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The Analysis of VAR, Deltas and State Prices: A New Approach

Abstract

We provide a monotonic transformation of an initial diffusion with a level-dependent
diffusion parameter that yields a second, deterministic diffusion parameter process.
Altering the diffusion parameter while maintaining the original Brownian motion
at the expense of the drift can be viewed as a counterpart to Girsanov's Theorem.
The transformed process provides a tractable basis for the analysis of the initial
probability distribution, and hence provides insights into the value-at-risk (VAR),
hedging and valuation of alternate investment strategies. Restrictions on the initial
process imply theoretical bounds on VAR, position deltas and state prices, and an

empirical bound on option deltas.

1. Introduction

Three questions that present a continuing challenge to investors are closely related. In-
vestors want to know the distribution of possible future returns from a given investment strategy:
What is the value-at-risk (VAR) in the event of a price collapse with, say, a 1-in-20 chance of
occurrence. This question must often be addressed in the absence of sharp information about the
drift and diffusion parameters of the process describing changes in the value of the portfolio of
interest. The investor will typically have only coarse knowledge of the complex relation between
the portfolio’s volatility and its value. We will show how to use limited knowledge of the true

process to place bounds on the VAR.

The second question of interest to investors concerns the ‘correct’ price to pay fer an
asset today. Answering this question also involves determining the probability of the asset’s price
finishing above any given level. Valuing an asset is equivalent to valuing the portfolio of state-
contingent claims contained therein. It is well-known that the price of a state claim paying one
dollar if and only if the asset’s price finishes above a given level can be determined as the discounted
probability of that event occurring under the risk-neutral version of the price process. Although the
drift of the risk-neutral process is known from the risk-free rate, an investor’s limited knowledge
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of the functional form of the diffusion parameter of the true price process implies only limited
knowledge of that same parameter of the risk-neutral process. We will show how that limited

knowledge can be used to place bounds on values.

Finally, investor’s want to be able to hedge their portfolios. What is the share-equivalent
risk or position delta of a complex portfolio of equities and derivatives thereon? It is not generally
well-known that position deltas can be determined from knowledge of the probability of the under-
lying asset finishing above any given level under a particular stochastic process that we will term
the delta process. Limited knowledge of the functional form of the diffusion parameter of the true
price process will be seen to imply only limited knowiedge of both the drift and diffusion parame-

ters of the delta process. But that limited knowledge can still be used to provide a computational

check on hedge ratios.

This paper contains a new and general technique useful in determining the probabilities of
events in diffusion settings, and hence insights into VAR, valuation and hedging. Suppose an asset’s
price follows a one-dimensional diffusion with a diffusion parameter that depends on the level of
the process. We show that the probability that the asset’s price will finish above a given critical
level is equivalent to the probability that a second process with a deterministic diffusion parameter
and a known starting value will finish above a related critical level. (The drift of this second
process is a function of the drift and diffusion parameters of the original process.) We also show
that the probability of interest can instead be determined as the probability that, given its known
starting value, a third process whose diffusion parameter is directly proportional to its level will
finish above a different related critical level. (The drift of this third process is a function of the drift
and diffusion parameters of the original process.) The second and third processes are each derived
by applying a monotonic change of variables to the original process such that the new process has
the desired simple diffusion parameter. By changing the diffusion parameter at the expense of
the drift while maintaining the underlying Brownian motion, cach change of variables provides a
counterpart to Girsanov’s Theorem. Girsanov’s Theorem changes the drift at the expense of the
probability measure, while maintaining the diffusion parameter, The analysis of the probability
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that the original process will finish above some level can be made more tractable if one examines
instead the probability of the equivalent event under either the deterministic diffusion parameter
or the deterministic volatility parameter transformations of the original process. Our main result,
Theorem 2, uses the transformed process with a deterministic diffusion parameter to provide an

expression for the probability of the original process reaching a critical level.

The properties of both deltas and the prices of state claims are the subject of much current
research. On deltas, see Bergman (1983), Carr (1993), Bates (1995) and Bergman, Grundy and
Wiener (1996). For theoretical and empirical work on state prices see Breeden and Litzenberger
(1978), Bick and Reisman (1994), Derman and Kani (1994), Dupire (1994), Rubinstein {1994),
Ait-Sahalia and Lo (1995), Jackwerth and Rubinstein (1995), Rady (1995), and Dumas, Fleming
and Whaley (1996). By applying Theorem 2 to these closely related problems we are able to
determine general properties of state prices and deltas. These properties are dependent on some
knowledge of the functional form of the underlying asset’s diffusion parameter. For example, given
knowledge that the diffusion parameter is non-decreasing in the asset’s value, we can determine
bounds on deltas and state prices. These bounds only require knowledge of the asset’s volatility at
its current price level. Tighter bounds applicable when the volatility parameter is non-decreasing

are also derived.

Section 2 contains the paper’s theoretical contribution to the analysis of probabilities in
diffusion settings. The remainder of the paper applies Theorem 2 to the three related questions
of the hedging, pricing, and VAR of alternate investment strategies. Section 3 defines the delta
process and shows that a call option’s delta is equivalent to its probability of finishing in-the-money
under the delta process. Section 4 re-expresses this probability as the probability of the equivalent
event that a particular diffusion process with a known starting value and a deterministic diffusion
parameter finishes above a level determined by the option’s exercise price. Section 5 derives a
bound on a call’s delta that will be satisfied for the broad class of underlying stock price processes
with a diffusion parameter that is non-decreasing in the level of the process. (This class includes
the Black-Scholes and constant elasticity of variance diffusions.) Section 6 demonstrates that for
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this class of underlying price processes, the delta of an at-the-money option is always at least 1/2.
We also demonstrate that for processes outside this class the delta of an at-the-money call need
not be greater than 1/2. The second application of Theorem 2, the analysis of state prices, is
contained in Section 7. Section 8 determines conditions under which the information about state
prices implicit in even a limited set of option prices can be used to place an empirical bound on
option deltas. Section 9 applies Theorem 2 to the analysis of VAR. Section 10 summarizes our

results and suggests possible extensions of this research.

2. Properties of Probabilities in Diffusion Settings

Let £2' denote the time  value of a diffusion that at time ¢t < r starts at the level y and
then obeys the stochastic differential equation (SDE}
dr = p(ér, 7)dr + O’(f'r: T)érd By

(1)
= pu{&;, 7)dr + 2(&5, 7)d B,

We follow the finance literature and refer to the function o(-) as the volatility parameter, Following
Karlin and Taylor (1981, p. 159) we refer to the product z(-) := o(-)¢ as the diffusion parameter.
We use numerical subscripts to denote partial derivatives. Thus, for example z11(€,1) is the second
partial of the diffusion parameter with respect to its first argument, the level of the process. In
addition to imposing Lipschitz and growth restrictions on the parameters 4 and z that assure the
existence of a unique Ito process satisfying (1) for each possible starting value in IR™, whenever

we apply Theorem 2 (developed below} we will also assume that pooand z satisfy:

Assumptions Set. (i) z is once differentiable in £ and once differentiable in ¢. {ii) o (¢, ¢} > 0 for

all § > 0 and all #. (iii} 4 and z are such that for y > 0, ¢%* > 0 for all ¢ and +,*

Consider the probability of the event that at time 7 the process has reached a level at

or above k; Pr (£¥’t > k) One thing that can make the analysis of this probability challenging is

I Assumption (iii} of the Assumption Set does more than simply rule out non-negative prices
for limited-liability assets. It precludes a stock going bankrupt. We impose assumption (iii) only
because of the resultant tractability of the analysis. Developing a variant of the result in Theorem
2 that is applicable when assumptions (i) and {iii} are relaxed remains an interesting challenge.
For some work in this direction see Scction 1.3 of Nelson and Ramaswamy (1990).
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the dependence of the diffusion parameter, z(€,t), on the level of the process £, The analysis is
potentially simpler if the diffusion parameter is either deterministic or directly proportional to the
level of the process (in which case, the volatility parameter is deterministic). Thus our interest
in transforming the original problem into one involving a process whose diffusion paramcter takes
a simple form. We first note that the probability of interest is equal to the probability of the

following equivalent event.

Proposition 1. (Preservation of Probability) Suppose ¢ starts at y at time ¢ and follows

the diffusion in (1). If the function F (¢, t) is strictly increasing in &, then

Pr(¢l' > k) =Pr(F{e¥'\T) > F(k,T)).

When F is twice differentiable in ¢ and once differentiable in f, the random variable F{e.t) will

follow a diffusion. Consider one such specification of the F function:

6-
P 1) = / Z‘(*fl)dx, (2)

A(t)

where a(¢) and A(t) are smooth functions of time, with a{t) > 0 and A(t) > 0 for all t. We will
show that for this specification of the F function, the diffusion parameter of the process describing
changes in F is deterministic.? Applying this specification of the F function to the original process
can be thought of as a generalization of the familiar technique of taking the natural log of a price

process when the price follows geometric Brownian motion.3

Theorem 1. Suppose ¢ starts at y at time t and follows the diffusion in (1) with & and = satisfying
the restrictions of the Assumption Set. For the function F(¢,t) defined in (2) the dynamic of F is

given by
dF: = (Fr, 7)d7 + a(7)dB,,
where the functional form of 1, the drift parameter of the F process, is provided in the Appendix.

Theorem 1 is proved in Appendix A.

2 Nelson and Ramaswamy (1990) have previously used such an F function to transform the
SDE in (1) so as to obtain a second process that they use as the basis of their development of a
computationally simple binomial approximation to the original process in (1).

3 Section 4.1 demonstrates that when the original process is geometric Brownian motion, the
F function given in {2) does in fact simplify to the natural log function.
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Note that the functions a(t) and A(t) in (2) are choices to be made in defining . The choice
of the function a(t) is the choice of the deterministic diffusion parameter in the SDE describing
the dynamic of F. Given the value of ¢ at time ¢, the choice of the function A(t) can be thought

of as the choice of the time ¢ starting value of the F process.

Consider a second specification of the # function denoted by F:

)

EI
F(£,i) .= exp / z(m(ﬂt)t) dx |, (3)
A

where again a(t) and A(¢) are smooth functions of time with a(t) > 0 and A(t) > 0 for all
t. For this F function, the diffusion parameter of the diffusion describing the dynamic of F is

directly proportional to F; i.e., the volatility function of the diffusion describing changes in 7} is

deterministic.

Theorem 1. Suppose ¢ starts at y at time t and follows the diffusion in (1) with p and = satisfying
the restrictions of the Assumption Set. For the function F(¢,t) defined in (3), the dynamic of F
is given by

dFr = 0(F;, 7)dr + a(+)F,dB-,
where the functional form of 8, the drift parameter of the F process, is provided in the Appendix.

Theorem 1’ is proved in Appendix A.

Consider now the probability that a process with a level dependent diffusion parameter
will exceed k at date T. We can compute one of two equivalent probabilities: The probability
that a second process with a known starting value and a deterministic diffuston parameter will
exceed the amount F'(k,T) at date T; or, the probability that a third process with a different
known starting value and a deterministic volatility parameter will exceed the amonunt F(k,T) at
date T. One can think of both the F funection in (2) and the F function in (3) as counterparts to
Girsanov’s Theorem, an important theorem in the theory of contingent claims pricing (see Duffie
(1992, p. 237}, and the analysis in Harrison and Kreps (1979) and Harrison and Pliska (1981)).
Rather than transforming the drift while maintaining the diffusion parameter at the expense of
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a change in the probability measure (as in Girsanov's Theorem), one can transform the diffusion
parameter while maintaining the Brownian motion at the expense of a change in the drift.

The F function in (2) can be used along with Proposition 1 to develop a new expression for
Pr (gg" > k,) that we state as Theorem 2. This new expression is an expression for the probability

of the equivalent event that F (¢, 1) > F(k,T).

Theorem 2. Suppose £ starts at y at time t and follows the diffusion in (1) with 4 and 2 satisfying
the restrictions of the Assumption Set. Let a(t) and A(t) be smooth functions of ¢t with a(t) >0
for all t. Define the function F as in (2). The probability that 5;1,{’t exceeds k can be expressed as

Flut) = FT) 4+, (ol) (48 - darler ) + Pater )} dr
\/L’I‘[a(r)]zdf

is distributed A (0, 1).

Pr (¢ > k) = Pr > X

S, a(r)dB.
VI latm)Par

Theorem 2 is proved in Appendix A.

where the random variable X = —

2.1. Two examples of the choice of a(t) and A(t)

Recall that both the deterministic diffusion parameter of the dynamic of F , namely the
function a(t), and the lower bound of integration in {2}, A(t), are choices that can be made when
applying Theorem 2. The appropriate choice in any setting will be that which vields the most

tractable analysis. As shown in Appendix A the dynamic of F is given by

={al(r #(ET’T)ﬂlz T T +alr
rter, ) = (o) (820 - Fartern)) + e )t +atan )

Although the diffusion parameter of the F process has a simple form, the drift parameter may be
even more complex than that of the original process. Thus we can be interested in choosing a(t)
and A(t) with a view to simplifying the drift parameter of (4). In the following two examples we
consider choices of a{t) and A(t) such that the F3 component of the drift in (4) is either identically

zero or of known sign.

As our first example, consider the case where the time dependence of the volatility function
in (1) takes the form o{¢,¢) := m{t)n(¢). This simple form includes two interesting special cases:
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volatility does not depend on time when m{t) = 1; and volatility is a deterministic function of time
when n(¢) = 1. When o(¢,t) := m(t)n(¢) we can choose a(t) and A(t) such that Fy(¢,t) = 0 for

all { and ¢. To see this set a{t) = m(¢) and A(t) = k. Then the function F takes the form

N £ m(t) o S| .
Figt) “/k (O () ‘/,c ey

with the immediate property that for all ¢,

Fafe, t) = 0.

As a second example suppose that the volatility parameter satisfies the more general re-
striction that there exists a uniform upper bound U () with the property that for any time t and
for all €,

AL

o&t)
The existence of such a bound imposes only very weak restrictions on the functional form of the
volatility parameter. Given such a bound it is always possible to choose a(t) and A{f) such that
Fa(g,t) > 0 for all £ and t. To see this set A(¢) = k, and this time choose a(t) as the solution to

the ordinary differential equation

le., as




oz (x,t)

which is non-negative since U () — 2
?

> 0 for all z and t.* Similarly, when there cxists a lower

bounding function L(t) such that for all £ and any time t,

= L(t),

setting A(t) = k and a(t} as the solution to a1 (t) = a(t)L(¢) will ensure that Fo(€,t) < 0 for all £
and t.

We now apply Theorem 2 to the analysis of the related problems of hedging, pricing, and

determining the likelihood of possible payoffs from, an investment strategy

3. Some Properties of Position Deltas

In order to apply Theorem 2 to the analysis of deltas, we must first determine conditions
under which the delta of a position can be shown to be determined by the probability distribution
of the realization of a diffusion process at the position’s terminal date. Let 5 denote the time
t price of the asset underlying the position. The risk-neutral process for this underlying asset is

given by

dsr = v(7)s7d7 + 0 (s+,7)s,dB;

= r(7)srdr + z(s,,7)dB,, (8)

where r(t} is the instantaneous risk-free rate at time ¢. Let v(s,t) denote the nominal price of a
European contingent claim on the underlying asset. When, in particular, a call option is considered,
¢ instead of v will be used to denote its nominal price. The contractual payoff function is g(.),
meaning that if the underlying price is s at the expiration date 7', then the contingent claim will
pay off g(s). Therefore, to prevent arbitrage, v{s, T} = g(s). Under mild regularity conditions the

claim’s price solves the p.d.e.:

rit)vi(s,t)s — r(t)u(s, t} + va(s, t) %[z(s,t)}gvu(s, t)=0 (6)

1 Qur first example, o (€,

) =
Ut) = Tnl(%) and hence a(t) = m(t).

m{t)n(£), can also be described in this way simply by choosing



subject to the terminal condition v(s, T) = g(s).

Theorem 3 establishes that a contingent claimy’s delta can be expressed as the expectation

of its delta at maturity under a particular diffusion process for the underlying asset.®

Theorem 3. (Bergman (1983)) Suppose the risk-neutral process for the underlying asset is given
by (5). Consider a European contingent claim on this asset whose time T contractual payoff, g, is

differentiable on its domain. The delta of this claim is given by
vi{s.t) = E{g1(2M)},
where the dynamic of ¢, is described by

dir = (r{7)ér + 21(&;, 7)2(€5, 7))dT + 2(&7,7)dB;.

Theorem 3 is proved in Appendix A.

The stochastic process that determines a claim’s delta, the delta process, is neither the true

process nor the risk-nentral process.

Definition. When the risk-neutral process is given by (5), the following process will be said to be

the corresponding delta process:

dér = (r(7)ér + 29(&r, 7)2(&r, 7)) dT + 2(¢7, 7)d B, (7)

The diffusion parameter of the delta process is common to the true process, the risk-neutral
process and the delta process. The drift of the delta process is the sum of the risk-neutral drift
plus a term that depends on the common diffusion parameter. Recalling from the Assumption Set
that o (-), and hence z(-), are non-negative, the drift of the delta process will exceed (be less than)
the risk-neutral drift when z1(s,t) is positive {negative). In the case of a call option, Theorem 3

specializes to an equality between a call’s delta and its probability of finishing in-the-money under

the delta process.

® An extension of Theorem 3 to the case of a multi-dimensional diffusion setting (i.e., a
setting with stochastic volatility) can be found in the appendix to Bergman, Grundy and Wiener

(1996). An independent derivation of Theorem 3 in a deterministic volatility setting can be found
in Carr (1993).
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Theorem 4. The delta of a call equals its probability of finishing in-the-money under the delta

process. Suppose the risk-neutral process for the underlying asset is given by (5). The delta of a

call option is then given by

c1fs,t) = Pr (€' > k),

where changes in &, are described by

dér = (r(7)ér + 21{& 7)2(6r. 7)) d7 + 2(&,, 7)d B

Proof:  For a calt option, ¢(s,T) = g(s) = max[0, s — k] and

o {1, if s > ke
5) =
7] 0, ifs< k.

Hence, from Theorem 3,

er{s,t) = E{q (&N} = Pr(e* > k). 1

4. Theorem 2 and Option Deltas

4.1. Theorem 2 and option deltas in a Black-Scholes setting

As an illustration of both Theorems 2 and 4, we derive the delta of a call option in the
familiar Black-Scholes setting. In a Black-Scholes setting the asset’s volatility is a deterministic

function, &(t). Hence z1(s,t) = o(t), and the delta process in {7) takes the form

dér = (r(r) + [o(7)]*) &rd7 + o (7)¢,dB,. (8)
The instantaneous drift rate in (8) exceeds the contemporaneous risk-free rate by the deterministic
amount [o(t)]2. The delta of the call in a Black-Scholes setting is simply the probability that
5;" > k under the delta process in (8). We use Theorem 2 to find an expression for this probability

by determining the probability of the equivalent event F({,f:", T)> F(k,T).

In applying Theorem 2, set a(t) = o(t) and A(t) = k. For this choice of a(t) and A(t) the

function F in Theorem 2 takes the simple form:

F(e, 1) = ./: J"(gld:ﬂ - ]f %dz ~In (%) .
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Thus F(k,t) = 0 for all ¢, and F(s,#) = In{s/k) for all ¢. Recall that the function o in Theorem 2
corresponds to the drift of the original process whose probability of finishing above k we wish to

determine; in this case, the original process of interest is the delta proeess. Since for all ¢ and ¢,

Fy(&,t) = 0, the drift of the F process in {(4) is then

. H(fT:T} 71 ~ o(r (T(T) + [U(T)F) £r _ 10_ , — (T lg Y2
) (K5 o)) =l )( e )) =)+ 2o ()2

Substitution in Theorem 2 gives

In(s/K) + J,_{r(r) + 3fo(r)]?) dr
fi lo(r)dr

Since the left-hand-side of the preceding inequality is not a random variable, we have

Pr(e > k) =Pr

> X

In(s/k) + jtT (r(r) + %[0(7)]2) dr

N |

which is the familiar expression for the hedge ratio in a Black-Scholes setting.

Pr(ef>k)=nN

4.2. Theorem 2 and option deltas in a general setting

We now wish to apply Theorem 2 to the general determination of option hedge ratios given

the risk-neutral process in (5).

Lemma 1. (Deltas) Suppose that the risk-neutral process for the underlying asset starts at s at
time t and follows the diffusion given in (5). For F as defined in Theorem 2, the call's delta can

be expressed as

F(s,t) = F(k, T} + [, (a(r) (TE(T)?) +3a(e,, T)) + Fy(é-, r)) dr

ci(s,t) =Pr > X | {9)
T
Ji la(m))2dr
. J"T o{T)dB, . .
where the random variable X := — —f———— is distributed A (0, 1).
Ji la(m))2dr

Lemma 1 is proved in Appendix A.

To calculate deltas using (9) one must know the diffusion parameter z{s,t). But if one
knew z(s,t), we could then solve (6) to price options and calculate deltas numerically. What we
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wish to show is that expression (9) can provide useful information about an option’s delta when

one has only limited knowledge concerning the functional form of (s, ¢).

5. Deltas when the Diffusion Parameter is Non-Decreasing in the Underlying’s Value

Lemma 1 allows an exploration of the properties of deltas for broad classes of difusion
parameters. Recall that in a Black-Scholes setting, z1(s,#) = ¢(t) > 0; i.e., the diffusion parameter
is inereasing in s for all s and . We wish to examine the deltas of call options in more general
settings with the property that z;(s,t) > 0 for all s and ¢#. We first consider the meaning of such

a non-negative partial derivative.

o= S ot (11 5]

=a(s, t) (1 +w(s 1)},

where

wis, t) = %1%?—25

Thus a sufficient condition for 21(s,t) > 0 for all s and t is that (s, ) > 0 for all s and ¢. The
necessary condition for z1(s,¢) > 0 for all s and ¢ is that w(s,t), the elasticity of volatility with
respect to the price of the underlying, be not less than negative unity: o can be negative, but not

‘too’ negative 57

When one views a call’s delta as its probability of finishing-in-the-money under the delta
process, the import of a restriction on the sign of z1{s,t) 1s not immediately obvious. But suppose
one considers the probability of the equivalent event under the F transformation of the delta
process. In the dynamic of F given in (4), & and z are the drift and diffusion parameters of the

process to which the F' transformation is applied. The drift of the delta process is

p(€,t) = r(t)E + 21{&,1)2(&,1).

% Consider the constant clasticity of variance (CEV) setting studied in Cox (1975) in which
the diffusion parameter takes the form z(s, ) := &(¢)s?, where #(t) is the time t volatility given
st =1 and 0 < p < 1. The elasticity of volatility is w(s, t) = p— L. Since p > 0, w(s,t) > —1.

7 Note that for a risky, limited-liability asset, z(0,¢) = 0, o(s,¢) > 0 for all s and t, and
o{s,t) > 0 for some s and ¢. For such an asset, it cannot be that z1(s,t) < 0 for all s and ¢
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Substitution for p in (4) gives the drift of the F process as

r(7) 1
a(r) (0(57,7) + Eﬂ(‘fm 7‘)) + Fo(€s, T}

As was shown in subsection 2.1., the cxistence of a uniform upper bound U (#) such that

for all ¢ and s,

implies that it is possible to set the non-negative choice parameters of the F function, a(t) and
A(t), such that Fy(¢,t) > 0 for all ¢ and ¢. Given such a choice of a(t) and A(t), the drift of the

F process will then be at least

1
o) (s + grten ).

When 21(¢,t) > 0 for all £ and ¢, the drift of the F process is at least a(r)r(v)/o(&r, 7). Given the
existence of such a bounding I function, it follows that when r{t) > 0 for all ¢, the restriction that
z1(s,t) > 0 for all s and ¢ implies that certain properties of a call’s delta can be determined from
the properties of the probability distribution of a random variable that follows a diffusion process
that has both a deterministic diffusion parameter and a non-negative drift. One implication of
such a non-negative drift is established in Lemma 2.

Lemma 2. (Deltas) Suppose that the risk-neutral process for the underlying asset starts at s at

time ¢ and follows the diffusion given in (5). Suppose that the volatility parameter is such that

there exists a uniform upper bound, U(t), with the property that for all s and t,

5, 1
vy > 2258
os, )
If z1(s,t) > 0 for all s and t, then, provided r(t) > 0 for all t, the delta of a call option will be

bounded below as:

e1(s,t) > N i . (10)

so(s, t)\/f: lexp (7 U(w)dw)]?dr

If the condition z:(s,¢) > 0 for all s and ¢, is replaced by the stronger condition that o(s,t) > 0

for all s and ¢, then, provided r{t) > f%[o(s, t)]? for all s and ¢, the delta of a call will be bounded

14



below as:

In(s/k)
als, t)'\/f;‘[emp (ﬁr U(w)dw)]zd’r

(‘.1(.‘3, t) > N

(11)

When o (s, t) is time independent, the term \/_];T[ea:p (LT U(w)dw)]?dr appearing in (10) and (11)
simplifies to /T — t.

Lemma 2 is proved in Appendix A.

The restriction that r(t) > 0 for all t is made explicit in Lemma 2 since the risk-neutral
process in (3) may describe a real price process. Real risk-free rates can be negative. To implement
the bound in Lemma 2 we need only know a(s,t), the underlying asset’s volatility at its current

price level. Under the conditions of Lemma 2 (Deltas), we immediately obtain a simple bound on

the delta of an at-the-money option.

6. The Delta of an At-the-Money Option
6.1. At-the-money deltas when z1(s,t) > O for all s and t

In the familiar Black-Scholes setting with non-negative interest rates, the delta of an at-
the-money option is at least 1/2. Under the weak restriction that z be such that a bounding U
function exists, this ‘1/2 at-the-money’ property is true of deltas in almost all one-dimensional
diffusion settings with 2{{s,£) > 0 for all 5 and t. By definition, an at-the-money option has s = &
and we have as an immediate corollary to Lemma 2:

Corollary. (Deltas) Under the conditions in Lemma 2 (Deltas), the delta of an at-the-money

call option is always at least 1/2.

The probability of the delta process finishing above its starting value is the same as the
probability that the F process finishes above its starting value. Under the conditions of Lemma
2 1t is possible to choose a{t) and A{t) when specifying F' such that the drift of F is always

non-negative. The probability that F then finishes above its starting value is at least 1/2.



6.2. At-the-money deltas when z1(s,t) can be negative

It is important to note that the delta of an at-the-money option is not always at least 1/2.
The restriction that z1(s,t) > 0 for all s and ¢ is an important precondition of the above Corollary.
When this restriction is not satisfied, then, unlike the result in a Black-Scholes setting, the delta of
an at-the-money option can be less than 1/2. We demonstrate this result in the following example.
For simplicity we assume in this example that, for all ¢, r(t) = 0. Consider an asset price process

that at all times in the interval [T — 0.1, T] follows the diffusion
$7 = o (sy,7)5,;dBr,

with (12)

L2(1—5)
o (s, )] = - . , .
1+ s2(T — t)e?0-5) + 25 In(s) - s(T — ¢)e2(1-5) + s2[In(s)]? — 252(T — #)2e4(1-3)

i
We show in Appendix B that this process is well defined for + e [T — 0.1, T]. Figure la depicts

this volatility as a function of s for a fixed ¢. For sufficiently high values of s, the volatility declines

faster than 1/s, and hence the diffusion parameter depicted in Figure 1b is decreasing in s.

Consider a call option on this asset with an exercise price £ = 1 and a date T maturity.

The price of this option is given by the solution of the p.d.e.
1
cols, t) + §[a(s,tﬂ252r‘.11(s,t) =0

subject to the terminal condition c(s,T) = max[0, s — 1]. An analytical solution for the value of

this call exists and is given by

o{s,t) = sN(dy) - N (d2),

where
In{s) + L(T — )9

d] =
VT —tel-s

and

do :=d; — vVT - tel_s.
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Thus we can determine analytically that when this call option is at-the-money, its delta is given

by

1 (S, t)

smkol N ( - t) B T__te‘(T*”/S, 4

2 Vo
Figure 2 graphs the right-hand-side of (13} as a function of T — ¢. Tt is clear from (13) that for all

t € [T —0.1,T), the delta of this at-the-money call option is strictly less than 1/2.

7. Theorem 2 and State Prices

In this section we examine properties of state prices in a one-dimensional diffusion world.
Let w(s,¢, &, T) denote the time ¢ price of a state claim written on a non-dividend-paying asset
worth s at time ¢. The state claim pays one dollar at time T if and only if at that date the asset’s
value exceeds k. The price of a state claim is simply the discounted expectation that the underlying
asset’s price will finish above k& under the risk-neutral process; i.e.,

1
(s, t, k., T) = e o TimldT py (f;;’r’ > k) ,

where £ follows the diffusion

dér = 7 (7)érdr + 2(&7, 7)d B

Recognizing that the price of a state-contingent claim is simply a discounted probability calculated
under the risk-neutral measure, we can apply Theorem 2 to the problem of pricing state-contingent
claims. The proof of the following Lemma mirrors that of Lemma 1 {(Deltas).

Lemma 1. (State Prices) Suppose that the risk-neutral process for the underlying asset starts
at s at time t and follows the diffusion given in (5). For F as defined in Theorem 2, the value of a

state claim paying one dollar if and only if the underlying’s price exceeds k at date T, w(s,t,k,T),

is given by

T
efdft r(7T)dr Pr

> X (14)

ftT al{T)dB,

where the random variable X = — =
[ [a{m)2dr

is distributed A7(0, 1).
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Comparing the expressions for the value of a state-claim in (14) and an option’s delta in {9),
we see two differences for a given k. First, valuing the state claim involves multiplying the relevant
probability by e~ Ji 7(T)dT ¢4 recognize the time-value of money. Second, and of importance in this
study, the term +%21(§T, 7) in (9) becomes —%zl(g—}, 7) in {14); i.e, the term is higher by 21, t)
when working with deltas. This is a reflection of that fact that while state prices are determined
by the risk-neutral process, deltas are determined by the delta process whose drift exceeds the
risk-free drift by 2, (¢, ¢)2(¢, ¢).

Now consider the implications for state prices of the Section 5 restriction that z1{s,£) > 0
for all s and ¢. Since z; enters positively into expression (9) for deltas, but enters negatively into
expression (12) for state prices, a given restriction on 21 that imposes a lower bound on deltas can
be used to impose an upper bound on state prices. The proof of the upper bound contained in
Lemma 2 (State Prices) mirrors that of the proof of the lower bound in Lemma 2 {Deltas).
Lemma 2. (State Prices) Suppose that the risk-neutral process for the underlying asset starts

at s at time t and follows the diffusion given in (5). Suppose that the valatility parameter is such

that there exists a uniform lower hound, L(t), with the property that for all s and i,

o9(s,1)
a(s,t)

L(t) <

Ifz1(s, t) > 0 for all s and t, then, provided r(t) < 0 for all t, the price of a state claim, w{s,t, k,T),

will be bounded above as:

s — k
5 a(s,t)\/f:{emp (LTL(w)dw)}Qd‘r

If the condition z((s,t) > 0 for all s and ¢, is replaced by the stronger condition that o(s,) > 0

T
(s, t,k,T) < e~ di )T

(15)

for all s and ¢, then, provided r(t) < %[a(s, £)}? for all s and ¢, the price of a state claim will be

bounded above as

. k
n(s, bk, T) < emd Tty In (s/k) . (16)

o(s,t) \/‘f:‘[exp (7 L{w)dw)}2dr

When o(s,t) is time independent, the term \/jfT lexp (J;TL(w)dw)]QdT appearing in (15) and (16)
simplifies to /T — t.
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Under the conditions of Lemma 2 (State Prices) we immediately obtain a simple bound on
the price of a state claim that pays one dollar if and only if the underlying asset finishes above its
starting value.

Corollary. (State Prices) Consider a state claim that pays off one dollar if and only if the

underlying asset finishes above its starting value. Under the conditions of Lemma 2 (State Prices),

the price of such a claim is never greater than the discounted value of fifty cents.

We have seen how the term z1(¢,,7) enters positively in expression (9) for deltas and
negatively in expression (12) for state prices. This suggests the possibility of bounding option

deltas in terms of state prices whenever z1(s,t) > 0 for all s and ¢.

8. A Relation Between Deltas and State Prices

We introduce the notation ¢(s, t, k, T') to make explicit the dependence of the option’s valuc

on its exercise price.

Theorem 5. Suppose that the risk-neutral process for the underlying asset starts at s at time t
T
and follows the diffusion in (5). If z1(s,t) > 0 for all s and t, then a call’s delta exceeds et T(7)dT

times the corresponding state price; Ie.

vy
cils, t,k, T) > et T(T)dTﬂ'(s,t, k,T}. (17)

Theorem 5 is proved in Appendix A.

Theorem 5 can be applied whenever ohserved option prices provide a lower bound on
7(s, ¢, k,T). Given a rich set of observed option prices, one could use the approach in Bick and
Retsman {1994), Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) to numerically
determine an option’s delta in the one-dimensional diffusion setting of interest here. But what
if one can only observe the prices of two call options that differ in their exercise prices, but are
otherwise equivalent? When can the information in these two observed option prices be used to

bound the delta of the option with the lower exercise price?®

8 One bound is provided by Proposition 2 of Bergman, Grundy and Wiener (1996). Propo-
sition 2 establishes that when the underlying asset follows a one-dimensional diffusion (as in the
setting considered in this paper), ¢1(s,t) > (s, t)/s for all s and ¢.
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Breeden and Litzenberger (1978) show that
Tr(s,t,k,T}:—(‘g(s,t,k,T). (18)

An option’s price must be a convex function of its exercise price, since otherwise the prices offer a

simple arbitrage opportunity. Hence the observed prices of two options with exercise prices &' and

k" > k' yield

(T(S, 1 k’: T) B C(Sf L, kl”$ T)

~e3(s, 6, k', T) > Ry

(19)
This empirical bound on the state price is depicted in Figure 3. Combining (17), (18) and (19) we
can translate the bound on the relevant state price into an empirically determined bound on the
option’s delta whenever z1(s,t) > 0 for all s and

) > eJ":T r(ryar €08, 1, K T)—cls, t, k", T)

(:I(S,t\k’,T L

9. Theorem 2 and the Determination of Value-at-Risk

A natural application of Theorem 2 is to the analysis of the likelihood that a portfolio’s
value will exceed some critical level on a future date T. To illustrate this application suppose that

the true price process for the underlying porfolio is a time-homogeneous diffusion of the form:
dsr = afs;)s,dr + o(s;)s.dB.

Suppose an investor does not know the exact functional forms of the drift and diffusion parameters,
a(-) and o(-), but is confident that a < afs) <@ and ¢ < o(s) < & for all s. The investor plans
to hold the portfolio from ¢ to 7. Suppose she is interested in determining the size of the possible
losses that have, say, at least a 1-in-20 chance of occurrence. This question can be answered if
one can determine a bound on the probability that, for any given level & of interest, the time T
value of her portfolio will exceed the value of k. What additional information about the volatility

parameter will allow her to determine such a bound? Lemma 3 provides one answer,
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Lemma 3. Suppose that the true price process for the underlying asset is given by

dér = “(é‘r)g'rd"" + U(f'r)‘deB‘ra

with0 <o <o(f) <@ andg < o(¢) <7 forall .

Ifo1(¢) > 0 for all €, then

) N(‘“%’ih(a/g—%g) T—t), if s> k;
Pr(est » k) < ZviTr
" & N (28 4 (/0 — o) VT = t, i<k
Ifo(¢) <0 for all £, then
iy (lﬁn(;{ﬂ—%(afﬁ—%ﬁ) Tt if s > k;
Pr (‘ET" - k) Z In{s/k) — 1— .
N(g T_t+(nf./g—§0) Tft), if s < k.

The proof of the Lemma follows by a straightforward application of Theorem 2 to the true
price process.? Note that if the underlying asset’s price follows a CEV diffusion, o1(s) < 0 for all

s. Note also that when ¢ = 7 = o, Lemma 3 simplifies to the natural bound:

N <1n(s/k)+ (o — 407} (T—t)) <P (ﬁi’t S <N (hl(s/k)+ (@ - %02) (T—t)).

ovi —t ovT — ¢

10. Summary and Possible Extensions

This paper develops a new technique for the study of probability distributions in diffusion
settings. We provide two different monotonic transformations of an initial diffusion process with a
level-dependent diffusion parameter. Under the first transformation the new diffusion process has a
deterministic diffusion parameter. Under the second, the new diffusion process has a deterministic
volatility parameter. Since both transformations are monototnic, the probability of the original
process finishing above some critical level is identical to the probability of the equivalent events

that the transformed processes finish above their corresponding transformed critical levels. Qur

® When neither a restriction that o > 0 or a restriction that & > 0 is imposed, a more general
variant of the Lemma applies with max [« /g, @/ replacing & /¢ and min (a/o, a/7F] replacing « /7.
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transformations can be viewed as counterparts to Girsanov’s Theorem. Rather than maintaining
the diffusion parameter while altering the drift at the expense of the probability measure, our
transformations maintain the original Brownian motion while altering the diffusion parameter at

the expense of the drift.

Theorem 2 develops an expression for the likelihood of an initial diffusion process finishing
above some critical level in terms of the likelihood that a second diffusion process with a deter-
ministic diffusion parameter will finish above a related critical level. We believe Theorem 2 can
be useful in the analysis of many interesting problems. We illustrate three such applications. The
first application considered is to the study of position deltas. A call's delta is shown to be its
probability of finishing in-the-money under a process related to, but different from, the underly-
Ing asset’s risk-neutral process. We term this process the delta process. We then transform the
delta process to obtain a new process with a deterministic diffusion parameter and apply Theorem
2. Theorem 2 allows us to develop a lower bound on option deltas applicable when the diffusion
parammeter of the underlying asset’s price dynamic is non-decreasing in the asset price. We obtain
a tighter bound when the underlying’s volatility parameter is non-decreasing in the asset price.
Direct application of the first bound allows us to generalize the familiar Black-Scholes result that
the delta of an at-the-money option is always at least 1/2 to all settings where the diffusion pa-
rameter is non-decreasing in the underlying’s value. Note that an at-the-money option’s delta does
not always exceed 1/2. We provide an analytic solution to a particular call option pricing problem
in which the underlying asset’s diffusion parameter is first increasing and then decreasing in the
price of the underlying asset. For this particular price process, the delta of an at-the-money call
option with an exercise price of unity is, in direct contrast to the result in a Black-Scholes setting,

always less than 1/2.

Our second application of Theorem 2 is to the pricing of state-contingent claims. State
prices are simply discounted probabilities of finishing above some level under the risk-neutral
process. We use Theorem 2 to determine an upper bound on state prices when the diffusion
parameter is non-decreasing in the underlying’s price, and a tighter bound applicable when the
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volatility parameter is non-decreasing in the underlying’s price. We also show how the bounds on
state prices implied by even a coarse grid of observed option prices can be used to bound option
deltas whenever the diffusion parameter is non-decreasing. Qur final application of Theorem 2 is
to the analysis of the likelihood of incurring a gain or loss of a given size from some investment
strategy. We provide sufficient conditions under which coarse knowledge of the drift and diffusion
parameters of the process describing changes in value of the portfolio of interest can be used to

place bounds on the value-at-risk in the event of a price collapse with, say, at least a 1-in-20 chance

of occurrence.

The bounds derived from Theorem 2 reflect restrictions on the functional form of either
the diffusion parameter or the volatility parameter. Determining the economics of the interesting

set of such restrictions is part of our ongoing research in this area. Recognizing that

5
cls, b, k. T) = / ci{z, t, k, T)dx
0

and
o0
c(s, t, k,t) = f {x —k)n(s,t,z,T)dz,
k

we are also working to translate our bounds on deltas and our bounds on state prices into bounds
on option prices. A natural empirical extension of this line of research is to the analysis of the link
between the functional form of the underlying asset’s diffusion parameter and the existence and

shape of implied volatility smiles.
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Appendix A: Proofs of Theorems and Lemmas

Proof of Theorem 1

Given assumption (i) of the Assumption Set, the partial derivatives of F are given by

a(t)
Fi(g,t) = )
Fue. 1) = E )( 1(5} t)’
and
_ S oar(t)z(z,t) — a(t)za{z,t) et
Ple )= ./Am (o002 TR s
Applying Ito’s Lemma to F we have
F(ér7) = Fi(er.m)der + SFuler, 7)der]? + Foler, ryar
_ .u(gTu T) 1
= (a(’r) (m — 521(57, T)) + Fa(&r, f»)) dr -+ a{r)dB,. (Al)

Since F(¢,t) is strictly increasing in ¢ for all ¢, therc exists an inverse function ~ such that & =
Y(F(£,¢),t) for all ¢ and ¢t. Thus the drift parameter in (A1) can be expressed as 4(F,, ). The

diffusion parameter of the F, process is the deterministic value al{r). 1

Proof of Theorem 1

The partial derivatives of F are given by

Fi{E, 1) = F(£.1) ‘(fi),

.F]l(f,t) :f(‘g)t) ( t) (a[ (51 ?; 6 t)))r

and

_ ¢ al(t)z(ma t) — a(t)ZQ(l'tt) a(t)
760 =260 (/Am EEO z(Aw,t)A““) '

Applying Ito’s Lemma to F we have

Fierir) = (atnFen ) (45 4 o) - attery ) + Fafer,1) ) dr + ()5, 7B
(42)
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Since F(£,t) is strictly increasing in ¢ for all t, there exists an inverse function y such that
§ = ¢(F(&t),t) for all £ and ¢. Thus the drift parameter in {(A2) can be expressed as §(F;, 7).

The volatility parameter of the 7, process is the deterministic value a(r). N

Proof of Theorem 2

T T

(a(f) (ﬂf_’ff_) - %zl(gﬂ 7)) + Fyler, 7)) dr + /r o(r)dB,.

F (&8 T) = F(y,t) + / T

Ji

Thus

T

Pr(¢%' > k) = Pr(F (%', T) > F(k,T)) = Pr (F(y,t)+/ dF; > F(k-,T))
JI

= Pr (F(y,t) +/, (a(T) ( ((Z:’;)) - %zl(&- T)) +F;3(§T,T)) dr + [

Fy,t)— F(k,T) + ffT (a T) (‘H(ET’T %zl(&-,r)) + Fy{é;, T)) dr
jf la{7)]%dr

S alr)dB,
J latm)izdr
Note that the random variables compared in the inequality are not independent.

T

a(r)dB, > F(k,T))

= Pr

> X

?

where the random variable X := — is distributed A{0,1). 1

Proof of Theorem 3

Taking the partial of {6) with respect to s gives
1
r{tivii(s, t)s + via(s, £) + 21 (s, t)z(s, t)vy; (s,t) + 5{2(5‘, t”zﬂlu(s. t) = 0. (A3)

Let f be the first partial of the contingent claim’s value with respect to the value of the underlying;

f(s,t) == w1(s,t). The p.d.e. in (A3} can then be rewritten as
(r(t)s + z1(s,t)2(s, 1)) f1(s, 1) + fa(s,t) [ (s, ) f11(s,t) =

Assuming that r(t)s + z1(s,t)2(s,t) and z(s,¢) each satisfy Lipschitz and growth conditions, the

Feynman-Kac Theorem can be used to express vy (s, t) as

vi(s, t) = E{gl(E;’t)},
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where the dynamic of £ is described hy

dér = (r(r)ér + 21(&5, T)z{&r, T dr + z(6;,7)dB,. 1

Proof of Lemnma 1 (Deltas)

In the application of Theorem 2 to the analysis of the probability of the option finishing
in-the-money under the delta process in (7}, the u function of Theorem 2 is simply the drift of the

delta process; i.e.,

pl&it) = r()e + z1(€, 1)2(¢, 1),

Thus ,
a(r) (%2_:)) B %21(&’7)) _ a(r) (r(T)ST +ZZ(1§(TET;;)Z(§T,T) B 521(£T}T)>
= a(‘r) (%ﬁ% + %zl(&-, 'r)) .

Substituting in Theorem 2 immediately establishes expression {9} of Lemma 2. |

Proof of Lemma 2 (Deltas)

Following the steps in subsection 2.1., setting A(t) = k and a(t) = a(0)exp (fof U(T)d‘.")
in the specification of the F function gives F(¢,t) = 0 for all ¢ and ¢ and F(k,T) = 0 for all ¢.

Expression (9) of Lemma 1 then simplifies to

Fot) 4 f, (o) (75 +haen ) ) ar

¢1(s,t) =Pr > X (A4)
T
Vv i [a(r)]Pdr
. [FalmydB, . ..
where the random variable X 1= — =212 i distributed N(0,1}.

\/ thT a{T)]%dr

The integrand of the integral in the numerator of the expression on the left-hand-side of the
inequality in (A4) is non-negative given the conditions that r(t) > 0 for all ¢, and 2;(s,t) > 0 for

all s and ¢. Thus we have
Ry e
’Tz(""’" > x (A5)
vV fy la(7))2dr
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The condition that z;(s, t) > 0 for all s and ¢ implies z(xx, t) > o (s, t)s for = >s, and z(x, t) < o(s,t)s

for z < 5. Therefore

g

[ ol alt) ., alt)(s &)
kfz(a;,t) dmzkfa(s,t)s de = o(s, t)s '

a(t)(s — k)

o(s, t)sq/ f: {a(r)PdT

Substituting for a{r) and noting that the left-hand-side of the inequality is not a random variable

and hence

r1{s,t) > Pr > X

gives the desired result.

The integrand of the integral in the numerator of the expression on the left-hand-side of

the inequality in (A4) can be written as

oiny (T ElolEn ) 1
( )( U(frﬂ') +2 1(5?» )ET)

If o1(s,t) = 0 for all s and ¢, the integrand will be non-negative provided r(t) + %[a(s, ]2 >0

for all s and ¢. The relation in (45) will again be satisfied. When a1(s,t) > 0 for all s and ¢, the
integral term in (45) can be bounded as

[ oalt) alt) . altyln(s/k)
k/ P dr > /G_ dx = .

(s,i)r o{s,t)

and hence
a(t)In{s/k)

o(s, thy/ f: [a(r)}gd'r

Substituting for a(r) and noting that the left-hand-side of the inequality is not a random variable

cl(s,t) > Pr > X

gives the desired result.

Finally note that when o(s,t) is time independent, the uniform unpper bound restriction is

satisfied by U (¢) = 0 for all . Hence

\/[T[emp (/t.TU(w)dw)]QdT = \/ZT[ezp(O)]sz = \/[r ldr =vVT —¢t. 1
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Proof of Theorem 5

Compare the drift of the risk-neutral process in {5} and the drift of the delta process in (7).
Given the restriction on the sign of 2|, the drift in (7) exceeds that in {5). The result then follows

from an application of Proposition 2.18 of Chapter 5 of Karatzas and Shreve (1991). 1

Appendix B: Demonstration that the SDE in (12) satisfies both a Lipschitz and a
Growth Condition

Note first that [o{s,t)]* as defined in (12) is positive and finite for all s > 0 and all
t € [T —0.1,7]. This follows from the fact that the denominator in (12) is always positive. In fact,

the denominator is always greater than 0.026. To demonstrate this lower bound on the denominator

we introduce a new variable 7.
T =T(s,t):= (T — t)e*=9),
We denote the denominator by Q and rewrite it as
Qs,T) =1+ 5T + 2sln(s) - sT + s2[In(s)]? - isQTQ.

We can bound the sum of the three terms involving T as

$2T — sT — %3272 = sT (3 11— %T)

T 4 -7 4
—ST(S(1Z>—1)—ST 1 (5—4ﬁ7_)
1
3!

27 4-7 -2 T .
T 4-T 4 4-T T 4_T

since 0 <7 < 0.1e2 < 1 and the function [Tr’,; 1s monotonically decreasing in this region. Thus
2 2 2
Qs, T) > 3 + 2sIn(s) + s*[In(s)]*.

Using the fact that sIn(s} > —0.4 for all valucs of s we have Q(s,7) > 0.026.
Now note that the diffusion parameter, z(s,t) = o(s,t)s, must satisfy Lipschitz and growth
conditions. Consider the respective Lipschitz and growth conditions given in conditions (E.2)
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and (E.3) of Duffie (1992, p. 240). That a growth condition of the form (E.3) is satisfied for all
t € [T =0.1,T] follows immediately from the twin observations that the numerator of the expression
for [o(s,#)]? in (12) is & decreasing function of s, while the denominator is bounded from below.
To demonstrate that a Lipschitz condition of the form in {E.2) is satisfied for all ¢ ¢ 7 —0.1,7],

we demonstrate that there exists a constant X such that
z1{s,t) < K.

First we write
U(S,t)s — __PL
V&5, T(s,t))
where P(s) := se!™* Then

Blo(s,1)s] _ P1QY2 - JpQ-1/228]lsh)
Js 0 .

(B1)

Recalling that Q(s, 7) is positive and bounded from below, we have that the first term in the
expression in (B1),
P (s) _ el=5(1 - 5)
\/Q(S,T) \/Q{S,T) 1
18 bounded. The second term in (B1),

P(s)  90(s, T(s, 1))
2(0(s, T3/ s

can be rewritten as

sel™s

200 TP

1 .
4sT +2In(s) + 2 — T + 2s[In(s))? + 2s In(s) — §5T2 — 2527 + 5277

‘This expression is a continuous function that tends to zero when s — +o0 and is bounded
when s — 0. Thus it is bounded from above and below. The difference between the two terms
comprising (B1) is then a continuous function that is bounded from above and below, and the
Lipschitz condition is satisfied. Thus we have established that the SDE in (12) is well-defined over

the relevant time horizon. 1
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a(s,t)
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Figure la. A volatility function, a{s,t), such that the diffusion parameter, z(s,t) = o(s,t) s, is not

everywhere non-decreasing in s. Volatility depicted at time ¢ = 7 — 0.05, when o(s,t) is defined by
2(1-5)

e

2
5,1} = .
lols. )] L4 s2(T — £)e2(1-s} 4 95 In(s) — s(T" — t)e2{l-9s) 4 s2[ln(s)]? — %32(]" — t)2ed(1-s)

z(s,t)
1.4 4
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02 04 06 08 1 1.2 14 16 18 2 22 24 928
Figure 1b. Diffusion parameter, z(s,t), that is not everywhere non-decreasing in s. z(s, ) = o(s, ) s,
where o (s,t) is as depicted in Figure la.
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Figure 2. Delta of an at-the-money call with s = ¥ = 1. The risk-free rate is zero. The call
with maturity date T is written on an asset whose price s; at all times t & [T - 0.1, T] follows the
risk-neutral diffusion:

sy =o(sy,7)s;dB;,
whose squared volatility parameter is given by

e2(1—s)

o (s, 1)]* = : T :
L+ s2(T — )e2(1-9) + 25 In(s) — s(T — ¢)e2(1—s) 4 s?[lu(s)]? — $52(T — t)2e4(1-5)
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cls, t,k, T)

slope= c3(s,t, k., T)!

k=k'

T

k' k‘r” k

Figure 3. Tllustration of the bound on c3{s,t, k, T)|p—ps implied by (i) the no-arbitrage relation that
an option’s price must be a convex function of its exercise price and (ii) the observed prices of options
with exercise prices of &’ and k" > &’ c{s,t,k,T) is the time ¢ price of a call option with a date T
maturity and exercise price of k& written on an asset worth s,

> (’(S, t} kll T) - (‘(S‘ t! k”! T)

k=k' & Y

—e3(s,t, k, T}
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