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Abstract

This study explores multivariate methods for investment analysis based on a sam-
ple of return histories that differ in length across assets. The longer histories provide
greater information about moments of returns, not only for the longer-history assets,
but for the shorter-history assets as well. To account for the remaining parameter un-
certainty, or “estimation risk,” portfolio opportunities are characterized by a Bayesian
predictive distribution. Examples involving emerging markets demonstrate the value of
using the combined sample of histories and accounting for estimation risk, as compared
to truncating the sample to produce equal-length histories or ignoring estimation risk
by using maximum-likelihood estimates.
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1. Introduction

Historical rates of return are often used in investment analysis. Estimates of moments of
returns based on historical time series provide information useful in selecting portfolios,
evaluating investment performance, and investigating models of asset pricing. In many ap-
plications, the lengths of available histories differ across the assets being analyzed, especially
when the assets are traded on separate exchanges or in different countries. For example,
substantial differences in lengths of histories are likely to occur, virtually by definition, when
the universe of assets includes investments in emerging markets. A typical approach to this
problem, particularly in applications of multivariate methods, is to base the historical anal-
ysis on a sample in which all return histories begin at a common date. That is, the longer
return histories of the “developed-market” assets are truncated, so that any returns observed

before the available history of the emerging-market investments are simply discarded.!

In many cases, it is neither necessary nor desirable to discard returns. Suppose, for
example, that the researcher or decision maker would use some of those discarded returns
it the shorter-history assets were not included in the analysis.® Then, in general, those
discarded returns contain information that js useful in an analysis that includes the shorter-
history assets. Not only do those discarded returns provide additional information about
the longer-history assets, but they generally provide information about the shorter-history

assets as well.

This study investigates multivariate methods that use a “combined” sample in which the
lengths of return histories differ across assets. Although such methods could be developed
under a variety of assumed probability distributions for returns, the i.1.d. multivariate Normal
mode] assumed here permits closed-form analytic results that simplify the essential ideas.
Moreover, that assumption is often employed in studies that propose multivariate methods
for samples of equal-length return histories.® It is hoped that the results obtained here in

the standard setting motivate extensions to richer stochastic frameworks.

The paper is organized as follows. Maximum-likelihood estimates of first and second

'See Harvey (1995) for a recent example.

*In other words, those returns would not be discarded due to a concern that the stochastic framework
assumed for the longer-history assets does not hold for any period longer than that used in the truncated
sample. One might note that such a concern is certainly not evident in previously published empirical work:
empirical studies that do not include emerging markets, for example, seldom if ever choose a first sample
date that happens to coincide with the beginning of an emerging-markets data set.

3Examples include the likelihood ratio test of a portfolio’s mean-variance efficiency in Gibbons, Ross, and
Shanken (1989) and the Bayesian analysis of a portfolio’s degree of inefficiency in Kandel, McCulloch, and
Stambaugh (1995).



moments are presented in section 2, invoking an earlier result by Anderson ( 1957), and the
combined-sample estimates are compared to the more common truncated-sample estimates.
When the parameters of the return distribution must be estimated from a finite sample of
returns, then the imprecision in those estimates presents an investor with additional un-
certainty, or “estimation risk.” This estimation risk is reflected in the Bayesian predictive
distribution of future returns. Section 3 derives the first and second morments of that pre-
dictive distribution, conditioned on the combined sample. In order to focus on the essential
concepts, the analyses in sections 2 and 3 are limited to the case where each asset’s history
begins at one of only two possible dates. In practice, starting dates are often more hetero-
geneous, and section 4 extends the results in sections 2 and 3 to an arbitrary number of

different starting dates.

Sections 5 and 6 illustrate the empirical methods using monthly data in portfolio problems
involving emerging markets. Section 5 analyzes a mean-variance optimization problem with
an asset universe consisting of one-month U.S. Treasury bills (assumed riskless) and three
risky index portfolios: (i) Standard & Poor’s composite index, {ii) Morgan Stanley Capital
International’s index for Europe, Australia, and the Far East, and (111) the International
Finance Corporation’s (IFC) composite index for emerging markets. Returns beginning in
1970 are used for the first two indices, whereas the emerging-market returns begin in 1985.
An optimal portfolio constructed using the combined sample and accounting for estimation
risk can be compared to a portfolio that is constructed using only the post-1985 data. If
the latter construction ignores estimation risk as well, then an investor with relative risk
aversion equal to 3 would value that suboptimal portfolio less than the optimal portfolio by

about 23 basis points per month, in terms of certainty-equivalent return.

Section 6 considers the problem of constructing the minimum-variance portfolio from a
universe of 22 emerging-market index portfolios. Each index portfolio is designed by the
IFC to reflect the portion of a given country’s equity market that is accessible to foreign
investors. For the 22 countries included in this example, the first month of available data,
ranges from January 1989 to November 1993. To an investor who uses the combined sample
of all available histories and accounts for estimation risk, the minimum-variance portfolio has
a standard deviation of about 3.8 percent per month. That same investor assigns a standard
deviation of at least 6.1 percent to portfolios constructed using methods that either ignore

estimation risk or discard returns on the longer-history assets.

The examples in sections 5 and 6 illustrate the conditional Bayesian decision approach,

wherein the investor bases decisions on the predictive distribution that is conditioned on the



single observed sample. As those examples illustrate, the predictive distribution can also be
used to assess the costs associated with various suboptimal choices, such as portfolios formed
by methods that truncate the sample or ignore estimation risk. An alternative “frequentist”
approach to evaluating the relative merits of various portfolio selection methods is to compare
their performances in repeated hypothetical random samples, where performance is evaluated
using “true” moments of returns. Section 7 conducts such investigations in settings similar
to those of the examples in sections 5 and 6. The results confirm the potentially substantial
costs associated with truncating the sample or ignoring estimation risk. Section 8 concludes

the study with a brief discussion of possible extensions.

2. Maximum-Likelihood Estimation

Let the vector R;, contain the returns on N, assets in period ¢, and suppose that we have T
observations of these returns for periods 1,...,T. Let the vector R, contain the returns on
another NNy assets, and suppose that we have observations of these returns only for periods
s,...,T, where s > 1. Assume that the 7' observations of R, : are independent realizations

from a multivariate normal distribution with

E{R,.} = E, (1)
and
cov{ R, Ry} = Vi, (2)
Let § =T —s+1, and assume that the $ observations of the combined vector of N = N, + NN,
returns, Ry = [Ry, Ry,)',t = s,...,T, are independent realizations from a multivariate
normal distribution with
Ry, E,
E : = =F 3
L[5 @
and YERY
Rl‘ﬁ ! / _ il 12 _
COV{{Rz,tj"[Rl’t 2,t}}—[1/'21 szjfﬁva (4)

where V' is nonsingular. It is also assumed that § > max (N, N, +2). The likelihood function

for the combined sample of returns can be written as

p(Rl,lle,Zy---gRl,s—l; ngRs-ﬁ-l,---,RT l E, V’)
= p(Rl,].)Rl,Qy-" le,S—l | E17 I/].T.) p(Rs=Rs+1:---7RT F E'J V)

s—1 1 1 P
= T {mtr oo (g mvita - )
t=1

X f:[ ((2;)1‘” V] exp {‘“%(Rt - EYVTH R, - E)}) ; (5)

t=s
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using the multivariate normal density and the assumption of indendence across periods.

In some applications, it may be that the second set of N, assets existed before period s
but their returns are not included in the available data. In other cases, 1t may be that those
assets did not even exist before period s. In either case, it is not assumed that those assets’
actual returns, if the assets did exist, or their hypothetical returns, if they did not exist,
obey the same distribution assumed for returns after period s. In particular, if the moments

of all N returns prior to period s are, instead of (3) and (4), given by
By E,
E ’ = 6

Rl,t ’ Y] _ Vil Hl?
COV{{ Ras } ) [ RI,: 2.t ]} = { Hl, Ha ] 3 (7)

where Fy # 3, Hy; # Via, and Hyy # Vi, the likelihood function for the combined sample

of returns used in the analysis is still as in (5). What is assumed is that the marginal

and

distribution of the first N; returns is the same throughout, and that s is independent of

those returns.

A common approach to estimating £ and V is to compute the “truncated-sample”
maximum-likelihood estimates based on the S periods in which returns on all N assets

are observed. Define the § x N matrix

I /
Rl,s RQ,S

R R
YS _ Y;_'S }/2,5 J — I,ls+1 2,‘.s+1

/ '
1,T 2,1

The truncated-sample maximum-likelihood estimators of £ and V are given by

7 [ Lﬁl‘lS 1 I
E = a! = --—Y
s _Eg,s} gusts 9
and . N
’ I/1].8 1/12.‘5' 1 NG all
Ve = P A = —(Ys — E Y — E 10
s 1/21!5 ‘/2213 J S( 5 LS S)( s [’5 5)7 ( )

where the partitioning in (9) and (10) follows that of Y in (8), and g denotes an S-vector

of ones.

The above truncated-sample estimators do not use the first s — 1 observations of R4,
which appear in the first factor in (5). Maximizing (5) with respect to the elements of E
and V' is complicated by the fact that E; and V;, appear by themselves in the first factor

4



but as submatrices of £ and V in the second factor. Anderson (1957) shows, however,
that by performing a change of variables and rewriting the joint density, p(Ry 4, Ra,), as the
product of the marginal and conditional densities, p(R; ;) -p(Ry4| Ry ,), an analytic solution
to the maximization is straightforward.* In order to state the resulting “combined-sample”
estimators, first define the coefficient and residual-covariance matrices from a multivariate

regression of R, on Ry ; estimated using the truncated sample:

A & —1 vt
Cy = [ B2’ } = (X;,5X28) "' X; sYa s (11)
2
and 1
Uy = §(st — X5,50) (Va5 — Xy 505), (12)
where
Xos = [ tis Yis ] : (13)

Proposition 1. Given the likelihood function in (5}, the mazimum-likelihood estimators of

E and V' are given by

Eo |t 14
{ b } | (14)
and - ’
o [V W }
velV d ’ 15
i )
where
. 1 Z
E] = "f Z Rl,tu (16)
i=1
E'Z = E2,3+B2(E1 —E}.,S)) (17)
) 1 T N .
Vo= = (R~ B) (B — B, (18)
t=1
Af21 = Bzf/u (: 1[6/1"2) . (19)
and
f‘/gg = 22 + BZ‘A/IIBQ (20)

Proof: see Anderson (1957).

As noted earlier, the truncated-sample estimators in (9) and (10) ignore the additional
information in the other T— S observations of Ryt Not surprisingly, this additional informa-

tion is useful in estimating £y and V;,. More interesting is that this additional information

*This rewritten likelihood function is provided in the Appendix.
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is also useful in estimating £, Via, and Vj,. Using the above results, the combined-sample

estimators of these quantities can be written as

B, = Ez,s - Bz(El,S - Ey), (21)
Vay = IA/:J.z,s - EQ(IAGLS ~ Vi) B3, (22)

and
Vi = Vo5 — By(Vins — Vi) (23)

In general, if B;, and R, exhibit nonzero correlations with each other, as reflected in the
matrix of estimnated regression slopes, B,, then differences between the combined-sample and
truncated-sample estimates of the moments of £y, produce corresponding differences in the

estimated moments of R ,.

The basic ideas can be seen most clearly with only two assets (N1 = N, = 1), since all of
the quantities in equations (21) through (23} are then scalars. The additional information in
the first s — 1 returns on asset 1 enters the estimation of asset 2’s expected return in a fairly
obvious manner. Suppose, for example, that asset 1 experienced a higher average return
during the more recent S periods than over the entire T-period sample, i.e., EI,S —E >0.
The assumed i.i.d behavior for the returns on asset 1, coupled with the information from
asset 1's T-period history, implies that the average return over the recent S periods, EA}LS,
is too high an estimate of expected return when compared to the value of the more precise
estimator, £;. If the returns on assets 1 and 2 exhibit positive sample correlation over their
cornmon histories, so By > 0, then E'Q'S is also judged to be too high an estimate of asset 2’s
expected return, and that truncated-sample estimator is adjusted downward by the amount

J@z(ELS — E;) This adjustment follows the same form as the relation,
Ey = E{Es 5| By 5} — Ba(Er s — Ey), (24)

implied by the regression function under normality, where B, = Vo1 Vi7'. The right-hand
sides of (21) and (24) are similar, with E{E, {£, 5}, F, and B, in (24) replaced by the
estimators Eg's, E’l, and B, in (21). Note that such an adjustment could even reverse the

relative estimated expected returns on the assets. That is, Eg - E‘l can have a different sign
from EQ,S - El,g.s

Asset 1’s longer history also provides additional information about the variance of asset
2’s return as well as the covariance between returns on the two assets. Suppose, for example,

that asset 1 experienced higher volatility during the most recent S pertods than over the

°If, in the example discussed, By > 1, then one could observe £ g — En?l,s > 0but By — £y < 0.
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entire sample, i.e., f/ug — Vi1 > 0. In other words, Vi, ,s 18 too high an estimate of V{;
when compared to the value of the more precise estimator, V;,. That information suggests
that Vgg s and Vgl 5 are also too high (in absolute value} as estimates of Vi and Va1. The
adjustments in (22) and (23) reflect the property that, if returns on the two assets are
correlated, then high ex post variance of Ry, in the most recent S periods is tikely to be
accompanied by high ex post variance of R,; and high ex post covariance (in absolute value)

between K, and K. This statement follows from the properties,
Vag = var{ R, | (R1s — B1)*} = BIl(Rie — E1)* — Vi), (25)
and
Vo = COV{RLt, R2,t | (Rl,t - El)z} - Bz[(RLt - El)2 - Vll]; (26)

which are implied by the joint normality of Ry, and R,,.* Note that the relations in (22)
and (23) are direct analogs of (25) and (26).

In the two-asset case, if asset 1 experiences higher ex-post variance during the more recent
S periods than during its longer history, then the combined-sample maximum-likelihood

estimator of the correlation,

~

. Var
P12 = =0, (27)
(Vi Vi )12
is less (in absolute value) than the truncated-sample estimator,
Vavs
Pros = S (28)
(Var,5Vaz,s)1/2
Specifically, (22) and (23) imply
-1
Viis .
bra = pis 5 P12S + ;,1 (1 - sz,s) s (29)
11

SLet § = R, o+ — £y, and observe that, under normality, E{§|6%} = §. Then, by standard rules of variance
decomposition,
var{Rs,6°} = E{var{Ry.6}|6°} + var{E{ Rz |6}[6%}
E{Vas — BiV1,16°} + var{ B + B26|6%}
= [Vaa—B3ViW]+ 5’352
= Vi + Bi(6* — Vi1),

and

cov{Rie, Roil8’) = E{cov{Ris, R2.|8}[6%) + cov{E{Ry |6}, E{Rs.|6}16%)
= E{06*} + cov{E, + 8, Ez+ B15]6%)
= (BaVii— BaViy) + Bos®
= Vo + Ba(6* — 14)).



50 Vu,s—f/n >0 < p2, 5> pi, (unless pyg 5 = 0). In other words, the above observations

about variance and covariance also apply to the correlation.

3. DPortfolio Analysis with Estimation Risk

3.1. The Bayesian Approach

Let @7 denote the combined sample of returns, ®7 = {Ri1, .., Ris1; Rsy..., Ry}, Con-
sider an investor with a one-period investment horizon who, after observing this sample,
must make an investment decision at the end of period 7', It is assumed that the investor
finds the historical evidence useful and assesses the characteristics of potential investments
in terms of the conditional distribution p(Rr41|®7). In the multivariate normal setting, if
the historical sample were infinitely long, or if the investor somehow otherwise knew the
true values of £ and V, then p(Rr,;|®7) would simply be the multivariate normal density
with those parameters. In practice, the sample ®7 contains information that is useful to the
investor, but, even after observing that sample, the investor does not know the true values of
E and V. Thus, part of the risk that the investor rationally perceives arises from parameter
uncertainty, or “estimation risk,” which would be neglected if the investor were simply to
view, say, the maximurmn-likelihood estimates as if they were the true parameters. Moreover,

in the presence of estimation risk, p( Ry, |®7) is generally not a multivariate normal density.

As illustrated by Zellner and Chetty (1965), Klein and Bawa (1976}, and others, portfolio
opportunities can be assessed in a Bayesian framework, wherein the conditional distribution
p(fr41|®7) is obtained using standard Bayesian principles. Before observing the sample &7,
the investor has beliefs about £ and V represented by the prior density p(E, V). The prior

density is specified here as
p(E, V) o [V]75F, (30)

which is the standard diffuse prior used to represent noninformative beliefs about the pa-
rameters of a multivariate normal distribution.” The likelihood function in (5) is the density
p(®7(E, V), and the investor uses this likelihood function along with ®7 to form updated
beliefs about E and V| represented by the posterior density,

p(EaVI(DT) O<P(E:V)p((I)Tlil-EaV)' (31)

To obtain the conditional density p(Br1|®7), known as the Bayesian “predictive pdf,” the

“See, for example, Box and Tiao (1573).



posterior in (31) is first multiplied by p(Rr41|E,V, ®7) to obtain
P(Rry1, B, V|0r) = p(Rr 41 |E, V, ®7) p(E, V|®7). (32)

Integration of the joint density in (32) with respect to £ and V then gives the predictive
pdf,

(R ®7) = /E ]V p(Rrss, E,V|0r)dEQV. (33)
This predictive pdf can be used to determine the portfolio that satisfies a given investment
objective, such as maximizing the expected value of a utility function. The Appendix pro-

vides the predictive pdf for Rry, that follows from the prior in (30) and the likelihood

function in (5).

3.2. The Mean-Variance Setting

The examples presented in this study are confined to investment ob jectives involving only the
first and second moments of returns. As is well known, a mean-variance characterization of
investment opportunities is often a somewhat arbitrary simplification. For example, a mean-
variance objective function is not necessarily consistent with expected-utility maximization.®
A mean-variance framework is used here simply as a familiar setting in which to illustrate

the essential aspects of investment analysis when assets’ histories differ in length.

These first and second moments of the predictive pdf for Bryq,
E = E{Rr4,}®7) (34)

and

V = cov{ R4, Ry |97}, (35)

are given in the following proposition.?

Proposition 2. Given the prior density in (30), the Lkelihood function in (5), and the
sammple &7 = [¥1,Y, 5], then
E=F (36)

SIndeed, except for the case of quadratic utility, a mean-variance objective is likely to provide only
an approximation in this framework. In particular, the predictive distribution p(Rry:|®r), given in the
Appendix, does not appear to belong to the class of elliptical distributions, for which mean-variance analysis
can be given an expected-utility justification (see Ingersoll (1987)).

9Barry and Brown (1985, pp. 409-410) give moments of the predictive pdf in the case where the true
covariance matrix V is known and the prior for E is diffuse. They state that £ then contains the sample
averages of each asset’s return, but such a result would appear to hold only in cases where the histories of
returns on the first V), assets do not overlap with the histories of the Ny assets (contrary to the authors’
notation) or where all elements of Vo are assumed to equal zero.



and

v R]_t _ fkll IH/IZZ

V_COV{[thJ,[R;t ;t][(I)T}_ l:f/}zl 1[;—22}7 (37)
where T+1
W= (s ) Vin (38)
~ T+ 1 - ,
Vo = (75 ) o (=), (39)
T+1 s A

‘/22—512 EZ+(T—1’V—2) BQVilBZ; (40)

= (szm=) 1+
S Wy v

1 T+1 e
< [1 + (m) tr(ViTsVin) + (Er - By s) ViTs( By — El,s)D » o (41)

and “tr” denotes the trace operator.

Proof: see Appendiz.

Observe from (36) that estimation risk does not affect expected returns, in the sense that
the mean of the predictive pdf is simply the maximum-likelihood estimate of F. Uncertainty
about the true expected returns does contribute to the estimation risk incorporated in the
predictive pdf. Estimation risk is reflected in the covariance matrix of the predictive pdf,
in the sense that V exceeds the maximum-likelihood estimator V7 by a nonnegative-definite
matrix.'? Estimation risk also affects the shape of the predictive pdf, in that p(Rryy|®7)
is not a multivariate normal density, although this effect does not enter the mean-variance

portfolio setting assumed here.

4. Multiple Starting Dates

Although the analyses in the preceding sections allow an arbitrary number of N agsets,
each asset’s history is assumed to begin at one of only two possible dates. This section
generalizes those analyses to include a larger number of J starting dates; the empirical
examples presented in the next section includes such a case. Readers who are uninterested

in the details of the methodology can skip to the next section.

®This follows from the observation that the scalar quantities in (38)-(40), T—T;“\}l_—z and ks, are greater
than 1, and those quantities are replaced by 1 in computing V in (13)-(20).
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For j = 1,...,J, let the vector R4 contain the returns on N; assets in period £, and
assume that the overall sample ®; includes S; observations of these returns for periods
T—-S5;+1,...,T. The assets are ordered such that 51> 8, > > 87, and we assume,
as before, that the first observation of B+ corresponds to period 1, so Sy = T. The total
number of assets is given by N = ijl N;.

Let the vector Rpj¢ contain the returns on the first Nyjp=N+ Ny+ -+ N; assets in
pertod ¢,

Ry, = { Rpe Ry o Ry, (42)

for t > T — S;. As in the previous analysis, it is assumed that, for j = 1,...,J, each

observation R[;, is drawn independently from a multivariate normal distribution with

By
Ey
E{fuc} =B = |, | (43)
E;
and
Vi Vi o Vg
, Var Var - Vi
COV{R[j],t’R[j]'t} = I/[J] = . - : , (44)
Va Vi ooV

where the moments for the entire set of N assets are denoted by £ = Ejjjand V = Vin.

Thus, the likelihood function can be written as

p(Or|E,V)

2| T 1 1/2 1 1
= II| II ((Z—WWWMI” /% exp {—'é(Rm,t — ) Vi (R — Em)})

i=1 [t=T-5;+1

; (43)

where, for notational conventence, Sy, = 0.

As before, the analysis is facilitated by a set of regression statistics. For the most recent
S observations, § < S, define

ST -541 ) T—541
Rir sy l.r-s42 .
Yis= »e y Y[i)s = ) , J=1,...,J (46)
;’T REJLT

A regression of R;,; on Rp;_11, estimated using the most recent S; observations, produces a

coefficient matrix

) , s &
Ci = (Xp.s, X1,s;) " Xy s, Vi, :[ 5 J 47
7

11



where &; is N; x 1, Bj is Ny x (Ny+ Ny + -+ N;.q), and
X[j]:sj = [ LS.‘." }/[j_llss_r ] * (48)

The disturbance covariance matrix estimated using the fitted residuals is

- 1

i = g, ~ Xs, CiY (Y5, — Xis,Cy). (49)
J

The matrices %; and (X(.5,X(0,5,) are assumed to be nonsingular, which requires that
S; > max(Nj, Njj—yj). For the Bayesian analysis, it is assumed also that S; > N—Ny_yg+2,

so the requirements for S; can be summarized as
SJ' >max(N[j_1], N—N[J-_U-I—Q), 1=1,...,J. (50)
The statistics &;, }_ﬁj’j, and Ej, computed for j = 2,...,J, are useful in computing the

maximum-likelihood estimates of E and V as well as the moments of the Bayesian predictive
pdf of Ry ;.

Proposition 3. Given the likelihood function in ({5), the mazimum-likelihood estimators
of £ and V are

2 e Ve e Vi
. E . Vi, Vo v Vi
E=] "7 aed v=| 7 " W (51)
EJ f/h f/JQ VJJ
where
By = By = =Y pr, (52)
. N 1 -
Vie = Vi = m(Yr —a &) (Yir = o BY), (53)
and, forj=2,...,J,
EJ =a&; + BjE[J—l}? (54)
: By
Eg=1 .| (55)
i
and i R
i Vi Y, A
=l Vol | W VB (56)
BiVlj-y I+ BJV[J—UB;

Proof: see Appendiz.
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In addition to the statistics defined above, a set of truncated-sample moments is used in

the computation of the moments of the Bayesian predictive pdf. For 7=2,...,J, define
3 bl
N 1 ,
Ej-ns, = o Yo s, 0, (57)
M
and .
Vi-us, = (Vs = 05, Bynys,) (Vimags, — 15, Bfpys,) - (58)
2

Proposition 4. Given the prior density in (30), the likelihood function in (45), and the
sample ®r = {Y;s .7 =1,...,J}, then

E=EB{Rr|0r} = E (59)
and N N )
Vit Vi Vig
- Vor Voo o W
V = cov{Rrp, By, |07} = :21 :2_ ) :2J 7 (60)
Vi Vi Vi
where -
- ~ + -
Vii = Vfl] TN 21’117 (61)
and, forj=2,...,J,
[ [:/11 :’12 1:/13.
- , Var Vap oo Wy
T COV{R[j}:T+1?R[j},T+lch)T} = . . .j
~j1 Vi - Vi;
. fi-1 V-85 } (62)
| BiVy-y &8 + BBl |
where
Sj 1 n .
= T4+ — [l +tr (VI Vi
" (Sj — N+ Nj_q —2) ( * 5; [ (Vo s, Vii-u)
+ (Emr) = Ejioags, ) Vit s, (Blyoy — E[j~1],5;)]) : (63)

Proof: see Appendix.
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5. Example 1: Mean-Variance Efficiency

5.1. The Optimization Problem

Assume that R; denotes the vector of the returns on the N risky assets in excess of the
return on a riskless asset, Rs,. Let w denote the N-vector of weights invested in the risky

assets, so that the return on the investor’s overall portfolio p is given by
RP,T+1 = Rf‘t + L(J’RT+1. (64)

The investor’s optimal portfolio w* is assumed to be the solution to

A
max (E{Rp,T+1|‘I’T} Y Vaf{Rp,THl‘I’T}) : (65)

Thus, the optimal portfolio is assumed to be mean-variance efficient. Grauer and Hakansson
(1993) present evidence suggesting that (63) can provide a reasonable approximation to an
expected-utility maximization over short investment horizons.!* The parameter A will be
referred to as the investor’s relative risk aversion, defined with respect to the investor’s utility
of wealth at the end of period 7' + 1.2

The solution to {65) is easily verified to be

1
where .
- Vi 67
By (©7)
and N
V= TE (68)
TV

As is well known, the N-vector 4 contains the weights in the portfolio of risky assets hav-
ing the maximum Sharpe ratio, the “tangent” portfolio, and ) is the ratio of the tangent
portfolio’s expected excess return to its variance, or the “price of risk.”'? The overall opti-
mal portfolio is constructed by investing the fraction AfA in the tangent portfolio and the
fraction (1 — A/A) in the riskless asset.

"'Although such scenarios are not encountered here, Klein and Bawa (1977) observe that, for assets
with short enough histories, so that the estimation risk for those assets essentially becomes very large, an
expected-utility maxirnizer will, under certain additional conditions, choose to invest nothing in those assets,

20f course, such a characterization is also only an approximation, given a mean-variance approximadtion
to the expected-utility objective. This point is also discussed by Grauer and Hakansson (1993).

13Gee, for example, Ingersoll (1987). A portfolio’s Sharpe ratio is its expected excess return divided by its
standard deviation of return. Technically, ¥ gives the portfolio with the highest absolute Sharpe ratio, and
it 15 also assumed that Ljvf"lEﬂ' # 0.
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If all N assets have return histories of the same length T, then

~ T+1 .

V_(Tﬂ—N—Q)V’ (69)
which can obtained using (36)-(40) and then setting S = T. Tn that case, ko in (41) simplifies
tott

T+1

(i )

With (69), 7 in (67) can be rewritten in terms of the maximum-likelihood estimators £ and

v,

1 . 1 A2
',r’ = —Nﬂ-—~I/r_1E = —A_,.V—IE. (71)
VIR WVE

In other words, when all assets have equal-length histories, allowing for estimation risk does
not affect the weights in the tangent portfolio: treating the maximum-likelihood estimates
as the true parameters gives the same weights as using the Bayesian predictive distribution.
This special case corresponds to the setting in Klein and Bawa (1976), who make the same
observation about the irrelevance of estimation risk in computing . As those authors ex-
plain, allowing for estimation risk simply lowers the fraction invested in the tangent portfolio,

since the price of risk in (68) can then be rewritten as

B T~ N -9\ ~E
2 ( ) ! (72)

A= o = —.

7'V T+l /yvy
In the more general setting, where assets have histories of different lengths, both v and A
are affected by estimation risk, since V is then no longer simply V multiplied by a scalar, as

in (69).

5.2. The Sample

The above optimization problem is illustrated here for an asset universe consisting of U.S.
Treasury-bills, assumed riskless, and three risky index portfolios (N = 3): Standard & Poor’s
composite index (USA), Morgan Stanley Capital International’s index for Europe, Australia,
and the Far East (EAFE), and the International Finance Corporation’s composite index for
emerging markets (EMERGE). The returns on each index portfolio are computed as monthly
U.5.-Dollar returns in excess of the return on a one-month U.S. Treasury-bill.'* The IFC
emerging-market returns are available beginning in January 1985, whereas the data for the

S&P and EAFE indices are available earlier. The EAFE returns are available beginning

“When T = $, then £ = El,s and tr(TA/I_llsf/n) =N - Ng.
15The data for this study were obtained from CRSP and Datastream.
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in January 1970, and, in order to simplify this example, that month is selected as the first
observation for returns on the S&P as well, even though returns on the latter index are
obviously available well before that date. Data for all three series are included here through
December 1995. Thus, in this example, Ny = 2 and T = 312, as determined by the sample
period of 1/70-12/95 for the S&P and the EAFE indices, while N, = 1 and § = 132, as
determined by the sample period of 1/85-12/95 for the emerging-markets index.

5.3. Parameter Estimates

Table 1 reports the means, standard deviations, and correlations for the Bayesian predictive
pdf. Maximum-likelihood estimates of those parameters are also reported. As discussed
previously, the means of the predictive pdf are identical to the maximum-likelihood estimates.
When the truncated sample is used (panel B), the correlations for the predictive pdf are also
identical to the maximum-likelihood estimates, since the variance-covariance matrix of the
predictive pdf is then simply a scalar multiple of the maximum-likelihood estimate, as given
in (69). In that case, the weights in the tangent portfolio +, shown in the last column of
table 1, are the same under the two sets of parameter values, as noted previously (equation
(71). With the combined sample (panel A), the correlations from the predictive pdf differ
from the maximum-likelihood estimates, so the weights in the tangent portfolio differ as
well. In general, however, we see that the parameters and tangent-portfolio weights from the
Bayesian predictive pdf are quite close to the maximum-likelihood estimates. In other words,
with only three assets, where the shortest history is 132 months, the effects of estimation
risk does not appear to be substantial. In general, as will be illustrated in the example
presented in the next section, estimation risk becomes more mmportant as the number of

assets increases relative to the lengths of the assets’ histories.

This example serves primarily to illustrate the potential effects of including additional
information provided by the longer-history assets. That is, the differences in table 1 between
the combined-sample and truncated-sample results are more substantial than the differences
due to estimation risk. Observe that, for the both the USA and EAFE indices, the truncated
period from 1985-95 (panel B) produes higher estimates of mean excess returns than does
the longer 1970-95 period (panel A). Next observe that the same statement holds for the
emerging-markets index (EMERGE), keeping in mind that the data for that index do not
exist before 1985. Incorporating the additional data prior to 1985 results in: lower means of
USA and EMERGE than obtained with the post-1985 data, and, given the positive associa-

tion between EMERGE and those two indices, the pre-1985 data produce a similar revision
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in the mean of EMERGE.

The manner by which the pre-1985 data on USA and EAFE supply information about
the expected return for EMERGE follows the earlier discussion (section 2) of the differences
between the combined-sample and truncated-sample maximum-likelihood estimates in equa-
tion (21). Based on the quantities reported in panel B of table 1, it is easily verified that, in
a regression of EMERGE on USA and EAFE, the estimated slope coefficients are

B, = [ 0.344 0.234 ] (73)

Given that, during the 1985-95 period, Ry, (EMERGE) exhibits this positive association
with R, (USA and EAFE), the negative differences between the combined-sample and
truncated-sample estimates for the means of USA and EAFE produce a corresponding neg-
ative difference between the combined-sample and truncated-sample mean for EMERGE,

0.55

By~ Eys = ~By(Evs — Br) = — [ 0344 0.234 | [ 0.71

J = —0.24, (74)

using equation (21).

5.4. Portfolio Implications

Portfolio optimization provides an economic basis for comparing the various methods of
estimating the first and second moments of the return distribution. Figure 1 displays
the minimum-standard-deviation boundaries for portfolios that combine USA, EAFE, and
EMERGE. The higher means for the truncated-sample are evident in the relative positions
of the boundaries for that period. For both the truncated and combined samples, the bound-
aries based on the maximum-likelihood estimates (dashed curve) are close to those based
on the Bayesian predictive pdf (solid curve), which again reflects the relatively minor role

played by estimation risk in this three-asset example.

The last column of table 1 reports the weights in the tangent portfolio v implied by the
various sets of parameter estimates. In the combined sample, the values for v based on the
Bayesian redictive pdf differ slightly from those based on maximum-likelihood estimates,
but both approaches give portfolio weights of about 30% for USA, 41% for EAFE, and 29%
for EMERGE. As noted earlier, when all return series are of the same length, as in the
truncated sample, then computing 4 using the Bayesian predictive pdf produces the same
result as using the ML estimates. In the truncated sample, the weights are 53% for USA,
30% for EATE, and 17% for EMERGE. Thus, using the truncated sample instead of the
combined sample would place less weight in EMERGE and EAFE and more weight in USA.
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The tangent portfolio possesses the maximum Sharpe ratio within the universe of invest-
ments considered. Panel A of table 2 reports the value of the maximum Sharpe measure
as computed under the various sets of parameter estimates. The maximum Sharpe ratio is
0.240 (Bayesian) or 0.245 (maximum likelihood) using the truncated-sample estimates, but
the maximum Sharpe ratio is only 0.146 (Bayesian) or 0.148 (maximum likelihood) when
using the combined-sample estimates. Thus, an investor using only the truncated sample
would perceive a2 higher maximum Sharpe ratio than an investor who uses the combined
sample. Suppose, however, that we compute Sharpe ratios for all portfolios from the per-
spective of the latter investor, and we assume that investor also accounts for estimation risk
(i.e., uses the Bayesian predictive pdf). Panel B reports the Sharpe ratios perceived by that
investor for the tangent portfolios constructed by investors using other samples or estimation
methods. Note that the portfolio thought to have a Sharpe ratio of 0.245 by an investor
using the truncated-sample MLE’s is instead thought to have a Sharpe ratio of only 0.141

by the combined-sample Bayesian investor.

With the mean-variance objective function in (65), the optimal portfolio combines in-
vestments in the tangent portfolio and the riskless asset, where, as discussed previously, the
proportion in the tangent portfolio is equal to A/A. (Recall the discussion surrounding equa-
tions (66) to {68).) Panel C of table 2 reports this optimal proportion in the tangent portfolio,
where the tangent portfolio’s composition (v) and price of risk (A) are computed using the
various samples and estimation methods. Results are presented for three values of A—one,
three, and five. Observe that the optimal proportion in the tangent portfolio is substantially
higher when the truncated sample is used. For exampie, an investor with A = 5 invests
128% in the tangent portfolio when using the truncated sample MLE’s, whereas an investor
with the same risk aversion who instead uses the combined-sample Bayesian predictive pdf

invests only 72% in the tangent portfolio.

The value to the investor of including the pre-1985 data and accounting for estimation
risk can be assessed at time 7 in terms of the objective function in (65). Define the “certainty

equivalent” associated with any given portfolio ¢ as
A .
Cp = E{Ryr41|27} — 5 var{Rg 1}, (75)

That is, portfolio ¢ achieves the same value for the objective function as does a portfolio
providing a riskless return of C,. If the combined-sample Bayesian investor optimally chooses
portfolio p, then that investor assigns a certainty-equivalent loss of Cp — C, to a suboptimal
portfolio g. These certainty-equivalent losses, as perceived by the combined-sample Bayesian

investor, are reported in panel D of table 2, where the suboptimal portfolio ¢ is constructed
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using the truncated sample and/or maximum-likelihood estimates.

When the combined sample is used, the certainty-equivalent losses associated with using
the maximum-likelihood estimates instead of the Bayesian predictive pdf are very small, less
than 0.1 basis points per month. These results are consistent with the earlier observations
about the modest role of estimation risk in this three-asset example. Substantially larger
losses are associated with portfolios constructed using the truncated sample, ranging from 11
basis points per month {4 = 5, Bayesian predictive pdf) to over 67 basis points per month
(A = 1, maximum likelihood). Moreover, when the truncated sample is used, a failure to
account for estimation risk adds nontrivially to the certainty-equivalent losses: the differences
between the Bayesian and MLE losses range from about 2.3 basis points (A = 5) to nearly 12
basis points (A = 1). In this example of mean-variance optimization, truncating the sample
and then ignoring estimation risk results in a portfolio choice that is rather undesirable when

evaluated by an investor who uses the combined sample and accounts for estimation risk.

6. Example 2: Variance Minimization

The previous example illustrates how the the longer histories of some assets can provide
useful information about expected returns on all assets. In that example, the estimated
covarlance matrices of returns are fairly similar across the combined and truncated sam.
ples, and, in either sample, estimation risk produces relatively small differences between the
covariance matrix of the predictive pdf and the maximum-likelihood estimate of V. This
section considers an investment problem in which the optimal portfolio depends only on the
covariance matrix of returns. Moreover, in this example, the estimation risk included in the

covariance matrix of the predictive pdf plays an important role in the investment decision.

6.1. The Optimization Problem

As in the previous example, R; denotes the vector of excess returns on the N risky assets and
w denotes the vector of weights in the those assets, so (64) again gives R, 1.y, the portfolio

return. In this example, the investor is assumed to solve
min var {2, 74197}, (76)
s. b, dyw = 1. (77)

The solution to this problem is the minimum variance portfolio of the N risky assets—the

constraint in (77) excludes the riskless asset from the optimal portfolio. Defining B, as
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the vector of returns in excess of Ry; simply imposes the assumption of i.i.d. multivariate

normality on excess returns rather than total returns. Since

var{ R, 741|®71} = 'V, (78)

the solution to the optimization in (76) and (77) is easily verified to be

1 ~
W= V" 79
L;VV_}‘LN ( )
Thus, unlike the previous example, in which estimated expected returns play a key role, the

optimal portfolio in (79) involves only the covariance matrix.

When all V assets have return histories of the same length T, then the resulting simpli-
fication of V in (69) allows the solution in (79) to be rewritten with V replacing V:
1 -

E = m~— V-'lt', . 80
vV ey N (80)

* 1 r7—1

W :ﬁ——
iV hy

In other words, estimation risk does not affect the weights in the minimurn-variance portfolio
when all assets have equal-length histories, which corresponds to the same property for the
tangent portfolic observed in the previous section. As also observed there for the tangent
portfolio, estimation risk does affect the composition of the minimum-variance portfolio when

assets have histories of different lengths.

6.2. The Sample

The above variance-minimization problem is illustrated here using a universe of country-
specific index portfolios for 22 emerging markets (N = 22). The returns on each country’s
index are constructed by the International Finance Corporation (IFC) to reflect the portion
of the country’s equity market that is accessible to foreign investors.!® In this example,
the returns data for all 22 of these “investable” country portfolios extend through 12/1995,
All returns are U.S.-Dollar returns in excess of the one-month U.S. Treasury-bill rate. The
first sample month for 10 of the country portfolios is 1/1989: the starting months for the
remaining 12 countries range from 9/1989 to 11/1993. Thus, these emerging-market return
histories range in length from 84 months to 26 months.'” Table 3 lists, for each of the 22

countries, the first month of data and the number of observations.

'®See International Finance Corporation (1993).
17A few countries in the IFC universe with even shorter histories were excluded because their inclusion
would have produced violations of {50).



6.3. Parameter Estimates

Table 3 reports, for each country’s monthly excess return, the standard deviation computed
using five different methods (labeled I through V). Methods I and II use the combined-sample,
wherein the lengths of return histories differ across assets. Each of the standard deviations
from the Bayesian predictive pdf (method I) exceeds the corresponding maximum-likelihood
estimate (method II). The differences, which reflect estimation risk, often run several hundred
basis points or more. In the case of Peru, for example, incorporating estimation risk produces
nearly a two-thirds increase over the maximum-likelihood estimate of standard deviation
(23.4% versus 14.2%). Methods (III) and (IV) use only the most recent 26 months of
data for each country, so that each country’s return history is truncated to be the same
length as the return histories of China and Zimbabwe. When the investor’s information
about this set of 22 investments is confined to this relatively short period, estimation risk
becomes the dominant source of volatility perceived by the investor. The Bayesian predictive
standard deviations in that case (method IIT) are 3.7 times the corresponding maximum-
likelihood estimates (method IV).'8 Method V computes, separately for each country, the
univariate maximum-likelihood estimate of standard deviation using the history available for

each country.

Methods I1, IV, and V do not incorporate estimation risk, so differences in estimated
volatilities across these methods simply reflect differences in ex post variances {and co-
variances) across the various sample periods. By construction, methods II and V produce
identical estimates for the first 10 countries (Argentina through Thailand), which all have
return histories of 84 months. For the remaining 12 countries, which have shorter return
histories, method II produces higher estimated volatilities than method V in all but one case
(Turkey). Similarly, for the 12 shorter-history countries, method II also produces higher
estimates than method IV in all but one case (Taiwan). For the shorter-history assets, the
higher estimates produced by method IT reflect information about volatility provided by the
longer-history assets. Many of those longer-history assets experienced less ex post variance
during the more recent years than during the earlier vears. This general pattern can be
seen in a comparison of the estimates from methods 11 and IV for the longer-history assets.
Thus, for many of those assets, the ex post variance of the more recent years is too low an
estimate of true variance when compared to the estimate based on the total period. Given
that the returns on many of the 22 countries exhibit positive correlations with each other

over periods of common recent history), the ex post variances of the shorter-history assets
p Y} p Y

18Recall that, when all assets have histories of length T, the difference between the covariance matrices
from the two methods is given by (69).

21



are also judged to be too low as estimates of the true volatities. This reasoning, which is
necessarily fuzzy with many assets and start dates, follows the more precise argument given

earlier in section 2 for the two-asset case.

The upper-right portion of table 4 displays the correlations (x100) based on the combined-
sample Bayesian predictive pdf. The lower-left portion displays, for each pair of countries,
the difference (x100) between the Bayesian predictive correlation in the top portion and the
bivariate truncated-sample maximum-likelihood estimate computed using the jointly avail-
able history for a given pair (so the length of the joint history is equal to the shorter of the
two countries.) A simple approach to estimating the variance-covariance matrix might be
to combine the latter “available-history” correlation estimates with the variance estimates
based on a each country’s available history (reported under method V in table 3). Aside
from other properties of such an approach, one potential problem is that the correlation
maftrix estimated in this fashion, and thus the resulting covariance matrix, can fail to be
positive definite with three or more assets. Indeed, that is the case in this example. Thus,
this approach is not included here among those used to construct the minimum-standard-
deviation boundary or the global minimum-variance portfolio.!® The differences between
the combined-sla,mple Bayesian predictive correlations and the available-history correlation
estimates are equal to zero for all pairs from the ten countries (Argentina through Thailand)
that have data beginning in 1/89, the earliest month of the combined sample. Recall from
(69) that, for those countries, the Bayesian predictive covariance matrix is simply a scalar
multiple of the maximum-likelihood estimate of the covariance matrix, and thus the correla-
tions, are indentical under both methods. For many of the remaining assets, especially those
with the shorter histories, the values in the lower-left portion of table 4 are negative, indi-
cating that the Bayesian predictive correlation is less than the maximum-likelihood estimate

based on the jointly available history.

6.4. Portfolio Implications

The rightmost three columns of table 3 display the weights in the minimum-variance portfo-
lio, where the covariance matrix is estimated using methods I through IV. Methods I and II
both use the combined sample, but the differences in weights between these two methods re-
veal that the estimation risk not incorporated in the maximum-likelihood estimates {method

IT) plays a significant role in computing w* in (79). In this example, the weights based on the

191f the symmetric matrix A is not positive definite, then the solution to min, w’Aw s.¢. w's = 1 need not
exist and, in general, is not given by w* = (1/./A~1.)A ..
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Bayesian predictive pdf (method I) take less extreme values than the weights based on the
maximum-likelihood estimates. The Bayesian weights range from —14% to 45%, with only
one weight exceeding 25% in absolute value, whereas the maximum-likelihood weights range
from —53% to 82%, and 12 of the weights exceed 25% in absolute value. Estimation risk
does not affect the weights computed using the truncated sample (methods IIT and 1V). In
that case, the Bayesian predictive covariance matrix is then simply a scalar multiple of the
maximum-likelihood estimate, as explained previously, and the solution in (79) is unaffected
by a scalar multiplication of V. The weights produced here by methods 11l and 1V also
take more extreme values than those in method 1. In this example, those truncated-sample

weights resemble fairly closely the weights produced by method II.

Table 5 reports the global minimum standard deviation computed using the various
methods. For each method, the standard deviation is computed two ways. The first, shown
in panel A, computes the minimum standard deviation using the covariance matrix obtained
under the given method. For example, suppose the combined-sample maximum-likelihood
estimator V is used (in place of 17) to compute the minimum-variance portfolio (79), and
the vector of resulting weights is denoted & (given earlier in table 3). Then (&'V&)Y/? equals

2.31%, as reported in the second column of panel A.

Each value in panel A of table 5 corresponds to the leftmost point on the minimum-
standard-deviation boundary constructed with the moments obtained by the given method.
These boundaries are displayed in figure 2. When maximum-likelihood estimators are used,
the boundary based on the combined sample (IT) lies close to that based on the truncated
sample (IV), but the leftmost points of both boundaries lie at least 150 basis points to the
left of the minimum standard deviation of 3.8% for the combined-sample Bayesian predictive
pdf (I). Thus, in this example, estimation risk has a larger effect on volatility than does the
inclusion of the additional data in the combined sample. When only the truncated sample
is used and estimation risk is incorporated, then the resuiting minimum-standard-deviation
boundary (IIT) lies quite far to the right, with a global minimum standard deviation of
about 7.5% per month. Unlike the minimum-standard deviation boundaries computed in
the previous example (figure 1), the vertical locations of all four boundaries in this example
are similar. In other words, whereas the first example served principally to illustrate how
perceived portfolio opportunities can be affected by differences across methods in estimating
expected returns, such differences exert less influence on the opportunity sets constructed in

this example.

Panel B of table 5 displays the standard deviations of the same portfolios constructed for
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panel A, but the standard deviation of each portfolio is now computed from the perspective
of the combined-sample Bayesian investor. If, for example, & still denotes the vector of
weights obtained when V is used in (79), then the value in the second column of panel
B, 6.09%, is equal to (&'V@)Y2. The results in panel B again reveal the dominant role
of estimation risk in this example. To the combined-sample Bayesian investor, the global
minimum standard deviation is less than 4 percent, but the portfolios constructed using
the other three methods have standard deviations between 6 and 7 percent. This second
example differs in many respects from the first but reaches a similar conclusion: the portfolios
constructed by the other methods are viewed as substantially suboptimal by an investor who

uses the combined sample and incorporates estimation risk.

7. Performance in Repeated Samples

The examples in the previous two sections illustrate the conditional Bayesian decision ap-
proach, wherein the predictive pdf of returns, and thus the investor’s portfolio decision, are
conditioned on the single observed sample. As demonstrated in the examples, the predictive
pdf can be used by the conditional Bayesian investor to assess the relative merits of various
alternative portfolios, such as portfolios formed by methods that truncate the sample or

ignore estimation risk.

Another approach to comparing portfolios formed by various methods is to view each
method’s portfolio selection as a function of the sample and then to compare the perfor-
mances of the methods across repeated random samples. In that approach, the typical
performance of each method across repeated samples is computed based on one or more
assumed true sets of return moments, a computation that essentially yields the frequentist
“risk” function.®® TIn practice, the true moments of returns are unknown, and an investor
engaged in asset allocation might observe only one sample per lifetime (although that sam-
ple might get updated). Nevertheless, studies of portfolio selection methods often report
repeated-sample comparisons, and such an analysis is included here in order to provide a

broader perspective on the proposed methodology.?!

“Let w(®) denote a portfolic decision rule, a function of the sample ®, and let L{(8,w(®)) denote the
loss associated with a given sample @ and given parameter vector 8. The portfolio rule’s risk function r(4),
defined on the parameter space ©, is given by r(8) = E{L(#,w(®))}, where the expectation is taken with
respect to the distribution of ®, given #. Berger (1985) compares approaches based on frequentist risk to
those based on conditional Bayesian decision principles.

1 Previous studies that investigate the frequentist risk of various portfolio-selection methods include Brown
(1979), Jorion {1986), and Frost and Savarino (1986).



This section reports two repeated-sample experiments, each corresponding to one of the
two examples presented earlier. In the first experiment, excess returns for three risky assets
are generated by a multivariate normal distribution whose moments are set equal to the
combined-sample maximum-likelihood estimates reported in table 1. Each generated hypo-
thetical sample of monthly returns has the property that, as in the actual sample in example
1, the first two assets have 312 observations (corresponding to the period 1/70-12/95 for
USA and EAFE), whereas the third asset has only 132 monthly observations (corresponding
to the period 1/70-12/95 for EMERGE). For each generated sample, the welghts in the op-
timal portfolio are computed under each of the four methods analyzed previously (cf. table
2), but the certainty equivalent for each portfolio is computed based on the assumed true E
and V used in generating the returns. For example, let w* denote the weights in the opti-
mal combined-sample Bayesian portfolio p, which is the solution to (65) where ®1 denotes
the generated sample. Then, rather than using the predictive pdf to compute the certainty

equivalent for w*, as in (75), the certainty equivalent is instead computed as

A
¢, = E{Rp,t} - 'é‘V&r{Rp.t}
: A
= R_f,t + Ld* E — ;w‘ Vw*, (81)

where £ and V denote the assumed true moments.?? In this experiment, relative risk aversion
{A) is set equal to 3. These calculations are repeated in each of 5000 independently generated

samples.

The results of the first experiment are summarized in table 6. Panel A reports, for each
of the four methods, the certainty-equivalent loss relative the optimal portfolio constructed
using the true £ and V. These results indicate, in a sense, the extent to which an investor
loses by not knowing the true F and V. We see that, although such losses are fairly sub-
stantial across all methods, the combined-sample Bayesian method typically produces the
smallest losses. The mean loss for that approach is about 24 basis points {bp) per month,
and mean losses for the other methods range up to about 44 bp, for the truncated-sample
maximum-likelihood method. In panel B, the certainty-equivalent loss is computed relative
to the combined-sample Bayesian portfolio. That is, the loss is the certainty equivalent for
that portfolio minus the certainty equivalent for the portfolio based on one of the other
three methods, where the certainty equivalents for both portfolios are computed as in (81),
again using the true £ and V. The mean loss for the combined-sample maximum-likelihood

method is less than 2 bp, but the two truncated-sample methods have mean losses of 15.5

22Gince only differences in certainty equivalents are reported, the riskless rate Ry, dreps out and need not
be specified.
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bp (Bayesian) and 19.4 bp (maximum likelihood). Thus, as observed previously for the pre-
dictive pdf based on the actual data, ignoring estimation risk in this example is not as costly
as truncating the sample. In fact, the mean losses reported in panel B, which are based
on certainty equivalents computed with the assumed true moments, are quite similar to the
certainty-equivalent losses reported in panel D of table 2, which are based on the Bayesian

predictive pdf for the actual sample.

The second experiment corresponds to the variance-minimization in example 2. Returns
are generated on 22 assets, and the lengths of histories for the assets are the same as those of
the emerging-market country indices in that example. As in the first experiment, 5000 inde-
pendent samples are generated from a multivariate normal distribution, and the true E and
V for the 22 assets are assumed to be equal to the combined-sample maximum-likelihood es-
timates for the actual data. For each generated sample, the weights in the minimum-variance
portfolio are computed using the various methods, and then the standard deviations of the
portfolios are computed using the assumed true covariance matrix V. Panel A of table 7
reports the differences between these standard deviations and the true minimum standard de-
viation. The combined-sample Bayesian portfolio has a standard deviation that, on average,
exceeds the true minimum standard deviation by 2.91%. In contrast, the combined-sample
maximum-likelihood portfolio’s standard deviation exceeds the true minimum by 4.23%, and
the corresponding difference for the truncated-sample portfolio is 3.77%. (Recall that, for
the truncated sample, the Bayesian and maximum-likelihood weights are identical.) Panel B
of table 7 reports the difference between the standard deviation of the portfolio constructed
by the indicated method minus the standard deviation of the combined-sample Bayesian
portfolio, where both standard deviations are based on the assumed true covariance matrix
V. The mean differences are 1.31% for the combined-sample maximum-likelihood portfolio
and 0.86% for the truncated-sample methods. Thus, as observed previously for the predictive
pdf based on the actual data, failure to account for estimation risk, even when the combined

sample is used, results in a substantially higher volatility.

8. Concluding Remarks

When some assets have shorter return histories than others, it is neither necessary nor
desirable to truncate the sample so that the lengths of all return series are determined by
the length of the shortest series. In general, the data in a longer-history asset can provide
information about the parameters of that asset’s returns as well as the parameters of other

assets’ returns. This point is illusirated here in the context of an i.i.d. multivariate Normal
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model, but it is likely that the same concept can be demonstrated in other stochastic settings,

such as where conditional first or second moments fluctuate through time.

The basic factorization approach exploited here in deriving closed-form analytic results
(see Appendix) requires that the time periods covered by the various series can be arranged as
nested subsets.®® When this nesting property fails, such as when one series has both an early
starting date and an early ending date, then the return moments can be obtained numer-
ically using data-augmentation methods, such as the E-M algorithm (to obtain maximum-
likelihood estimates) or the Gibbs sampler (to obtain the Bayesian predictive pdf).2* With
more complicated stochastic settings, analytical results could be difficult to obtain at all,
whether or not the series are nested, and these numerical approaches could then be useful

in general.

The concept of using the combined (non-truncated) sample could also be extended to
the problem of making inferences about a pricing model or a given portfolio’s mean-variance
efficiency. In a frequentist setting, the likelihood function employed here could also be used
to construct a likelihood-ratio test (LRT) of the efficiency of a given portfolio, where the
parameter restrictions are the same as those investigated in previous studies. For example,
Gibbons, Ross, and Shanken (1989) derive the finite-sample distribution of the LRT statistic
when all assets have equal-length histories; the finite-sample behavior of the LRT in the case

of unequal-length histories presents a topic for future research.

In a Bayesian setting, the posterior distribution of the parameters of the return distri-
bution (given in the Appendix) could be used to obtain the posterior distribution of a given
portfolio’s degree of mean-variance inefficiency. Studies by Shanken (1987), Harvey and
Zhou (1990), and Kandel, McCulloch, and Stambaugh (1995) investigate this problem in
samples where all assets have histories of equal length. When one selects ex ante a portfolio
whose degree of inefficiency is of particular interest, then the diffuse prior distribution in (30)
should probably be replaced by an informative prior constructed with attention given to the
implied prior beliefs about the degree of inefficiency in the selected portfolio. Otherwise, as
demonstrated by Kandel, McCulloch, and Stambaugh (1995), the implied prior beliefs about
any given portfolio are concentrated toward gross inefficiency, such that a very large sample

is required in order to infer that any portfolio is close to being efficient.

#3See Little and Rubin (1987) for a deeper discussion of maximum-likelihood estimation in this case, where
those authors use the term “monotone data” to denote the nested-subset property.
**See Tanner (1993), for example, for a discussion of such methods.
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APPENDIX

This appendix derives the Bayesian predictive pdf of Ry.; as well as the first and second
moments of that distribution. Proofs are given for the general setting with J starting dates
(proposition 4); the result for two starting dates follows directly as a special case (proposition
2). Also included is a summary of Anderson’s (1957) method for computing maximum-
likelihood estimates (proposition 1), which is straightforward to generalize to the setting
with multiple starting dates (proposition 3). The change of variables employed in that

method also facilitates the the derivation of the Bayesian results.

For j = 2,...,J, define the change of variables

Bi=|Va Vi - Vi V[j_'"lll , (A.1)
aj = B — BiEj;_y, (A.2)

and
Y= Vi — BiMnB; . (A.3)

Let # denote the vector of original parameters in £ and V, and let £ denote the vector of
parameters in £y, V1; and {o;, B;, Z;;7 = 2,...,J}. The vectors 6 and ¢ have equal numbers

of elements, and the Jacobian of the transformation is given by

a

3—6’ = |V11|N2|V[2}]Ns...H/{J_IHNJ

— |VHIN;+NJ_1+---+N2|22|N1+NJ_1+---+N3 e iEJ_2|NJ+NJ—1 ‘EJ_IINJ
= VY NN NN, N (A4)
which can be verified using equations (A.1) through (A.3) and the relation
Val = M-l Vi - BiW;- Bj]
= [Vi-nl 15, (A.5)
for j =2,...,J, where the first equality in (A.5) uses {44) and (A.1) and applies a standard

result for the determinant of a partitioned matrix (e.g., Anderson (1984, theorem A.3.2)),

and the second equality uses (A.3). The relation in (A.5) can also be used to write
Vi= WVl [Za] 241, (A.6)

Using (A.4) and (A.6), the prior for # in (30) is translated into a prior for £ given by

a0

p(§) = p(ﬂ))a—f,




VIS VN Y[ gV Po-a[ NN
J
|VH|%(N—2N1—1) H |Ej!§(N—2NU]—1)_ (A.T)
i=2
Following Anderson (1957), the change of variables in (A.1) through (A.3) allows the

likelihood function in (45) to be rewritten as

J
p(@Tlé) = p(}/l,Tlé)Hp(}/j,sjuf[j-—l],.sj_ng)

7=2

J
= Y’IT|E131V11 HP(Y;S l}f[] 1], aijjan)

T 1 ' P
[VHI_? exp{ —=tr(Yir — e E))' (Yo7 — LTEl)Vul %
2

J 5 1 ,
H |Ej|_3l exp {——Q"tl'(y;,sj — XU],SJCJ) (}/jng —_ XU]:S;' CJ)EJ_I} N (AS)
F=2
where )
C; = [g } (A.9)

Standard results for the multivariate normal model imply that maximizing the first factor
in (A.8) with respect to £y and Vi; gives the solutions in (52) and (53). Similarly, standard
results for the normal multivariate regression model imply that, for j = 2,. .. ,J, maximizing
the ;™ factor in (A.8) with respect to C; and X; gives the solutions in (47) and (49).
Reversing the change of variables in (A.1) through (A.3) then gives the maximum-likelihood
estimators in (54) through (56).

Both the prior in (A.7) and the likelihood function in (A.8) are expressed as products of
J factors, where any given element of ¢ appears in only one factor. Therefore, the posterior

distribution for ¢ exhibits a similar property:

p(€l®r) o p(&)p(Prlé)
J
& P(El: Vi1|Y1,T) HP(Cj,Ej“/j,SJ,Y[j—-l],Sj)g (AlG)

j=2

where

Li+Ny +1 1 e _
PUEL Valtir) o V5% ep {—Sor (Var — i B (Var — BV}, (11

p(C}, 5515 s,, Yon.s,)
Li+N +1

_ L4t 1 . _
o |Z;TTTT exp {—§tr (Yis, — Xin,5,C3) (Yis; — X5, Ci)E; 1} ;
F=2...,J,  (A.12)



and
LjZSj—N-}-QN[ﬂ—Nj, g=1,...,J (A.13)

A useful property of the factorization in (A.10) is that each of the posterior distributions
in (A.11) and (A.12) is easily analyzed in a standard setting. For example, it is straightfor-
ward to verify that, for j = 2,...,J, (A.12) can be rewritten as

p(C}, 55 Yss,, Yos,)
L4 N +1

1N, 1 s, S e
o |ETTE eXP{*§tf[Qj+(Cj_Cj)Aj(Cj—Cj)]le}, (A.14)

where
Aj = X35, X5, (A.15)

and

Qi =55 (A.16)
The right-hand side of (A.14) is identical to the posterior distribution for C; and £, in the
standard multivariate regression model where a sample of length L; generates (i) a matrix
of cross-products of the independent variables equal to Aj, (ii) a matrix of least-squares
coefficient estimates equal to C’j, and (i) a matrix of cross-products of fitted residuals equal
to ;.7 Therefore, known results for that standard model imply that the predictive pdf for

Rj741, conditional on Rf;_1) 741, is a2 multivariate Student # density:?

PR 41| B 1)1, P7)
= P rnlBy-ri, Vs, Yi-ns, )
X [v; + (Ryren =~ f3041) Gy (R — fijpgn )] Witn)/2, (A.17)

where
Bizi = Clagra, (A.18)
Gi =1 =2prnld + 2prne) ) e rnlvQ; T (A.19)
e = (L Byl (A.20)

#3Gee Zellner (1971), pp. 224-227. The diffuse prior used in that standard model is
Ni41
p(C X)) o {Es]7 77,
whereas, from (A.7), the marginal prior on those parameters is

N=2N|) 41
PO L) & [E; 7= .

%58ee Zellner (1971), pp. 233-236.
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and

v, = Lj — Nﬁ_l] - IVJ,;
= Sj - N+ N[J'_I]. (A.Ql)

The first two moments of the above conditional distribution are given by properties of the

multivariate ¢ distribution:**

E{f;ralBy 71,7} =

= &j+BjR[j—1],T+1 (A22)
and
’ v; -
cov{ R s, Byl Bjon)7e1, Pr} = 50
I
Sj 1 -
= 14+ =—[14u]) 5 .
%_2( +SJ +%02m (A.23)
where
uj = (Bynra — Eyous, ) Vil s, (B e — Ejyiys,). (A.24)

Similarly, the posterior for £, and Vi, in {A.11) can be rewritten as

L+ Ny+1 1 - .
PEVulYii) o Wil e {50 [00 = (B - Bt - Byt Jazs)

where
Al = T (A.QG)
and
Qu=TV. (A.27)

As in the previous case, the posterior in (A.25) is identical to that obtained in the standard
multivariate regression model in which a sample of length L, generates (1) a matrix of cross-
products of the independent variables equal to A, (ii) 2 matrix of least-squares coefficient

estimates equal to E{, and (iii} a matrix of cross-products of fitted residuals equal to (;.%

“TSee Zeliner (1971), pp. 331-332 and page 383.
1In this case, there is only one independent variable, and that variable does not involve R for j > 1.
The diffuse prior used in the standard model is

Nitt
p(Ey, Viy) o |Vq|” 77,

whereas, from (A.7), the marginal prior on those parameters is

N=3Np 41
p(Ey, Vi) o |V |77 .
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Therefore, following the same analysis as before, we obtain
P(B174/®7) o 11 + (Ryria — E1)'Gi{Rugan — £y itz

where
Gr =1 = (T+ 1) Q7
vy = Ly — Ny,

and the first two moments of this predictive distribution are given by

Ey = B{Ri741|®1) = B,

and
Vi = cov{Bupn, Rizaler} = 567
The predictive pdf for Ry, can be factored as
P(Rr11|®7) = p(Ri741|97) f_[zp(Rj,TH |Ry—1.r41, Pr),
ol

(A.32)

(A.33)

so this density can be obtained simply by multiplying the densities in (A.17) and (A.28).%

This joint density’s first and second moments can be obtained progressively. At each step
7, for 7 =2,...,J, the moments of ;741 in (A.22) and (A.23), which are conditioned on

Rpi_q,741 as well as @7, are combined with the moments of B;-1),741 that are conditioned

only on ®7. In the first step, where j = 2, the moments of Ry 741 conditioned on ®7 are

given in (A.31) and (A.32). Applying this approach to obtain E;, the mean of R; 141, gives

B{#;r1|®r} = EB{E[R;r1|R;1141, 7]|07)
= B{&; + BjR[j—II.THl‘I)T}
- éj + B_;,Eb..l]

(A.34)

Applying (A.34) progressively for j = 2,...,.J and making use of (52), (54), (55), and (A.31)

establishes (59). The same analysis gives

E[J] = E{Ry 11|01} = E[j], 7=1,..., ./

*The product of the normalizing constants is equal to

( VT + m)/z}lclllﬂ) I ( v + Nj)/zncji”g)
J

wNU2D () /7) N2 (v /2)

=2

(A.35)



Computing the variance-covariance matrix of Rj 711 relies on the variance-decomposition

rule,
Vi = cov{Riri1, Rjpy|0r)
= E{COV[RJ;,T_l_l, R;’T_,_IIRU-»]],T-I-I;(DT:H@T}
+ coV{E[f;r | Ry, O7), E(Riz il Ryjoyren, 870|872}, (A.36)
From (A.23), computing the first term on the right-hand side of (A.36) requires the expec-
tation of u;, which can be rewritten as
v = Vi;r— 1],5; (R[j—l],T+l - g 1 )(RU 1,7+1 — [J'—ll)f
+ 2 (E{j—ll - Eb’—llssj) V[; 11,5; s; 111,741
+ Efj—I],S; 1[A/Lf:ll],s,-E[J'—ll.Sj - E{j—UVU-l],sjEij—lIa (A.37)
and, using (A.35) and the definition of V,_y; in (62),
E{u;|®7} = tr (V 1.3, V[J 1) +2 (E[J 1] — E[J ) - 1]5 E[J
+ E[J 1.5; V{J 11,5; E[J 1l E[J 1 Vu_ 1].5; E[i—l]
= (V_ 11,5, V[J 1])
+ (Ejjany — Eu—ll.sj)'V[f_lu,sj(Eu—u — Ejjays,)- (A.38)
Therefore, combining (A.23), (A.21), and (A.38) gives
EfcovRirs1s Bl Byonra, @101} = 5,5, (A.39)
where «; is defined in (63). From (A.22), the second term on the right-hand side of (A.36)
is equal to
oV {E[R 1| R-ur1, O], E[R; 141 [Ry—1y 141, O]/ |01}
= cov{BjRy_1 141, Rlj_yy 741 B} 81}

= BjV-nB. (A.40)
Combining (A.36), (A.39), and (A.40) gives
Vi=w;S + BV Bl j=2,...,J (A.41)

The covariance between R, 1.y and Ri;13,741 18 computed as

COV{R[J 11,T+1, R}.T+1|‘I’T} = COV{RU—l],Tﬂa E[Rj,TH!RU*l],TH’(I)T],'(I)T}
= cov{R_i 141, Blj_yy e Bi|®r)
= I;[j—l]B;: J=2,0, (A'42)

using (A.22). Finally, combining (A .41) and (A.42) gives the result in (62).
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Table 1
Parameter Estimates and Tangent-Portfolio Weights

The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Mor-
gan Stanley Capital International’s index for Europe, Australia, and the Far East (EAFE),
and (iii) the International Finance Corporation’s composite index for emerging markets
(EMERGE). All returns are monthly U.S.-Dollar returns in excess of the one-month T-bill
rate. The combined sample (panel A) consists of monthly returns from 1/1970-12/1995 for
USA and EAFE and from 1/1985-12/1995 for EMERGE. The truncated sample (panel B)
consists of monthly returns from 1/1985-12/1995 for USA, EAFE, and EMERGE.

Standard Correlations Tangent
Index Mean Deviation EAFE EMERGE Portfolio

A. Combined Sample
Bayesian Predictive Pdf

USA 0.48 4.47 0.480 0.314 0.301

EAFE 0.59 5.04 0.286 0.413

EMERGE 0.71 6.70 0.286
‘ Maximum Likelihood

USA 0.48 4.43 0.480 0.318 0.297

EAFE 0.59 4.99 (.290 0.410

EMERGE 0.71 6.56 0.293

B. Truncated Sample
Bayesian Predictive Pdf

USA 0.89 4.35 0429  0.306 0.528
EAFE 1.02 5.56 0.290 0.303
EMERGE 0.9 6.71 0.169
USA 0.89 4.25 0.429  0.306 0.528
EAFE 1.02 5.43 0.290 0.303
EMERGE  0.95 6.55 0.169




Table 2
Combination of Tangent Portfolio and Riskless Asset

The three return series are for (i) Standard & Poor’s composite index (USA), (i) Mor-
gan Stanley Capital International’s index for Europe, Australia, and the Far East (EAFE),
and (iii) the International Finance Corporation’s composite index for emerging markets
(EMERGE). All returns are monthly U.S.-Dollar returns in excess of the one-month T-bill
rate. The “combined sample” consists of monthly returns from 1/1970-12/1995 for USA and
EAFE and from 1/1985-12/1995 for EMERGE. The “truncated sample” consists of monthly
returns from 1/1985-12/1995 for USA, EAFE, and EMERGE. The parameter A denotes the

investor’s (approximate) coefficient of relative risk aversion.

Combined Sample Truncated Sample

Bayesian Maximum Bayesian Maximum
Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Mazimum Sharpe ratio computed using the sample and
method as indicated:

.146 148 .240 245

B. Sharpe ratio of the tangent portfolio, where the Sharpe
ratio is computed using the combined sample and the
Bayesian predictive pdf, but the tangent portfolio is
constructed using the sample and method as indicated:

146 146 141 141

C. Tangent portfolio proportion (%) in the overall port-
folio using the sample and method as indicated:

A=1 361 369 610 639
A=3 120 123 203 213
A=35 72 74 122 128

D. Monthly certainty-equivalent loss (basis points) asso-
ciated with the overall portfolio, where the loss is com-
puted using the combined sample and Bayesian predic-
tive pdf, but the overall portfolio is constructed using
the sample and method as indicated:

A=1 0 0.08 55.82 67.55
A=3 0 0.03 18.61 22.52
A=5 0 0.01 11.17 13.51
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Table 3

Estimated Standard Deviations and Weights in the Minimum-Variance
Portfolio for 22 Emerging Markets

The samples and estimation methods are denoted as follows;

I Combined sample (1/89-12/95), Bayesian predictive pdf.
II Combined sample (1/89-12/95), maximum likelihood
I[II Truncated sample (11/93-12/95), Bayesian predictive pdf.
IV Truncated sample (11/93-12/95), maximum likelihood
V Single-series samples (using the data available for each series), maximum likelihood
The data consist of monthly returns on each country’s “investable” equity portfolio, as

constructed by the International Finance Corporation. All returns are U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate.

Standard Deviation Minimum-Variance

First  No. {% per month) Weights (x100)
Country Month  Obs. I I ur mn v I I III&IV
Argentina 1/89 84 348 29.2 389 10.6 29.2 0 2 5
Brazil 1/89 84 275 231 489 133 23.1 6 26 21
Chile 1/89 84 93 78 294 80 7.8 13 -4 -16
Greece 1/89 84 156 13.1 204 55 13.1 -5 -23 -32
Jordan 1/89 84 6.7 56 145 39 56 45 68 69
Malaysia 1/89 84 89 75 339 9.2 7.5 24 66 66
Mexico 1/89 84 123 104 477 13.0 104 8 18 13
Philippines  1/89 84 12.8 10.8 39.0 10.6 10.8 18 82 67
Portugal ~ 1/89 84 83 7.0 190 52 7.0 21 17 25
Thailand 1/89 84 10.8 91 332 90 9.1 -100 -42 -o6
Turkey 9/89 76 23.8 19.5 59.8 -16.3 19.8 -0 -1 3
Venezuela  2/90 7t 25.2 200 59.2 16.1 19.6 4 14 10
Indonesia 10/90 63 13.8 11.2 31.7 8.6 9.6 -1 -21 -2
Taiwan 2/91 59 15.2 11.7 444 121 11.1 -6 -35 -32
Colombia 3/91 a8 16.6 12.7 31.8 87 114 14 46 a0
Pakistan 4/91 57 16.1 11.8 36.5 9.9 11.6 -4 -16 -16
Korea 2/92 47 125 85 227 6.2 7.2 22 73 72
India 12/92 37 16.0 11.2 300 8.2 8.1 -14  -53 -44
Peru 10/93 27 234 142 440 12.0 11.9 -10 41 -34
Sri Lanka 10/93 27 269 199 352 96 9.8 4 15 4
China 11/93 26 213 149 386 10.5 10.5 -8 42 -33
Zimbabwe  11/93 26 252 19.0 341 93 93 -10 -49 -38
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Table 5

Minimum Standard Deviation of a Portfolio
Combining 22 Emerging Markets

The data consist of monthly returns on each country’s “investable” equity portfolio, as
constructed by the International Finance Corporation. All returns are U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate. The “combined sample” uses all available
returns through 12/95, where the data for 10 countries begin in 1/89 but the data for 11
other countries begin at various later dates. The “truncated sample” consists of monthly
returns on all 22 countries for the 26-month period from 11/93 through 12/95.

Combined Sample Truncated Sample

Bayesian Maximum Bayesian ~ Maximum
Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Minimum monthly standard deviation (%) computed using the sam-
ple and method as indicated:

3.80 2.31 7.48 2.04

B. Monthly standard deviation (%) of the minimum-variance portfolio,
where the standard deviation is computed using the combined sample
and the Bayesian predictive pdf., but the weights in the minimum-
variance portfolio are constructed using the sample and method as
indicated:

3.80 6.09 6.63 6.63
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Table 6
Performance in Repeated Samples: Mean-Variance Optimization

All values are true monthly certainty-equivalent losses {basis points) for portfolios con-
structed using the sample and method as indicated. Relative risk aversion A) is set equal
to 3. Certainty equivalents are computed based on the true moments of & e multivariate
normal distribution used to generate the 5000 hypothetical samples of monthly returns. The
number of assets, sample size, and starting dates correspond to those used in example 1, and
the true moments are set equal to the combined-sample maximum-likelihood estimates from
that example (table 1).

Combined Sample Truncated Sample
Bayesian Maximum Bayesian  Maximum

Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Certainty-equivalent loss relative to the true optimal portfolio:

mean 24.20 25.93 39.70 43.59
std. dev. 22.88 24.86 34.98 38.61
10th percentile 4.29 4.48 7.52 8.08
20 7.47 7.88 12.77 13.96
30 10.44 11.15 17.81 19.37
40 13.83 14.62 23.62 25.61
50 17.44 18.62 30.06 32.83
60 22.17 23.44 38.17 41.79
70 27.93 29.90 47.02 52.05
80 36.13 38.50 60.21 66.45
90 52.04 56.10 83.71 91.16

B. Certainty-equivalent loss relative to the Bayesian combined-sample
optimal portfolio:

mean 0 1.73 15.50 19.40
std. dev. 0 2.30 25.45 28.33
10th percentile — -0.11 -6.37 -4.71
20 — 0.15 -1.39 0.08
30 — 0.42 1.70 3.58
40 — 0.70 4.98 7.52
50 — 1.03 8.99 11.97
60 — 1.43 13.80 17.36
70 — 1.92 19.98 23.96
80 — 2.75 29.41 34.46
a0 — 4.45 45.49 52.81
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Table 7

Performance in Repeated Samples: Variance Minimization

All values are differences in true monthly standard deviations (in %), computed based on
the covariance matrix of the multivariate normal distribution used to generate the 5000
hypothetical samples of monthly returns. The weights in the minimum-variance portfolios
are computed using the sample and method as indicated. The number of assets, sample
size, and starting dates correspond to those used in example 2 (cf. table 3), and the true
moments of returns are set equal to the combined-sample maximum-likelihood estimates
from that example.

Combined-Sample, Combined-Sample, Truncated-Sample,
Bayesian Maximum Bayesian Pred. Pdf &
Predictive Pdf Likelihood Maximum Likelihood

A. Standard deviation for the minimum-variance portfolio, constructed using the sam-
ple and method as indicated, minus the true global minimum standard deviation.:

mean 2.91 4,23 3.77
std. dev. 2.02 2.92 2.39
10th percentile 1.16 1.73 1.62
20 1.46 2.20 2.04
30 1.76 2.61 2.43
40 2.06 3.02 2.82
50 2.39 3.52 3.22
60 2.79 4.04 3.65
70 3.26 4.70 4.21
30 ‘ 3.96 5.69 5.03
90 5.21 7.42 6.49

B. Standard deviation for the minimum-variance portfolio, constructed using the
sample and method as indicated, minus the standard deviation of the minimum-
variance portfolio constructed using the combined-sample Bayesian predictive pdf:

mean 0 1.31 0.86
std. dev. 0 1.38 1.06
10th percentile — 0.26 (.02
20 — 0.42 0.18
30 — 0.57 0.31
40 — 0.73 0.46
50 — 0.92 0.62
60 — 1.16 0.81
70 — 1.47 1.05
20 — 1.93 - 1.40
90 — 2.74 2.02
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Figure 1. Minimum-Standard-Deviation Boundaries for Three Indices. The
solid curves and dots are based on the Bayesian predictive pdf, whereas the dashed curves
and circles are maximum-likelihood estimates. The three return series are for (i) Standard &
Poor’s composite index (USA), (ii) Morgan Stanley Capital International’s index for Europe,
Australia, and the Far East (EAFE), and (iii) the International Finance Corporation’s com-
posite index for emerging markets (EMERGE). All returns are monthly U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate.
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Figure 2. Minimum-Standard-Deviation Boundaries for 22 Emerging-Market
Country Indices. The data consist of monthly returns on each country’s “Investable”
equity portfolio, as constructed by the International Finance Corporation. All returns are
monthly U.S.-Dollar returns in excess of the one-month U.S. Treasury-bill rate. The bound-
aries are estimated using four methods:

I Combined sample (1/89-12/95), Bayesian predictive pdf
II  Combined sample (1/89-12/95), maximum likelihood
III Truncated sample (11/93-12/95), Bavesian predictive pdf
IV Truncated sample (11/93-12/95), maximum likelihood
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