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Abstract

We develop a multi-period market model describing both the process by which traders learn
about their ability and how a bias in this learning can create overconfident traders. A trader in
our model initially does not know his own ahility, that is, the probability that he will receive a
valid signal in each period. He infers this ability from his successes and failures. In assessing his
ability the trader takes too much credit for his successes, i.e. he weighs his successes more heavily
than would a true Bayesian agent. This leads him to become overconfident. A trader’s expected
level of overconfidence increases in the early stages of his career. Then, with more experience, he
comes to better recognize his own ability. An overconfident trader trades too aggressively, thereby
increasing trading volume and market volatility while lowering his own expected profits. Though
a greater number of past successes indicates greater probable ability, a more successful trader may
actually have lower expected profits in the next period than a less successful trader due to his
greater overconfidence. Since overconfidence is generated by success, overconfident traders are not
the poorest traders. Their survival in the market is not threatened. Overconfidence does not make

traders wealthier, but the process of becoming wealthy can make traders overconfident.



1 Introduction

An old Wall Street adage advises “Don’t confuse brains with a bull market.” The need for such
wisdom stems from traders' willingness to attribute too much of their success to their own abilities
and not enough to their good fortune. Successful traders are, thus, prone to become overconfident
in their abilities.

It is a common feature of human existence that we constantly learn about our own abilities
by observing the consequences of our actions. For most people there is an attribution bias to this
learning: we tend to overestimate the degree to which we are responsible for our own successes
(Wolosin, Sherman, and Till, 1973; Miller and Ross, 1975; Langer and Roth, 1975). As Hastorf,
Schneider, and Polifka (1970) write, “we are prone to attribute success to our own dispositions and
failure to external forces.” People recall their successes more easily than their failures and “even
misremember their own predictions so as to exaggerate in hindsight what they knew in foresight”
(Fischhof, 1982).

In this paper, we develop a multi-period market model describing both the process by which
traders learn about their ability and how a bias in this learning can create overconfident traders.
Traders in our model initially do not know their ability. They learn about their ability through
experience. Traders who successfully forecast next period dividends improperly update their beliefs;
they weigh too heavily the possibility that their success was due to superior ability. In so doing
they become overconfident.!

In our model, a trader’s level of overconfidence changes dynamically with his successes and
failures. A trader is not overconfident when he begins to trade. Ex ante, his expected overconfidence

increases over his first several trading periods and then declines.?

Thus the greatest expected
overconfidence in a trader’s lifespan comes early in his career. After this he tends to develop a
progressively more realistic assessment of his abilities as he ages.

One criticism of models of non-rational behavior is that non-rational traders will underperform
rational traders and eventually be driven to the margins of markets if not out of them altogether.?
This is, however, not always the case. De Long, Schleifer, Summers, and Waldmann (1990) present
a model where non-rational traders in an overlapping generations model earn higher expected profits

than rational traders by bearing a disproporitionate amount of the risk that they themselves create.

'We do not explicitly model traders’ tendency to attribute failure to outside forces since, as Fiske and Taylor (1891)
write, "self-enhancing attributions for success are more common than self-protective attributions for failure.”

*More precisely, this wilt happen for insiders with learning biases that are not too large, where “not too large” is
precisely defined in section 4.

®Early proponents of this view include Alchian (1950}, and Friedman (1953). More recently, Blume and
Easley (1982, 1992) have reinforced these ideas analytically.



Rational traders are unwilling to take long-term arbitrage positions to elimminate these higher profits
because of the risk that they may die before the arbitrage pays off.

In our model, the most overconfident and non-rational traders are not the poorest traders. In
fact, for any given level of learning bias and trading experience, it is successful traders, though
not necessarily the most successful traders, who are the most overconfident. This is because our
traders can only become overconfident when they are successful, and so overconfident traders tend
to be wealthy. In sum, overconfidence does not make traders wealthy, but the process of becoming
wealthy can make traders overconfident.

An interesting feature of our model is that success affects traders’ conditional future expected
profits in two ways. First, success is indicative of higher ability and, therefore, greater expected
future profits. Second, success can increase overconfidence and thereby lower expected future
profits. It is tempting to conclude that more successful traders generally have greater expected
future profits due to their greater ability. However, the detrimental effect of the more successful
traders’ greater overconfidence on their future expected profits may more than offsets their greater
probable ability.

Most models of financial market microstructure assume that all trader characteristics are com-
mon knowledge; in particular, traders’ risk aversion, their wealth, and the distribution of their infor-
mation are known by all market participants. Exceptions include Blume, Easley and O’Hara (1994},
Gervais (1996), and Subramanyam (1996). In these papers, the precision of the traders’ information
is random. Each traders’ precision is known to himself but is uncertain to other market participants
who must infer it from his actions. OQur model builds on these works by extending this uncertainty
to the trader himself. He initially does not know the precision of his own information, and must
infer it by observing his signals and subsequent outcomes.

A large literature demonstrates that people are usually overconfident and that, in particu-
lar, they are overconfident about the precision of their knowledge.! Benos (1996), Kyle and
Wang (1996), Odean (1996), and Wang (1997) examine models with statically overconfident traders.
In these models greater overconfidence leads to greater expected trading volume and greater price
volatility.® In our model, a greater learning bias causes greater expected overconfidence, which
leads to greater expected trading volume and greater price volatility.

Daniel, Hirshleifer and Subrahmanyam (1997) look at trader overconfidence in a dynamic model.

Our paper differs from theirs in that we concentrate our agents’ updating on the informed trader's

1See for example Alpert and Raiffa (1982), and Lichtenstien, Fischhoff and Phillips {1982). Odean (1996) provides
an overview of this literature.
®In one exception, Odean shows that an overconfident, risk-averse market-maker may reduce market volatility.



ability, and not on the joint distribution of trader ability and the risky security’s final payoff.6
Our approach has the advantage of being analytically tractable, and thus does not require the
use of numerical results. The scope of our analysis also differs from that of Daniel, Hirshleifer and
Subrahmanyam: we are interested in the effects of the dynamic learning process on trading volume,
price volatility and trading profits, whereas their main objective is to show that overconfidence,
whether dynamic or not, implies different price correlation patterns in the short run and the long
run.

Overconfidence is determined, in our model, endogenously and changes dynamically over a
trader’s life. This enables us to make predictions about which traders will be most overconfident
(young, successful traders) and how overconfidence will change during a trader’s life (it will, on
average, rise and then fall}). Our model also has implications for changing market conditions.
For example, most equity market participants have long positions and benefit from upward price
movements. We would therefore expect aggregate oveconfidence to be higher after market gains
and lower after market losses. Since, as we show, greater overconfidence leads to greater trading
volume, this suggests that trading volume will be greater after market gains and lower after market
losses. Indeed, Statman and Thorley {1997) find that this is the case. We would expect aggregate
overconfidence to be particularly high in a market with many young traders who have experienced
only a long bull run. Thus, our model predicts that trading volume and volatility should be higher
in the late stages of a bull market than in the late stages of a bear market.

The rest of this paper is organized as follows. In section 2, we introduce a one-security multi-
period economy with one insider, one liquidity trader and one market maker. We show in section 3
that there is a unique linear equilibrium in our economy. This linear equilibrium is used in section 4
to analyze the effects of the insider’s learning bias on his overconfidence and profits, as well as on
the market’s trading volume and volatility. Section 5 concludes and discusses some potential topics

for future research on trader overconfidence. All the proofs are contained in the appendices,

2 The Economy

We study a multi-period economy in which only one risky asset is traded among three market
participants: an informed trader, a liquidity trader, and a market maker. At the end of period ¢,
the risky asset pays off a dividend o;, unknown to all the market participants at the beginning of
the period.”

At the beginning of each period ¢, the informed trader (also called insider) observes a signal 8,

®This is because the risky security’s dividend is announced af the end of every period in our model.
"Throughout the whole paper, we use a ‘hal’ over a variable to denote the fact that it is a random variable.



which is correlated with ¥;. In particular, the signal 6, is given by
B, = by + (1 — &¢)és, (1)

where £€; has the same distribution as ¥, but is independent from it. The variable St takes the
values 0 or 1. Since &; is independent from %, the insider’s information will only be useful when b¢
is equal to one. We assume that this will happen with probability 4, i.e.

. | 1, prob. @
o fa= { 0, prob. 1—a. (2)

This last equation shows that, the higher 4 is, the more likely that 5, will be equal to one. For
this reason, we call 4 the insider’s ability.® We assume that nobody (including the insider himself}
knows precisely the insider’s ability @ at the outset (i.e. at time zero). Instead, we assume that, a
priori, the insider’s ability is drawn from the following distribution:

o {Eme g
where 0 < L <« H < 1, and 0 < ¢g < 1. Of course, since the security dividend ¢, is announced at
the end of every period ¢, the insider will know at the end of every period whether his information
for that period was real {53 = 1) or was just pure noise (5t = 0). For tractability reasons, we also
assume that the market maker observes ; at the end of period t, so that his information at the end
of every period is the same as the insider’s.!® This information will be useful to both the insider
and the market maker in assessing the insider’s ability é.

In making this last assumption, we are essentially saying that the insider’s informational ad-
vantage over the market maker is one of market timing. Indeed, the insider’s information set at the
beginning of every period is always exactly one period ahead of the market maker’s. Since our goal
is not to explain the differences between these two information sets, we reduce the information gap
between the insider and the market maker to only (and exactly) one period. Our analysis is then
simplified in that both the insider and the market maker perform the same one-period updating at
the end of every period, except that the insider’s updating will be biased. Preventing the market
maker from observing 6: at the end of period ¢ would simply result in a more complex (non Markov)
updating process for the market maker, but would not affect the insider’s updating process, which
is what we are utimately interested in. It would, however, increase his expected profits since the

market maker’s informational disadvantage would then be greater.

8Equivalently, we could call & the insider’s information precision.

9This will be the case since £, = ©; happens with zero probability.

12 A will become clear below, we could have equivalently assumed that every trader’s order and identity (insider
vs liquidity trader) are revealed at the end of every period.



As mentioned above, our model seeks to describe the behavior of an informed trader with a
learning bias. In particular we want to model the phenomenon that traders usually think “too
much of their ability” when they have been successful at predicting the market in the past. In
statistical terms, this will mean that traders update their ability beliefs too much when they are
right. Before we formally include this behavior into our model, let us describe how a “rational”
insider would react to the information he gathers from past trading rounds.

Let 3¢ denote the number of times that the insider’s information was real in the first ¢ periods,

that is

t
s=> b (4)
u=1

It can be shown, using Bayes’ rule, that, at the end of ¢ periods, a rational insider’s updated beliefs
about his own ability will be given by

(1 — H)' ¢y
Ho (1 — H)o"3¢yg + L3 (1 — L)3(1 — ¢g)

¢t(s)EPr{&=H|§t =S} = (5)

We define his updated expected ability by

w(s) = Ela| s =]
— Hu(s) + LI — du(s)]. (6)

In fact, since we do not assume any kind of irrational behavior on the part of the market maker,
this will be the market maker’s updated belief at the end of period ¢ also.

Now, let us assume that the insider adjusts his beliefs too much every time he correctly predicts
the security’s dividend (i.e. every time that & = 1). For example, at the end of the first peried, if
the insider finds that #; = 4; (i.e. &, = 1), the insider will adjust his beliefs to

_ vHq
~ yHéo + L(1 — ¢y)’ ' ()

¢1(1) =Pry{a = H | 51 = 1}

where v > 1 is the insider’s learning bias parameter (v = 1 representing a rational insider), and
the subscript to ‘Pr’ denotes the fact that the probability is calculated by a biased insider. As can
be seen from (7), ¢1(1) will be higher the larger 4 is, and ¢;(1) — 1 as v — oo; in other words,
the learning bias dictates by how much the insider adjusts his beliefs towards being a high ability
insider. It is easily shown that, in this case,

(H) (1= H)~gy .
T (L= ) 2o + L= L) (1~ go)’

&t(s) =Prni{a=H|§=s}= (

(]



and the {biased) insider’s updated expected ability is given by

fit(s) = Epla |8, = ]
= Hei(s) + L1 = gu(s)]. (9)

At the beginning of every period ¢, the insider observes his signal f,; he then chooses his demand
for the risky security in order to maximize his expected period ¢ profits,!' #;, conditional on both
his signal and his ability beliefs ji;_1{5¢—1) (which only depend on §;_;). We denote this demand
by

.’i’t - X{,(ét,gi_]). (10)

The other trader in the economy is a trader who trades for liquidity purposes in every period.
This liquidity frader’s demand in period ¢ is given exogenously by the random variable ;. Both
orders, £; and %, are sent to a market maker who fills the orders. As in Kyle (1985), we assume
that the market maker is risk-neutral and competitive, and will therefore set prices so as to make

zero expected profits. So, if we denote the total order flow coming to the market maker in period ¢
by

Wy = Ty + 2, (11}
the market maker will set the security’s price equal to
Pe = Po(, §i-1) = B[O | wy, $e1] (12)

in period t. An equilibrium to our model is defined as a sequence of pairs of functions (X, F;),
t=1,2,..., such that the insider’'s demand in period t, Xt(ét, §;.1) maximizes his expected profits
(according to his own beliefs} for that period given that he faces a price curve Py, while the market

maker is expecting zero profit in that period.

3 A Linear Equilibrium

In this section, we show that, when 4, £, and %, are jointly and independently normal, there is
a linear equilibrium to our economy. We use that linear equilibrium in Section 4 to illustrate the

properties of the model. More precisely, for this and the next section, we assume that

i 0 S0 0
& | ~N ol,l0 = o], t=12..., (13)
2 0 00 0

" As we mentioned above, both the risky dividend and the insider’s signal are announced at the end of every period,
so that the market maker is always only one period behind the insider in terms of information, This implies that the
insider never finds it optimal to suboptimally choose his one period demand ir order to maximize longer-term profits.



and that each such vector is independent of each other. Note that it is crucial that Var(9,) = Var(,),
since we do not want the size of §, to reveal anything about the likelihood that &, = 1 until ¥ is
announced.
Let us conjecture that, in equilibrium, the function X;(#, s) is linear in #, and that the function
Py(w, ) is linear in w:
Xt(f)ys) = Bt(.s) 8, (14&)
Pt(w, S) = At(é) w, (14b)
Our objective is to find G:(s) and A:(s) which are consistent with this conjecture. This means that

the insider’s expected period t profits, when sending a market order of z; to the market maker, are
given by
Eb[th | étaétfl] = Eb{ [”Ut - Pt "-Ut 51 1 l 9t,5t 1}
= Eb{r{[Ut—Af (Se—1)x] | B¢, 5 1}
= E {xt[vt M8 1)y + 2] | Oy, &1 1}
= It {Eh Uy | Btul‘;i"l) - )\t(gtfl)-rt] ! (15)

where the last equality follows from the fact that Z; is independent from both 6, and &_. Differ-

entiating this last expression with respect to x; and setting the result equal to zero yields

& = argmax Ep[f | d;, S5¢-1]
1y

Eb<’ﬁt | éta '§t~1)

2A¢(5¢21) (16)

Also, a simple use of iterated expectations and the projection theorem for normal variables!? shows

that
Ey(61 10, 81) = Eb Eb(ﬁt\ét,ét_l,&)|ét,st_1]

[
= By [B+ (1= 8) 0] 0y, 304]
[

= jir1(8-1)6, (17)

12The projection theoremn for normal variables is as follows: suppose that

Sl (i e =)

Then E[2[§] = ptz + FL2 (5 — p1y)-



where the next to last equality results from the fact that f; does not contain any information

about &, (or, equivalently, about a)."* So, using (16) and (17}, we can indeed write &; = 5;(3,_1)8;
with

Bi(s) = %—Tl((si)) (18)

Next, we solve for the market maker’s price schedule. As discussed in section 2, the market

maker’s price is a function of the information he gathers from the order flow that is sent to him.

More precisely,

P = E[b| &, 5]
- E [E(@,, | @n, 81, 00) | @, §H}
- E{StE [rat & = BulEo )b + ét,ét_l] +(1-8)0] L:;t,gt} . (19)

Use of the projection theorem for normal variables shows that

B8 ) 0

B 1)+

E [@t ‘ Gy = Buls1)00+ 5, 8

so that we can rewrite (19) as

. s BB L L
Pt o= E[fst@?(;—t"(j)lzlmwa wt,St—l]
_ 2. Ge(G-)E |
= E[4| 55—1}——63(%_1)2 O

_ Al Bi(de—1) X
= E[a| 35_1]—63(&71)2_%9%

_ P/tfl(ét—l)ﬁt(-ﬂml)zn
B B3 _1)T+Q we (20}

From this last expression, it is clear that, as conjectured, we have p, = Py(dy, §i-1) = A(8-1)ds,

where

_ te—1(s)Bi(s)X
Ae(s) = B0 (21)

Solving for 3;(s} and A¢{s) in (18) and (21) should yield the conjectured linear equilibrium. However,
as we show next, this linear equilibrium will only exist when g, (s} < 2u_1(s).
To see this, recall from (15)-(17) that the insider chooses x; so as to maximize his expected

profits in period t, which can be written as

By 7 | b:, §i-1] = x4 ,‘_ﬁt—l(étfl)ét — Al(Se1)ze| (22)

'3 Again, this is the case since both 7 and & have the same distribution.



We let #; denote the insider’s optimal demand, keeping in mind that a rational insider would have

chosen a different demand.’® From (22), we have

o Be=1{8-1)0
M RG) )
In this last expression, A;(§;—1) is the slope of the market maker’s linear price schedule. We expect
that slope to be positive in equilibrium.

Now, the insider’s real (unbiased) profits, as they would be calculated by the market maker (if

he knew ét), are then given by
Elm 105 8c1] = ¢ |1 (30-1)0 — )\t(étfl)i't] - (24)

As long as this number is positive, the market maker loses money to the insider on average. To
offset these expected losses, the market maker will indeed quote an upward sloping price schedule
{Ae{8:-1) > 0) that enables him to make some profits off the liquidity trader. Since the market
maker is competitive, these expected profits will exactly match his expected losses in equilibrium.

However, when (24} is negative, the competitive market maker cannot keep quoting an upward
sloping price schedule, since he would then be making profits off both the insider and the liquidity
trader. Also, quoting a decreasing price schedule (A;(§;-)) < 0} does not solve the problem since,
for any A.(8;—1) < 0, the insider then wants to trade an infinite number of shares, which would
push the market maker to decrease the slope of his price schedule even more. So, in this situation,
no equilibrium exists.

When will such a situation arise? The answer is when (24) is negative which, after replacing x;
by (23}, reduces to f;1{s) > 2u;—1(s). A necessary and sufficient condition for this situation to
be prevented for all integers s, ¢ satisfying 0 < s < t is that H < 2L. This is why we will assume
that this condition holds in the rest of the paper. So, in essence, this condition, insures that the
insider will make positive profits even though these profits may not be optimized. We now have

the following result.

Lemma 3.1 As long as H < 2L, there is o unique linear cquilibrium to the economy described
in Section 2. In this equilibrium, the insider’s demand and the market muker’s price schedule are
given by (14a) and (14b) with

Gi{s) = \/Q Fie-1(5) and (2ba}

T 2p1(s) — fi—1(s)’

Ms) = é\/ = Fuma(5) 2001 (5) = Fma (5] (25b)

14We will discuss the suboptimality of &, in section 4.6.




Proof - See Appendix A.

In what follows, we use this equilibrium to study the effect of the insider’s learning bias on the

economy.

4 Properties of the Model

In this section, we analyze the effects of the insider’s learning bias on the properties of the economy
in equilibrium. In particular, we are interested in how the size of the learning bias, v, will affect
volume, price volatility, and insider profits. Before we do this, however, let us first look at the

behavioral patterns of the insider in equilibrium.

4.1 Convergence

If this financial market game is played to infinity, we would expect both the insider and the market
maker to eventually learn the exact ability @ of the insider. This in fact would be true for a rational
insider (v = 1). However, since our insider learns his ability with a personal bias, this result is not
immediate; in fact, as we shall see, this result is not true for a highly biased insider.

When a = H, we expect the insider to correctly guess the one-period dividend a fraction H of

the time. So, as we play the game more and more often (as ¢ tends to o0), we expect his updated

posteriors
i) = . B
(vH)*(1 - Hl)t“"% + L1 = L) (1 = o)
v () ()
to behave like
1 1

Ht t—Ht t :
L 1—L 1— H 1-H
() () e () ()]

This last quantity will converge to 1 as desired! if

LA\" r1- )
{(W_H) (ﬁ) } —>0 'cISt—>OO,
LNH 71 pa-H
(7) (iom) <

1When & = H, we want the conditional probability that the insider has high ability to converge to 1.

or equivalently if

10



The following lemma shows that this is indeed the case.

Lemma 4.1 When 4 = H, the updated posteriors of the insider q;t(s}) will converge to 1 almost

surely as t — oo.

Proof : See Appendix B.

So both the insider and the market maker will eventually learn the insider’s ability precisely
when it is high {when & = H). Let us now turn to the casc where @ = L. In this case, we expect
the insider to correctly guess the one-period dividend a fraction L of the time. So, as we play the

game more and more often (as ¢ tends to co), we expect his updated posteriors ¢;(s) to behave like

1 1

It i—L1 = 1 .
L 1-L L Ly, o \1-L]t
S = e (PR T L g

As the following lemma shows, this quantity only converges to zero when « is close enough to 1.

This means that the market maker will always learn the insider’s ability when it is low (when

§ = L},'% but the insider will only do so if his learning bias is not too large.

Lemma 4.2 When 6 = L, the updated posteriors of the insider ¢,(3¢) will converge as follows:

0, ifv<~y*
— .\ Q.S ?.jﬂ/ 7*
Gu(8) —= S do, fv=7

L ify>97,

where v* = 5 [ =g

I (l—L)(l_L)/L
& .

Proof : See Appendix B.

A disturbing implication of this lemma is that, if his learning bias is large enough, an insider
who has been successful about L x 1,000,000 times in the first 1,000,000 periods could still believe
that he is a high ability insider. In other words, when an insider is highly biased, a few successful
periods are enough to sustain his beliefs that he is a high ability insider.

To illustrate this, we show in Figure 1 how we expecet an insider to adjust his beliefs about his
own ability (¢;) when his actual ability is high {Panel 1{a)) and when it is low (Panel 1{b})). As seen
in that figure, the biased insider’s beliefs are always on average larger than an unbiased insider’s
beliefs. Since unbiased insiders always eventually learn their ability, it is therefore not surprising to
find that high ability insiders also always learn their own ability:!” they naturally tend to update
towards that high ability. However, as shown in Panel 1(b), a biased insider may not always give

in to his observations: more precisely, if v > ~*, he will never find out if he is a low ability insider.

"This is due to the fact that we assumed that the market maker’s learning is unbiased.
YIn fact, they will do sc faster the more hiased they are.

11
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Figure 1: Convergence patterns of the insider’s beliefs about his own ability when (a) @ = H: (b)
& = L. Both figures were obtained with H = 0.9, L = 0.5, ¢y = 0.5, and & = @ = 1. Each line
was obtained with a different +, shown in the legends. Note that, with these parameter values,
v =25/9 = 2.78.

4.2 Patterns of Overconfidence

As we show in section 4.1, the insider will eventually learn his own ability, provided his learning is
not too biased (i.e. provided that - is not too large}. This means that, when the insider’s ability
is low, the insider eventually comes to his senses, and recognizes the fact that he is a low ability

insider. In this section, we are interested in the overconfidence level of the insider throughout his

12



life. Indeed, even though the insider may eventually learn his own ability, his irrational behavior
will make his learning pattern different from that of a rational insider.

An insider is very overconfident in a particular period if his updated expected ability at that
time (fix(3¢)) is large compared to the updated expected ability that a rational insider would have
with the same past history of sucesses and failures (4,(3;)). 1o measure the insider’s overconfidence

in period ¢, we therefore define the random variable

fy = Ky(3) = ’at("?‘). (26)

Of course, when the insider is rational {y = 1), the numerator is exactly equal to the denominator
of this expression, and #; = 1 for all t = 1,2,.... On the other hand, when the insider’s learning
is biased {y > 1), we have [;(5;) > 1(8:), and &; > 1 for all £. As the next proposition shows, the
insider’s overconfidence in period #, &, is greater when the insider’s learning bias is large. In other

words, the insider’s overconfidence is directly attributable to his learning bias.
Proposition 4.1 The function K(s) defined in (26) is increasing in -y,
Proof : See Appendix B.

Our measure of overconfidence at any point in time is therefore increasing in the insider’s
learning bias, but is it also increasing in the number of his past successful predictions? Since
the insider’s overconfidence results from his learning bias when he is successful, it is tempting to
conclude that the more successful an insider is, the more overconfident he will be. As we next show,
this intuition is wrong.

First, since the insider updates his beliefs incorrectly only after successful predictions, it is always
true that f:(0) = ue(0}), and therefore K¢(0) = 1. However, as soon as the insider successfully
predicts one risky dividend, his learning bias makes him overconfident,'® and fs(1) > (1), so
that K¢(1) > 1. So, it is always true that the insider’s first successful prediction makes him
overconfident.1® However, it is not always the case that an additional successful prediction always
makes the insider more overconfident.

To see this, suppose that we are at the end of the second period. The insider will then have

been successful 0, 1 or 2 times. We already know that K»{1) > K3(0) = 1 for any value of the

¥In our model traders are not overconfident when they begin to trade. It is through making forecasts and trading
that they become overconfident. This leads market participants to be, on average, overconfident. In real markets
selection bias may cause even beginning traders to be overconfident. Indeed, since not everyone trades, it is likely
that people who rate their own trading abilities most highly will seek jobs as traders or will trade actively on their
own account. Those with actual high ability and those with high overconfidence will rate their own ability highest.
Thus, even at the entry level, we would expect to find overconfident traders.

'%And, as section 4.1 shows, he will remain so for the rest of his life.

13



insider’s learning bias parameter 7. Now, suppose that 7 is large. This means that if the insider
is successful in the first period, he will immediately (and perhaps falsely) jump to the conclusion
that he is a high ability insider, i.e. i1(1) is close to H. Since this one successful period has already
convinced the ingider that his ability is high, the second period results will not have much of an
effect on his beliefs, whether he is successful or not in that period, i.e. f12(2) is close to f2(1). On
the other hand, if the insider had been rational (v = 1), he would have adjusted gradually his
expected ability beliefs towards H (L) after a successful {an unsuccessful) period, so that p5(2) will

be somewhat larger than up(1}. Therefore, since 72(2) = i2(1) and pa(2) > pz(1), we have

Ky2) = 22 ()

p2(2)  pa(l)

and we see that K,(s) decreases when s goes from 1 to 2.

= I{Q(l),

In short, the biased insider adjusts his beliefs non-rationally with every successful prediction,
making him overconfident. However, when the insider’s past performance is sufficiently good {large
number of successful predictions), it is the case that even an unbiased insider would reach the
conclusion that he is a high ability insider. In other words, the significance of the insider’s past
performance overweighs the significance of his overconfidence. The following proposition describes

this phenomenon in more details.

Proposition 4.2 The function K {s) defined in (26) is either

e increasing over all s € {0,... ,t}, or

e increasing over s € {0,...,s7} and decreasing over s € {sf,... ,t}, for some s7 € {1,...,t}.
The lotter case will occur when vy, t/s, and/or t are large.

Proof : See Appendix B.

Intuitively, this result says that a trader who has been very successful in only a few rounds of
trading or one who has been moderately successful in several rounds of trading will have a greatly
inflated opinion of his ability. But a trader who has been very successful over many rounds of
trading probably does have high ability. And while he may overestimate his expected ability he
does not do so by as much as do moderately successful traders.

In this model, traders are rational in all respects except that they have a common learning
bias: they tend to attribute their successes disproportionately to their own ability. This leads
successful traders to become overconfident. Other learning biases can also lead to overconfidence.

For example, it is well known that, when updating beliefs from sequential information, people tend
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to weigh recent information too heavily and older information too little (Anderson, 1959, 1981;
Einhorn and Hogarth, 1992).2° We do not introduce this recency effect into our model because
doing so would negate the Markov property of the insider’s {and the market maker’s) updating
process. It is clear though that, if traders weigh recent outcomes more heavily than older ones,
recently successful traders will tend to become overconfident.

The last two propositions describe how the insider’s overconfidence in a particular period de-
pends on his learning bias and on his previous performance. Let us now turn to how his overcon-
fidence is expected to behave over time. To do this, we calculate the ex ante expected period ¢

overconfidence level of the insider, which we denote by

T:=E[&R]. (27)

It is easy to show that?!

S

1(s)
o(s)

[4
Y=Y (t) [H5(1 = H)""gg + L*(1 = L)7(1 — ¢o)] (28)

8
8=0

S

where ¢4(s) and ¢¢(s) are as in {5) and {8). In Figure 2, we show the patterns in the level of
overconfidence for different values of v. When ~y is relatively small (v < ~*), the insider will on
average be overconfident at first but, over time, will converge to a rational behavior.

This can be explained as follows. Over a small number of trading periods a trader’s success
rate may greatly exceed that predicted by his ability. Very successful traders will overestimate the
likelihood that success is due to ability rather than luck. But over many trading periods a trader’s
success rate is likely to be close to that predicted by his ability. Ounly those traders with extreme
learning bias (or with very unlikely success patterns) will fail to recognize their true ability. Indeed,
as <y increases, the insider tends to put more and more weight on his past successes, and so takes a
little more time to rationally find his ability. However, if v is too large {more precisely, if v > v*),
it is possible that the insider puts so much weight on his past successes in the stock market that
he never becomes rational.

Thus our model predicts that more younger traders will be more overconfident than older
traders. This is not due to any attribute of youth other than lack of experience. Young traders
are more likely to have success records which are unrepresentative of their abilities. For some this

will lead to overconfidence. By the law of large numbers older traders are likely to have success

2°In experimental studies, subjects sometimes also exhibit a ‘primacy effect,” weighting the earliest observations
of a time series heavily (Anderson, 1981). This happens most often in situations where subjects lose interest in the
data (Einhorn and Hogarth, 1992). It is unlikely that traders would lose interest in their own successes and failures,
and so we would not expect to find a large primacy effect in their updating.

21%e¢e Appendix B.
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Figure 2: Ex ante expected patterns in the level of overconfidence of the insider over time. The
figure was obtained with # = 0.9, L = 0.5, ¢ = 0.5, £ = © = 1. Each line was obtained with a
different value of v shown on the figure. Note that, with these parameter values, v* = 25/9 = 2.78.

records which are more representative of their abilities; they will, on average, have more realistic
self assessments. In a sufficiently large group of traders, however, there will be some successful,
older, low-ability traders with whom the odds have not yet caught up. These traders are likely to

make large mistakes in the future.

4.3 The Updating Process

Before we proceed to analyze trading volume, volatility, and insider profits, let us look at the
market maker’s updating process about the insider’s ability. In particular, we would like to carefully
deseribe the sense in which the insider’s number of successful predictions at any point in time is a
good indicator of both his past and future performance.

From the point of view of the market maker, a successful insider at a particular point in time
is an insider who has often predicted the market correctly in the past.?? So suppose that the
market maker has observed that the insider has been successful s times in the first ¢ periods, that
is suppose that §; = s. The next proposition describes the distribution of past and present insider
successes conditional on this information. Before we state the proposition, recall that for any two

real random variables & and § with discrete density functions f and g respectively, Z is said to be

*2This is due to the fact that the market maker observes 8, at the end of every period t. Without that assumption,
the market maker would learn about the insider by observing the correlation between order flow and dividends, a
large correlation indicating a high ability insider.

16



larger than § in the likelihood ratio order (which we denote by & =y ¢) if )%%)j is decreasging in x

over the union their support.%®

Proposition 4.3 Let 3,[t, s] denote a random variable whose distribution is that of §, conditional

on 8§ = s. For any u # ¢,
§u[t:t] "l éu[tvt - 1] =Ir §U[t! t— 2] St Dy §U[t70]-
Proof : See Appendix B.

This result will prove useful in the rest of section 4 in showing how the past successes of the
insider at one point in time indicate (predict} past (future} variables in the economy. One such

variable is trading volume, and it is the object of the next section.

4.4 'Trading Volume

As shown in section 4.2, the insider, because of his learning bias, will always be overconfident about
his own ability over his lifetime.?* In other words, the insider always thinks that his signal 6, in
period t is more informative than it really is. Since this is the case, the insider will always use his
information more aggressively than he should, that is he will trade more than a rational insider
would. This, of course, leads to higher expected trading volume in the risky security.

Let ¢ denote the trading volume in period t. Since this trading volume comes from both the

insider and the liquidity trader, it is given by
- .. )
e =5 (%] +2]). (29)

The following lemma shows how the expected one-period trading volume is calculated, conditional

on the insider having been successful s times in the first t periods.
Lemma 4.3 The conditional expected volume in any given period w given that §; = 5 is equal fo
_— 1 Y .
E[fd;ﬂ | St:s] = \/T_ﬂ{\/EE[ﬁ“(sufl) | & = 5] .;_\/ﬁ}_ (30)

Proof : See Appendix B.

*33ee for example Shaked and Shanthikumar (1994), page 27. Notc that, in this definition, a/0 is taken to be equal
to oo whenever a > 0. Finally, note that the likelihood ratio order is stronger than the more common first-order
stochastic dominance order, i.e. if £ =, §, then & =g 4.

*More precisely, the insider will be at least as confident as a rational trader. He becomes overconfident as soon as
he correctly predicts a one-period dividend.
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First, recall from equation (14a) in section 3 that the insider will multiply his period t signal,
0, by $4(s) to obtain his demand for the risky asset in that period. In other words, B¢{s) represents
the insider’s trading intensity in period ¢ after having been successful s times in the first £ — 1
periods. The above lemma then shows that greater average insider intensity in a particular period
leads to larger expected volume in that period. Also, note that this lemma applies to future periods
(u > t) as well as past periods (v < t). Finally, when t = s = 0, the expected volume given in (30)
represents the ex ante expected volume in period u. Our first result shows how expected volume

varies with the learning bias parameter ~.

Proposition 4.4 Given that §, = s, the expected volume in period u is merensing in the insider’s

learning bias parameter ~.
Proof : See Appendix B.

This result applies to both past (v < t) and future (u > t) volume. Although the likelihood of
the event that §; = s does not depend on the insider’s learning bias parameter 7, it is still true that
§ = s will on average be obtained with more volume when ~ is large. It is also true that & =s
announces more future volume.

Another way to interpret Proposition 4.4 is as follows. First, as we mention in the paragraph
following Lemma 4.3, expected volume in a particular period will be larger the larger the expected

insider trading intensity is for that period. Now, notice that we can rewrite f;(s) given in (25a) as

Als) = \/-g -1 (31)

where Ky_i(s) is as defined in equation (26). This tells us that the trading intensity Be(s) of

the insider in period ¢ given that he has been successful s times in the first # — 1 periods is a
monotonically increasing function of the insider’s overconfidence K;_1(s) after ¢ — 1 periods. Since
we showed in Proposition 4.1 that the insider’s overconfidence in any period, given any number of
past successes, is increasing in +, it is not surprising to find that expected volume in a particular
period will also be increasing in .

This monotonic relationship between 3,(s) and K;_;(s) also helps us characterize the conditional
expected volume in a particular period u, given different past histories at the end of ¢ periods.
Indeed, given this relationship, it is not surprising to find that the expected one-period volume
given s insider successes in the first ¢ periods will have the same shape as Ky(s) as a function of s,

which we described in Proposition 4.2.
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Proposition 4.5 The expected volume in period u, conditional on the insider having been successful

$ tumes in the first ¢ periods (given & = s), is either
* increasing over all s € {0,... ,t}, or
e increasing over s € {0,. .., s7} and decreasing over s € {s,. .. ,t}, for some sg € {1,... ,t}.

The latter case will occur when vy, t/s, and/or t are large.
Proof : See Appendix B.

This result also makes intuitive sense. The insider will tend to trade aggressively in a given
period u when he thinks highly of himself, i.e. when f—1{8y—1) is large. When the market maker
does not agree with the insider about the insider’s ability {i.e. when py,—1(8,-1) is much smaller
than 72, 1(84-1)), he will not let this insider’s unwarranted intensity affect his price schedule, and
so expected volume for that period will be high. However, when the market maker also thinks
highly of the insider (i.e. when tu—1(3,4-1) is also high), he suspects the insider to often have
useful information about the one-period risky dividend, and will therefore react more abruptly
to a particular order flow; in other words, the market maker will quote a steeper price schedule,
Le. Ay(8,-1) will be large. This steeper price schedule will in turn dampen the insider’s trading

intensity and, at the same time, reduce expected volume for the period.

4.5 Volatility

In this section, we show that price volatility in any period is larger in the bresence of a highly
biased insider. Also, at any point in time, expected future price volatility will be larger the more
successful the insider has been in predicting the market in previous periods.

In this economy, the security price in one period reflects only the dividend paid at the end of
that one period. Since the dividend’s unconditional mean is zero, the price’s unconditional mean

is also zero, and the expected volatility in period u given that 3, = s can be measured by
Var(pu [ e =s) =E(p2| 3 = s) . (32)

As we show in Appendix B, this is equal to

z

E (ﬁi i S¢ = S) = EE[.l-"'u—l(éufl) Fbu—l(éu—l) ‘ §p = -5'] . (33)

The following proposition shows how this quantity moves with the insider’s learning bias para-

mater -y,
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Proposition 4.6 Given that 3; = s, the expected volutility in period u is mnereasing in the insider’s

learning bias parameter .
Proof : See Appendix B.

This result implies that a learning bias on the part on the insider will cause prices to have
excess volatility. As we show next, this excess volatility will be more extreme the more successful

the insider is.

Proposition 4.7 At the end of period t, the conditional expected volatility in period u is increasing

in the number of past successful predictions by the insider in the first t periods.
Proof : See Appendix B.

Interestingly, expected volatility does not exhibit the same patterns as overconfidence and vol-
ume in terms how it is affected by the insider’s past successes. Indeed, although both expected
overconfidence and trading volume can both be non-monotonic in the number of past insider suc-
cesses, expected volatility is always increased by one more insider success. More precisely, large
posteriors by the biased insider (fiz(s)) and the rational market maker (u,(s))} both contribute
to more expected volatility: the former by his unwarranted aggressiveness, and the latter by his

steeper price schedule.

4.6 Insider Profits

Let us now look at the effect of the learning bias on the insider’s profits. Section 4.4 showed that
the biased insider trades too aggressively on his information; in other words, the insider’s learning
bias makes him act suboptimally. It is therefore not surprising that we find in this section that
the insider’s expected profits in any given period are decreasing in his learning bias parameter -.
To show this, we calculate the insider’s expected profits in period u after he has been successful s

times in the first ¢ periods to be?®

A s l = - - p — . .
E [Wu J 8¢ = 5] = 5 YQE [\/ﬂu—l(sufl} [Qﬁbu—l(sufl) - Hu—l(f"ufln | 8t = 3] . (34)
The following proposition shows that this quantity is indeed decreasing in .

Proposition 4.8 Given that § = s, the insider ezpected profits in period w are decreasing in the

wnsider’s learning bias parameter .

*3See Appendix B.
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Proof : See Appendix B.

The fact that the insider’s profits are affected negatively by his learning bias is not surprising.
However, as we shall see next, this learning bias can have a perverse effect on the insider’s future
expected profits as a function of his past successes. In particular, it is possible for a successful
insider’s expected future profits to be smaller than a less successful insider’s. The is due to the
fact that two forces affect an insider’s expected future profits: his overconfidence and his expected
ability.

To disentangle these two forces, let us describe the insider’s expected profits in period ¢ + 1
after he has been successful s times in the first ¢t periods. We know from section 4.2 that the
insider’s overconfidence at the end of ¢ periods is at a minimum of 1 at s = 0. We also know from
Proposition 4.2 that this measure of overconfidence increases with the number s of past insider
successful dividend predictions (up to sf). This means that the insider’s decision in period ¢ + 1
will be more and more distorted as s increases.?®

At the same time, as s is increased, it becomes more aud more likely that the insider’s ability is
high,?" even if it is not as likely as the insider thinks. Of course, an insider without a learning bias
would take advantage of this revelation; that is his expected profits for the next period would get
higher with his number of past successes. However, a biased insider, as discussed above, becomes
more overconfident, and may act so suboptimally after many successes that he more than offsets
the potential increase in expected profits coming from his likely higher ability. Obviously, as the
insider’s overconfidence comes back down (s > 35/}, both forces affect expected insider profits
positively and, from then on, any additional past success results in additional expected future
profits.

Figure 3 illustrates how the insider’s overconfidence and expected ability counterbalance each
other. In Panel 3(a) of that figure, we look at the insider’s expected profits in period 11, as a
function of the number of successes he has had in the first 10 periods; we do this for three different
values of v (1, 2, and 5), and otherwise use the same parameters as in Figures 1 and 2. It is clear
from that figure that an unbiased insider always benefits from an additional past success, since
his expected ability is higher. However, when the insider’s learning is biased, it is possible that
his overconfidence (which we plot in Panel 3(b)) prevents him from benefiting from the boost in
expected ability that results from an additional success. In fact, for this example, we can see that

an insider with v = 2 or v = 5 who has had six successes i the first 10 periods does worse than an

**This was seen to be true in equation (31), where we show that (s is monotonically increasing in K.(s).
*Result C.1 of Appendix C shows that more past successes increase the likelihood $¢(8) that the insider’s ability
is high.
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Figure 3: Insider expected profits and overconfidence in period 11 as functions of his success in

the first 10 periods. The figure was obtained with H — 0.9, L =05 ¢9=05 X =0=1. The
continuous line was obtained with y = 1 (unbiased insider), the small-dashed line with v = 2, and

the large-dashed line with ~ = 5.

insider who has yet to predict one dividend correctly!
The next proposition shows that the intuition derived for the expected insider profits in pe-

riod £ + 1 after observing that 3, = s generalizes to any period u.

s, the expected insider profits in period w are mereasing over

Proposition 4.9 Given that 5; =
8¢} for some (s,,s) €

s €40,...,s;} and s € {s/,... ,t}, but are decreasing over s € {s},...

{L,...,t}* such that s, < s/.

Proof - See Appendix B.

In our model traders trade on their own account. We do not model the agency issues associated

with money managers investing for others. Nevertheless, this last proposition along with Figure 3

may provide some guidance about the choice of mnanagers. We show that a trader with more past

successes may have lower expected future profits than a trader with fewer successes. This is because
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the more successful trader, though objectively more likely to possess high ability, will not make
maximum use of his ability due to his overconfidence. An investor choosing a money manager
cannot usually observe that manager’s level of overconfidence. If the investor has personal contact
with a manager he may try to assess that manager’s overconfidence through social cues, but when
such cues are not available, our model suggests that a manager’s success record will be indicative
of his overconfidence.

Using a manager's success record as a measure of his overconfidence creates a dilemma for the
investor since the investor uses the same success record to assess the manager’s ability. While a
trader would always prefer to have as good a success record as possible it is not clear that, when
choosing a money manager, an investor will always prefer the one with the best past record. A
very successful trader may be too overconfident and therefore trade too aggressively. The effects
of overconfidence on trading are likely to be exacerbated when risk aversion and agency issues
are introduced to the picture. An overconfident money manager may take risks with his chent’s
money which the client would not endorse. Investors can try to protect themselves from choosing
the most overconfident managers by avoiding managers who are successful but underexperienced.
They should also judge managers on their long term performance, rather than their most recent
successes,

Another interesting aspect of our model is that all insiders, even those with low ability, have
positive expected profits.?® These profits are derived from the liquidity trader’s willingness to trade
at any price and the market maker’s willingness to break even. Low abilitiy traders earn less than
those with high ability, but they earn enough that even after they realize they have low ability they
continue to trade, albeit not as aggressively as before. In real markets traders who have experienced
repeated failures are likely to lose their jobs, their moncy, or their confidence, and quit trading. The
traders who remain will be those with the greatest ability and the greatest overconfidence. This
survivorship bias, like the selection bias mentioned in footnote 18, will make the overconfidence level
ol those active in the marketplace higher than that of the general population. This contrasts the
results of the natural selection literature,?® which argue that overconfident and irrational traders
will be driven out of financial markets over time. This phenomenon does not happen here, since

trading profits is what makes insiders overconfident.

28This is because of our assumption that f < 2L, withont which an equilibrium may not exist. in some periods.
*See, for example, Blume and Easley (1982, 1992).
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5 Conclusion

We go through life learning about ourselves as well as the world around us. We assess our own
abilities not so much through introspection as by observing our successes and failures. Most of us
tend to take too much credit for our own successes. This leads to overconfidence. It is in this way
that overconfidence develops in our model. When a trader is successful, he attributes too much of
his success to his own ability and revises his beliefs about his ability upward too much. In our model
overconfidence is dynamic, changing with successes and failures. Average levels of overconfidence
are greatest in those who have been trading for a short time. With more experience, people develop
better sell assessments,

Since it is through success that traders become overconfident, successful traders, though not
necessarily the most successful traders, are most overconfident. These traders are also, as a result
of success, wealthy. Overconfidence does not make traders wealthy, but the process of becoming
wealthy can make them overconfident. Thus, as opposed to other models of trader irrationality,
this model suggests that overconfident traders can play an important long-term role in financial
markets. So the assumption that a trader’s overconfidence endogenously results from his learning
bias, although apparently equivalent to an assumption of static trader overconfidence, leads to very
different market dynamics. It is therefore our view that behavioral finance should not only be
concerned with the potential presence of overconfidence in financial markets, but also by the origin
of such overconfidence.

As shown in our model, an overconfident trader trades too aggressively, and this increases ex-
pected market volume. Volatility is increasing in a trader’s number of past successes (for a given
number of periods). Both volume and volatility increase with the degree of a trader’s learning
bias. Overconfident traders behave suboptimally, thereby lowering their expected profits. A more
successful trader is likely to have more information gathering ability but he may not use his infor-
mation well. Thus the expected future profits of a more successful trader may actually be lower
than those of a less successful trader. Successful traders do tend to be good, but not as good as
they think they are. As we peint out, this may result in perverse effects for the selection of money
managers, whose ability and overconfidence can only be assessed by their past performance. How-
ever, to better assess the significance of these effects, one would need to take into account both the
agency problems between a money manager and his clients, as well as the potential risk aversion

of these agents.
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Appendix A
Proof of Lemma 3.1
By using (21) in (18) and rearranging, we obtain
2p1-1(8)SB(5) = fu—1(s)SH2(s) + -1 (5)Q,

which is quadratic in 3(s). As long as 2p10-1(8) 2 fs—1(5), we can solve for Bi(s) and obtain (25a),
as desired.®® Also, a necessary and sufficient condition for this inequality to be satisfied for any
integers s and t such that 0 < s < ¢ is that H < 2L, Finally, using (25a) for £(s) in (21)
vields (25b). N

#0The other root is rejected, since it represents a minitnnm, not a maximum,



Appendix B
Proof of Lemma 4.1
As discussed in tha paragraph preceding the lemma, all we need to show is that
LN 1\
— T < L
~vH 1-H
By taking log’s of both sides and rearranging, this can be shown to be equivalent to showing that
Fu(HY = (1= H)log(l - L) — (1 — H)log(1 — H) — Hlog~ — HlogH +HlogL <0 (B.1)

for all H € (L,1]. First, note that f, (L) = —Llogv < 0. So, if we can show that f,‘;’L(H) < 0 for
all H € (L, 1], we will have the desired result. Indeed,

f;,L(H) = —log(1—L)+log(l—H)logy—logH +log L
H(1-1L)
o~ s (77 —7) <0

Al-1) >1. 1

since v > 1 and O

Proof of Lermmma 4.2

As t — oo, since & = L, we expect the insider to correctly guess the one-period dividend a
fraction I of the times. So, as we play the game more and more often (t tends to o0), we expect

his updated posteriors ggt(s) to behave like
1 1

Lt t—Lt - t ‘
L 1-L 1—¢p Ly, NI-L _
1+ (W”) (1—H) Po I+ {(731) (—f—ﬁ‘) J 1¢fn

So qi_)t(s) will converge to 0, ¢g, or 1 according to whether the expression in square brackets is

greater than, equal to, or smaller than 1. By taking log’s, this is equivalent to finding whether
gvi(L) = (1~ L)log(1— L) — (1 - L)log(1 — H) — Llogy—LlogH + Llog L

is greater than, equal to, or smaller than 0. Let us first check that 1,u(L) > 0for all L € [0,H),
which we do by checking that g g(H) = 0, and 91.4(L) <0 for all L € [0, H). The first part is

easily verified, and

gLu(L) = —log(l—L)+log(l ~ H) —logH +log L
H(1—1L)
& (L(l - H)) <9,
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since H(1 — L) > L{1 — H)}. Now, observe that %Q%H(L) = —% < 0, so that g1 (L) > gy s1(L)
for all v € (1, 00) and lim,_, gy (L) = —o0. Since gy (L) > 0, this means that there will always
be a value v* such that

>0, ify<y*

g’y‘,H(L) = O: if Y= 7*
<0, if v > ~*

This value v* solves g+ (L) = 0, and it is easily shown to be given by

L [1-p5\0-B/L
7"?(???) |

This completes the proof. |

Proof of Proposition 4.1
Since the denominator of Ky(s) in (26) is not a function of Y, d‘g—;("’)

B%ES). We show in Result C.2 of Appendix C that if;tﬁi_s) >0. 1

will have the same sign as

Proof of Proposition 4.2

?

In our model, the number of successes in the first ¢ periods is obviously an integer in {0,1,...,¢}
but the function K, (s} is well defined for any s € [0,#]. We first show that this function is increasing
for 5 € {0, so] and decreasing for s € [y, t] for some sp € [0, ).

To show this, recall that

_k(s) L+ {H- L)y (s)
K,g{s) - 0 =
puls) ~ L+ (K = Lyguls)
If we define an “iso-confidence” curve by Ky(s) = K, for some constant K; > 1, each of these curves
can then be written as a straight line in a &t(s)—q}t(s) diagram. More precisely, each iso-confidence

curve can be expressed as

_ 1] (Ki—1)L
$i(s) = K P{s) Tf,_}

These lines are shown as thin solid line in Figure 4.

In that figure, 1 = K| <« Ky < - < Kg. From Result C.1 in Appendix C, we know that the
- parametric curve {¢:(s), ¢:(s)}i_, is increasing. As can be seen from Figure 4, if we can also show
that this curve’s concavity is increasing, we will have the desired result (that K(s) is increasing

and then decreasing as a function of 8).
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1T Ki(s)=K;=1
O.BL {ou(s), <25t(‘3)}15 -y o ] Ki(s)=K,
C. | * Ki(s)=Kj
. - K(s)=K,

. :[{T.(S):KS
. - Ky (s)=Kg

o 5;(5)
1

Figure 4: This figure shows ¢1(s) as a function of ¢y(s). For any s € [0, ], we have ¢,(s) > &e(s),
so that all the points {¢;(s), $+(s)}i_, must lie in the grey area. The thin solid lines represent the

“iso-confidence” curves Ki(s)=K;,i=1,. Bforl=K, < Ky< ... < Kg. The thick solid line
represents the parametric curve {¢(s), qﬁt( )}h_o, where ¢¢(s) and gbt( ) are given in (6) and {9)
respectively.

To show this, we use Result C.1 in Appendix C to obtain

O6u(s) _ 0gu(s)/0s eI = duls)|log (4=F)
O0uls)  08)/05 " Gu()1 — au(s)] log (Eizt)

and

5 (50 - (B.2)

8 (2157) gu(s)[1 = guls)] - ; -
log ((JL 1 i)) A {12 (7 =7) -t -z (Zra))

Using standard calculus results along with (B.2) and Result C.1 in Appendix C, we have

oty _ 4 ()
Opi(s)y?  Bgy(s)/0s
)L = go(s)] 11— 26:(s)]log (%%) = 1= 264(s)] log (ILE}—:Q)
{@()L = duls))} log (4 |
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This last expression will always have the same sign as

(L = 26,(5)] log (%13_“—;) ~ [1 = 26,(5)]log (1;111__—%) |

Finally, it can be shown that

_3{;‘; {[1 ~ 2¢4(s)] log (%%___E) —[1 - 2¢4(s)] log (%I{il:_;)} =

2 {qzt(sm — du(s)] log? (%f{—é) ()L — fu(s)) g (%11%)} >0,

This shows that Ky(s) is first increasing and then decreasing as a function of s. In fact, it is easy
to show that this last expression is greater the larger v, t, and s/t are.

To complete the proof, we must deal with the fact that, in our problem, we only care about
Ki(s) for s € {0,1,... ,t}. However, since the conditions we derive are sufficient to make the slope
of Ki(s) negative for s close to ¢, they will also be sufficient to make Ki(s) — Ki{s — 1) < 0 for large
enough integers s € {0,1,... ,¢}. 1

Derivation of Y, in Equation (28)

Equation (28) follows from the fact that

: [MJ = ZL:Pr{.ﬂ = ) 0
=0

$1(51) Pe(s)
= Y.[Pr{si=sla=H)Pr{a=H} +Pr{s < sla=7L}Pr{a=Hy o)
s=0 Pi(s)
— - ¢ 81 _ t—s t S t-8ry M
= ; [(S)H (1—H)" ¢y + (S>L (1-1)(1 q’—’?o)} ()’

Proof of Proposition 4.3

Since the likelihood ratio order is transitive, it is sufficient to show that Sult,s +1] =, 44[t, 5]
for any s < 1. It is straightforward to show that
o f,k
() ()
1 ’
(o)

The desired density ratio can thus be caleulated to be equal to

Pridu=vlé=s}=

Pri{s, =v|§ =s) =85+ 1-0)
Pr{d,=v|d=s+1} (s+Dt—~u—s5+0)
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which is easily shown to be decreasing in v. |
Proof of Lemma 4.3

First, a standard result for normal variables is that, if § ~ N(0, 52}, then

202
1/ —

We can therefore write

SAt_—TS} =

&3]

[N NN IE Y N ey

[T ]

§u—1¢§t =S8

B {E (Bulfur) 104
{

[ T T

E 615(-§u—1) E ':’éul . éu——l: ét =3

E[ u(s“uﬁl)\/?.gt = s} + %

and this last expression is equal to (30). 0

B — B = N = o

Proof of Proposition 4.4

Given the expression for the conditional expected volume in (30), it is sufficient to prove that

(')ﬂt(s)

— >0

Oy

Straighforward differentiation of the expression for f;(s) in equation (25a) of Lemma 3.1 results in

Buls) _ \/gml(s)—m_ms) mor(s)  Bjia(s)
Oy z Ai-1(s) 2pe-1(s) = ()] Oy

which in turn shows that it is sufficient to show that

Apiz-1(s)

> 0.
oy
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This is shown to be true in Result C.2 of Appendix C. 11
Proof of Proposition 4.5

As shown in Lemma 4.3, the expected volume in period u is proportional to the expected trading
intensity of the insider in that period. Since B:(s) is monotonically increasing in K,(s), the results

of Propositions 4.2 and 4.3 immediately imply this result. 1
Derivation of E(p2 | 3; = s) in Equation (33)
Using the law of iterated expectations, we can write

E(ﬁilét:‘g) =

E|A sulw‘st—s]
= E
E

Sy—1 (371.',""3'“) lsf'— 9]

[N
[
{)\ (Su_1) ﬁu (8u-1)0u "l'Zu}2 ‘§t=5}
(

Byt By = s} r 3 = s)

= BN (50 1) [B205u- B | B 8 = ) 2B (5o B Bua | S 1,50 = )

§t=S}

- E E{)@(su 1) ﬁu(u )éu—kéu]g

FE(2 | 801, 8 = 5)]

- E{,\g(éu_l) (B2(3, 1) + Q] ‘§