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Abstract

This paper examines the optimal consumption and investment problem for a “large”
investor, whose portfolio choices affect the instantaneous expected returns on the traded
assets. Alternatively, our analysis can be interpreted in terms of an optimal growth
problem with nonlinear technologies, Existence of optimal policies is established using
martingale and duality techniques under general assumptions on the securities’ price
process and the investor’s preferences. As an illustration of our characterization result,
explicit solutions are provided for specific examples involving an agent with logarithmic
utilities, and a generalized two-factor version of the CCAPM is derived. The analogy
of the consumption problem examined in this paper to the consumption problem with
constraints on the portfolio choices ig emphasized.

*We are grateful to Suleyman Basak and to participants in the finance workshop at the University of
British Columbia, the economic theory workshop at Cornell University and the Micro Lunch Seminar at the
Wharton School for their comments.



1. Introduction

This paper examines the optimal consumption and investment problem for a “large” in-
vestor, whose portfolio choices affect the drift of the securities’ price process. The impact of
the investor’s position on prices is specified exogenously and may arise because of size only
or because other agents in the market believe that the “large” trader has superior infor-
mation. Existence and characterization results for the optimal choices are obtained using
martingale and duality techniques similar to those employed by He and Pearson (1991),
Karatzas, Lehoczky, Shreve and Xu (1991), Xu and Shreve ( 1992a), Cvitani¢ and Karatzas
(1992), He and Pages (1993), among others, to analyze the consumption /investment prob-
lem in markets with constraints. In fact, the present framework with policy-dependent
prices includes (at least formally) the case of portfolio constraints as a special case.

The correspondence of the optimal consumption problem with portfolio constraints to
one with policy-dependent price drifts was first pointed out by El Karoui, Peng and Quenez
(1995). They used the theory of backward stochastic differential equations, independently
developed by Pardoux and Peng (1990) and Duffie and Epstein (1992), to analyze the
problem of a “large” investor trying to maximize a recursive utility or to hedge a. contingent
claim. In particular, they provided a martingale characterization of optimal consumption
plans and of the minimal cost to hedge a contingent claim, but did not prove the existence
of an optimal consumption policy. Cvitanié and Ma (1994) pointed out that if the payoff of
the contingent claim is not exogenously fixed, but is allowed to depend on the future price of
some traded asset, then the hedging problem translates into finding a solution to a forward-
backward stochastic differential equation. For the Markovian case, the four-step scheme of
Ma, Protter and Yong (1994) was used to obtain a partial differential equation identifying
the minimal hedging cost. Cvitanié (1995) surveys this literature and briefly discusses the
difficulty (nonconvexity) that arises when trying to apply the duality approach of Cvitanic
and Karatzas (1992) to establish the existence of an optimal consumption policy for a
“large” investor. Needles to say, the existence of optimal policies is an important concern
if a general dependence of price drifts on the investor portfolio choices is to be allowed, as
arbitrage opportunities, or “market manipulation trading strategies”, might arise, Jarrow
(1992, 1994} has examined this issue in a discrete-time infinite-horizon economy with policy-
dependent prices.

In this paper, we use martingale and duality techniques to provide sufficient condi-
tions for the existence of an optimal consumption plan for a “large” investor and to char-
acterize the optimal plan. The martingale duality approach maps the primal consump-
tion/investment problem into a dual minimization problem that solves for the individual’s
shadow state-prices (intertemporal marginal rates of substitution). To cope with noncon-
vexity, we depart from the approach in the above-mentioned papers dealing with portfolio
constraints, and establish the existence of optimal consumption/investment policies by for-
mulating the dual problem directly over the space of shadow state-prices, rather than over



sample paths of w on [0, T]. We interpret the sigma-field F; as representing the information
of the individual at time ¢ and the probability measure P as representing his beliefs. All
the stochastic processes to appear in the sequel are progressively measurable with respect
to F and all the equalities involving random variables are understood to hold P-a.s..2

Consumption space. Thereis a single perishable good (the numeraire). The consumption
space C is given by the set of adapted consumption rate processes ¢ with f(;F le(t)| dt < oc.
The individual consumption set will be shortly specified as a subset of the non-negative
orthant C_,

Securities market. The investment opportunities are represented by n + 1 long-lived
securities. The first security (the “bond”) is a locally riskless savings account earning the
instantaneous interest rate process r, so that its value process B evolves according to

¢
B(t,w) = B(0) + f (7, w)B(1, w) dr. (1)
0
The remaining 7 assets are risky. Letting § = (Sy,..., Sr) denote their price process and
D = (Dy,...,D,)} their cumulative dividend process, we assume that § +D is an Itd process:

S(t,w) + D{t,w) = 8(0) + /Otfg('r, wp(r,w)dr + fUtIS(T, wa (T, w) dw(r,w), (2)

where Ig(t) denotes the n x n diagonal matrix with elements S(t).
We allow explicit dependence of the price process for the traded securities on the portfolio
strategy chosen by the investor by assuming that

T(t= w) = 'F(ta ""J) + TH(a(taw): a(t, w), t, w),
and
p(t,w) = alt,w) + fi(alt, w), 0(t,w), t,w)

for some functions # : R x R™ x [0, 7] x 2 - R and ji : R x R" x 0,7] x & - R",
where o and 4 = (61,...,8,) denote, respectively, the dollar amounts invested in the bond
and in the n risky asset. Without loss of generality, we assume that 7(0,0,t,w) = 0 and
(0,0, t,w) = 0 for all (t,w) € [0, T} x Q. Clearly, the case # = 0 and ji = 0 corresponds to
the usual setting with exogenously fixed prices. In the sequel we will suppress the explicit
dependence on the state w whenever no possibility of confusion arises.

Assumption 1. The process 7 satisfies

T
jo (1)~ dt < K, (3)

for some K, > 0, where z— = max(0, —z) denotes the negative part of the real number .

A process X = {X(t) : t € [0,T]} is said to be progressively measurable with respect to the filtration
F = {F} if for every t € [0, 7Y, the map (5,w) — X(s,w) from ([0,1] x 0, B([0,1]) ® F) into (R™, B(R™)) is
measurable, where B([0, ¢]) ® F, denotes the product o-field of the Borel o-field on [0, #] and 73, and B(R™)
denotes the Borel o-field on IR™, Recalling that a process X is adapted to F if X(t) is an F,-measurable
random variable for all ¢ € [0, T], we have that every progressively measurable process is adapted. Conversely,
any adapted process with right- or left-continuous paths is progressively measurable.



and there exist constants 6§ € (0, 1) and v € (0,00) such that
duc(c, t) > uel(ye, t) ¥(c,t) € (0,00) x [0, 7. (11)
Finally, u(c,-) is continuous and decreasing on [0,7) for all ¢ > 0.

Remark 1. Condition (10) is well understood and it implies in particular that the deriva-
tive function w,(, ¢} has a continuous and strictly decreasing inverse f (,¢) mapping (0, co)
onto itself. Condition (11) has the purpose of guaranteeing that certain functionals to be
introduced in the sequel can be differentiated under the integral sign. It is easily verified
that this condition holds for the utility functions u{c, ) = p(t) log ¢ or u(e, t) = p(t) el

-0
b>0,b%# 1. Also, taking ¢ = f(y,t) in (11), applying f(+,t) to both sides and iterating
shows that the following property holds
V8 € (0,00); 3y € (0,00) such that f(5y,) < v/ (y,2), Y(y, ) € (0,00) x [0,7].  (12)
The agent is endowed with some initial wealth Wy > 0 and a bounded stochastic income
stream y € C.

3. Feasible consumption processes

A consumption process ¢ € C} is said to be feasible if there exists an admissible trading
strategy («, #) € © such that letting

W(t) = a(t) + i Br(t)
k=1
denote the value of the agent’s portfolio at time ¢, we have
W0 = Wo+ [ law)r(r) + 01 ir) + g(a(r), ), o) ar (13
t t
+ [0 0 du(r) - [ (el - yr)) i

W) > —K exp ( fo ‘) df) (14)
W(T) >0 (15)

for all ¢ € [0, 7 and some K € Ry, where
9a,0,t,w) = a(a, 8, t,w) + 8" ji(e, 8,t,w). (16)

If the above conditions are satisfied, the trading strategy (@,8) is said to finance c.
Equation (13) is the usual dynamic budget constraint: it states that the wealth at any
time ¢ € [0,7] equals the initial wealth, plus the trading gains, minus the cumulative net
consumption. The only difference from the standard setting is that the stochastic integral
equation for the wealth process is non-linear in the trading strategy (a, 6): this non-linearity
arises from the effect of trading strategies on prices and is captured by the function g.
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Remark 2. It follows from Theorem 5 in Rockafellar (1974) that

g(a, 8, t,w) = eiNnaf(w)Lﬁ(u, Luw)+avg+6Tv_],

14

By the compactness of N¢(w) and the lower semicontinuity of g, this implies that for any
(cv,8) € © there exists a v € A such that

9(ad), 6(2),2) = Gu(t), £) + a(Omo(t) + 0(t) Tv_(2). (18)

4. Examples

The following examples motivate the analysis in the present paper and illustrate the con-
nection with the optimal consumption problem with constraints on the investment policies.
For purposes of comparison, we start from the standard complete-market setting in which
prices are exogenously fixed.

Standard setting: In this case # = 0 and i = 0, which implies ¢ = 0 and
- 0 ife=0;
bl t! = -,
gt w) { 0o otherwise.

Therefore

M(w) = {0} for all (t,w) € [0, 7] x €.
This is the setting examined by Karatzas, Lehoczky and Shreve (1987) and Cox and Huang
(1989, 1991).

Price pressure: Let # = 0 and

a(t,w)d _
filer 0,1, w) = {‘—m;— o7 0;
0 otherwise
for some nonnegative bounded process a, so that buying a risky asset depresses its expected
return, while shorting it increases the expected return. In this case it is easily verified that

g(a1 B: t,w) = _a(t! w)19|

(the expected return on wealth decreases in a concave fashion with the absolute amounts
invested in risky assets) and

(v, t,w) = {O if vy =_O and |v| < a(t,w);
oo otherwise.
Therefore,
Ne(w) = {v e R™ : 3y = 0 and V] < alt,w)}.

More generally, if
Alt,w)8
(o, 0,t,w) = {___If?l if 8 # 0,

0 otherwise



is the barrier cone of —K. This problem with convex constraints on the investment strate-
gies was dealt with by Cuoco (1995), building on previous work by He and Pearson {1991),
Karatzas, Lehoczky, Shreve and Xu (1991), Xu and Shreve (1992a), and Cvitani¢ and
Karatzas (1992, 1993). We remark that this setting is not included in our analysis, since
the sets M} (w) are convex cones, and hence not bounded. Nevertheless, the feasibility (hedg-
ing) result of Theorem 1 below, and the subsequent remark, are still valid, as shown in the
above mentioned literature, provided that free disposal of wealth is allowed.

5. No-Arbitrage State-Price Densities

Since security prices and the individual income stream are allowed to be possibly non-
Markovian processes, dynamic programming techniques cannot be applied to analyze the
individual consumption problem. Therefore we will derive a martingale characterization
of the optimal policies using the duality techniques developed by He and Pearson (1991),
Karatzas, Lehoczky, Shreve and Xu (1991), He and Pagas (1991) and Cvitanié and Karatzas
(1992) to analyze the optimal consumption problem with constrained investment policies.
In order to formulate the proper dual shadow state-price problem, we start by identifying
the set of state-price densities for the economy consistent with the absence of arbitrage
opportunities,5
For an arbitrary process v € A ; define the exponential martingale

£,(1) = exp ( /0 o (1) () — % fo t |K,y('r)|2d7') , (19)

and the discount factor

Butt) = exp (= [0 + () r),

where B
(t) = o () (A(e) + v-(t) - (7() + wo())1),
and let
Tu(t) = B (£)E.(2). (20)

Clearly, each m, with ¥ € A" would represent the unique state-price density in a shadow
economy in which the portfolio policy (a, 0) of the “large” investor was known to be such
that #{a(t), 6(t), £} = vy(t) and B(a(t),8(t),t) = v_(t) for all t € [0, T]. More generally, the
following lemma shows that any process m, with ¥ € A can be interpreted as a shadow
state-price density for the economy.

Lemma 1. [fce CY is a feasible consumption process, then

E [ /0 "r8elt) - 5() dt] < Wp + E[ ]0 T (050, 1 dt] (21)

holds for all v e V.

5In our setting, an arbitrage opportunity is a nonzero consumption process ¢ € Ci that is feasible with
zero initial wealth and zero income.,



By the above lemma, the fact that 0 € A s suflicient to rule out the existence of arbitrage
opportunities. We will refer to (21) as a static budget constraint. Karatzas, Lehoczky and
Shreve (1987) and Cox and Huang (1991) have shown that, in the standard setting where
F=0,i=0and N = {0}, a consumption process is feasible if and only if it satisfies a
static budget constraint with respect to the unique state-price density my. The following
theorem gives a general version of this result by showing that the satisfaction of a budget
constraint with respect to each 7, with v € A is sufficient to guarantee feasibility in our
setting.

Theorem 1. Let e € C} be a consumption process and suppose that there exists a process
v* € N such that for all v € N

T T
B [ m0)et) - v(t) - 000, 0| < B[ [ mn()(e(t) - yte) - g7 (e), O] = o,
(24)
Then c is feasible and the optimal wealth process is given by
T
Wirt®) = mor ) B [ ()etr) = vtr) - 50700yt | 7] o
PROOF. See Appendix A. a

Remark 3. In fact, using the methods of EI Karoui, Peng and Quenez ( 1995} or Cvitanié
and Karatzas (1993), it is possible to show a stronger result: the minimal initial wealth
Wo required for financing a given consumption process ¢ and a given terminal wealth W,
assuming the endowment stream y, is given by

Wo = sup B [ Cm(8)(elt) ~ (&)  5(o(8), 1)) di + o

6. Optimal Consumption Policies

Letting ¢* denote the optimal consumption policy, Theorem 1 sugpests that there should
exist a Lagrangian multiplier ¥* > 0 such that (¢*, ¢, v*) is a saddle point of the map

£e, ) = U0) = 0 ([ [ mle)ett) - w0 - (o120 =), ()

where we maximize with respect to ¢ and minimize with respect to (1, ).

Let
ﬁ'(y: t) = Izlgg([u(Q t) - yc] = u(f(y: t)a t) - yf(y) t) (27)

denote the convex conjugate of —u(—e¢,t}). The following lemma collects some properties of
the function % that will be used repeatedly in the sequel.

Lemma 2. The function u(-,t): (0,00) = R is strictly decreasing and strictly convex for
all t € [0, T, with %ﬂ(y,t) = —f(y,t). Moreover

(04, ) = u{oo, t), (00, t) = u(04+,t).
PROOF. See, e.g., Karatzas, Lehoczky, Shreve and Xu (1991), p. 707. 0
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Theorem 3. Assume that
(a) u(oo,t) = 0o for all t € [0, 7] and u(c,t)” < k(1 + <) on (0, c0) x [0, T for some
k>0, b>1;
(b) either Wo >0 or y/B > ¢ (A x P) — a.e. for some e > 0;
(¢) for all 4 € (0,00), there exists a v € N such that J(3,v) < 00,

Then the minimum in (P*) is attained and hence a minimaz state-price density exists. If
in addition

(d) cuc(c,t) < a+ (1 - bu(e, t) on (0,00) x [0,T] for some a > 0, b > 0,

then condition (80) of Theorem 2 is also satisfied, and hence there ezists a constrained
optimal consumption/investment policy.

PROOF. See Appendix B. O

Remark 4. Since the dual functional .J 1s not convex in v, existence of a solution to the
dual problem is proved in the Appendix by reformulating (£*} as a minimization problem
directly over the set of state-price densities 7, rather than over the set of “Lagrangian
multipliers” v representing them.

Remark 5. Conditions (a) and (c} of Theorem 3 are in particular satisfied if either u(c, ¢)
is bounded below on (0, c0) x [0, T and u(oo,t) = oc for all ¢ € (0, 7T, or ufe, t) = p(t) log ¢
for some bounded measurable function p:[0,T] — (0,p]. Also, since 0 € A , a sufficient
condition for assumption (c) is that J{3, 0) < oo for all ¢ € (0,0). In particular, if u(c, ¢)
is nonnegative and satisfies the growth condition u(c,t) < E(1+ ¢t=") for some k& > 0,
b€ (0,1), then (c) will also hold (cf. Karatzas, Lehoczky, Shreve and Xu (1991), Remark
11.9).

Remark 6. Proceeding as in Cuoco (1995), it would have also been possible to establish
the existence of an optimal consumption policy without resorting to duality. However, we
will see in the next sections that the dual problem offers computational advantages.

7. Explicit Solution for a Logarithmic Investor

Suppose that u(c,t) = ¢t log(c) and that y = 0, so that the investor is only endowed with
some positive amount of wealth Wy. Also, assume that g = 0 on its effective domain. Then
we have

iy, 1) = max[e™ log(c) — yo| = —e (1 + pt + log(y)),

and the dual problem becomes

T
' =) e L)) dt ]
(ID.V)GI?&EO)XNE[ fo e (1+pfi+log(¢7T ( )))d + YWy

— 0T T t
= Te P _9 1=e?” + E[ f e Pt ( / 7(7) d’r) dtJ
1Yy 0 0

13



In particular, with a single risky asset {n = 1), the above implies

VA(t) = { RAAL if |A() 7 (B(t) — 7(1))] < 1;
z —sign(fi(t) — 7(¢))A(t) otherwise

d
o s [TOTEO =T+ Aw) A~ 70) < -0,
HWTt)) =<0 if —A(t) < B(t) — 7(t) < A(t);

o(O)THEE) ~ 7(t) - A(®) if 4t) — F() > A().
This shows that the fraction of wealth invested in the risky asset is always lower than what
it would be absent the negative price pressure effect (A(t) = 0). However, the marginal
propensity to consume is unchanged.

Different borrowing and lending rates: As an additional example, consider the case of
different borrowing and lending rates, which corresponds to

Mw)={reR"™ . 0<y < R{t,w) — #(t,w) and v_ == 0}.

In this case, it is easily verified that the solution to {33} is given by v* = (115, 0), where

R(t) - 7(t) if (R(t) = F(O)o(8) I < —ko(1) 7o (t) 11 - 1;
v(t) =4 ~ Eo(tf;ggi}lﬁ +1 if 0 < —ko(t) "o ()11 — 1 < (R(t) ~ FED|e(t) "%
0 otherwise,

This result first appeared in an Appendix of Cvitanié¢ and Karatzas (1992).
In particular, with a single risky asset the above implies

R(t) - 7(2) if (1) "2(u(t) — R(t)) > 1;
YO(E) = 4 wlt) = r(0) —a () i o(t)2(u(t) - B(1)) < 1 < o) 2(u(t) — (1))
0 otherwise

and
oW wlt) ~ R) i o(t)2ult) - (1) > 1
Bt if o(6)2(u(t) - (1)) < 1 < o(t)2(u(t) — 7(1));
a(t) *(u(t) — 7(t)) otherwise.

As expected, the fraction of wealth invested in the risky asset is always no greater than
what it would be without a spread between borrowing and lending rates (R = 7). As long
as pu(t) < #(t) + o(t)?, the agent behaves exactly as in the standard setting, investing the
fraction o(t) ~2(u(t) — #(¢)) < 1 of his wealth in the stock and lending. However, when
1t} > 7(t) + o(t)? the agent deviates from his optimal policy in the standard setting.
In particular, for #(¢) + o(¢)? < #(t) < R(t) + a(t)?, the agent keeps all of his wealth
invested in the risky asset and neither borrows nor lends. Borrowing only occurs when
#(t) > R(t) + o). As in the previous example, the marginal propensity to consume is
unchanged.
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PROOF. Let Uie(t) = wic(ci{t), t). Under the stated assumptions, ¢; is an Itd process for
t = 1,2, so that Itd’s lemma gives

uio(t) = u;e(0) +/{:uicc(ci(7)af) dei(T) +/tuict(ci(7'),7') dr + 1/tuiccc(ci(?"),’f’) dles, ¢i](T).

Since the quadratic covariation between a continuous semimartingale and a process of finite
variation is zero (Jacod and Shiryaev (1987), Proposition 1.4.49), we have

[ies SO) = [ [ tiedes, 8] 6) = / ieles(r),7) dlcs, S](r),

where the last equality follows from Theorems 1.4.40 and 1.4.52 in Jacod and Shiryaev
{1987). On the other hand, since u;, = 9j;7;, we also have

[ute, SI(t) = u[my, S](2)
= =t [ IS (B) + v () = (7(7) + ol ))T)
- - WP () — () + v (1) — (r(r) - #r) 4 w()T) dr
and
[uze, S(t) = ¢hu[ma, S](2)
= /0 ma(r)Is(r) (ir) — r(1)T) dr
= [ uae)Is(r) () = (1)) ar
The last three equations imply
1 ®)(u0) = r01T) = 1607 Zlew, IO + o () (00) — (8  (7(0) - wo(t)1)
and J
ar(t)(t) - r(H1) = Is(H)™! Zlez, S1(2),
so that
(ea®) + 02(t)) (u(t) = r(®)T) = L(t)? ﬁ[s U +en (1) ((®) = v-2) ~ (1) — vo(2))1)
= Ig(t)? [S Cl(t) + aq (t)Is(t)~ 1—_[3 Y](2),

where the last equality follows from the fact that

Yo=tos(0) (3525 )

17



t € [0,7]. This extends to the intertemporal CCAPM a result first obtained by Brennan
(1971) and Black (1972) for the static CAPM: with different borrowing and lending rates,
the CCAPM still holds, but the expected instantaneous return 7 on a zero-bets, portfolio
replaces the instantaneous interest rate.

Finally, we remark that in the case of portfolio constraints {{«,8) € K) we have

m®) = ew(= o) (ur) +0-0) - (700) 4 w1t
= G 40+ Lo ) o) ) 4 w)i)[") ar)

for some process v taking values in the barrier cone of — K , and

4

-1
Is(t) o

[S,Y]() = = (v= (&) ~ vo()1),
so that (34) can be rewritten as

7 Is(t) " eov(dS(4), dC())  ay(t)(v- (t) — v (t))1)
wit) = ()L = OFTHO) OO

which recovers the constrained CCAPM of Cuoco (1995).

9. Concluding Remarks

‘This paper has examined the individual’s optimal consumption and investment problem for
a “large” investor, whose portfolio choices affect the assets’ expected returns. The main
result is related to the existence of optimal policies under fairly general assumptions on
the security price coefficients and on the income process. As already pointed out, even if
we have assumed no bequest function for final wealth, the introduction of such a function
can be easily accommodated, and in fact would simplify the statement of some results. Of
course, the case in which the agent is maximizing the expected utility from final wealth
only could be treated similarly.
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for £ € (0,1), we have v, € A" (because of the convexity of the sets A}).
Letting

un(e) = B[ [ P ()(et) = 4(8) ~ G(ven(t). a
it can be shown that

e (0) — wn(e)

(38)
el0 €
T — — a{v* Ty,
+ [ Len D= 5070, a
. T c(t) — y(t) - g(v* t),t) Ty, o (1)
< ] [ (p O I (1- me @) ) "

£
+ /OT”wus,n(t)(g(v(tJ,t)—g(u*(t),t))dt]
T
- E[ e Ammen(@)(elt) ~ 1) — 30681, ))
+ /OT",T,,,@)@(V@),@_g(y*(f,),t))dt}
= ][O (60~ 10 5070, + Clr)ron () Wir )
+ /OT“m(t)(g':(u(t),t)—g(v*(t),t))dt],

where the first inequality follows from the convexity of g, the second equality follows from
the dominated convergence theorem, and the third equality follows from the definition of
Wy, On the other hand, by Ité’s lemma:

()T (1) Wor (1) = /0 " Ceyme (1) (o®)70) + Wir (B (1)) duo(t)
- [ cOme et - wio) - 3070, ) e+ L e W 000() - v a
[ rr OWar (0 () (- (1) = w2 1) = (1) ND) (dw(r) ~ oo (r) dr)
+ fo " () (o) - () — v (1) — (vo(t) - D) ((00700) + Wor (t),e (1)) dit.

Taking expectations and using the fact that the stochastic integrals in the above expression
are martingales shows that

E[ fOT“C(t)ﬂ'w (E)(e(t) — y(t) = G (£), 1)) dt + (7)) e (1) Woe (Tn)J
- E[/ﬂfn 7o () {(a(t) (volt) — v (8)) + 0(8) (v_ (t) — () dtJ

21



where the second equality follows from Lebesgue’s dominated convergence theorem and
(39), using the fact that

W((8" + e (0),6) ~ (W mom (8), ) < (0 = elme (81, 8) = (W mie (1), )

€ ||

< meOF (@ = ehmn(t),8) < me (01 (6" /2mn(2), 1)

for le] < 4*/2, because a(., t) is decreasing and convex, %&(y,t) = ~f(y,t), and f(-,¢) is
decreasing. Therefore

T
Bl [ e (0® - u(6) - 50°(),0) &t = wo (40)
Next, let ¢ € C% be any feasible consumption process. Since by concavity

U(f(y, t)at) - ’U.(C,t) > y[f(y:t) - C] Ve > 0, y >0, (41)

we have from (21)

U(c") = Ulc) = E[ fo (e @), 1) - ue(t), 1) dtJ > g E[ fo T (O (8) - (1)) dt} >0,

Hence, ¢* must be optimal provided it is feasible.
Step 3: By the martingale representation theorem, there exists an adapted process ¢
with f(;F [(t)|2dt < co a.s. such that

e OW )+ [0 ) = 1) = 5070, b = e [ i)

Defining the portfolio strategy ¢ by (36), it can be verified as in the proof of Theorem 1
that (14) and (15) are satisfied, and hence in order to prove that c* is feasible we are only
left to show that (13) holds. As in the proof of Theorem 1, this is equivalent to showing
that (37) is satisfied.

Let v € A be the process of {18) and define the process ¢, as well as the stopping times
Tn, 88 in the proof of Theorem 1. For ¢ € (0,1}, let

Ven(t) = v7(8) + efv(t) — v ()] L.

Using Lebesgue’s dominated convergence theorem and Ité’s lemma as in the proof of The-
orem 1, it can be verified that

J(wa*a Vs,n) — J(¢*, V*)

lim
|0 £
_ limE[/T&(¢*V€’n(t)’t) — '&(w*ﬂ'r/*(t)a t) dt
€|l0 i} E
« T y(t) + §(v*(t), 1) e ()
—¥ /0 ™ () £ (1 T e (2) )dt
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Appendix B

This Appendix is devoted to the proof of Theorem 3.

Assume for simplicity that 7(¢) == 0 and that a(t) is the identity matrix, for all ¢ € [0, 7).
Also, assume that 7 = 0 (alternatively, one can work under the risk-neutral measure Q,
instead of the original measure P). Since the dual functional J (¥, v) is not convex in v, we
start by reformulating the dual problem (P*) as a minimization problem over a closed and
convex subset of a L? space.

Let M denote the progressive o-field (i.e., the smallest o-field with respect to which all
progressive processes are measurable), and let L2 = L([0,T] x 2, M, A x P) denote the
space of all progressively measurable n-dimensional processes X with

E[fDT|X(t)|2dtJ < 0.

By the boundedness of NV, it is easily seen that the set 1] = {m, : v € N} is uniformly
bounded in L%, Because of this square-integrability, the positivity of each 7, € 11, and the
uniqueness of the semimartingale representation

m(t) =1+ fotfru('r)v[)(r) dr + /:ﬂ',,(r)u_ {(r)T dw(7), (42)

v is uniquely determined by 7, (up to (A x P)-equivalence). The dual problem can therefore
be regarded as a problem in (¢, %), and rewritten as

J (9, m0) (P*)

inf
(I’byﬂ'u ) G(0,00) x1I

where
- T T
J(,m,)=E UO @(ypm, (t),t) dt+1b]0 T () (y(t) -+ glu(t), £)dt + iy .

It is easy to see that, under the assumptions of Theorem 3, a sufficient condition for the
minimum in (P**) to be attained is that for all ¥ € (0,00) there exists a solution to the
problem

inf J(4p,m). (43)

In fact, letting V(¢/) denote the value function in (43), it can be verified that V is strictly
convex and continuous on (0, oc), and that it satisfies the coercitivity conditions V{0+4) =
V{oo) = oo. Therefore, V must attain a (unique) minimum on (0, o0}, and hence (P**) has
a solution.

By Proposition 2.1.2 in Ekeland and Temam (1976), in order to prove that the infimum
in (43) is attained it is sufficient to show that (i) I1 is convex and closed in L%, and (i3) J (¢, )
is convex and lower semicontinuous on II. Indeed, since any minimizing sequence {mn} is
bounded in L2, one can extract a (minimizing) subsequence, converging weakly to some
7" € II (since closedness is preserved under weak convergence because of convexity). By
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In the following we denote by co(A) the convex hull of a set A and by T6(A) its closed
convex hull (see, e.g., Dunford and Schwartz (1988}, Definition V.2.2). The next lemma,
implies in particular that 1T is closed.

Lemma B2. Suppose that {m, } CII converges to = in L3. Then m =, for some v € N
and

{my, muv) € ({7, T ) }).

PROOF. Suppose that {m,.} € I converges to = in L?. The same argument used at the
beginning of the proof of Lemma B1 then implies that 7 > 0. Since the set {(my, mv) :
v € N} is uniformly bounded in L2 5, it is weakly sequentially compact (Dunford and
Schwartz (1988), Theorem I1.3.28), and we can then assume (by possibly passing to a
subsequence) that there exists a process v such that {{(Fms Ty )} converges to {(m,7v)}
weakly in L2 ,. By Mazur’s Lemma {(Dunford and Schwartz (1988), Corollary V.3.14),
{(m,7v)} € @({(n,,,m, vn)}), and hence (m, ) belongs to the set II of (44) by Lemma
B1. Therefore, 7 == 7,,. ]

Lemma B3. The functional .J (%, -) is convex and lower semicontinuous on II.

PROOF. Tt follows immediately from the convexity of the set II in {44), that
any, + (1 — a)m, = n,,

where
Ty, 1 —a)m
v = Loy + ( 2 vy.
My T

By the convexity of §, this implies

o (D)F((8), 1) < om, ()F(v1(8), £) + (1 — a)m, (d(valt), ).

Together with convexity of &, this implies the convexity of J(1, .

Next, we claim that J (3, -) is lower semicontinuous on I1. In fact, suppose that this is
not the case. Then thereisa o >0, a7 = Ty € Il and a sequence {m,,_} converging to « in
L? such that

J(¥,70,) < a < J(3, ) for all n.

By Lemma B2, we can then find a sequence {75, } C co({m,, }) such that (%2, 0n) converges
to (m,v) a.e., and it follows from the convexity of J(t,-) that J (¥, m5,) < a for all n. On
the other hand, since @(y,t) is convex in its first argument and decreasing in its second
argument, there exist constants a, b such that u(y,t) > afy, 1) > —(a+ by) for y > 0. We
then have from Fatou’s lemma and the uniform integrability of {r; } that

o< J(y,7) < liminfj(a,b,w,;n) <a,
nloo

where we have used the continuity of and the lower semicontinuity of §. The contradiction
establishes the lower semicontinuity of J(y, ). ]
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