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Abstract

Equity costs of capital for individua} firms are estimated using several models that
relate expected returns to betas on one or more pervasive factors. A Bayesian approach
incorporates prior uncertainty about an asset’s mispricing as well as uncertainty about
betas and factor means. Substantial prior uncertainty about mispricing results in an
estimated cost of equity close to that obtained with mispricing ruled out. Uncertainty
about which pricing model to use appears to be less important, on average, than within-
model parameter uncertainty. In the absence of mispricing uncertainty, uncertainty
about factor means is generally the most important source of overall uncertainty ahout
a firm’s cost of equity, although uncertainty about betas is nearly as important.
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1. Introduction

The expected rate of return on a firm’s stock, the “cost of equity,” is regarded as a key ingre-
dient for making decisions affecting the firm. For example, the cost of equity affects which

projects are undertaken by a firm and how prices of public-utility services are regulated.

One approach to estimating the cost of equity uses a standard asset-pricing model, in
which the cost of equity hinges on sensitivities of the firm’s stock return to market-wide
factors.! If r, denotes the stock’s return in excess of a riskless rate and f, denotes a K x 1
vector of the factors, all realized in period £, then the stock’s sensitivities, or “betas,” are

the slope coefficients in the regression,
re=a+ff +e, (1)

where ¢, is the mean-zero regression disturbance. When the factors appropriate to the given
model are constructed as excess portfolio returns or payoffs on zero-investment positions, as
will be the case in the models analyzed below, then the pricing model implies o = 0.2 That
is, the pricing model implies that the firm’s cost of equity, 1, is given by

p= g, (2)

where A is the vector of expected values of the factors.

The elements of 8 and A must be estimated, so the true cost of equity is uncertain.
Moreover, even if 3 and A were known for certain, the pricing model might not deliver the
precise cost of equity for every stock. That is, the model might misprice the given stock in
question, so that the cost of equity is actually

p=a+ 3 (3)

where o # 0. This “mispricing” uncertainty about « contributes further to the uncertainty
about the cost of equity. Finally, if the decision maker has any doubts about which pric-
ing model to use, then the uncertainty about p also includes that “model” uncertainty.
This study attempts to quantify these various sources of uncertainty and gauge the relative

importance of each in estimating a firm'’s cost of equity.

We estimate the cost of equity using a Bayesian approach. In this setting, the decision

maker does not know the true cost of equity but instead uses the conditional expectation

1Such models include, for example, the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner
(1965}, the intertemporal CAPM of Merton (1973), and the Arbitrage Pricing Theory of Ross (1976).
2See Huberman, Kandel, and Stambaugh (1987) for a deeper discussion of this point.,

1



E{r|®}, where ® denotes the information available at the time of the decision. We assume
that {excess) returns have constant mean t, 80 the decision maker’s estimated cost of equity
is then simply the posterior mean of # given @, and the decision maker’s uncertainty about
the cost of equity is reflected in the posterior variance of u. One feature of this Bayesian
approach is that we can explore the effects of prior mispricing uncertainty on the estimated
cost of equity and its posterior uncertainty. We find, for example, that mispricing uncertainty
that seems important in economic terms, say with an annual standard deviation for «v of 5%,
does not impact greatly the estimated cost of equity. That is, the posterior mean of x in
that case is generally close to the posterior mean obtained when mispricing is ruled out, even
when the sample least-squares estimate of o departs substantially from zero. In this sense,
a pricing model that might be viewed by the decision maker as being only mediocre in its
ability to price stocks accurately is still relied upon fairly heavily in estimating the cost of
equity.

This study investigates factor-based models with a focus on the estimates they produce
rather than on their asset-pricing abilities versus each other or versng non-factor-based ap-
proaches. Even though the latter issues continue to invite debate in the academic literature,
we suggest that these factor-based models have received sufficient interest to merit investi-
gating their potential use by decision makers. Three pricing models are used to illustrate our
approach. The first is the CAPM, where the single factor is specified to be the excess return
on a market index portfolio. The second model, proposed by Fama and French (1993), con-
tains that market factor plus two additional factors: the difference in returns between small
and large firms and the difference in returns between firms with high and low ratios of book
value to market value. The third model also has three factors, but, instead of prespecifying
them, we extract them from returns on a large cross-section of stocks using the asymptotic
principal components method of Connor and Korajezyk (1986). Uncertainty about which
of these three models to use can contribute nontrivially to a decision maker’s overall un-
certainty about the cost of equity, but this source of uncertainty is typically less important
than the parameter uncertainty within any given model. For example, when each model
Is assigned an equal probability of being the “correct” one, we obtain an overall posterior
standard deviation for the cost of equity of 5% per year or more, depending on the prior
uncertainty about o, but that value is typically no more than 0.75% above the posterior
standard deviation of i obtained within any single model. We also find a close relationship
between the cost of equity estimates produced by the CAPM and the Connor-Korajezyk
model, particularly for utilities.

Uncertainty about 2 contributes substantially to the overall uncertainty about the cost



of equity for an individual firm, but somewhat more important is the uncertainty about A,
the vector of factor means. In a recent article, Fama and French (1997) estimate costs of
equity for industries using both the CAPM as well as the Fama-French (1993) three-factor
model. Based on frequentist standard errors, they conclude that by far the largest source
of imprecision in industry costs of equity arises from estimation of ). Although uncertainty
about 3, not surprisingly, is more important for individual firms than for industry portfolios,
our conclusion regarding the importance of uncertainty about A is otherwise similar to theirs.
In all three of the models we use, the histories of the factors are available beginning in July
1963, but the factors are correlated with other series whose histories begin earlier. Asa result,
the longer-history series contain additional information about A, as discussed by Stambaugh
(1997). We find that, in the absence of uncertainty about mispricing, uncertainty about \
remains the most important source of uncertainty about a firm’s cost of equity, even after

incorporating information about A that is contained in series whose histories begin in 1926.

In keeping with the spirit of a factor-based approach, much of our analysis assurnes that
the information set used by the decision maker consists of histories of factors and stock
returns. That is, the decision maker does not make use of firm-specific characteristics,
except perhaps in constructing the factors (as in, for example, the Fama-French model).
Previous studies have recommended the use of firm-specific characteristics in estimating the
cost of equity (e.g., Elton, Gruber, and Mei, 1994, or Schink and Bower, 1994), and the
usefulness of various firm-specific characteristics in explaining expected returns has been
argued recently by Daniel and Titman (1997). Another feature of the Bayesian approach is
that it allows the decision maker to introduce additional prior information about the firm
whose cost of equity is to be estimated, and our methodology allows the decision maker to
either ignore or incorporate such prior information. In specifying the prior, the firm can
be regarded as a random draw either from the whole cross-section of stocks, when firm-
specific characteristics are ignored, or from a group of firms with similar characteristics,
when the firm’s characteristics are incorporated. As a simple illustration of the latter case,
we incorporate a firm’s industry classification as additional prior information and estimate
costs of equity for utilities, an industry in which a firm’s estimated cost of equity has clear
practical relevance.

The remainder of the paper is organized as follows. The methodology is developed in Sec-
tion 2, wherein we present the general form of the priors used in our Bayesian approach and
explain how we analyze the resulting posterior distributions of # and its components. Section
3 begins with a description of the empirical Bayes procedure used to obtain parameters in

the prior distributions and then presents our empirical findings regarding the estimation of



the cost of equity for individual stocks. The empirical results include a detailed analysis for
one stock as well as analyses based on two cross-sections: one of 1,994 stocks and the other
of 124 utility stocks. Section 4 reviews the contclusions.

2. Methodology

2.1. Stochastic Setting

Let 7 denote the T x 1 vector of returns on the stock of the firm whose cost of equity is
to be estimated. In many cases, the stock’s return history, or at least the portion of that
history used in the estimation, may be shorter than the history of the factors. It is assumed
that there are S observations of the factors, with § > T. Let (") denote the 7' x K matrix
containing the 7" observations of the factors corresponding to the same periods as the returns
in r. The regression disturbance & in (1) is assumed to be, in each period £, an independent
realization from a normal distribution with zero mean and variance o?, so the most recent

T’ observations of the returns and the factors obey the regression relation
r=Xbte, e~ N(0, %), (4)

where b' = [a ], X = [t FD | ¢ contains the T regression disturbances, ¢y is a T-vector
ofones, IrisaT x T identity matrix, and the notation “~7 is read “is distributed as.”

In addition to the S observations of the K factors, there exist I observations of X
variables that are correlated with the factors. If L > §, then, as shown by Stambaugh
(1997), the longer histories of these additional variables contain information about A, the
K x 1 vector of factor means, beyond that contained in the factor histories alone. Let ,
denote the K, x 1 vector containing the observations of the additional variables in period
£, and let Y£) denote the [ x K L matrix containing all L observations of Y- For each of
the S periods over which both ft and y, are observed, define the “augmented” set of factors
& =1[f! ¥;), and assume that

fo~ N, G), (5)

where the realizations are independent across t, and 8 = [\ g)]. For the L — S periods in
which only y, is observed, it is also assumed that

Ye ~ N(62, Guy), (6)



again with independent realizations across t, where (99 is the corresponding submatrix of
G. That is, the marginal distribution of Y: is given by (6) for all L periods. Finally, it is
assumed that f? is independent of ¢ for all £,

Given the above assumptions, it follows that the likelihood function for the parameters
(b, o, 8, G) can be factored as

p(r, P9, YO, 0,0, G) = p(r| FT), b, 0)p(F, y D)9 ). (7)
where the likelihood function for the regression parameters is

p(T’F{T),[J,O-) o ;]%QXP{QT%(T—Xb)’(T_Xb)}’ (8)

and the likelihood function for the moments of the factors and additional variables is

o 1 L5 ,
p(F¥) YWi9 ) « |Goa| 57" exp {*5 2 (= 02) (Gan) (i, — 92)}
t=1

xJGJ-%exp{—é > (ft“—ﬁ)’(G)*l(ff—ﬂ)}- ©)

t=L-5+1

2.2, Priors

We propose a normal-inverted-gamma, prior on the regression parameters b and o

blo ~ N(b¥(0)) (10)
o? ~ %, (11)

where

(12)

H- { (o) % (557) 7a(pasos)’ J :

(85) 0alpasos) Vs
In the above, o3 is a K x 1 vector containing the square roots of the diagonal elements
of Vs, and pap is a K x K diagonal matrix with the simple correlations between o and
the individual 3’s on the main diagonal. Since b does not, depend on ¢, the marginal prior
covariance matrix of b equals

Vo =cov (bt} = E{¥(0)}

— JL?! Ua(paﬁo-.@)f (13)

Talpapos) Vs ’



and it is assumed that Vj is positive definite. In order to have ¥(s) be positive definite, we

also require

E@)P -2 (r[(v - 1)/9) ) | ”

I V»-], —
Gy T i Tl s vy

where the equality of the second and third expressions follows from the properties of the
inverted gamma distribution for 3

2

In specifying the parameters for the above priors, we use an empirical Bayes procedure that

E(c?) = ,,ngg (15)
and Cllv - 12 vs2
E(o) = T"(W(ﬂw. (16)

relies on data for a cross-section of individual stocks. The effects of “mispricing” uncertainty
are investigated by entertaining a wide range of values for o2. Details of that approach are

provided in section 3.

Observe in (12) that the conditional prior variance of « is proportional to o?, the variance
of €. This feature of our prior recognizes that a high value of || accompanied by a low value

of o2

implies a high Sharpe ratio for some combination of the asset, the factor-mimicking
positions, and cash (earning the riskless rate).* In particular, (a/7)? is the difference between
the maximum squared Sharpe ratio for such a combination and the maximum squared Sharpe
ratio for combinations of only the factor-mimicking positions and cash. Following MacKinlay
(1995), a prior positive association between o and ¢ is imposed to reduce the probability
of high Sharpe ratios as compared to priors that treat those parameters as independent. In
contrast, we do assume independence between 8 and ¢ in the absence of a compelling a

priori argument to the contrary.

The structure of the covariance matrix for b, ¥(o} in (12), produces a prior that is
essentially a hybrid of two more standard alternative priors for the regression model. In one
alternative, the normal density for b and the inverted-gamma density for o2 are independent,
so that no part of the covariance matrix for b involves o? {e.g., Chib and Greenberg (1996)).
As explained above, this prior would make a independent of 42 and hence allow for high
Sharpe ratios. In the other alternative, the well known natural-conjugate prior, the marginal
prior for o2 is still inverted gamma, but the entire covariance matrix of b is proportional to
o2 {e.g., Zellner (1971, chapter 3)). As a result, in the formula for the posterior mean of 3,

3See Zellner (1971, p.372).
1A portfolio’s Sharpe ratio is its expected excess return divided by its standard deviation of return.



the relative weights on the sample estimate and the prior mean do not depend on sample
information about ¢. That is, 3 is given no more weight when the sample residual variance
is small than when it is large. Vasicek (1973) argues that the natural conjugate prior is

inappropriate when the prior parameters are estimated from a cross-section of stocks,
Finally, we assume that the regression parameters are independent of the moments of f:
p(b,0,0,G) = p(b, o )p(8, G). (17)
The prior density for 8 and G is specified as
p(.G) o< |G-, (18)

which is the standard diffuse prior used to represent “noninformative” beliefs about the

parameters of a multivariate normal distribution (e.g., Box and Tiao ( 1973)).

2.3. Posteriors

The posterior density for the parameters is proportional to the product of the prior density
and the likelihood function. Given the factorizations of the likelihood function in (7) and
the prior density in (17), the posterior density can also be factored as the posterior for b
and ¢ multiplied by the posterior for 8 and G. We analyze these two posteriors separately
and then explain how we combine the posterior moments for b and A to obtain posterior

moments for the cost of equity.

2.3.1. Regression Parameters

The joint prior density p{b,7) is equal to the product p(blo)p(o), where the normal prior
density for b given o in (10) can be written as®

POl o< [¥(o)) b exp {216~ B/9(0) 5 - )

« e {0 5w - B}, (19)

2 o2

>The second line in (19) follows from

W) = o (%2))~(ﬁ;)zo;p;ﬁvﬂ-lpaﬁag;-wm

X 02.



and the marginal inverted-gamma, prior density for ¢ in (11) can be written as

1
plo) x o1 xp{-=3}. (20)

Multiplying the prior densities in (19) and (20) and the likelihood in (8) gives the joint
posterior for & and o, which can be written as

1 1 . =, 1 _ -
p(b,olr, FT) ~ 773 OXP {—50—2- [usg +T6% + (b - b)’(EE\IJ(O')) Y6 ~5)

+(b—BYX'X (b~ 5)” , (21)

where b = (X'X)7'X'r and T6? = (r - X0 (r — Xb). We compute moments of this
joint posterior using Gibbs sampling, a Markov-chain Monte Carlo procedure introduced
by Geman and Geman ( 1984). (For an introduction to the Gibbs sampler, see Casella and
George (1992).) We implement the Gibbs Markov chain by initializing b at its prior mean
and then making draws in turn from the conditional posterior densities plolb,r, FT)Y and
p(blo, 7, FT). After a number of draws, the effect of the startup value for b disappears
and the draws are then made from the joint posterior density p(b, o|r, F ™). The posterior
moments of the parameters are taken as the sample estimates over a large number of draws.
We simulate a Gibbs chain of 90,500 draws, discard the first 500 draws, and estimate the
posterior moments of b over the remaining 50,000 draws of b. The number of draws is chosen
such that, across repeated independent runs of the Gibbs sampler, differences in the first
and second moments of b are small enough for us to report at least two decimal places in
our results.

In order to implement the Gibbs sampling described above, we must make draws from
the conditional posteriors of b and ¢. From (21), we see that the conditional posterior for b
given ¢ can be written as

p(blo,r, FDY o exp { _% [(b — (o) (b~ B) + (b — 13)'(;—2)(')()(5 - B)”
x exp{—%(b~l;o)’M(b—EG)}, (22)
where
M=¥()"!+ ;lz-X’X (23)
and
By = M- [@(0)45 + ;lg—X’XBJ | (24)

Hence, the conditional posterior distribution for b given ¢ is normal with mean b, and

covariance matrix M ™!, Note that by is a (matrix) weighted average of the prior mean b
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and the sample estimate B, where the weights are the precisions of b and b conditional on ¢,
This weighting can be interpreted as shrinking the sample estimate b toward its prior mean

b, where the degree of shrinkage depends on the relative reliability of the sample estimate,

The joint posterior in (21) implies that the conditional posterior for o given b is

plolb,r, FT) gu+1T+2 exp {-5613 [1/33 +T6% 4 (b — f_))'(c%\ll(a))*l(b —b)
+ (b= by X X(b— z;)” , (25)

which does not correspond to a well known density. We 1se a two-pass grid method with a
piecewise linear approximation to the cumulative distribution function (cdf) to make draws
from the density in (25). Our approach relies on the “griddy Gibbs” sampler discussed by
Tanner (1993). In the first pass, we use an equally spaced grid, centered around the density’s
(unique, strictly positive} mode, to fit a piecewise linear cdf B{olb,r, FT)) corresponding to
plaib,r, FT)), The second-pass grid is created by taking P (Lo, r, FMDY, for 5 = 1,...,J
where J determines the fineness of the grid. This second grid increases the accuracy of the

H

procedure by putting more grid points in the regions of greater mass. Through this finer
grid we then refit the piecewise linear cdf, denoted as Byalb,r, F (T)), and use the inverse edf
method to draw o. That is, we generate a {/(0, 1) variate « and take o as Pyt ulb, r, FM),

We find that the first and second posterior moments of &, computed using Gibbs sampling,
are approximated well by the moments of p(blo, 7, FTY evaluated at a reasonable estimate
of o (using (23) and (24)). An estimate of & for this purpose is computed in two steps. Using
(24), the posterior mean of b conditioned On ¢ = & is computed, and its value is denoted as
b*. The final estimate of o is computed as the posterior mean of o conditioned on b = b*,
using the conditional posterior density for o that arises when o and b are made independent.
in the normal-inverted-gamma prior.® In the empirical analysis presented in Section 3, we
report results for one stock based on Gibbs sampling, but we use the approximation described
above to compute posterior moments for a large number of stocks, since performing a Gibbs

sampling for every stock would be computationally prohibitive.

2.3.2. Factor Means

Define the first and second sample moments of y,,
1
L

8The prior for o is the same as in (11), and the prior for b is specified as normal with mean b and
covariance matrix V. The conditional posterior for o given b is inverted gamma in that case.

By = 2y, (26)
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and )
Gy = E(Y(L) — 1 8) (Y™ — tpby). (27)

Let Y5) denote the $ x K 1 matrix containing the S observations of Y+ corresponding to
the same S periods as those in 7 %), and define Z = (ts Y. The least-squares coefficient
matrix in a multivariate regression of F(5) op V() jg
a-|m]. AVARY A 2O
2

where h is K x 1 and I;TQ is K x Kj, and the sample covariance matrix of the residuals is
.1 . .
2=§ww—2Hﬂﬂﬁ_zm. (29)
The sample statistics in (26) through (29) prove useful in computing the posterior first

and second moments of A, which are derived in the Appendix. The posterior mean of ) is
X == hy + Hyby, (30)

and the posterior covariance matrix of \ is

- S 1 8! .
Vi = (h_)r AN A R 2 . a Y
A S—K-2)" {( 4, (mmy) Gas + Bufl)

1 T A fyt
+ (L —K - 2K, - 1) HaGin . (31)

Note that when § = L, } in (30) simplifies to the vector of sample means of the factors
over the S periods. That is, the more common estimate of the factor premia arises as a special

case of our estimate when no longer-history asset returns are included in the estimation.

2.3.3. Cost of Equity

Recall that the cost of equity (as an excess return) is given by
p=a+XNg=[1 XN (32)

Once we have obtained the posterior first and second moments of A and b, it is straightforward
to compute the first and second moments of u, since the posterior distributions of those
parameters are independent. As noted at the outset, the decision maker’s estimate of the

cost of equity is the posterior mean of #, which is simply
E{pir, FO YW} = 6+ V3, (33)
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where @ and 3 denote posterior means of & and 3. The posterior variance of i is easily
verified to be -
~ |1 N P
() YOy _¢ oA /
var {ulr, F(®), y (1)} f(%[A K+AXJ)+6M@ (34)

where V; and f/g denote the posterior covariance matrices of b and 2.

In the empirical results presented in the next section, we compute the posterior variance
of p and its components, @ and B'A. For the latter quantity, we report the unconditional
variance as well as variances that condition on either g or A set equal to their posterior
means. The conditional variances provide additional insight into the sources of uncertainty

about the cost of equity. These variances of B'A are computed as

var{#'A|r, F&} Y} = ¢ (% [f/A 1 :\’5\]) + B4, (35)
var{3'A\ = A, r, FO) Y8y = Yp,3, (36)

and
var{B'A|3 = 3,r, FO vy} = F1,3. (37)

3. Empirical Analysis

3.1. Prior Parameters

In order to construct the prior distribution for the regression parameters in (10) and (11), we
specify the elements in b and V} and the scalar quantities s and v. (Note from (12) through
(16) that V;, s? and v determine the conditional covariance matrix ¥(s).) The prior values
are chosen with the objective that the prior mean of b for any given stock be the mean of b
in a large cross-section of stocks and that the prior unconditional covariance matrix of b for
that stock, Vj, be the covariance matrix of b in the cross-section. Similarly, the prior mean
and variance of o2 for the stock, determined by so and v, correspond to moments of ¢2 in
the cross-section. In essence, the stock to be analyzed is viewed as a random draw from
the universe of all stocks. Although this approach strikes us as a reasonable starting point,
at least for our exploratory study, it is only one of many methods that might be used to
specify the prior. In a statistical sense, the nermal-inverted-gamma prior in (10) and (11)
is generally characterized as “informative” ag opposed to diffuse (non—informative), but our
approach to specifying that prior does not rely on specific knowledge about the firm. In an

economic sense, therefore, our prior is rather uninformative, Onme could instead, for example,
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use knowledge about the firm’s industry and base the prior values on a cross-section of firms
within only that industry. Such an approach is illustrated later in this section for the utilities
industry.

The cross-sectional moments of b and o2 are not directly observable. We take an empirical
Bayes approach and estimate those moments using values of b and &2 computed for a large
cross-section.” Fama and French (1997) apply a similar methodology, following Blattberg
and George (1991), in computing shrinkage estimates of 3 for industry portfolios. For each
stock in the CRSP monthly NYSE-AMEX file with at least 24 months of data in the period
from July 1963 through December 1995, we compute b and &2 using all of that stock’s
available data during that period. The stock returns are in excess of the return on a one-
month Treasury bill (from CRSP’s SBBI file). For the CAPM and the Fama-French (FF)
three-factor model, the factor data begin in July 1963 and consist of monthly realizations of
the three FF factors: (i) the excess return on the value-weighted portfolio of NYSE, AMEX,
and NASDAQ stocks, (i) the difference in returns between a small-stock portfolio and a
large-stock portfolio, and (iii) the difference in returns between a portfolio of high book-to-
market (B/M) stocks and a portfolio of low B/M stocks.® Only the first of these factors is
used in the CAPM. To construct the three factors for the Connor-Korajezyk (CK) model,
we take all stocks with at least one year of data on the NYSE-AMEX monthly CRSP file for
the 7/63-12/95 period and then extract one set of factors for that entire period using the
method in Connor and Korajczyk (1988) that allows for missing observations.®

The statistics b and &2, computed for each stock, are used to construct the prior parame-
ters b, V4, s, and v. The prior mean of b, b, is set equal to the Cross-sectional average of the
B’S, except that the first element, &, is set to zero. That is, the prior mean of o corresponds
to an exact version of the factor-based pricing model. The prior covariance matrix of b, V4,

is constructed as follows. First, we compute the matrix

~ ~

b=E(b) — A (XX); (38)

where Z(b) is the sample cross-sectional covariance matrix of the &s. The second term in (38)
1s the average across stocks of the usual estimate for the sampling variance of 13, where 2 and

(X'X )i are based on the observations available for stock i. As noted by Fama and French

"Vasicek (1973) first proposed using a cross-section of stocks to obtain the parameters of the prior distri-
bution for the market beta. See Berger (1985) for a general discussion of empirical Bayes methods.

8We thank Ken French for providing these data.

%The factors are the first three eigenvectors of the T x T natrix (T = 390) whose (5,t) element is
(1/N,,) Z;-N:“‘l‘ Ti,sTi,t, Where 7 ¢ is the excess return on stock 7 in month ¢ and Ny denotes the number of
stocks that have returns in months s and ¢,
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(1997), under standard assumptions, V; is an estimate of the cross-sectional covariance of the
b’s. For all three models, it happens that V, is positive definite (not guaranteed in general).
To construct the matrix Vj, as represented in (13), V3 is set equal to the corresponding
submatrix of V}, and Pag 18 taken from the correlation matrix associated with Vi. Rather
than set o2 equal to the (1,1) element of Vj, however, we instead let it take a wide range
of values, ranging from zero to infinity.' Each value of o2 is then combined with the fixed
values of V and pug, using (13), to form the matrix Vb used in the prior. The inverted
gamma density for ¢ implies!!

2(E{o?})?

var{o?}

We substitute the cross-sectional mean and variance of the #%’s for the corresponding mo-

v=4+ (39)

ments in (39) and then set the value of v in the prior to be the next largest integer of the
resulting value on the right-hand side. Finally, given that value of v, the value of sg used in
the prior is obtained from (15), where the cross-sectional average of the ¢%’s is substituted
for E{c?}. The estimates of b, Vi, v and s§ are reported in Table 1.

3.2. Posterior Moments

3.2.1. An Individual Stock

We first compute, for a specific stock, the moments of the posterior distribution for the cost
of equity and its various components. If a “typical” stock were chosen for this exercise,
then presumably that stock’s estimated regression coefficient vector & would be close to
the cross-sectional average b, the prior mean for b. The shrinkage effects in (24) would
therefore be minimal, and such a stock might offer a less interesting illustration of the
methodology. Instead, the stock used in this analysis is selected to be, loosely speaking,
“typically atypical.” For each stock on the NYSE and AMEX having at least 60 months of
data continuing through December 1995, we compute the regression statistics b and o, where
each stock’s available monthly history back through July 1963 in used in the estimation. For
a given sample statistic, say ,@1, we compute for each stock the absolute deviation of Bl
from the cross-sectional average of ;. The 1,994 stocks are then sorted by these absolute
deviations, and the set of 2p + 1 stocks that centers on the median value for that statistic

(p stocks on each side of the median) is identified. This sorting is performed separately for

lc’Technical]y, the priors and posteriors given in our formulas are defined only for finite positive values of
o2, 5o the results reported for “zero” and “infinity” are actually computed by setting o, to very small and
very large values.

Y This follows directly from the moments given by Zellner (1971, p. 372).
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each sample statistic, and the value of p is increased until the intersection of these sets across
statistics contains one stock. In order to use the same stock to illustrate all three pricing
models, this procedure is conducted over the combined set of regression statistics for the
three models (13 statistics in total), and the stock thus selected is KN Energy, Incorporated.
The final value of p is 332, which implies that each of KN Energy’s statistics lies roughly
within the middle third in terms of absolute deviation from the cross-sectional average.

As explained in the previous section, given the form of the likelihood and the assumed
prior independence between the regression parameters (b and o) and the factor means (A),
the posterior moments of the regression parameters depend only on the data used in the
regression model. The monthly history of KN Energy begins in December 1970, so in this
case, the regression-model data consist of monthly returns on the stock and the factors for
the 301 months in the period from December 1970 through December 1995. For KN Energy,
Gibbs sampling is used to compute the posterior means and standard deviations of the
regression parameters, as described in the previous section. Table 2 reports, in Part A, the
posterior means and standard deviations of the CAPM o and 5. These posterior moments
are reported for seven values of a,, the prior standard deviation of &. As o, increases from
zero to infinity, the posterior mean of @ moves from zero to 6.63%; the latter value is close
(but not equal) to the least-squares regression estimate of 6.68%. (All values are annualized.)
Observe that the posterior mean of a moves away from zero rather slowly. For example, the
posterior mean of « is only 66 basis points (bp) above zero at 0a = 3% and only 155 bp
above zero at o, = 5%. As discussed earlier, the shrinkage applied to 3 depends on both &
and o, as well as the regression sample size, T. In this case, given T = 301, the posterior
mean of KN Energy’s 3 is close to the least-squares estimate of 0.76 and moves only slightly,
from 0.78 to 0.77, as o0, goes from zero to infinity. For smaller values of T, the posterior
mean of F is shrunk more toward the prior mean.

The cost of equity has a as one of its components. Part B of Table 2 reports posterior
moments for the other component, 3\, and the overall cost of equity in excess of the riskless
rate, p. Recall that information about ) is contained not only in the available histories
of returns on the factors but also in the longer histories of other series that are correlated
with the factors. For example, the Fama-French market factor has been constructed back
through July 1963, but it is highly correlated with the value-weighted NYSE index, which
CRSP supplies beginning in January 1926. The first panel in Part B reports posterior
moments based on the longer period from January 1926 through December 1995, whereas
the second panel reports moments based on the shorter period beginning in July 1963. The
posterior mean of ), ), is 8.11% based on the longer period but only 5.52% based on the
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shorter period. This difference reflects the fact that the average return on the value-weighted
NYSE portfolio is higher over the 1926-95 period than during the shorter 1963-95 period.
Given the high positive correlation between the NYSE index and the Fama-French NYSE-
AMEX-NASDAQ index, the posterior mean of the latter index is adjusted upward. (See
Stambaugh (1997).) This adjustment produces a cost of equity for KN Energy that is above
the shorter-period estimate by about 2%. For the overall period, the posterior mean of Lis
about 6.4% based on a strict CAPM {04 = 0) and, given the behavior of the posterior mean
of & discussed above, the posterior mean of p Temains between 7% and 8% for values of o,
up to 5%. That is, prior uncertainty about KN Energy’s CAPM mispricing («) that seems
substantial in economic terms still results in a posterior mean fairly close to the CAPM
value. As will be demonstrated below, this observation generalizes across stocks and across

the three pricing models considered.

The results in the second panel in Part B of Table 2 ignore the longer-history asset returns
in the estimation of the factor premia. As was pointed out earlier, in such a case \ is simply
equal to A, the vector of sample averages of the factors. Also, due to the relatively large
T for KN Energy, the posterior mean of G is very close to 3 = 0.76. The posterior mean
of a ranges from 0% to 6.61%, and the latter value is close to & = 6.68%. As a result, in
the extreme cases when o, equals zero and infinity, our estimates of the cost of equity are
close to alternative textbook-recommended estimates (e.g., Benninga and Sarig, 1997). For
0o = 0, our estimate of 4.33% is close to the simpler CAPM-based estimate 3% = 4.20%.
For 0, = 00, our estimate of 10.86% is close to the sample mean of 11.52% for the excess
returns on KN Energy’s stock, and the corresponding standard deviation of 5.21% is close
to the frequentist estimate of 5.34% for the standard error of the sample mean. The close
correspondence between our extreme estimates and the two alternative estimates is also
observed for the two multifactor models.

Posterior standard deviations of 14, o, and B'A, also reported in Table 2, summarize the
uncertainty about KN Energy’s cost of equity and its components. The values reported for
B'X include both the unconditional standard deviation as well as standard deviations that
condition on either 3 or X set equal to their posterior means, 3 and X. (The calculations rely
on equations (34) through (37) in the previous section.) Based on the 1926-95 period, the
posterior standard deviation of KN Energy’s (annualized) cost of equity ranges from 1.97%,
in the case of a dogmatic belief in the CAPM (0o = 0), to 5.12%, in the case of a diffuse
prior about deviations from the model (0o = o0). The first value is essentially the posterior
standard deviation of '\, which is largely unaffected by o,. Further discussion of posterior

standard deviations is deferred to the later analysis of cross-sectional averages.
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Tables 3 and 4 report posterior moments for the components of KN Energy’s cost of equity
under the three-factor Fama-French (FF) model and the three factor Connor-Korajczyk (CK)
model. In general, the observations made above for the CAPM apply to these cases as well.
In particular, KN Energy’s & is 6.5% in the FF model and 4.8% in the CK model, but,
even with o, as large as 5%, the posterior means for a are at most 1.5% above zero. Also,
the information about A contained in the longer histories of the additional assets has a
substantial effect on the estimated cost of equity. In these three-factor models, the available
histories of the factors, which begin in July 1963, are augmented by three return series whose
histories begin in January 1926: the value-weighted NYSE, the equally weighted NYSE, and
the Ibbotson small-stock portfolio (all obtained from CRSP). For both of the three-factor
models, the cost of equity for KN Energy based on the longer 1926-95 period is, as observed
previously for the CAPM, about 2% higher than the cost of equity based on the shorter 1963—
95 period. For the longer period, the CAPM and the FF model produce similar estimates
for KN Energy’s cost of equity, whereas the CK model produces values one or two percent
higher. Differences in expected costs of equity from the three models are analyzed later using
a cross-section of stocks.

3.2.2. Cross-Sectional Results

For each stock on the NYSE and AMEX having at least 60 months of data continuing through
December 1995, we compute the same posterior moments reported for KN Energy in Tables
2-4 using a stock’s available monthly history back through July 1963. Each value in Tables
5-T is the arithmetic average across the 1,994 stocks of the corresponding value reported
in Tables 2-4. Computing the posterior moments for each of these stocks using Gibbs
sampling would be computationally prohibitive. In constructing Tables 5-7, we instead use
the approximations to the first and second posterior moments of b discussed in the previous
section. The approximations appear to work well. For example, when the values in Tables
2-4 are recomputed using the approximations, none of the posterior means change by more
than 3 basis points (bp), and none of the standard deviations change by more than 5 bp.

(When o, is 10% or less, none of the means and standard deviations change by more than
2bp.)

Unless stated otherwise, our discussion will center on results obtained for all three models
using the longer 1926-95 period. The FF and CK models yield posterior means of u for the
typical (average) stock in the range of 11 to 12 percent, roughly 3 percent higher than the
corresponding mean under the CAPM. For the FF model, this difference relative to the
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CAPM is due largely to the second and third factors, since the average posterior means of
the market betas are similar for the two models {1.00 versus 0.98). The average posterior
means of the betas on SM B, and HM L, are 0.68 and 0.32, which indicates that the average
firm in the cross-section is tilted toward smaller capitalization and higher book-to-market.
When combined with the posterior means for SM By and HML, of 3.6% and 5.3%, those
betas account for the bulk of the difference between the CAPM and FF costs of equity for
the average firm. The difference between the CAPM and the CK model is more difficult to
describe, given that the factors are less easily identified, but one might reasonably conjecture
that the CK factors similarly capture additional priced components of returns on small-
capitalization and high book-to-market stocks.!2

The average posterior standard deviations in Tables 5-7 reveal various aspects of uncer-
tainty about the cost of equity for a typical individual stock. An exact version of a pricing
model, where & = 0, implies a cost of equity equal to F'A, and that quantity’s average
posterior standard deviation is largely unaffected by the prior uncertainty about «, as is
evident from Tables 5-7. The average posterior standard deviation of A is about 2.9% for
the CAPM, 4.3% for the FF model, and 4.5% for the CK model. These values reflect the
uncertainty in both 8 and A. For the typical stock, we see that uncertainty about 2 alone
contributes substantially to the overall uncertainty about the cost of equity for an individual
stock. Specifically, the average conditional standard deviation of 8'A given A = } is about
1.4% for the CAPM, 2.7% for the FF model, and 2.6% for the CK model. On average,
uncertainty about 3 is less important than uncertainty about X, but not dramatically so:
the average conditional standard deviation of @A given 3 = 3 is about 2.3% for the CAPM,
3.1% for the FF model, and 3.2% for the CK model. Note also from these conditional stan-
dard deviations that the higher unconditional posterior standard deviations of @\ in the
three-factor models, as compared to the CAPM, reflect additiona] uncertainty about both 8
and .

In all three models, the posterior means of A are affected substantially by augmenting
the factor histories, which begin in July 1963, with the longer histories of additional series
that begin in 1926. These effects on posterior means indicate an important reliance on the
information in the longer histories of the additional variables, but the posterior standard
deviations of 3\ for the longer period are generally of about the same magnitude, or even
slightly larger, than the posterior standard deviations for the shorter period. This outcome

might seem puzzling, but the comparison of posterior standard deviations does not really

2Brennan, Chordia, and Subrahmanyam (1996) conclude that Connor-Korajezyk factor sensitivities can at
least partially account for cross-sectional differences in expected returns related to size and book-to-market.
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provide a sensible measure of the additional information provided by the longer histories. The
reason is that the longer histories can also provide additional information about uncertainty.
In particular, if the sample volatility of the long-history series is higher prior to 1963 than
after, then posterior beliefs about the factors’ variances will center on higher values when
based on the overall period. This increase in posterior variance of the factors, ceteris paribus,
raises the posterior variance of A, the vector of factor means. In effect, more information can
reveal greater uncertainty than otherwise perceived. That effect then works in opposition to
the more obvious one (also present): longer histories provides more information about factor

means and, ceteris paribus, lower their posterior variances.

When o, is very large, then the posterior standard deviation of « is fairly close to the
usual frequentist standard error for the estimated regression intercept. In that case, not
surprisingly, the posterior uncertainty about & dominates the posterior uncertainty about
the cost of equity. At lower values of Ta, the posterior standard deviation of « is typically
about 1/2 to 3/4 of ¢,. For example, when o, = 5%, the posterior standard deviation of & is
just over 3% in all three models. The difference betweer the posterior standard deviation of
 and the posterior standard deviation of G'A arises due to uncertainty about a. In general,
for values of ¢, between 3% and 5%, it seems that uncertainty about « is of roughly similar
importance to uncertainty about 8 and X in explaining the overall posterior uncertainty
about a typical firm’s cost of equity.

Recall that, for each of the three models, the estimated cost of equity for KN Energy,
L.e., the posterior mean of 4, is not very sensitive to the presence of economically plausible
“pricing uncertainty,” represented by o, As the results in Tables 2-4 demonstrate, for
values of o, up to 5%, the posterior mean of KN Energy’s o remains within 150 basis points
of its prior mean of zero, even though the least-squares estimate &, based on over 25 years
(301 months) of data, ranges between 4.8% and 6.7% for the three models. For the other
firms in our cross-section, the degree to which the cost of equity is sensitive to ¢, cannot be
discerned from the cross-sectional averages reported in Tables 5-7. In order to explore this
issue, we plot in Figures 1 through 3, for the three pricing models, each stock’s posterior
mean of i obtained with o, = 0 versus the stock’s posterior mean of u obtained with a
non-zero value of 0,. The latter value of o, is, in different plots, 3%, 5%, 10%, and co. A
stock’s vertical deviation from a 45-degree line is approximately &, the posterior mean of
« for that stock, since the values plotted are 3\ (horizontal axis) versus & + B2 (vertical
axis), and 3 is essentially unaffected by o,. In all three figures, the upper-left plot reveals
that, across the 1,994 stocks in the cross-section, estimated costs of equity obtained with

0o = 3% are generally quite close to those obtained with o, = 0. The scatter of points
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becomes more disperse as the nonzero value of 0o increases, but not very quickly. Even for
oo = 10%, the estimated costs of equity from all three models display a clear association
with those obtained using an exact pricing relation.

Note that the elements of b are assumed to be constant during the 7" periods for which the
stock’s historical returns are used in (4) and (8). In the empirical analysis reported above, we
take T to be the stock’s entire history, at least back through July 1963. Thus, we essentially
use “long-run” betas and ignore potential fluctuations in individual-stock betas over time.
Several alternative approaches could be pursued. For example, T might be restricted to at
most 60 months, as is consistent with common practice. We have redone the calculations
for that case and find similar results, except that, not surprisingly, the estimated cost of
equity is then affected even less by & In other words, for any economically reasonable
prior uncertainty about mispricing, the estimated cost of equity is very close to the estimate
produced by zero prior uncertainty. Also, the uncertainty associated with & rises somewhat
for most stocks. Although we could have just as easily reported those results, we find the
longer-period results, especially those involving «, to be more interesting. Another approach
that might be a fruitful direction for research would be to reformulate the Bayesian model
to allow changes in b. In a frequentist setting, for example, Shanken (1990) specifies b to be
a linear function of observable state variables. Fama and French {1997) implement such a

procedure by letting an industry’s betas depend on its size and book-to-market ratio.13

3.2.3.  An Industry-Specific Approach: Utilities

As noted earlier, the prior constructed by using the entire cross-section of stocks can be
viewed as uninformative compared to a prior that makes use of the firm’s industrial classifi-
cation. For example, if a public utility’s cost of equity is to be estimated, the prior parameters
can be obtained from a cross-section of utilities rather than the cross-section of all stocks. We
construct such a prior using the cross-section of utility firms (SIC codes between 4900 and
4999) with at least 48 months of data in the period from July 1963 through December 1995.
The same approach described earlier for the entire cross-section is applied here, except that
the off-diagonal elements of V} are set to zero in order to obtain a positive-definite covariance

matrix. In the same manner as discussed previously, posterior moments are then computed

Y¥Fama and French (1997) find support for such a specification, although they do not find its merits over
the simpler procedure to be clear cut. Moreover, they also suggest (p. 170) that, because variabies such as
size and book-to-market may be somewhat under managerment’s control, “firms might be better off using
full-period constant-slope [costs of equity| for capital budgeting.” Schink and Bower (1994), for example,
use full-period betas in estimating the cost of equity for individual public utilities,
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for the 124 utilities having at least 60 months of data, continuing through December 1995,

In the interest of space, we present only a brief summary of the results corresponding to
those reported for the large cross-section in tables 5 through 7. Compared to those previous
values, the average posterior means of p for the utilities are smaller, ranging roughly from
5 to 8 percent. As before, the CAPM estimates are on average the smallest, and the FF
estimates are the largest. The posterior standard deviations of /1 are also smaller than their
counterparts in the whole cross-section, by a factor of roughly two. This higher precision
of the estimated cost of equity for utilities is due both to lower average betas and to lower
posterior standard deviations of the betas. For example, the average posterior mean of the
CAPM betas for utilities is only 0.59, which is less than average of 1.00 for the whole cross-
section, and the average posterior standard deviation of the CAPM betas is only 0.07, which
is less than the corresponding value of 0.17 for the whole cross-section. The uncertainty
about A is more important than the uncertainty about & and, not surprisingly, this effect is
more pronounced than in the whole cross-section. Again taking the CAPM as an exatple,
the average conditional standard deviation of B'A given A = A is about 0.6%, whereas the
average conditional standard deviation of #/A given 8 = 3 is about 1.4%.

Figure 4 displays six plots corresponding to those displayed in F igures 1-3, where the
non-zero values of o, are set equal to 3% and 5% (results for ¢, = 10% and T4 = 00 are not
shown). That is, for all three models, each utility’s cost of equity estimated with o, = ( is
plotted against its cost of equity estimated with o, = 3% or o, = 5%. As before, the plots
exhibit clear positive associations, with deviations from a 45-degree line of roughly the same

magnitude as observed previously in the larger cross-section.

3.3. Model Uncertainty

Recall from Tables 2 through 4 that the cost of equity for KN Energy obtained using the
CAPM or the Fama-French model is roughly 2 percent less than the cost of equity obtained
from the three-factor Connor-Korajczyk model. In their analysis of industries, Fama and
French (1997) find that the CAPM produces estimated costs of equity that can differ from
those produced by the FF model by 2% or more for some industries. Such differences across
models essentially produce additional uncertainty about the cost of equity for a decision
maker who remains uncertain about which model to use. As a first step in exploring the
potential importance of differences across models in costs of equity for individual firms, we

simply plot the cost of equity (posterior mean of /) obtained using one model versus that
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obtained using another model. Figure 5 plots, for the previously analyzed cross-section of
1,994 stocks, the costs of equity from the CAPM versus those from the FF model. Figure
6 plots the CAPM costs of equity versus the CK costs of equity, and Figure 7 plots the FF
values versus the CK values. Each figure contains four plots, produced with ¢, equal to ZEro,
five percent, ten percent, and infinity. In general, the plots reveal positive correlation between
costs of equity produced using different models, although the degree of correlation depends
on o, as well as the pair of models being compared. The plots in Figure 6, for the CAPM
versus the CK model, exhibit the highest correlation, but even those plots exhibit more
dispersion than any of the top two plots in Figures 1 through 3. That is, the disagreement
in costs of equity across models appears to be greater than the disagreement within a given
model produced by changing the degree of prior pricing uncertainty (a) from zero to five
percent.

The disagreements among models can be quantified further by assigning subjective prob-
abilities to each model and then computing the variance of a given stock’s & associated with
model uncertainty. For each model, the prior and posterior distributions of the parameters
in the model] are conditioned on that model’s being the correct one. If there are ¢} models
under consideration, g = 1,...,0, let Hiq denote the posterior mean of 1 obtained under
model ¢, and let 7, denotes the decision maker’s posterior probability that model ¢ is the
correct model. Then, taking the expectation across models, the decision maker ultimately
estimates the cost of equity to be

Q
pt = Z Tgflfg). (40)
g=1

For example, the New York State Public Service Commission has endorsed the use of equal
weights across three different models to estimate the cost of equity for public utilities under
its supervision. The three models used by the Commission are the CAPM (1more precisely, an
average of four CAPM-based estimates) and two non-factor-based models—the “Discounted
Cash Flows” model and the “Comparable Earnings” model. The commission is also evalu-

ating the usefulness of multifactor models in estimating costs of equity for public utilities,
(See DiValentino, 1994.)

Let 9,1 denote the posterior variance of t obtained under model . When estimating the
cost of equity, the decision maker is left with overall uncertainty given by the unconditional
variance across models:

Q

Q
vp= Taluig + Talfig — 1*)*. (41}
g=1 g=1

The first term on the right-hand side of (41), the expected value across models of the posterior
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variance of y, is essentially the average within-model uncertainty about the cost of equity.
This component of the overall uncertainty was analyzed in the previous subsection. The
second term on the right-hand side of (41), the variance across models of the posterior mean
of u, might be termed “model” uncertainty, or the component of the overall variance of i

attributable to uncertainty about which model to use.

Calculation of model probabilities (my's) is beyond the intended scope of this study. As
noted at the outset, we focus more on issues related to using various factor-based models for
cost-of-equity estimation rather than on issues related to testing such models or evaluating
their relative merits. In order to illustrate the calculation of model uncertainty, we consider
various sets of candidate models and, for each set, the m,’s are made equal across models, 1
As one model is assigned increasingly higher probability relative to others, model uncertainty
generally decreases. In that sense, specifying equal probabilities across models is likely to
overstate the model uncertainty, but we suggest that such an exercise nevertheless reveals
the potential importance of such uncertainty relative to the components of within-model
parameter uncertainty discussed previously.

Table 8 reports the model uncertainty about y as well as the amount of overall uncertainty,
which includes the within-model parameter uncertainty. Calculations are reported for the
various two-way subsets of the models as well as for the set of all three models. The results
are based on the longer 1926-95 period and are computed for the same alternative values
of the prior within-model pricing uncertainty, o,, as in the previous analysis. All values
are reported as annualized percentage standard deviations. Also shown, for comparison,
are (square roots of) the expected values across the three models of the posterior variances
of 4, a, and #A. Part A of Table 8 displays results for KN Energy, the individual stock
examined previously. Recall from Tables 2 and 3 that the CAPM produces posterior means
for KN Energy’s cost of equity that are reasonably close to those from the FF model across
the different values of ¢,. That observation is consistent with the result in Table 8 that,
when considering only the CAPM and FF models, the model uncertainty about g is 0.26%
for ¢, = 0 and only 0.02% for large o,. Similarly, given that the CK model produces
higher posterior means than the other two models tor KN Energy’s cost of equity (cf. Table
4), the model uncertainty for the three sets of models that include CK is higher—roughly
1% for ¢4 = 0 and declining to 0.25% as ¢, becomes infinite. In general, however, the
uncertainty about KN Energy’s cost of equity arising from model uncertainty is less than
that arising from uncertainty about parameters within a given model. Consider, for example,

"“Bower, Bower, and Logue (1984) suggest putting more weight on the estimates obtained from multifactor
models than on the CAPM estimates.
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the case where a decision maker entertains all three models. At oo =0, KN Energy’s model
uncertainty is highest and within-model parameter uncertainty is lowest, but even then the
first component (1.01%) is about half of the latter (2.18%) in terms of standard deviation.

Part B of the Table 8 reports the averages across the 1,994 stocks of each value in part
A. For the typical stock, both model uncertainty and overall uncertainty are higher than
for KN Energy. Otherwise, the conclusions are similar. In particular, the average model
uncertainty is less than the average within-model parameter uncertainty. As was the case
with KN Energy, as o, grows large the average model uncertainty decreases and the average
within-model parameter uncertainty increases. Again in the example where a decision maker
entertains all three models and o, = 0, the average model uncertainty is 2.5%, whereas the
average within-model uncertainty is 4.0%. The average overall uncertainty about g in that
case is 4.74%, only about 0.75% higher than the average uncertainty produced by within-
model parameter uncertainty alone. In general, for the three beta-pricing models entertained,
although model uncertainty is nontrivial, it appears to be less important than within-mode]
parameter uncertainty in estimating costs of equity for individual firms. Moreover, when
entertaining several different models, the decision maker is likely not to have a dogmatic
belief in any single model. Therefore, the case in which o, is very small, which produces
the highest relative importance of the model uncertainty, may be less plausible. Also recall
that, because we specify equal probabilities across models, the effects of model uncertainty
might even be overstated. Both of these observations tend to strengthen our findings of the

relative unimportance of model uncertainty versus within-model uncertainty.

We also conduct a similar analysis the utilities industry. Figure 8 displays, for o, set to
3% and 5%, the plots corresponding to those in Figures 5-7. That is, each utility’s cost-
of-equity estimates obtained from two different models are plotted against each other. The
assoclations between the estimates obtained from different models appear to be stronger
than those observed in Figures 5-7 for the whole cross-section of stocks. All three models
typically produce rather similar estimates, and the fit between the estimates from the CAPM
and the three-factor CK model is especially close. Note that, contrary to the observation
for the whole cross-section, the across-model plots in Figure 8 are less disperse than the
within-model plots in Figure 4. Tn other words, the disagreements in utilities’ costs of equity
across models appear to be smaller than the disagreements within a given model produced

by changing the degree of prior mispricing uncertainty (o) from zero to five percent.

Table 9 is the equivalent of part B of Table 8, except that it is constructed for the utilities
industry rather than for the whole cross-section. On average across the 124 utility stocks,
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both model uncertainty and overall uncertainty about the cost of equity are much smaller for
utilities than for the whole cross-section. In particular, the model uncertainty for the pair of
CAPM and CK is quite low, around 0.5%, confirming our finding of a close correspondence
between the cost-of-equity estimates produced by the two models. Despite some differences in
magnitude, the relative proportions of model uncertainty and overall uncertainty are similar
to those observed in Table 8. Therefore, in the utilities industry, uncertainty about which

model to use is again less important than within-model uncertainty.

4. Conclusions

Costs of equity capital implied by factor-based pricing models can be estimated in & Bayesian
setting. Such an approach reveals that, after making use of available returns data, the deci-
sion maker’s uncertainty about the cost of equity () remains high. The posterior standard
deviation of 41 is typically at least 3% per year in a one-factor model and 4% per year in a
three-factor model, even if the possibility that the model might misprice the stock is com-
pletely ruled out. For utilities, this standard deviation is smaller, but typically at least 2%
per year. Uncertainty about that potential pricing error (a) increases the uncertainty about
#. but the posterior mean of u—the decision maker’s estimated cost of equity—is not affected
greatly by uncertainty about « that is substantial in economic terms. A decision maker’s
uncertainty about which factor-based model to use contributes nontrivially to the overall
uncertainty about u, but, on average, model uncertainty is rather less important than the

within-model parameter uncertainty.

In the absence of uncertainty about «, uncertainty about factor means makes the largest
contribution to overall uncertainty about the cost of equity, but, for individual stocks, un-
certainty about betas is nearly as important. The uncertainty about betas is relatively even
less important in the utilities industry. The importance of the uncertainty about factor
means remains even after incorporating the additional information in series whose histories
are longer than those of the factors. That additional information does, however, produce
posterior means for the factors, and thus for t, that differ from those based on the factor
histories alone.

24



Appendix

This appendix extends results in Stambaugh (1997) and derives the posterior mean and
variance-covariance matrix of A in (30) and (31) when the likelihood function is given by (9)
and the prior is given by (18). Recall that A contains the first K elements of 8. Let ® denote
the data set consisting of F5) and Y5 the sample information about the moments of i
Define the population counterparts to the quantities in (28) and (29)

*

H2 = G12G2_21, (Al)
hi = A — Hyby, (A.2)

and
X¥=Gny— HyGpH), (A.3)

where (11, G2, and Gy, are the submatrices of ( in (5) that correspond to the partitioning

of f& = [f! y}], and let
_| M
H= [ el } . (A.4)
It is shown in Stambaugh ( 1997) that

P(H, X, 05, G22|®) = p(H, SI®)p(8;, Goa| ), (A.5)
where
P(H, Z|9) o |5- =55 oxp { —%tr (SS+(H-HYZ'Z(H - E’)]E‘I} : (A.6)
and

—K4+Kj + i - ~ -
P(8, Ol ®) o |G| 522 {—§L 0 Gz + (B2 — b) (85 — 92)'102—21} (AT

From (A.7), the conditional posterior of B2 given Gy is
P(62]G, ®) ox |G|~ F exp {—‘%L(ﬁ’z — 0,) G 8, — 632)} ) (A.8)
which is a multivariate normal density with
E{6;|Gy, ®} = E{6,|®} = 4, (A.9)

and

; 1
COV{QQ,BQ'GQQ, (I)} = ngg. (A].O)
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From (A.7) and (A.8), the marginal posterior density of Gqy is

—K+ 1 N
P(G2l®) o |G|~ 7 exp {—‘2'L -tr G'22G'521} , (A.11)

which is an inverted Wishart density with

L )
L—K-ZKL—1022’

E{Gy|®} = (A.12)

where {A.12) follows from properties of the inverted Wishart distribution. (See, for example,
Anderson (1984, pp. 268-270).) Therefore, since the conditional mean in (A.9) does not
involve Gy, the unconditional posterior covariance matrix of 8, is the expectation of (A.10),
which, using (A.12), is

1
L—-K~-2K, -1

cov{fy, 0)|®} = Gaa. (A.13)

Next rewrite equation (A.2) as

A= Dec, (A.14)

where
D=1Ix®][1 06, (A.15)
c=vec{H}, (A.16)

and “vec{H}" denotes the K x (K, + 1) column vector formed by stacking the successive
columns of . Similarly, define

¢ = vec{H}. (A.1T)

From (A.6) and the analysis of the multivariate regression model in Zellner (1971, p. 227),
the conditional posterior density of ¢ given ¥ can be written as

Kr+

p(e]S, ®) o 155 exp {—%(c — (=@ 22 - a)} , (A.18)
which is a multivariate normal density with
E{c|Z,®} = ¢ (A.19)

and
cov{c,d|E, @} = cov{c,d|®} = T ® (z'Z) 1 (A.20)

Because ¢ and #, are independent (cf. (A.5)), it follows immediately from (A.9) and (A.14)
through (A.17) that

E{\|fy, ®} = h; + H,0,, (A.21)
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and the unconditional posterior mean of A, A, is given by (30).

From (A.6) and (A.18), and again relying on the analysis in Zellner (1971, p. 227), the
marginal posterior density of ¥ is given by

1 )
p(E|P) x |ZJ}'”£15“E exp {—-2-5 “tr EE*I} ) (A.22)

and, using the same property of the inverted Wishart distribution as in (A.12), the uncon-

ditional posterior mean of ¥ is

S .

Given (A.19), the unconditional posterior covariance matrix of ¢ is the expectation of the

conditional covariance matrix in (A.20), which, using (A.23), is equal to

S )

COV{C, C’I(I)} = mz ® (Z’Z)—l.) (A24)

Combining (A.14) and (A.24) gives

! _ S 3 t oy —1 ’
mﬂ&ﬂ%@}—-S_KHK_U_zK_IME®MZ))D

S I ! -1 1 3
= S—_—K—_Q([l)\}(ZZ) [ADZ, (A.25)
and taking the unconditional expectation of (A.25), using (A.9) and (A.12), gives

E {cov{), X6, ®}|®} =

(s=x=s)" {(Z'Z)”

Also, from (A.21) and (A.13),

1 4, 3
; Lo bs A
b2 (i) G + 0o } } (A.26)

cov {E(A|6z, ®), E(N' |6y, B)[®} = cov{ﬁgag,egﬁ;ycp}
= Hicov{8,, 8|0} 7

1 s
= L — K — QKL — lHQGQQHQ. (AQ?)

By the variance decomposition rule, the sum of the matrices in (A.26) and (A.27) gives 1},

the unconditional variance-covariance matrix of A, and that result is displayed in (31)
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Table 1

Cross-sectional Estimates of Prior Parameters

For every stock with at least 24 months of data in the period July 1963 - December 1995, the statistics b
and 62 are computed using monthly data to estimate the appropriate factor-{nodel regressions. The estimate
of the prior mean of b, b, is computed as the cross-sectional average of the b's, except that its first element
is set to zero. The matrix V; is computed as the cross-sectional Covariance matrix of the b’s minus the
cross-sectional average of the time-series sampling variances of the b’s. The estimate of the prior covariance
matrix of b, V4, is computed from ¥, by varying o, and preserving the correlation structure of Vi, The
estimates of v and s¢ are computed from the cross-sectional sample moments of the 62’5 using the properties
of the inverted gamma density.

Prior parameter estimates

Model b vy v 2

Sp
CAPM 0.0005 0.0003 -0.0008 5 0.0101
1.1217 0.3844
3-factor FF -0.0026 0.0003 -0.0020 -0.0023 -0.0047 5 0.0089
1.0056 03717  0.0611 0.1632
0.9671 11616  0.3452
0.3820 1.0241
3-factor CK -0.0007 0.0002 -0.0029 0.0014 -0.0001 5 0.0086
1.0513 0.9596  0.0427 -0.3175
0.0170 1.3080 -0.1051
0.0557 0.4083
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Table 2

Posterior Means and Standard Deviations for the Components of KN Energy’s
Expected Excess Return from the CAPM

The expected excess return on the stock, 1, is given by g = o + 8A, where A is the expected excess
return on the value-weighted market portfolio of NYSE, AMEX, and NASDAQ stocks (Rpt), and @ and 8
are parameters in the regression of the stock’s monthly excess return {R:) on the market excess return:

Ry =a+ 3Ry + e

The moments for the parameters of the regression model, reported in part A., are based on monthly excess
returns for the period 12/1970-12/1995 (301 months). The ordinary least-squares estimates are ¢ — 6.68%
{annualized} and ﬁ = 0.76. The moments for the quantities involving A, reported in part B., are bascd
on monthly excess returns for the periods indicated and, for the longer period, make use of the additional
information in the history of returns on the value-weighted NYSE portfolio. Also reported for each period
is i = & + 38X, which is the posterior mean of u obtained with diffuse priors on all parameters, where A

denotes the posterior mean of A. Except for the moments of 3, all posterior means and standard deviations
are reported as annualized percentage values,

Prior Standard Deviation of a (o)

0 1% 3% 5% 10%  30% 00
Part A. Regression parameters

Means
a 0.00 008 066 1.55 3.64 6.07 6.61
Jil 0.78 0.78 0.78 0.78 0.78 0.77 0.77

Standard deviations
«@ 000 053 152 233 358 481 489
Fef 009 009 009 009 009 009 009

Part B. Components involving the expected market return
1/1926-12/1995; ju = 12.86, A = 8.11

Means
7 6.36 6.43 7.00 7.88 9.93 12.32 1286
A'\ 6.36 6.35 6.34 6.33 6.29 6.25 6.24

Standard Deviations
7 L.97 204 247 3.02 402 493 5.12
8'A 197 197 1496 1.96 1.95 1.94 1.94

FAA=X2 072 072 072 072 072 072 070
BA|p=5 182 182 182 18 18 179 179

7/1963-12/1995; ji = 10.89, \ = 5.52

Means
7 4.33 441 498 58 792 1032 10.86
A'A 433 433 432 431 498 496 495
Standard Deviations

M 213 220 261 314 412 502 5091

4 213 213 213 213 212 210 2.10
BAXA=X 049 049 049 049 049 049 049
BAIB=8 207 206 206 206 204 203 203
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Table 3

Posterior Means and Standard Deviations for the Components of KN Energy’s
Expected Excess Return from the Three-Factor Fama-French Model

The expected excess return on the stock, u, is given by p = o + 3'A, where X is the vector of expected
values of the three Fama-French factors, and o and g = [81 B2 B3] are parameters in the regression of the
stock’s monthly excess return (R;) on the factors:

B =a+ ﬁj_RM,z + ,BQSMB; + ﬁgHML; -+ €.

The moments for the parameters of the regression model, reported in part A., are based on monthly data for
the period 12/1970-12/1995 (301 months). The ordinary least-squares estimates are & = 6.53% (annualized)
and 3 = [0.76 0.04 0.02)'. The moments for the quantities involving X, reported in part B., are based on
monthly data for the periods indicated and, for the longer period, make use of the additional information in
the history of returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson small-
stock portfolio. Also reported for each period is i = &+ '\, which is the posterior mean of i obtained with
diffuse priors on all parameters, where A denotes the posterior mean of A. Except for the moments of A, all
posterior means and standard deviations are reported as annualized percentage values,

Prior Standard Deviation of a {04

0 1% 3% 5%  10% 30% 00

Part A. Regression parameters

Means
o 0.00 0.09 065 1.52 3.57  5.95 6.48
el 0.78 078 078 078 077 0.7 0.76
[ 0.06 006 006 0.06 0.06 0.06 0.06
B3 0.06 006 006 005 004 0.02 0.02

Standard deviations

o 000 054 155 239 368 477 499
B1 010 010 010 010 010 0.10 0.10
B2 015 015 015 015 015 015 0.15
B33 016 016 016 016 016 0.16 0.18

Part B. Components involving the expected factors
1/1926-12/1995; 1 = 12.88, X = [8.05 3.63 5.32)’

Means
n 688 696 748 829 1020 12.42 1291
B’ 6.88 687 6.83 6.77 6.63 647 644
Standard Deviations
U 235 241 276 323 414 501 5.19
B\ 235 235 235 235 235 235 2.34

B'A|A=2A 138 138 138 139 140 142 142

BFX|B=3 187 187 18 1.8 184 1.83 183
7/1963-12/1995; jr = 10.93, X = [5.52 3.01 5.05)
Means
" 484 492 545 627 820 1045 1095
G8'A 484 483 480 475 463 450 447
Standard Deviations
1 241 246 281 329 421 500 597
A 241 241 241 241 240 240 239

AAA=X 115 115 116 116 117 118 119
BAB=8 208 208 207 207 206 204 204
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Table 4

Posterior Means and Standard Deviations for the Components of KN Energy’s
Expected Excess Return from the Three-Factor Connor-Korajezyk Model

The expected excess return on the stock, g, is given by p = a +
values of the three Connor-Korajczyk factors, and « and 3 = |
the stock's monthly excess return (R,) on the factors:

RBi=a+BFi + B Foy + BaF3; + €.

The moments for the parameters of the regression model, reported in part A., are based on monthly data for
the period 12/1970-12/1995 (301 months). The ordinary least-squares estimates are & — 4.84% (annualized)
and 3 = [0.58 —0.05 0.37)’. The moments for the quantities involving A, reported in part B., are based on
monthly data for the periods indicated and, for the longer period, make use of the additional information in
the history of returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson small-
stock portfolio. Also reported for each period is & = v+ 3'A, which is the posterior mean of u obtained with
diffuse priors on all parameters, where A denotes the posterior mean of A. Except for the moments of A, all
posterior means and standard deviations are reported as annualized percentage values.

A, where A is the vector of expected
B B2 Ba] are parameters in the regression of

Prior Standard Deviation of a (o)
0 1% 3% 5% 0%  30% o0

Part A. Regression parameters

Means
o 000 007 053 1.22 278 448 4.84
ool 059 059 059 059 058 0.58 0.58
G -0.06 -006 -0.05 -0.05 -0.05 -0.05 -0.05
Jos) 037 037 037 037 0237 0.37 0.37

Standard deviations

« 000 056 160 244 369 469 4.88
51 0.08 008 008 008 0.08 008 0.08
32 007 007 007 007 007 007 0.07
33 007 007 007 007 007 007 0.07

Part B. Components involving the expected factors
1/1926-12/1995; i = 13.39, )\ = (10.85 - 2.22 5.94)

Means
7 872 878 923 990 11.40 13.04 13.40
S'A 872 872 870 868 863 857 8.56
Standard Deviations
7 221 227 269 322 418 503 9.19
B'A 221 221 221 220 220 219 2.19

)} 099 099 099 100 1.00 100 1.01
BXI8=2 194 194 193 193 192 191 1.90

7/1963-12/1995; o =11.49, A = [1.65 —3.17 5.66

Means
n 6.79 685 730 7.97 949 11.14 11.80
A 679 679 677 6.75 6.71 6.67 6.66

Standard Deviations
r: 230 237 277 330 425 509 5.26
8' M 230 230 230 230 229 297 2.27

XA = A 079 079 079 079 080 080 0.80
BX|B=p5 213 213 212 212 210 209 2.09
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Table 5
Averages Across 1,994 Stocks of the Values Shown in Table 2

The means and standard deviations reported for the individual stock in Table 2 are computed for each
of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical returns,
and the averages of those values across all stocks are reported below. The expected excess return on the
stock, p, is given by g = a+ 38X, where A is the expected excess return on the value-weighted market portfolio
of NYSE, AMEX, and NASDAQ stocks {Ra:), and o and 3 are parameters in the regression of the stock’s
monthly excess return {R;) on the market cxcess return:

Ry =0+ BRprs + €.

The moments for the parameters of the regression model, reported in part A., arc based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in part B., are based on monthly excess returns for the periods indicated and, for the longer period,
make use of the additional information in the history of returns on the value-weighted NYSE portfolio. Also
reported for each period is A, the posterior mean of A. Except for the moments of 3, all posterior means and
standard deviations are reported as annualized percentage values,

Prior Standard Deviation of a (a,)
0 1% 3% 5%  10%  30% 00

Part A. Regression parameters

Means
a 0.00 002 017 040 0.90 1.45 1.56
51 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Standard deviations
o 0.00 074 216 339 561 843 9.31
51 017 017 0.17 0.17 017 0.17 0.17

Part B. Components involving the expected market return
1/1926-12/1995; X = 8.11

Means
L 8.14 817 832 854 903 957 968
82 814 814 814 814 813 812 812
Standard Deviations
y 2.85 295 358 442 623 87T  9.60
G'A 285 285 285 285 285 285 9286
BAXPA=X 140 140 140 140 141 141 149
FAlB=4 233 233 233 233 233 233 9233
7/1963-12/1995; A = 5.52
Means
# 554 557 572 594 644 697 709
B2 554 554 554 554 553 553  5.53

Standard Deviations
I 292 302 366 450 632 888 9.72
A 292 292 292 292 292 291 2.92

AAA=X 095 095 096 09 096 096 0.96
FAIB=5 265 265 265 264 264 264 264
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Table 6
Averages Across 1,994 Stocks of the Values Shown in Table 3

The means and standard deviations reported for the individual stock in Table 3 are computed for each
of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical returns,
and the averages of those values across all stocks are reported below. The expected excess return on the
stock, i, is given by u = o + 8, where A is the vector of expected values of the three Fama-French factors,
~and a and 3 = [8) (3, B3} are parameters in the regression of the stock’s monthly excess return (R:) on the
factors:

Ry =+ 1R+ BSMB, + BsHML, + ¢,

The moments for the parameters of the regression model, reported in part A., are based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in part B., are based on monthly data for the periods indicated and, for the longer period, make
use of the additional information in the history of returns on the value-weighted and equally weighted NYSE
portfolios and the Ibbotson small-stock portfolio. Also reported for each period is A, the posterior mean of

A. Except for the moments of 3, all posterior means and standard deviations are reported as annualized
percentage values,

Prior Standard Deviation of a (o)
0 1% 3% 5%  10%  30% )

Part A. Regression parameters

Means
o 0.00 0.00 003 007 017 030 0.32
5 098 098 098 098 098 (.98 0.98
G2 068 068 068 068 068 068 0.68
B3 032 032 032 032 032 03?2 0.32

Standard deviations

a 000 072 210 330 547 823 908
51 0.18 018 018 0.18 0.18 0.8 0.18
B 027 027 027 027 027 027 027
- B3 030 030 030 030 030 030 030

Part B. Components involving the expected factors
1/1926-12/1995; X = [8.05 3.63 5.32]'

Means
7} 12.03 12,03 12.06 1210 12.19 1231 12.34
B 12.03 12.03 12.03 1202 1202 12.01 12.01
Standard Deviations
m 431 436 474 532 672 890 964
3\ 431 431 432 432 433 434 435

[ ]

A= 271271 271 272 273 275 2.76
gx|g=25 310 310 310 310 310 310 3.10

7/1963-12/1995; A = [5.52 3.01 5.05)

Means
7 9.05 905 908 912 921 933 9.36
8'A 905 905 905 904 9.04 904 9.04
Standard Deviations
i 414 419 460 521 667 892 968
6’ 414 414 414 414 415 4.16 4.16

b

B'A A= A 226 227 227 227 228 230 230
grx|g=23 323 323 323 323 323 323 3923
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Table 7
Averages Across 1,994 Stocks of the Values Shown in Table 4

The means and standard deviations reported for the individual stock in Table 4 are computed for each
of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical returns,
and the averages of those values across al! stocks are reported below. The expected excess return on the
stock, g, is given by u = o + 8'A, where A is the vector of expected values of the three Connor-Korajczyk
factors, and a and 3 = [8; A, B3] are parameters in the regression of the stock'’s monthly excess return (R,)
on the factors:

RBi=a+ R+ 52F,+ B1Fs; + 6.

The moments for the parameters of the regression model, reported in part A., are based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in part B., are based on monthly data for the periods indicated and, for the longer period, make
use of the additional information in the history of returns on the value-weighted and equally weighted NYSE
portfolios and the Ibbotson small-stock portfolio. Also reported for each period is X, the posterior mean of

A. Except for the moments of 3, all posterior means and standard deviations are reported as annualized
percentage values,

Prior Standard Deviation of a {o,)
0 1% 3% 5%  10% 30% oo

Part A. Regression parameters

Means
a 0.00 0.01 007 0.18 046 0.93 1.09
31 097 097 097 097 097 097 0.97
Jop) 0.02 0.02 002 0.02 0.62 0.02 0.02
G 014 014 014 014 014 014 0.14

Standard deviations

o 000 075 217 339 555 818 896
B 026 026 026 026 02 02 0.2
2 013 013 013 013 013 013 0.13
B 017 017 0.17 017 017 017 0.17

Part B. Components involving the expected factors
1/1926-12/1995; A = [10.85 — 2.22 5.94]'

Means
M 11.38 11.39 1145 11.55 11.83 12.27 12.42
8'A [1.38 1138 11.38 11.37 11.38 11.34 11.33

Standard Deviations
u 446 452 494 555 696 903 9.70
' 446 446 446 446 44T 447 447
AAIA=X 259 259 259 260 260 261 262
BAB=8 317 317 317 317 316 316 316

7/1963-12/1995: A = [7.65 - 3.17 5.66)

Means
1 821 822 828 838 866 911 9.26
8’ 821 821 821 820 820 818 8.17
Standard Deviations
7 410 417 463 529 6.79 896 9.65
8\ 410 410 410 410 410 4.11 411

AAA=X 190 190 191 191 191 102 199
FAIB=5 326 326 326 326 326 395 395
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Table 8
Model Uncertainty and Overall Uncertainty About the Cost of Equity

The table reports the uncertainty about a firm’s cost of equity {u) that arises from entertaining multiple
models, the overall uncertainty about 4 that incorporates both model uncertainty and within-model param-
eter uncertainty, and the average within-model parameter uncertainty. The three beta-pricing models are
the CAPM, the three-factor Fama-French model (FF), and the three-factor Connor-Korajczyk model (CK).
For any given subset of models entertained, each model is assigned cqual probability. All values are reported
as annualized percentage standard deviations.

Prior Standard Deviation of (Ca)
0 1% 3% 5% 10%  30% 00
Part A. Results for KN Energy

Model uncertainty about 1 when the set of
models entertained is

CAPM and FF 026 026 024 020 012 004 0.02
CAPM and CK LI L17 111 100 073 035 026
FF and CK 092 091 087 080 060 031 0.24
CAPM, FF, and CK 101 1.01 095 087 063 031 09

Overall uncertainty about p when the set
of models entertained is

CAPM and FF 218 224 263 314 409 499 517
CAPM and CK 240 246 281 328 417 501 5.18
FF and CK 246 251 286 332 420 502  5.19
CAPM, FF, and CK 241 246 281 328 417 501 5.18

Average across the three models of the
within-model uncertainty of @

7 218 224 264 316 412 500 5.17
a 000 054 1536 239 365 470 4.90
B'A 218 218 218 218 217 216 2.16

Part B. Average Across 1,994 Stocks of the Values in Part A

Model uncertainty about i when the set of
models entertained is

CAPM and FF 220 218 210 199 174 148 1.43
CAPM and CK 179 178 172 165 150 143 1.46
FF and CK 179 178 170 159 133 1.02 0098
CAPM, FF, and CK 247 245 236 224 196 168 1.66

Overall uncertainty about 1 when the set
of models entertained is

CAPM and FF 445 449 486 542 681 903 9.80
CAPM and CK 423 429 472 535 684 008 9.82
FF and CK 490 494 527 579 706 9.08 977
CAPM, FF, and CK 474 478 513 566 699 912 985

Average across the three models of the
within-model uncertainty of @

7 3.96  4.02 447 513 665 890 965
a 000 074 214 337 554 828 9.12
B'A 396 396 396 39 397 397 308

2The posterior variances are averaged across models before taking the square root.
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Table 9
Model Uncertainty and Overall Uncertainty About the Cost of Equity for Utilities

The table reports the uncertainty about a firm’s cost of equity (i4) that arises from entertaining multiple
models, the overall uncertainty about x that incorporates both model uncertainty and within-model param-
eter uncertainty, and the average within-model parameter uncertainty. The three beta-pricing models are
the CAPM, the three-factor Fama-French model {FF), and the three-factor Connor-Korajczyk model (CK).
For any given subset of models entertained, each model is assigned equal probability. All valucs are reported
as annualized percentage standard deviations and are averaged across 124 utilities.

Prior Standard Deviation of & (o)
0 1% 3% 5%  10%  30% o

Model uncertainty about p when the set of
models entertained is

CAPM and FF 154 147 109 077 044 027 0.25
CAPM and CK 067 064 047 033 023 02 0.27
FF and CK 099 095 071 051 035 032 0.32
CAPM, FF, and CK 135 129 096 070 045 037 0.36

Overall uncertainty about w when the set
of models entertained is

CAPM and FF 236 245 291 334 387 421 4927
CAPM and CK 174 191 267 324 386 423 429
FF and CK 211 224 283 332 389 424 430
CAPM, FF, and CK 221 232 285 332 3.8 423 4929

Average across the three models of the
within-model uncertainty of @

7 1.70 188 267 324 385 421 4927
« 000 083 210 282 353 394 400
G'A 170 170 170 170 170 170 1.70

@The posterior variances are averaged across models before taking the square root.
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Figure 1. Costs of equity (E(R)) from the CAPM for various degrees of prior uncertainty

about mispricing. The prior mispricing uncertainty, ¢,, is the annualized prior standard
deviation of «.
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Figure 4. Utility costs of equity (E(R)) for different degrees of prior uncertainty about
mispricing. Costs of equity are computed using the CAPM, the three-factor Fama-French
model (FF), and the three-factor Connor-Korajczyk model (CK). The prior mispricing un-
certainty, o,, is the annualized prior standard deviation of a.
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Figure 5. Costs of equity (E(R)) from the CAPM versus costs of equity from the three-
factor Fama-French (FF) model for various degrees of prior uncertainty about mispricing.
The prior mispricing uncertainty, og, is the annualized prior standard deviation of a.
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Figure 6. Costs of equity (E(R)) from the CAPM versus costs of equity from the
three-factor Connor-Korajezyk (CK) model for various degrees of prior uncertainty about

mispricing. The prior mispricing uncertainty, o,, is the annualized prior standard deviation
of a.
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Figure 7. Costs of equity (E(R)) from the three-factor Fama-French (FF) model versus
costs of equity from the three-factor Connor-Korajezyk (CK) model for various degrees of
prior uncertainty about mispricing. The prior mispricing uncertainty, ¢,, is the annualized
prior standard deviation of a.
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