921) (0.400, 1.944) (0.374, 1.966) (0.314, 2.015) (0.180, 2.128)

δ = 1 (0.259, 1.000) (0.258, 1.000) (0.250, 1.000) (0.241, 1.000) (0.218, 1.000) (0.149, 1.000)

γ = 1.5

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.799, 1.799) (1.450, 2.152) (1.100, 2.514) (0.955, 2.662) (0.740, 2.877) (0.405, 3.195)

δ = .005 (1.446, 2.140) (1.362, 2.226) (1.080, 2.515) (0.943, 2.653) (0.735, 2.856) (0.404, 3.163)

δ = .05 (1.085, 2.346) (1.067, 2.362) (0.946, 2.468) (0.857, 2.543) (0.693, 2.674) (0.395, 2.895)

δ = .10 (0.938, 2.299) (0.928, 2.306) (0.851, 2.361) (0.787, 2.404) (0.655, 2.489) (0.386, 2.645)

δ = .25 (0.729, 1.982) (0.725, 1.983) (0.688, 1.996) (0.653, 2.008) (0.570, 2.035) (0.362, 2.094)

δ = 1 (0.457, 1.000) (0.455, 1.000) (0.444, 1.000) (0.433, 1.000) (0.402, 1.000) (0.296, 1.000)

γ = 2

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.899, 1.899) (1.611, 2.165) (1.300, 2.414) (1.163, 2.509) (0.950, 2.641) (0.578, 2.824)

δ = .005 (1.605, 2.153) (1.533, 2.214) (1.279, 2.410) (1.151, 2.498) (0.944, 2.623) (0.577, 2.800)

δ = .05 (1.272, 2.260) (1.255, 2.271) (1.143, 2.339) (1.058, 2.387) (0.895, 2.468) (0.564, 2.597)

δ = .10 (1.125, 2.191) (1.115, 2.195) (1.044, 2.230) (0.981, 2.258) (0.849, 2.310) (0.551, 2.403)

δ = .25 (0.904, 1.888) (0.900, 1.889) (0.865, 1.897) (0.831, 1.905) (0.747, 1.922) (0.517, 1.959)

δ = 1 (0.592, 1.000) (0.591, 1.000) (0.581, 1.000) (0.569, 1.000) (0.538, 1.000) (0.421, 1.000)

Table 1: Optimal range for the fraction of wealth invested in the durable.

The table shows numerical values of the interval
(
1/r∗1 , 1/r

∗
2

)
for different values of the investor’s

risk aversion and of the proportional transaction cost rates. The other parameters are set as follows:
r = .01, µ = .069, σ = .22, β = 0 and ρ = .01.
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investor with logarithmic utility11 would keep the investment in the durable good equal to
total wealth (any stock investment would be financed entirely by borrowing). The same
investor would let the ratio of durable investment to wealth fluctuate between .672 and 1.416
with a transaction cost rate of .5% in either direction, and between .221 and 1.899 with a
transaction cost rate of 25%. Not surprisingly, the optimal ranges for the fraction of wealth
invested in the durable reported in Table I of Grossman and Laroque (1990), computed
under the assumption that the durable good is indivisible, are considerably larger and
always strictly contain the corresponding ranges for the model we study.

In the examples reported in Table 1, the lower bound of the optimal range for the
fraction of wealth invested in the durable appears to be strictly decreasing in the percentage
transaction costs δ and ι, while the upper bound appears to be strictly increasing in ι, but
not necessarily a monotonic function of δ. Indeed, it is easy to see that the upper bound
1/r∗2 cannot be monotonically increasing in δ if ι = 0 and r∗ < 1, i.e., if

ρ > (1− γ)(r + κ/γ) + γ(r + β).

This is so because we must have 1/r∗2 = 1/r∗ > 1 for δ = 0 and 1/r∗2 = 1 for δ = 1. The
following proposition confirms the above analysis.

Proposition 2. Let r∗1, r
∗
2 satisfy the conditions of Theorem 3. Then r∗1 is strictly increas-

ing in ι and δ, while r∗2 is strictly decreasing in ι.

Proof. It is easy to see from equations (17)–(19) that r∗1 = r1(δ, ι) and r∗2 = r2(δ, ι) for
some continuously differentiable functions r1, r2. Also, letting

ψ1(x, r1, ι) =
α1−γ(r1 + ι)γ

ξ(r1 + ι) + (1− γ)(r + β)(1 + ι)
(x+ ι)1−γ

1− γ
and

ψ2(x, r2, δ) =
α1−γ(r2 − δ)γ

ξ(r2 − δ) + (1− γ)(r + β)(1− δ)
(x− δ)1−γ

1− γ ,

it follows from equations (20) and (19) that ψ(x) = ψ1(x, r∗1, ι) for x ≥ r∗1 and ψ(x) =
ψ2(x, r∗2, δ) for δ < x ≤ r∗2.

Since ψ(x) represents the value function for the investor’s problem when K0 = 1 and
the maximum expected utility is strictly decreasing in the transaction cost rates δ and ι
(this follows from the fact that the optimal policy always involves a positive probability
of hitting either boundary: see Proposition 4), we must have ∂

∂δψ1(x, r1(δ, ι), ι) < 0 and
∂
∂ιψ1(x, r1(δ, ι), ι) < 0 for all x ≥ r1(δ, ι) and ∂

∂ιψ2(x, r2(δ, ι), δ) < 0 for all δ < x ≤ r2(δ, ι).
The first inequality amounts to

0 >
∂ψ1(x, r∗1, ι)

∂r1

∂r1(δ, ι)
∂δ

= − α
1−γ(r∗1 + ι)γ−1[ξ(r∗1 + ι)− γ(r + β)(1 + ι)]

[ξ(r1 + ι) + (1− γ)(r + β)(1 + ι)]2
(x+ ι)1−γ ∂r1(δ, ι)

∂δ
.

Since the first fraction in the above expression is strictly positive (by Proposition 1), we
conclude that ∂

∂δ r1(δ, ι) > 0. The proof that ∂
∂ιr1(δ, ι) > 0 and ∂

∂ιr2(δ, ι) < 0 is similar.

11While the analysis so far has focused on the case γ 6= 1, the case of logarithmic utilities (γ = 1) can be
analyzed in a similar fashion. The relevant results are reported in Appendix B.
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The fact that the upper bound 1/r∗2 of the optimal range for the fraction of wealth
invested in the durable is not necessarily monotonically increasing in δ may at first appear
counterintuitive. However, it can be rationalized as follows. An increase in the transaction
cost rates δ and ι affects the location of the optimal range for K/W in two different ways.
First, since adjusting the stock of durable becomes more expensive, the investor will tend to
widen the no-transaction region by decreasing 1/r∗1 and increasing 1/r∗2 (the “transaction-
avoidance effect”). On the other hand, an increase in δ or ι also induces the investor to save
more to compensate for lower future consumption due to higher future transaction costs:
this is obtained by decreasing the upper bound 1/r∗2 (and possibly the lower bound 1/r∗1)
of the optimal range for the fraction of wealth invested in the durable good (the “saving”
effect). While both effects will tend to unambiguously decrease 1/r∗1 as the transaction cost
rates increase, the net impact on 1/r∗2 depends on which factor dominates.

Since 1/r∗1 is decreasing in δ and ι and 1/r∗1 = 1/r∗ for δ = ι = 0, we always have
1/r∗1 ≤ 1/r∗. On the other hand, since 1/r∗2 is not necessarily increasing in δ, it is possible
that 1/r∗2 ≤ 1/r∗, i.e., that the no-transaction region does not contain the Merton line. In
this case, the investor always consumes less, for any given level of wealth, than what he
would consume in the absence of adjustment costs. The following proposition provides a
simple necessary and sufficient condition for this to happen.

Proposition 3. Let r∗ be as in Theorem 1 and let r∗2 be as in Theorem 3. There exists a
δ ∈ (0, 1) such that r∗2 > r∗ if and only if r∗ < 1, i.e., if and only if

ρ > (1− γ)(r + κ/γ) + γ(r + β).

Proof. The condition on ρ is equivalent to

γ[α1ξ + (1− γα1)(r + β)]
ξ

< 1.

Fix δ with
γ[α1ξ + (1− γα1)(r + β)]

ξ
< δ < 1.

Then it follows from Proposition 1 that

r∗2 > 1− 1− δ
1− γα1

>
γ(r + β)

ξ
= r∗.

Conversely, suppose that r∗2 > r∗ for some δ ∈ (0, 1). Then it follows from Proposition 1
that

0 < r∗2 − r∗ ≤
γ(r + β)(1− δ)

ξ
+ δ − r∗ = δ

ρ− (1− γ)(r + κ/γ)− γ(r + β)
ξ

.
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Figure 2: Boundaries of the optimal range for the fraction of wealth invested in the
durable as a function of the transaction cost rate.
The graph plots 1/r∗1 and 1/r∗2 against δ for two different values of the investor’s time preference
parameter: ρ = .01 (top graph) and ρ = .10 (bottom graph). The other parameters are set as
follows: r = .01, µ = .069, σ = .22, ι = 0, β = .05 and γ = 1.
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Figure 3: Boundaries of the optimal range for the fraction of wealth invested in the
durable as a function of the investor’s relative risk aversion coefficient.
The graph plots 1/r∗1 , 1/r∗2 and 1/r∗ against γ. The other parameters are set as follows: r = .01,
µ = .069, σ = .22, δ = .05, ι = 0, β = .05 and ρ = .01.

Assuming a durable’s depreciation rate of 5% and no transaction costs for purchases (ι =
0), Figure 2 shows how the no-transaction region changes as a function of the transaction
cost rate δ for a log investor (γ = 1) and for two different values of the time-preference
parameter (ρ = .01 and ρ = .10). In the first case (in which r∗ > 1) the no-transaction
region becomes monotonically larger as the transaction cost rate increases, and it always
includes the Merton line, while in the second case (in which r∗ < 1) the no-transaction region
is not monotonically increasing and it fails to include the Merton line when the transaction
cost rate is large enough. This reflects the fact that in the latter case the investor is more
impatient and thus initially less willing to save. Since this implies a higher marginal utility
for future consumption, a reduction in future consumption due to an increase in transaction
costs induces him to increase his savings proportionally more than a less impatient investor.
Thus, the “saving” effect dominates the “transaction-avoidance” effect.

Figures 3 and 4 show, respectively, how the boundaries of the no-transaction region
change as a function of the investor’s relative risk aversion γ and of the durable’s depreciation
rate β. As would be the case in the absence of transaction costs, the region’s boundaries are
a non-monotonic function of the investor’s risk-aversion coefficient and a decreasing function
of the durable’s depreciation rate.12 Moreover, the size of the no-transaction region is a

12An optimal policy does not exist in Figure 3 for

γ < γ∗ =

√
(ρ− r + κ)2 + 4rκ− (ρ− r + κ)

2r
= .815,

as Assumption 1 is violated in this case. Moreover, as γ ↓ γ∗, the optimal policy involves postponing
consumption to increase investment in the stock market. Thus, both boundaries of the no-transaction
region converge to zero. In figure 4, as β ↑ ∞, the durable behaves increasingly as a perishable good, so
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Figure 4: Boundaries of the optimal range for the fraction of wealth invested in the
durable as a function of the durable’s depreciation rate.
The graph plots 1/r∗1 , 1/r∗2 and 1/r∗ against β. The other parameters are set as follows: r = .01,
µ = .069, σ = .22, δ = .05, ι = 0, ρ = .01 and γ = 1.

non-monotonic function of the risk-aversion and a monotonically decreasing function of the
depreciation rate. Thus, the optimal consumption policy for short-lived durable goods is to
purchase small quantities frequently, while the optimal policy for long-lived durables calls
for more sporadic and larger purchases. This agrees with the finding of Hindy and Huang
(1933) for the case δ = 1.

6.2. Stochastic Behavior of the Investment in the Durable

In order to analyze in more detail the stochastic behavior of the investment in the durable,
let xt = W ∗t /K

∗
t denote the fraction of wealth invested in the durable at time t. An

application of Itô’s lemma shows that, within the no-transaction region,

dxt = a(xt) dt+ b(xt)>dwt,

where
a(x) = (r + β)(x− 1) + 2κϕν∗(x)

and
b(x) = [(µ− r1̄)>(σσ>)−1σ]>ϕν∗(x).

Now fix x0 = x ∈ (r∗2, r
∗
1), and let

τ = inf
{
t ≥ 0 : xt /∈ (r∗2, r

∗
1)
}
.

that lim 1
r∗1

= lim 1
r∗2

= lim 1
r∗ = 0.
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denote the time of the next transaction in the durable. Also, let

Px(τ <∞) = P
(
τ <∞ | x0 = x

)
denote the conditional probability that τ is finite and let

Ex[τ ] = E
[
τ | x0 = x

]
denote the conditional expectation of τ . Finally, fix an arbitrary number c ∈ (r∗2, r

∗
1) and

define the scale function

s(x) =
∫ x

c
exp

(
−2
∫ y

c

a(z)
|b(z)|2 dz

)
dy

as well as the speed density

m(x) =
2

s′(x)|b(x)|2 .

Proposition 4. If δ < 1, then Px(τ < ∞) = 1 and Ex[τ ] < ∞ for all x ∈ (r∗2, r
∗
1). More-

over, either boundary of the no-transaction region can be reached with positive probability.
On the other hand, if δ = 1 then Px(τ <∞) = 1 if ρ ≤ r+ κ+ γβ and 0 < Px(τ <∞) < 1
otherwise. In either case, the lower boundary is never reached.

Proof. Since ϕν∗(x) > 0 for all x ∈ (r∗2, r
∗
1), we have (recalling the standing assumption

that κ > 0)
|b(x)|2 > 0 ∀x ∈ (r∗2, r

∗
1).

Moreover, since both a(x) and b(x) are continuous on (r∗2, r
∗
1),

∀x ∈ (r∗2, r
∗
1), ∃ε > 0 such that

∫ x+ε

x−ε

1 + |a(x)|
|b(x)|2 dx <∞.

Now let

q(x) =
∫ x

c
(s(x)− s(y))m(y) dy =

∫ x

c
s′(y)

(∫ y

c
m(z) dz

)
dy.

If δ < 1, then ϕν∗(x) > 0 for all x ∈ [r∗2, r
∗
1], so that s and m are defined and continuous

on [r∗2, r
∗
1], and we have q(r∗2) < ∞ and q(r∗1) < ∞. The fact that Ex[τ ] < ∞ (and hence

that τ < ∞ a.s.) then follows from Proposition 5.5.32(i) in Karatzas and Shreve (1988),
while the fact that either boundary can be reached with positive probability follows from
Proposition 5.5.22(d).

If δ = 1, then the above argument is not necessarily true, since ϕν∗(r∗2) = ϕ0(1) = 0.
On the other hand, since ϕ0(x) = α2(x− 1), for any x > 1, we have in this case

s(x) =
∫ x

c
exp

(
−2
∫ y

c

r + β + 2κα2

2κα2
2(z − 1)

dz

)
dy

=
∫ x

c

(y − 1)−ζ

(c− 1)−ζ
dy

=


(c− 1)ζ

(
(x− 1)1−ζ

1− ζ − (c− 1)1−ζ

1− ζ

)
if ζ 6= 1;

(c− 1) log
(
x− 1
c− 1

)
otherwise
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and

q(x) =
∫ x

c

(y − 1)−ζ

(c− 1)−ζ

(∫ y

c

2(c− 1)−ζ

2κα2
2(z − 1)2−ζ dz

)
dy

=


(x− 1)1−ζ − (c− 1)1−ζ

κα2
2(c− 1)1−ζ(1− ζ)2

− ln(x− 1)− ln(c− 1)
κα2

2(1− ζ)
if ζ 6= 1;

1
2κα2

2

(
log

(
x− 1
c− 1

))2

otherwise

where

ζ =
r + β + 2κα2

κα2
2

.

If ρ ≤ r + κ + γβ, then ζ ≥ 1, and hence s(r∗1) < ∞, s(r∗2+) = s(1+) = −∞, q(r∗1) < ∞
and q(r∗2+) = q(1+) = +∞. The fact that Px(τ < ∞) = 1 then follows from Proposi-
tion 5.5.32(ii) in Karatzas and Shreve (1988), while the fact that the lower boundary is
never reached follows from Proposition 5.5.22(c). On the other hand, if ρ > r+κ+γβ, then
ζ < 1, and hence s(r∗1) < ∞, s(r∗2) = s(1) > −∞, q(r∗1) < ∞ and q(r∗2+) = q(1+) = +∞,
so that it follows from Propositions 5.5.29 and 5.5.32 in Karatzas and Shreve (1988) that
0 < Px(τ < ∞) < 1. The fact that the lower boundary is never reached follows from the
fact that q(+∞) = +∞ and Proposition 5.5.29 in Karatzas and Shreve (1988).

As a consequence of the fact that, when δ < 1, the expected time to reach either
boundary is finite, it follows that x is a positively recurrent process and that

f(x) =
m(x)∫ r∗1

r∗2
m(y) dy

is a stationary (or steady-state) probability density (Borodin and Salminen (1996), II.12).
In addition, x is ergodic and the distribution of xt converges to the stationary distribution,
that is

lim
t→∞

(
sup

A∈B([r∗2 ,r
∗
1 ])

∣∣∣∣Px(xt ∈ A)−
∫
A
f(z) dz

∣∣∣∣
)

= 0

where B([r∗2, r
∗
1]) denotes the Borel sigma-field on [r∗2, r

∗
1] (Borodin and Salminen (1996),

II.35-36).
Figure 5 shows the steady-state average fraction of wealth invested in the durable as

a function of the transaction cost rate δ. As it could be expected, even though the no-
transaction region is monotonically increasing in this case (as shown in Figure 2), the
steady-state average proportional investment in the durable good declines monotonically as
the transaction costs increase.

6.3. Frequency of Transactions in the Durable

For the case in which δ < 1 (so that Ex[τ ] <∞), we can compute the expected time to the
next transaction in the durable using the following result.
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Figure 5: Steady-state average fraction of wealth invested in the durable as a function
of the transaction cost rate.
The graph plots the average of K∗/W ∗ under the steady-state distribution against δ. The other
parameters are set as follows: r = .01, µ = .069, σ = .22, ι = 0, β = .05, ρ = .01 and γ = 1.

Proposition 5. Suppose that δ < 1. Then the function T (x) = Ex[τ ] solves the ordinary
differential equation

1
2
|b(x)|2T ′′(x) + a(x)T ′(x) + 1 = 0

on (r∗2, r
∗
1), with boundary conditions T (r∗2) = T (r∗1) = 0.

Proof. This follows immediately from Karlin and Taylor (1981, p.192).

Figure 6 plots the expected length of time (in years) to the next adjustment in the stock
of the durable T (x) = Ex[τ ] as a function of the current fraction of wealth invested in the
durable K∗/W ∗ = 1/x for different levels of the transaction cost rate δ. While the values
in Figure 6 are conditional expectations based on the current value of x, Figures 7 and 8
plot the unconditional expectation of the time to the next transaction in the durable under
the steady-state distribution for x, as a a function of the transaction cost rate δ and of
the depreciation rate β. The latter figure confirms our earlier statement that the optimal
policy for longer-lived durables involves more sporadic adjustments. As expected, these
figures also indicate that changes in durable consumption are much more frequent in the
case of a divisible durable good than in the case of an indivisible good studied by Grossman
and Laroque (1990).

An alternative assessment of the frequency of transactions in the durable can be obtained
by examining the expected discounted value of the lifetime purchases and sales of the
durable.
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Figure 6: Expected length of time (in years) to the next transaction in the durable as
a function of the fraction of wealth invested in the durable.
The graph plots Ex[τ ] against 1/x = K∗/W ∗ for different values of δ. Each curve is plotted over
the optimal range for K∗/W ∗. The other parameters are set as follows: r = .01, µ = .069, σ = .22,
ι = 0, β = .05, ρ = .01 and γ = 1.
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Figure 7: Steady-state average time to the next transaction in the durable as a function
of the transaction cost rate.
The graph plots the unconditional mean of the time to the next transaction under the steady-state
distribution of x as a function of δ. The other parameters are set as follows: r = .01, µ = .069,
σ = .22, ι = 0, β = .05, ρ = .01 and γ = 1.
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Figure 8: Steady-state average time to the next transaction in the durable as a function
of the depreciation rate.
The graph plots the unconditional mean of the time to the next transaction under the steady-state
distribution of x for different values of β. The other parameters are set as follows: r = .01, µ = .069,
σ = .22, δ = .05, ι = 0, ρ = .01 and γ = 1.

Proposition 6. Let λ, λ1, λ2 be arbitrary constants with λ > r + 2κ r
∗
1+ι
γr∗1

. Then

E
[∫ ∞

0
e−λt|λ1 dI

∗
t + λ2 dD

∗
t |
∣∣∣ K∗0 = K,W ∗0 = W

]
<∞

for all (W,K) with K > 0 and W/K ∈ [r∗2, r
∗
1] if and only if

E
[∫ ∞

0
e−λt(λ1 dI

∗
t + λ2 dD

∗
t )
∣∣∣ K∗0 = K,W ∗0 = W

]
= Kg(W/K;λ, λ1, λ2),

where g(x) = g(x;λ, λ1, λ2) solves the ordinary differential equation

1
2
|b(x)|2g′′(x) + a(x)g′(x)− (λ+ β)g(x) = 0 (26)

on [r∗2, r
∗
1] with boundary conditions

g(r∗1)− (r∗1 + ι)g′(r∗1) + λ1 = 0

and
g(r∗2)− (r∗2 − δ)g′(r∗2)− λ2 = 0.

Proof. Suppose first that there is a solution g to the ODE (26) with the associated
boundary conditions and let C(W,K) = Kg(W/K). An application of Itô’s lemma gives

C(W,K) = e−λtC(W ∗t ,K
∗
t )−

∫ t

0
e−λsCW (W ∗s ,K

∗
s )θ∗s

>σ dws
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−
∫ t

0
e−λs

(
1
2
CWW (W ∗s ,K

∗
s )|θ∗s>σ|2

+ CW (W ∗s ,K
∗
s )[rW ∗s + θ∗s

>(µ− r)− (r + β)K∗s ]

− CK(W ∗s ,K
∗
s )βK∗s − λC(W ∗s ,K

∗
s )
)
ds

+
∫ t

0
e−λs

(
ιCW (W ∗s ,K

∗
s )− CK(W ∗s ,K

∗
s )
)
dI∗s

+
∫ t

0
e−λs

(
δCW (W ∗s ,K

∗
s ) + CK(W ∗s ,K

∗
s )
)
dD∗s

= e−λtW ∗t
g(xt)
xt
−
∫ t

0
e−λsW ∗s

g′(xs)
xs

ϕν∗(xs)(µ− r1̄)>(σσ>)−1σ dws

−
∫ t

0
e−λsK∗s

(
1
2
|b(xs)|2g′′(xs) + a(xs)g′(xs)− (λ+ β)g(xs)

)
ds

−
∫ t

0
e−λs

(
g(r∗1)− (r∗1 + ι)g′(r∗1)

)
dI∗s +

∫ t

0
e−λs

(
g(r∗2)− (r∗2 − δ)g′(r∗2)

)
dD∗s

= e−λtW ∗t
g(xt)
xt
−
∫ t

0
e−λsW ∗s

g′(xs)
xs

ϕν∗(xs)(µ− r1̄)>(σσ>)−1σ dws

+ λ1

∫ t

0
e−λs dI∗s + λ2

∫ t

0
e−λs dD∗s .

Since xt ∈ [r∗2, r
∗
1] for all t, the function g′(x)

x ϕν∗(x) is continuous, and hence bounded on
[r∗2, r

∗
1] andW ∗ is square-integrable on [0, t], the stochastic integral in the previous expression

has zero expectation, so that

C(W,K) = E
[
e−λtW ∗t

g(xt)
xt

]
+ E

[∫ t

0
e−λs(λ1 dI

∗
s + λ2 dD

∗
s)
]
.

Letting π = θ∗/W ∗ denote the portfolio weights process, we will show below that

0 < π>t (µ− r1̄) = 2κ
ϕν∗(xt)
xt

≤ 2κ
r∗1 + ι

γr∗1
.

The claim then follows from the monotone convergence theorem, using the fact that g(x)/x
is bounded on [r∗2, r

∗
1] and that the process

Nt = W exp
(
−1

2

∫ t

0
|π>s σ|2 ds+

∫ t

0
π>s σ dws

)
is a martingale, so that

E
[
e−λtW ∗t

]
≤ E

[
exp

(∫ t

0

(
r + π>s (µ− r1̄)− λ

)
ds

)
Nt

]
≤ exp

((
r + 2κ

r∗1 + ι

γr∗1
− λ

)
t

)
E[Nt]

= exp
((

r + 2κ
r∗1 + ι

γr∗1
− λ

)
t

)
W → 0 as t→∞.
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Conversely, letting

C(W,K) = E
[∫ ∞

0
e−λt(λ1 dI

∗
t + λ2 dD

∗
t )
∣∣∣ K∗0 = K,W ∗0 = W

]
,

it is easily verified that C is homogeneous of degree one in (W,K), so that C(W,K) =
Kg(W/K) for some function g. The ODE for g the follows from Itô’s lemma and the fact
that the process

e−λtC(Wt,Kt) +
∫ t

0
e−λs(λ1 dI

∗
s + λ2 dD

∗
s)

is a martingale.
Finally, to show that

ϕν∗(xt)
xt

≤ r∗1 + ι

γr∗1
,

let
ν(x, y) = β1 log[yx− α1(x− 1)] + β2 log[yx− α2(x− 1)].

Since ν is strictly increasing in y and

r∗1 + ι

γr∗1
r∗2 >

r∗2 − δ
γ

,

it follows from (17)–(18) that

ν

(
r∗1,

r∗1 + ι

γr∗1

)
= log(ν∗) < ν

(
r∗2,

r∗1 + ι

γr∗1

)
.

The concavity of ν in x then implies

ν

(
x,
r∗1 + ι

γr∗1

)
≥ log(ν∗) for all x ∈ [r∗2, r

∗
1].

The claim now follows from the fact that

ν

(
x,
ϕν∗(x)
x

)
= log(ν∗)

by (15) and ν is increasing in y.

The above proposition allows to compute the expected discounted value of the lifetime
purchases (respectively, sales) of the durable good, conditional on the current values of W ∗

and K∗, by solving the ODE (26) for g with λ1 = 1 and λ2 = 0 (respectively, λ1 = 0
and λ2 = 1). Figures 9 and 10 report the unconditional expected discounted values of the
lifetime purchases and sales of the durable, as a fraction of the initial stock of the durable,
for different levels of the transaction cost rate δ. The unconditional expected discounted
values are computed under the steady-state distribution of x and the discount rate λ is set
at .1. While the expected discounted purchases and sales are both monotonically decreasing
in δ, the latter are more responsive than the former to changes in selling costs.13

13The same monotonic pattern prevails in the case in which ρ = .10, even though (as shown in Figure 2)
the boundaries of the no-transaction region are non-monotonic in this case.
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Figure 9: Expected discounted lifetime purchases of the durable over existing stock as
a function of the transaction cost rate.
The graph plots the unconditional mean of g(x; .10, 1, 0) under the steady-state distribution of x for
different values of δ. The other parameters are set as follows: r = .01, µ = .069, σ = .22, ι = 0,
β = .05, ρ = .01 and γ = 1.
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Figure 10: Expected discounted lifetime sales of the durable over existing stock as a
function of the transaction cost rate.
The graph plots the unconditional mean of g(x; .10, 0, 1) under the steady-state distribution of x for
different values of δ. The other parameters are set as follows: r = .01, µ = .069, σ = .22, ι = 0,
β = .05, ρ = .01 and γ = 1.
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6.4. The Portfolio Policy

Looking next at the optimal portfolio policies, (25) shows that investors still hold the same
portfolio of risky assets they would hold in the absence of transaction costs. However, their
risk aversions, and hence the fraction of their wealth invested in stocks, are changed as a
result of the presence of transaction costs. More precisely, the following proposition shows
that investors are less risk averse than they would be in the absence of transaction costs
when their wealth is large relative to the stock of durable (i.e., immediately before or after
a purchase), and more risk averse when their wealth is small (i.e., immediately before or
after a sale).

Proposition 7. Let r∗1, r
∗
2 satisfy the conditions of Theorem 3. Then

Γ(r∗1) ≤ γ ≤ Γ(r∗2).

Proof. Let ν∗ be the constant in (17)–(18). Since ϕν∗(r∗1) = (r∗1 + ι)/γ and ϕν∗(r∗2) =
(r∗2 − δ)/γ by (15), (17) and (18), we have from (16):

Γ(r∗1) =
r∗1

ϕν∗(r∗1)
=

γr∗1
r∗1 + ι

≤ γ ≤ γr∗2
r∗2 − δ

=
r∗2

ϕν∗(r∗2)
= Γ(r∗2).

Table 2 shows the optimal ranges for the fraction of wealth invested in stocks for different
levels of the relative risk aversion coefficient γ and of the transaction cost rates δ and ι.14

Transaction costs on the durable good appear to have a smaller impact on the portfolio
weights than on the fraction of wealth invested in the durable. For the parameters we are
considering, a logarithmic investor would keep the ratio of stock investment to wealth equal
to 1.219 in the absence of transaction costs. This ratio would fluctuate between 1.210 and
1.223 with a transaction cost of .5% in either direction, and between .640 and 1.286 with a
transaction cost of 25%.

Figure 11 shows, for the logarithmic case (γ = 1) and for different levels of the transac-
tion cost rates, how the fraction of wealth invested in stocks, θ∗/W ∗, varies as a function
of the fraction of wealth invested in the durable, K∗/W ∗. While the relationship between
θ∗/W ∗ and K∗/W ∗ is non-monotonic, an increase in the transaction cost rates seems to have
the unambiguous result of reducing the fraction of wealth invested in stocks, for any given
level of the investor’s current consumption and wealth within the no-transaction region.
The next proposition confirms that this is indeed the case.

Proposition 8. Let r∗1, r
∗
2 satisfy the conditions of Theorem 3 and let x ∈ (r∗2, r

∗
1). Then

Γ(x) increases as δ or ι increase, as long as x remains in the no-transaction region.

Proof. If x ∈ (r∗2, r
∗
1), then

Γ(x) = − xψ
′′(x)

ψ′(x)
=

x

ϕν∗(x)
,

14As in Table 1, we set β = 0 to allow direct comparison with the values in Table I of Grossman and
Laroque (1990).
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γ = .9

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0. (1.354, 1.354) (1.354, 1.357) (1.354, 1.372) (1.354, 1.383) (1.354, 1.404) (1.354, 1.443)

δ = .005 (1.349, 1.354) (1.349, 1.357) (1.347, 1.372) (1.346, 1.382) (1.344, 1.403) (1.341, 1.443)

δ = .05 (1.282, 1.354) (1.281, 1.356) (1.273, 1.369) (1.266, 1.379) (1.251, 1.400) (1.220, 1.441)

δ = .10 (1.191, 1.354) (1.189, 1.356) (1.178, 1.367) (1.167, 1.377) (1.146, 1.398) (1.094, 1.439)

δ = .25 (0.887, 1.354) (0.885, 1.356) (0.873, 1.364) (0.862, 1.373) (0.836, 1.392) (0.768, 1.435)

δ = 1 (0.000, 1.354) (0.000, 1.355) (0.000, 1.361) (0.000, 1.366) (0.000, 1.380) (0.000, 1.421)

γ = 1

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.219, 1.219) (1.219, 1.223) (1.219, 1.249) (1.219, 1.269) (1.219, 1.307) (1.219, 1.384)

δ = .005 (1.211, 1.219) (1.210, 1.223) (1.208, 1.249) (1.207, 1.268) (1.205, 1.307) (1.201, 1.384)

δ = .05 (1.116, 1.219) (1.114, 1.222) (1.105, 1.244) (1.097, 1.263) (1.083, 1.302) (1.055, 1.381)

δ = .10 (0.999, 1.219) (0.997, 1.222) (0.986, 1.241) (0.976, 1.259) (0.957, 1.297) (0.915, 1.378)

δ = .25 (0.677, 1.219) (0.676, 1.221) (0.667, 1.237) (0.659, 1.252) (0.640, 1.286) (0.596, 1.369)

δ = 1 (0.000, 1.219) (0.000, 1.220) (0.000, 1.230) (0.000, 1.240) (0.000, 1.266) (0.000, 1.343)

γ = 1.1

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (1.108, 1.108) (1.108, 1.114) (1.108, 1.146) (1.108, 1.171) (1.108, 1.222) (1.108, 1.330)

δ = .005 (1.099, 1.108) (1.098, 1.113) (1.096, 1.145) (1.095, 1.170) (1.094, 1.221) (1.091, 1.329)

δ = .05 (0.996, 1.108) (0.995, 1.112) (0.987, 1.140) (0.980, 1.164) (0.968, 1.215) (0.946, 1.325)

δ = .10 (0.878, 1.108) (0.877, 1.111) (0.867, 1.136) (0.859, 1.159) (0.843, 1.209) (0.812, 1.320)

δ = .25 (0.577, 1.108) (0.576, 1.111) (0.570, 1.130) (0.564, 1.150) (0.550, 1.195) (0.519, 1.308)

δ = 1 (0.000, 1.108) (0.000, 1.110) (0.000, 1.122) (0.000, 1.135) (0.000, 1.169) (0.000, 1.273)

γ = 1.5

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (0.813, 0.813) (0.813, 0.819) (0.813, 0.857) (0.813, 0.890) (0.813, 0.963) (0.813, 1.142)

δ = .005 (0.804, 0.813) (0.804, 0.818) (0.802, 0.857) (0.802, 0.889) (0.801, 0.962) (0.800, 1.141)

δ = .05 (0.717, 0.813) (0.717, 0.817) (0.712, 0.851) (0.709, 0.882) (0.704, 0.954) (0.695, 1.134)

δ = .10 (0.626, 0.813) (0.625, 0.816) (0.621, 0.847) (0.617, 0.877) (0.610, 0.946) (0.598, 1.126)

δ = .25 (0.410, 0.813) (0.410, 0.816) (0.407, 0.841) (0.405, 0.866) (0.399, 0.929) (0.387, 1.107)

δ = 1 (0.000, 0.813) (0.000, 0.815) (0.000, 0.831) (0.000, 0.848) (0.000, 0.894) (0.000, 1.053)

γ = 2

ι = 0 ι = .005 ι = .05 ι = .10 ι = .25 ι = 1

δ = 0 (0.610, 0.610) (0.610, 0.614) (0.610, 0.649) (0.610, 0.680) (0.610, 0.754) (0.610, 0.962)

δ = .005 (0.603, 0.610) (0.603, 0.614) (0.602, 0.648) (0.602, 0.680) (0.602, 0.753) (0.601, 0.961)

δ = .05 (0.541, 0.610) (0.540, 0.613) (0.538, 0.644) (0.537, 0.674) (0.534, 0.746) (0.530, 0.953)

δ = .10 (0.476, 0.610) (0.476, 0.613) (0.474, 0.641) (0.472, 0.669) (0.469, 0.739) (0.463, 0.945)

δ = .25 (0.322, 0.610) (0.322, 0.612) (0.320, 0.636) (0.319, 0.660) (0.317, 0.723) (0.311, 0.924)

δ = 1 (0.000, 0.610) (0.000, 0.611) (0.000, 0.627) (0.000, 0.644) (0.000, 0.691) (0.000, 0.866)

Table 2: Optimal range for the fraction of wealth invested in stocks.

The table shows numerical values of the interval
(
(µ− r)/(Γ(r∗2)σ2), (µ− r)/(Γ(r∗1)σ2)

)
for different

values of the investor’s risk aversion and of the proportional transaction cost rates. The other
parameters are set as follows: r = .01, µ = .069, σ = .22, β = 0 and ρ = .01.
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Figure 11: Fraction of wealth invested in stocks as a function of the fraction of wealth
invested in the durable.
The graph plots θ∗/W ∗ against K∗/W ∗ for different values of δ. Each curve is plotted over the
optimal range for K∗/W ∗. The other parameters are set as follows: r = .01, µ = .069, σ = .22,
ι = 0, β = .05, ρ = .01 and γ = 1.

where ν∗ is the constant in (17)–(18). Since it follows immediately from the definition that
ϕν∗(x) is increasing in ν∗, it is enough to show that ∂ν∗

∂δ < 0 and ∂ν∗
∂ι < 0.

Let

ν1(x) =
[

1
γ

(x+ ι)− α1(x− 1)
]β1
[

1
γ

(x+ ι)− α2(x− 1)
]β2

.

Then ν∗ = ν1(r∗1) and ν ′1(x) < 0 for x > γ(r+β)(1+ι)
ξ − ι. The fact that ∂ν∗

∂δ < 0 then follows
immediately from Propositions 1 and 2. The proof that ∂ν∗

∂ι < 0 is similar.

In the special case in which δ = 1, we have 1 = r∗2 < r∗1 and ν∗ = 0, so that

Γ(x) = − xψ
′′(x)

ψ′(x)
=

x

ϕ0(x)
=

x

α2(x− 1)

and
θ∗t
W ∗t

= α2(σσ>)−1(µ− r1̄)
(

1− K∗t
W ∗t

)
.

Hence, the optimal portfolio weights are a linearly decreasing function of the fraction of
wealth invested in the durable. Alternatively,

θ∗t
W ∗t −K∗t

= α2(σσ>)−1(µ− r1̄),

so that the optimal portfolio policy involves investing a constant fraction of liquid wealth
W ∗t −K∗t in stocks. Moreover, it can be shown that α2 > 1/γ and α2 → 1/γ as β → ∞.
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Figure 12: Steady-state average fraction of wealth invested in stocks as a function of
the transaction cost rate.
The graph plots the steady-state average of θ∗/W ∗ against δ. The other parameters are set as
follows: r = .01, µ = .069, σ = .22, ι = 0, β = .05, ρ = .01 and γ = 1.

Both of these results are consistent with the findings of Hindy and Huang (1993), who
considered irreversible purchases of the consumption good.

Figure 12 plots the steady-state average fraction of wealth invested in stocks as a function
of the transaction costs rate δ. Even though within the no-transaction region proportional
investment in the stock can be higher or lower than in the Merton case, the average pro-
portional investment is monotonically decreasing in the transaction cost rate δ, and thus
always lower than in the Merton case.

6.5. Welfare Impact of Transaction Costs

Figure 13 plots the unconditional expected discounted values of the lifetime transaction
costs, as a fraction of the initial stock of the durable, for different levels of the transaction
cost rate δ. The expected values are computed under the steady-state distribution for x
and the discount rate is set to .1. An increase in the transaction cost rate has a non-
monotonic impact on expected lifetime costs, as beyond a certain level an increase in δ is
more than compensated by a corresponding decrease in the expected level of sales (as shown
in Figure 10). In fact, it follows from Proposition 4 that when δ = 1 the lower boundary of
the no-transaction region is never reached, and hence that expected sales and costs equal
zero.

While Figure 13 illustrates the direct cost associated with an illiquid market for the
durable good, it does not capture the additional utility loss due to a suboptimal investment
in the durable. In order to assess the welfare impact of transaction costs, Figure 14 plots, for
different levels of the initial holdings of the durable, the combinations of initial wealth and
transaction cost rates that would give a logarithmic investor the same lifetime expected
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Figure 13: Expected discounted lifetime transaction costs over existing stock of the
durable as a function of the transaction cost rate.
The graph plots the unconditional mean of δg(x; .10, 0, 1) under the steady-state distribution of x
as a function of δ for two different values of ρ. The other parameters are set as follows: r = .01,
µ = .069, σ = .22, ι = 0, β = .05 and γ = 1.
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Figure 14: Welfare impact of transaction costs.
The graph plots the combinations of initial wealth and transaction cost rate δ that would give a
logarithmic investor a constant lifetime expected utility. The other parameters are set as follows:
r = .01, µ = .069, σ = .22, β = .05, ι = 0, ρ = .01 and γ = 1.
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utility that he would be able to obtain with no transaction costs and unit wealth. For
example, in the case in which transaction costs are only paid on sales of the durable,
Figure 14 shows that an investor who starts with all of his endowment in liquid securities,
would be willing to give up about 8.3% of his wealth to avoid paying transaction costs
if δ = .25, about 10% if δ = .5 and about 10.5% if δ = 1. Additional increases in the
transaction cost rates have a progressively smaller impact on the investor’s welfare and can
be compensated by progressively smaller increases in wealth. Moreover, since Figure 14 is
plotted for the case of no transaction costs on purchases, the welfare impact of transaction
costs is higher the higher the initial fraction of wealth invested in the durable.

7. Conclusions and Extensions

We have examined a continuous-time model in which an investor derives utility from the
service flow provided by a durable consumption good. Adjustment of the stock of the
durable is costly and entails a proportional transaction cost. Our analysis thus complements
that of Grossman and Laroque (1990), who considered the case in which adjustment in the
stock of durable involves payment of transaction cost proportional to the existing stock
(rather than to the amount bought or sold). We show that an optimal consumption policy
exists under the same set of conditions that are necessary and sufficient for existence in the
absence of transaction costs. Moreover, we provide a closed-form expression for the value
function in terms of three constants solving a system of nonlinear equations.

For the case of no-transaction costs, a change of variables reduces this problem to the one
studied in Merton (1971). The optimal policies consist of maintaining a constant fraction of
wealth invested in the durable and constant portfolio weights. In the presence of transaction
costs, the optimal consumption policy consists of maintaining the fraction of total wealth
invested in the durable good in a non-stochastic interval, which is easily computed. This
interval may or may not include the ratio of durable to wealth that would be optimal
in the no-transaction case. The optimal portfolio strategy involves investing in the same
portfolio of risky assets that would be optimal in the absence of transaction costs, but the
fraction of wealth allocated to risky assets is stochastic and depends on the current level of
wealth relative to the stock of durable. Since the fraction of wealth invested in the durable
is within a deterministic interval, the same is true for the fraction of wealth invested in
stocks. We show that this interval always brackets the proportion that would be optimal in
the absence of transaction costs. Moreover, numerical simulation reveals that this interval is
typically small, so that the optimal investment strategy is not very sensitive to the presence
of transaction costs for adjusting durable consumption. We also provide an explicit solution
for the case in which the transaction cost rate for selling the durable is 100%. Clearly, the
optimal consumption policy in this case involves never selling the durable.

Since the investor’s optimal consumption policy does not satisfy the usual first-order
condition due to the presence of transaction costs, the Consumption-based Capital Asset
Pricing Model (CCAPM) would not hold in equilibrium in the economy we study. On
the other hand, since investors still hold the same portfolio of risky assets (the mean-
variance efficient portfolio) the standard Capital Asset Pricing Model (CAPM) would hold
in equilibrium. This is analogous to what Grossman and Laroque (1990) reported for the
case of an indivisible durable good.
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Finally, we point out that it is easy to extend our analysis to the case in which the
investor derives utility from both a durable good and a perishable consumption good, as
long as the utility function is additive and the relative price of the two goods is constant.
The value function for the extended problem is given by

v(W0,K0) = max
W10+W20=W0

v1(W10,K0) + v2(W20),

where v1 is the value function for the problem with only the durable good (as studied in
this paper) and v2 is the value function for the problem with only the perishable good (as in
Merton (1971)). The optimal consumption and investment policies can also be immediately
retrieved. Clearly, the CAPM would still characterize the equilibrium in this economy, while
the CCAPM would hold relative to aggregate non-durable consumption, but not relative to
aggregate total consumption.
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Appendix A

Before embarking on the proof of Theorem 2, whose argument is adapted from Davis and
Norman (1990), we start with a preliminary result.

Lemma A1. Under the assumptions of Theorem 2, the function v defined in (13) is concave
and satisfies:

max
θ

[
1
2
|θ>σ|2vww + [r(w − k) + θ>(µ− r1̄)− βk]vw − βkvk − ρv +

(αk)1−γ

1− γ

]
≤ 0 (27)

on S, with equality on NT . Moreover,

ιvw − vk ≥ 0 on S, with equality on B (28)

and

δvw + vk ≥ 0 on S, with equality on S. (29)

Proof. Recalling the definition of v and letting x = w/k, we have

vww(w, k) = k−(1+γ)ψ′′(x) < 0

and

vww(w, k)vkk(w, k)− vwk(w, k)2 = −γk−2(1+γ)
(
(1− γ)ψ(x)ψ′′(x) + γψ′(x)2

)
≥ 0,

where the first inequality follows from the strict concavity of ψ and the second inequality
follows from (11). This establishes the concavity of v.

On the other hand,

ιvw(w, k)− vk(w, k) = k−γ
(
(x+ ι)ψ′(x)− (1− γ)ψ(x)

)
= k−γψ′(x)g(x),

where

g(x) = x+ ι− (1− γ)
ψ(x)
ψ′(x)

.

By (8), g(x) = 0 for x > r∗1, and, by (11),

g′(x) = γ + (1− γ)
ψ(x)ψ′′(x)
ψ′(x)2

≤ 0.

This establishes (28).
The proof of (29) is similar, while (27) follows immediately from (9) and (10).
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Proof of Theorem 2: Since

θ∗(w, k) = −(σσ>)−1(µ− r1̄)
ψ′(w/k)

(w/k)ψ′′(w/k)
w

and the function ψ′(x)/(xψ′′(x)) is continuous and hence bounded on [r∗2, r
∗
1], we conclude

that |θ∗(w, k)| ≤ ηw holds for some η < ∞ and all (w, k) ∈ NT . Also, since the definition
of θ∗ implies that θ∗(λw, λk) = λθ∗(w, k) for all λ > 0, θ∗ is Lipschitz continuous on NT .
The existence and uniqueness of processes (W ∗,K∗, I∗, D∗) satisfying the conditions of the
theorem for all t < τ = inf{t ≥ 0 : W ∗t = K∗t = 0} then follows from the construction of
diffusions with oblique reflections in Lions and Sznitman (1984) or Dupuis and Ishii (1993)
(see the proof of Lemma 9.3 in Shreve and Soner (1994) for details).

We will start by showing that τ = ∞ a.s., so that (I∗, D∗, θ∗) ∈ Θ̂(W0,K0). Recalling
the definition of v, an application of Itô’s lemma shows that

e−ρtv(W ∗t ,K
∗
t ) = v(W0,K0) exp

(
−
∫ t

0

α1−γ

(1− γ)ψ(W ∗s /K∗s )
ds

)
Nt (30)

for all t < τ , where

Nt = exp
(
−
∫ t

0

(ψ′(W ∗s /K
∗
s ))2

ψ(W ∗s /K∗s )ψ′′(W ∗s /K∗s )
(µ− r1̄)>(σσ>)−1σ dws (31)

− 1
2

∫ t

0

∣∣∣∣ (ψ′(W ∗s /K
∗
s ))2

ψ(W ∗s /K∗s )ψ′′(W ∗s /K∗s )
(µ− r1̄)>(σσ>)−1σ

∣∣∣∣2 ds).
Since the function (ψ′)2/(ψψ′′) is continuous, and hence bounded, on [r∗2, r

∗
1] and (1− γ)ψ

is bounded below away from zero (because of (11)), the above implies that

0 < lim
t↑τ
|v(Wt,Kt)| <∞ on {τ <∞}.

On the other hand, (8) implies that

lim
t↑τ

v(Wt,Kt) =
{

0 if γ < 1,
−∞ otherwise.

Thus τ =∞, almost surely.
Next, let

Mt =
∫ t

0
e−ρs

(αK∗s )1−γ

1− γ ds+ e−ρtv(W ∗t ,K
∗
t ).

An application of Itô’s lemma shows that

M(t) = v(W0,K0) +
∫ t

0
e−ρs

(
1
2
|θ∗(W ∗s ,K∗s )>σ|2vww(W ∗s ,K

∗
s ) (32)

+ [r(W ∗s −K∗s ) + θ∗(W ∗s ,K
∗
s )>(µ− r1̄)− βK∗s ]vw(W ∗s ,K

∗
s )

− βK∗s vk(W ∗s ,K∗s )− ρv(W ∗s ,K
∗
s ) + u(αK∗s )

)
ds

−
∫ t

0
e−ρs[ιvw(W ∗s ,K

∗
s )− vk(W ∗s ,K∗s )] dI∗s

−
∫ t

0
e−ρs[δvw(W ∗s ,K

∗
s ) + vk(W ∗s ,K

∗
s )] dD∗s

+
∫ t

0
e−ρsvw(W ∗s ,K

∗
s )θ∗(W ∗s ,K

∗
s )>σ dws
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It then follows from Lemma A1 that the first three integrals in the previous expression are
identically zero. Turning next to the stochastic integral, we have from the continuity of
xγψ′(x) that

|vw(w, k)θ∗(w, k)| = w1−γ |(w/k)γψ′(w/k)| |θ∗(w, k)/w| ≤ ηw1−γ

for some η <∞ and all (w, k) ∈ NT . Also, we have from (3) that

0 ≤Wt ≤W0 exp
(∫ t

0

[
r + π>s (µ− r1̄)− 1

2
|π>s σ|2

]
ds+

∫ t

0
π>s σ dws

)
(33)

for any (I,D, θ) ∈ Θ(W0,K0), where π = θ/W denotes the vector of portfolio weights. It
then follows from the fact that π is uniformly bounded for (I,D, θ) ∈ Θ̂(W0,K0) that the
stochastic integral has zero expectation. Therefore,

v(W0,K0) = lim
t↑∞

E
[
Mt

]
= E

[∫ ∞
0
e−ρt

(αK∗t )1−γ

1− γ dt

]
+ lim
t↑∞

E
[
e−ρtv(W ∗t ,K

∗
t )
]

= E
[∫ ∞

0
e−ρt

(αK∗t )1−γ

1− γ dt

]
,

where the second equality follows from the monotone convergence theorem and the third
from (30), using the fact that 1/[(1 − γ)ψ] is bounded below away from zero on NT and
that the process N in (31) is a martingale. Therefore, v is indeed the lifetime expected
utility from following the proposed optimal policy.

To conclude the proof, we only need to show that

v(W0,K0) ≥ E
[∫ ∞

0
e−ρt

(αKt)1−γ

1− γ dt

]
(34)

for any investment policy (I,D, θ) ∈ Θ̂(W0,K0). Accordingly, fix from now on an arbitrary
(I,D, θ) ∈ Θ̂(W0,K0) and let (W,K) denote the corresponding wealth and durable-holding
processes.

Suppose at first that γ < 1. It then follows easily from the definitions that there exists
a constant ηε > 0 such that

|v(w, k)|+ |wvw(w, k)| ≤ ηεw1−γ for all (w, k) ∈ S with w − δk > ε > 0. (35)

Let vε(w, k) = v(w + ε, k) for ε > 0, and consider the process

M ε
t =

∫ t

0
e−ρs

(αKs)1−γ

1− γ ds+ e−ρtvε(Wt,Kt). (36)

It then follows from the generalized Itô’s lemma that

M ε(t) = vε(W0,K0) +
∫ t

0
e−ρs

(
1
2
|θ>s σ|2vεww(Ws,Ks) (37)

+ [r(Ws −Ks) + θ>s (µ− r1̄)− βKs]vεw(Ws,Ks)
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− βKsv
ε
k(Ws,Ks)− ρvε(Ws,Ks) + u(αKs)

)
ds

−
∫ t

0
e−ρs[ιvεw(Ws,Ks)− vεk(Ws,Ks)] dI(s)

−
∫ t

0
e−ρs[δvεw(Ws,Ks) + vεk(Ws,Ks)] dD(s)

+
∫ t

0
e−ρsvεw(Ws,Ks)θ>s σ dws

+
∑

0≤s≤t
e−ρt[∆vε(Ws,Ks)− vεw(Ws−,Ks−)∆Ws − vεk(Ws−,Ks−)∆Ks].

Since

1
2
|θ>σ|2vεww(w, k) + [r(w − k) + θ>(µ− r1̄)− βk]vεw(w, k)

− βkvεk(w, k)− ρvε(w, k) + u(αk)

=
1
2
|θ>σ|2vww(w + ε, k) + [r(w + ε− k) + θ>(µ− r1̄)− βk]vw(w + ε, k)

− βkvk(w + ε, k)− ρv(w + ε, k) + u(αk)− rεvw(w + ε, k),

it follows from Lemma A1 and the fact that vw > 0 that the first three integrals in the
above expression are nonpositive, while the term in the summation is nonpositive by the
concavity of vε. We then conclude from (35) that M ε is a supermartingale. Hence,

vε(W0,K0) ≥ E
[∫ ∞

0
e−ρt

(αKt)1−γ

1− γ dt

]
+ lim
t↑∞

E
[
e−ρtvε(Wt,Kt)

]
= E

[∫ ∞
0
e−ρt

(αKt)1−γ

1− γ dt

]
.

Since vε ↓ v as ε ↓ 0, we obtain the desired inequality.
Finally, suppose that γ > 1. Fix an arbitrary λ with 0 < λ < r/(r + (1 + ι)β) and for

any ε > 0 let vε(w, k) = v(w+ε, k+λε). It can be immediately verified from the definitions
that vε and vεw are bounded on S. Moreover,

1
2
|θ>σ|2vεww(w, k) + [r(w − k) + θ>(µ− r1̄)− βk]vεw(w, k)

− βkvεk(w, k)− ρvε(w, k) + u(αk)

=
1
2
|θ>σ|2vww(w + ε, k + λε)

+ [r(w + ε− (k + λε)) + θ>(µ− r1̄)− β(k + λε)]vw(w + ε, k + λε)
− β(k + λε)vk(w + ε, k + λε)− ρv(w + ε, k + λε) + u(α(k + λε))
− ε[r − λ(r + β)]vw(w + ε, k + λε) + βλεvk(w + ε, k + λε)
− [u(α(k + λε))− u(αk)]

≤ − ε[r − λ(r + (1 + ι)β)]vw(w + ε, k + λε)− [u(α(k + λε))− u(αk)] < 0,

where the first inequality follows from (27) and (28). We then have from (37) that the
process M ε in (36) is a supermartingale. Hence,

vε(W0,K0) ≥ E
[∫ ∞

0
e−ρt

(αKt)1−γ

1− γ dt

]
+ lim
t↑∞

E
[
e−ρtvε(Wt,Kt)

]
= E

[∫ ∞
0
e−ρt

(αKt)1−γ

1− γ dt

]
,
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where the last equality follows from the boundedness of vε. Since vε → v as ε ↓ 0, we
conclude that the policy (I∗, D∗, θ∗) is optimal for all γ 6= 1.

Proof of Lemma 1: It is easy to verify that any solution of the ODE (14) satisfies

|ϕν(x)− α1(x− 1)|β1 |ϕν(x)− α2(x− 1)|β2 = ν

for some ν ≥ 0 and that any nonnegative solution has one of three possible shapes on the
positive orthant:

(1) 0 ≤ ϕν(x) ≤ α1(x− 1), ϕ′ν(x) < 0 and ϕ′′ν(x) ≤ 0, defined for x in a subset of [0, 1];

(2) 0 ≤ ϕν(x) ≤ α2(x− 1), ϕ′ν(x) > 0 and ϕ′′ν(x) ≤ 0, defined for x in a subset of [1,∞);

(3) ϕν(x) ≥ max[α1(x− 1), α2(x− 1)], ϕ′′ν(x) ≥ 0, defined for x ∈ [0,∞)

(see Lemma 3 in Grossman and Laroque (1987) for details).
We can rule out the first two solutions as follows. Let

f(x) =
ψ′(x)2

ψ′′(x)
+

1− γ
γ

ψ(x). (38)

Then (11) implies f(x) ≥ 0, while (8) and the continuity of ψ give f(r∗2) = f(r∗1) = 0.
Hence, f ′(r∗2) ≥ 0 and f ′(r∗1) ≤ 0. Since

f ′(x) = ψ′(x)
(1
γ
− ϕ′ν(x)

)
, (39)

we cannot have ϕ′′ν(x) ≤ 0 on (r∗2, r
∗
1), unless ϕ′′ν(x) = 0 and ϕ′ν(x) = 1

γ for all x. This rules
out the first two solutions. Thus, ϕν(x) ≥ max[α1(x− 1), α2(x− 1)].

Proof of Proposition 1: Let

ν1(x) =
[

1
γ

(x+ ι)− α1(x− 1)
]β1
[

1
γ

(x+ ι)− α2(x− 1)
]β2

(40)

and

ν2(x) =
[

1
γ

(x− δ)− α1(x− 1)
]β1
[

1
γ

(x− δ)− α2(x− 1)
]β2

, (41)

which are defined for x ∈ [r1, r1] and x ∈ [r2, r2], respectively, where r1 = 1 − 1+ι
1−γα1

,
r1 = 1 − 1+ι

1−γα2
, r2 = 1 − 1−δ

1−γα1
and r2 = 1 − 1−δ

1−γα2
. Equations (17)–(18) then amount to

ν1(r∗1) = ν2(r∗2) = ν∗ > 0. Since

ν1(r1) = ν1(r1) = ν2(r2) = ν2(r2) = 0, (42)

the above implies r∗1 ≤ r1 and r∗2 ≥ r2.
Letting

r̂1 =
γ(r + β)(1 + ι)

ξ
− ι
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and

r̂2 =
γ(r + β)(1− δ)

ξ
+ δ,

we are then left to show that r∗1 > r̂1, r∗2 ≤ r̂2 and η > 0.
It can be easily verified that

r1 < r2 < r2 < r1

and
ν1(x) > ν2(x) for x ∈ [r2, r2].

Moreover, we have ν ′1(x) > 0 for x < r̂1 and ν ′1(x) < 0 for x > r̂1. Recalling (42), this
implies that, for any given r2 ∈ [r2, r2], the equation ν1(r1) = ν2(r2) has two different
solutions: the first with r1 < min[r̂1, r2], and the second with r1 > max[r̂1, r2]. Since by
assumption r∗1 > r∗2, we must also have r∗1 > r̂1. The latter inequality implies η > 0.

Finally, letting f be the function in (38), (20) and the continuity of ψ imply that
f(r∗2) = f(r∗1) = 0. Since ϕν∗ is convex, (39) then implies that f ′(r∗2) ≥ 0, or

γϕ′ν∗(r
∗
2) ≤ 1.

Since ϕν∗ solves (14), we have

ϕ′ν∗(x) =
(ρ− r − γβ + κ)ϕν∗(x) + (r + β)(x− 1)

κϕν∗(x)
.

Moreover, (15) and (18) imply

ϕν∗(r∗2) =
r∗2 − δ
γ

.

Thus,
(ρ− r − γβ + κ)(r∗2 − δ) + γ(r + β)(r∗2 − 1)

κ
γ (r∗2 − δ)

≤ 1.

Rearranging the latter inequality gives r∗2 ≤ r̂2.

Proof of Theorem 3: The fact that ψ is twice continuously differentiable and satisfies
the ODE (9) can be easily verified. The fact that ψ is increasing and strictly concave follows
from the fact that the constants A,B and C2 are all strictly positive (because η > 0).

Next, letting f(x) be the function in (38), it follows from the definition of ψ that f(x) = 0
for x ∈ (δ, r∗2] ∪ [r∗1,∞). Equation (39), the convexity of ϕν∗ and the continuity of f then
imply f(x) ≥ 0 on (r∗2, r

∗
1), and hence condition (11) of Theorem 2 is satisfied.

Also, letting

g(x) = −κψ
′(x)2

ψ′′(x)
+ (r + β)(x− 1)ψ′(x)− (ρ+ (1− γ)β)ψ(x) +

α1−γ

1− γ ,

equation (9) implies that g(x) = 0 for x ∈ [r∗2, r
∗
1]. Since

ψ′(x)2

ψ′′(x)
= − 1− γ

γ
ψ(x) for x ∈ (δ, r∗2] ∪ [r∗1,∞),
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we have

g(x) = (r+ β)(x− 1)ψ′(x)−
(
ρ+ (1− γ)(β − κ/γ)

)
ψ(x) +

α1−γ

1− γ for x ∈ (δ, r∗2] ∪ [r∗1,∞).

Thus, for x > r∗1,

g′(x) = (r + β)(x− 1)ψ′′(x)−
(
ρ− r − γβ − (1− γ)κ/γ

)
ψ′(x)

=
ψ′′(x)
γ

(
ξ(x+ ι)− γ(r + β)(1 + ι)

)
< 0,

where the inequality follows from the concavity of ψ and the fact that x > r∗1 >
γ(r+β)(1+ι)

ξ −ι
(by (22)). Hence, g(x) < 0 for x > r∗1. The proof that g(x) < 0 for δ < x < r∗2 is similar,
using the fact that r∗2 ≤ γ(r+β)(1−δ)

ξ + δ (by (23)).
Finally, the fact that r∗2 > δ follows from the fact that r∗2 ≥ 1 − 1−δ

1−γα1
(by 23)) and

α1 < 0.

Proof of Theorem 4: Let ν1, ν2, r1, r1, r2, r2, r̂1 and r̂2 be as in the proof of Proposition 1.
For r2 ∈ [r2, r̂2], let r1(r2) denote the unique solution with r1 > r2 of the equation ν1(r1) =
ν2(r2). Since ν2(x) > 0 for x ∈ (r2, r̂2], the existence of constants r∗1 > r∗2 and ν∗ > 0
satisfying (17)–(19) amounts to the existence of a r∗2 ∈ (r2, r̂2] such that h(r∗2) = 0, where

h(x) = x− δ + (1− γ)
∫ r1(x)

x
exp

(
−
∫ y

x

dz

ϕν2(x)(z)

)
dy (43)

−
(
r1(x) + ι

)
exp

(
−
∫ r1(x)

x

dz

ϕν2(x)(z)

)
.

We will show below that h(r2) > 0 > h(r̂2). The claim then follows from the continuity of
h on (r2, r̂2).

Since ν2(r2) = 0, it follows from (15) that

ϕν2(r2)(x) =
{
α1(x− 1) if x ≤ 1;
α2(x− 1) if x ≥ 1.

Since r2 < 1 and 1
α2
> 0 > 1

α1
, we then have, for all y > 1,

exp
(
−
∫ y

r2

dz

ϕν2(r2)(z)

)
= lim

ε↓0

[
exp

(
−
∫ 1−ε

r2

dz

α1(z − 1)
−
∫ y

1+ε

dz

α2(z − 1)

)]
= lim

ε↓0

[
exp

((
1
α2
− 1
α1

)
log(ε) +

log(1− r2)
α1

− log(y − 1)
α2

)]
= 0

and hence (since r1(r2) = r1 > 1)

h(r2) = r2 − δ + (1− γ)
∫ r1

r2

exp
(
−
∫ y

r2

dz

ϕν2(r2)(z)

)
dy

= r2 − δ + (1− γ)
∫ 1

r2

exp
(
−
∫ y

r2

dz

α1(z − 1)

)
dy

= r2 − δ + (1− γ)
1− r2

1− 1
α1

=
1− δ

1− 1
α1

> 0.
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Next, it follows immediately from the definitions of ν2 and ϕν that

ϕν2(r̂2)(r̂2) =
r̂2 − δ
γ

.

Also, since ϕν2(r̂2) solves the ODE (14), we have

ϕ′ν2(r̂2)(r̂2) =
ρ− r − γβ + κ

κ
+

(r + β)(r̂2 − 1)
κϕν2(r̂2)(r̂2)

=
1
γ
.

It then follows from the convexity of ϕν2(r̂2) that

ϕν2(r̂2)(x) >
x− δ
γ

for all x > r̂2.
Now, suppose first that γ > 1. Then the above implies

h(r̂2) < r̂2 − δ + (1− γ)
∫ r1(r̂2)

r̂2
exp

(
−
∫ y

r̂2

γ dz

z − δ

)
dy

−
(
r1(r̂2) + ι

)
exp

(
−
∫ r1(r̂2)

r̂2

γ dz

z − δ

)
= r̂2 − δ + (1− γ)

∫ r1(r̂2)

r̂2

(
r̂2 − δ
y − δ

)γ
dy −

(
r1(r̂2) + ι

)(
r̂2 − δ

r1(r̂2)− δ

)γ
= −(δ + ι)

(
r̂2 − δ

r1(r̂2)− δ

)γ
< 0.

On the other hand, if γ < 1,

h(r̂2) = exp
(
−
∫ r1(r̂2)

r̂2

dz

ϕν2(r̂2)(z)

)[(
r̂2 − δ

)
exp

(∫ r1(r̂2)

r̂2

dz

ϕν2(r̂2)(z)

)

+ (1− γ)
∫ r1(r̂2)

r̂2
exp

(∫ r1(r̂2)

y

dz

ϕν2(r̂2)(z)

)
dy −

(
r1(r̂2) + ι

)]

< exp
(
−
∫ r1(r̂2)

r̂2

dz

ϕν2(r̂2)(z)

)[(
r̂2 − δ

)
exp

(∫ r1(r̂2)

r̂2

γ dz

z − δ

)

+ (1− γ)
∫ r1(r̂2)

r̂2
exp

(∫ r1(r̂2)

y

γ dz

z − δ

)
dy −

(
r1(r̂2) + ι

)]
= exp

(
−
∫ r1(r̂2)

r̂2

dz

ϕν2(r̂2)(z)

)[(
r̂2 − δ

)(
r1(r̂2)− δ
r̂2 − δ

)γ
+ (1− γ)

∫ r1(r̂2)

r̂2

(
r1(r̂2)− δ
y − δ

)γ
dy −

(
r1(r̂2) + ι

)]
= −(δ + ι) exp

(
−
∫ r1(r̂2)

r̂2

dz

ϕν2(r̂2)(z)

)
< 0.
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Appendix B

We collect in this Appendix the results for the logarithmic case (γ = 1). Since the derivation
is similar to that for the power case (γ 6= 1), all the results are stated without proof.

First, if δ = ι = 0, the optimal policies can be obtained directly from the analysis in
Merton (1971) and are given by

K∗t =
1
r∗
W ∗t

and
θ∗t = (σσ>)−1(µ− r1̄)W ∗t ,

where
r∗ =

r + β

ρ
.

The lifetime expected utility is

v(W0) =
r − ρ+ κ

ρ2
+

1
ρ

log
(
αW0

r∗

)
.

Next, if δ + ι > 0 and δ < 1, the lifetime expected utility is given by

v(W0,K0) =
1
ρ

log(K0) + ψ

(
W0

K0

)
,

where

ψ(x) =



A+
1
ρ

log(x− δ) if δ < x < r∗2

C1 − C2

∫ r∗1

x
exp

(∫ r∗1

y

dz

ϕν∗(z)

)
dy if r∗2 ≤ x ≤ r∗1

B +
1
ρ

log(x+ ι) if x > r∗1,

and
C1 =

log(α)
ρ

+
κ+ r

ρ2
− (r + β)(1 + ι)

ρ2 (r∗1 + ι)
,

C2 =
1

ρ (r∗1 + ι)
,

A = C1 −
log (r∗2 − δ)

ρ
−

∫ r∗1
r∗2

exp
(∫ r∗1

y
dz

ϕν∗ (z)

)
dy

ρ (r∗1 + ι)
,

B = C1 −
log (r∗1 + ι)

ρ
,

and r∗1, r
∗
2, ν
∗ solve (17)–(19) with γ = 1. The optimal policies are as in Theorem 2.

Finally, if δ = 1, the lifetime expected utility is given by

v(W0,K0) =
1
ρ

log(K0) + ψ

(
W0

K0

)
,
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where

ψ(x) =


1
ρ

(
log(α)− β

ρ

)
+

(r∗1 − 1)
1
α2

η

(x− 1)1− 1
α2

1− 1
α2

if 1 ≤ x ≤ 1
r∗1

1
ρ

(
log(α)− β

ρ
+

1
α2 − 1

− log(r∗1 + ι)
)

+
1
ρ

log(x+ ι) if x > 1
r∗1

,

r∗1 =
α2 + ι

α2 − 1
,

and η = ρ(r∗1 + ι). The optimal investment policy is given by

θ∗t = −(σσ>)−1(µ− r1̄)K∗t
ψ′(W ∗t /K

∗
t )

ψ′′(W ∗t /K∗t )
1{W ∗t >K∗t },

and the optimal consumption policy involves only purchasing the durable whenK∗t = W ∗t /r
∗
1

(and never selling it).
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