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Stochastic Volatility: Univariate and Multivariate Extensions

Abstract

Discrete time stochastic volatility models (hereafter SYOL) are noticeably harder to estimate
than the successful ARCH family of models. Recent advances in the literature now make it possible
to produce efficient estimation and prediction for a basic univariate SVOL model. However,
the basic model may be insufficient for numerous economics and finance applications. In this
paper, we develop methods for finite sample inference, smoothing, and prediction for a number of
univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional
distributions, correlated errors distributions (leverage effect), and two multivariate models, a
stochastic factor structure model and a stochastic discount dynamic model. We apply some
of these extensions to financial series. We find (1) strong evidence of non-normal conditional
distributions for stock returns and exchange rates, and (2) evidence of correlated errors for stock
returns. These departures from the basic model affect the measured persistence and hence the
prediction of volatility. This result as a policy implication on decisions and models such as asset
allocation and option pricing which inputs are prediction of volatility.

We specify the models as a hierarchy of conditional distributions: p{data | wolatilities),
p(volatilities | parameters) and p(parameters). Given a model and the data, inference and
prediction are based on the joint posterior distribution of the volatilities and the parameters
which we simulate via Markov chain Monte Carlo (herafter MCMC) methods. This approach also
provides a sensitivity analysis for parameter inference and an outlier diagnostic. The hierarchical
framework is a natural environment for the construction of SVOL models departing from standard

distributional assumptions.



1 Introduction

Time varying volatility is a characteristic of many financial series. The SVOL model, a natural
alternative to the popular ARCH framework, allows both the conditional mean and variance to
be driven by separate stochastic processes. Empirical evidence implies that the additional flex-
ibility of the SVOL over the ARCH model is necessary, e.g., Hsieh {1991), Danielsson (1994)
and Geweke {1994). Likelikood-based analysis of SVOL models is notoriously difficult and, un-
til recently, there have been few implementations of such modeis. Early research relied on non
likelihood-based estimation techniques like the Method of Moments (MM) or Quasi Maximum
Likelihood (QML), e.g., Melino and Turnbull (1990) and Harvey, Ruiz, and Shephard (1993).
Jacquier, Polson and Rossi (1994}, (JPR, henceforth}, document the efficiency gains of the MCMC
technique over the QML and the method of moments, casting doubt on their reliability at con-
ventional sample sizes. Danielsson (1994) shows how to compute simulated maximum likelihood
estimates of the parameters of a basic SVOL model. This procedure relies on asymptotic ap-
proximations and does not solve the smoothing and prediction problem. JPR introduced MCMC
techniques for the analysis, estimation, smoothing, and prediction, of a univariate stochastic
volatility model with a normal conditional distribution for the observations.

First, following the ARCH literature, see Bollerslev, Chou, and Kroner {1992), it is nat-
ural to investigate the normality of the conditional distribution. Indeed, Gallant, Hsieh, and
Tauchen (1994} show that the conditional distribution is non normal for stock returns. Second,
one may also need to extend the SVOL model to allow for the so-called leverage effect where
changes in volatility are asymmetrically related to the sign and magnitude of price changes, see
the EGARCH model of Nelson (1991). Introducing a negative correlation between the errors of
the variance and the observables, e.g., stock returns, produces this leverage effect. These two
extensions have empirical and economic importance because they modify volatility predictions,
and in turn, economic models based upon volatility predictions such as option pricing models,
see Hull and White (1987}, Heston (1993), and Jacquier, Polson and Rossi (1995). Finally, there
is a clear need for mulitivariate models, for example in portfolio and asset pricing applications.

Mueller and Pole (1994) discuss inference issues for multivariate ARCH-style models. In this



paper we develop MCMC algorithms for the implementation of stochastic volatility models that
allow for: fat tailed and skewed conditional errors, correlated errors, and multivariate volatility
strucutres. Our methodology allows the implementation of dynamic time series models with a
stochastic discount factor (see West and Harrison (1989) for a number of applications) or factor
structures allowing for time varying correlations. One attractive feature of our modelling approach
is the substantial commonality among the algorithms for different model specifications. We show
how this commonality arises and how the hierarchical structure can be used to develop further
generalizations.

The need for implementing SVOL models with these generalizations is clear. It is confirmed
by our empirical findings in section 4. The relatively poor performance of approximate methods
documented in JPR and Andersen and Sgrensen (1994) for the basic model casts doubt on the
ability of approximate methods to handle these extensions well. A problem with the QML algo-
rithm is that it approximates the logarithm of the squared conditional error, i.e., of a x? in the
basic model, to a normal distribution. Kim and Shephard (1994) show that the log(x?) can be well
approximated by a discrete mixture of normals. Mahieu and Schotman (1994) consider a discrete
mixture of normals with unknown parameters which allows for a flexible distribution for the log
of the squared conditional error. One disadvantage of the mixture of normals framework is that
it does not extend naturally to provide approximations in the correlated errors or multivariate
cases. Our inference is based on the exact joint posterior distribution of the unobserved volatility
sequence and parameters of the volatility process. MCMC algorithms allow us to simulate from
this joint posterior distribution without resorting to model approximations. Moreover, this ap-
proach simultaneously addresses the problems of smoothing, prediction and parameter estimation
under the non-standard distributional assumptions described above. This flexibility is crucial for
finance applications which require not only parameter inference but prediction of future volatilities
as option pricing.

We employ a three stage hierarchical model. The hierarchical model is composed of the condi-
tional probability distributions: p{data|volatilities), p(volatilities|parameters) and p(parameters).

The first stage distribution, p(datajvolatilities), models the distribution of the data given the



volatilities. In the basic SVOL model, this latter distribution is normal, but not in the extensions
discussed above. We will show that non-normality and correlations are fairly straightforward to
implement in our framework. For all but one of our financial series, we find evidence that the
data favour a fat-tailed distribution over the generally assumed normal distribution. We also find
some evidence of negative correlation. The second stage distribution, p(volatilities|parameters),
models prior beliefs about the stochastic evolution of the volatility sequence. For example, it
is generally assumed that the logarithm of conditional volatility follows an AR (1) process. See
Jacquier, Polson, and Rossi (1995) for a discussion of models in the level of volatility. We find
that the degree of persistence of the AR(1) changes when non-normality is allowed in the first
stage distribution. Therefore, the proper modelling of the first stage distribution affects the
quality of prediction, and is of paramount concern for many uses of the model. We extend the
second stage distribution to a multivariate setup. We describe two multivariate hierarchical mod-
els for p(volatilities|parameters): a stochastic factor structure model and a stochastic discount
dynamic model. The third stage distribution, p(parameters) reflects beliefs about the parameters
of the volatility process. Typically, this stage employs a diffuse distribution that constrains the
parameters of the volatility process to the region of stationarity. But tighter priors are easily incor-
porated. We also examine the effects of distributional assumptions on the posterior distributions
of the parameters of the volatility process. Thus, hierarchical models will prove extremely useful
for researchers concerned with the influence of distributional assumptions on resulting inferences.

The advantage of the MCMC estimation methodology is that it simultaneously produces the
exact posterior distributions of the parameters and of each of the unohservable variances, as well
as the predictive density of future volatilities. The explicit joint estimation of both parameters
and volatilities is more appealing than the ad hoc combinations of approaches found in other
procedures. For example, point estimates-from the method of moments have to be substituted
into an approximate Kalman filter to obtain smoothed estimates of volatilities. The problems
due to the inefficiency of the parameter estimation is compounded by the approximation in the
Kalman filter. Also, further approximation is required to produce inference for nonlinear functions

of the parameters. Exact inference for nonlinear functions of the parameters or variances is



straightforward for our simulation based estimator because a draw of the joint distribution of the
parameters produces a draw of the desired function by direct computation. MCMC procedures
use a Markov chain to simulate draws from the joint posterior p(volatilities, parameters|data).
Marginal distributions, for example p(volatilities|data}, are computed by simply averaging the
appropriate conditional distributions over the simulated draws.

The paper is organized as follows. Section 2 describes our hierarchical modelling framework
for the proposed models. Section 3 develops the specific MCMC algorithms to implement the

models. Finally, Section 4 considers empirical applications.

2 Extending the Basic Univariate SVOL Model

JPR develop a Metropolis algorithm for computing the joint posterior distribution in a univariate
stochastic volatility model with normal errors. Although not presented in JPR as a hierarchical
model, it is a particular example of the general framework discussed here. In that model, the first
stage assumes normality, the second stage distribution specifies a smooth mean reversion for the
volatility sequence where p(volatilities|parameters) is specified by a log AR(1) process and the
third stage assumes a diffuse distribution for p(w) restricted to the region of stationarity of the

volatility process. The model for the observations y; and the volatilities A, is given by
1
h = hzz €4 _ (1)
logh =a+dloghi_y +oyv, t=1,...,T

(Et: Ul‘) ~ NZ(OsI) ) (0376: Uv) ~ P(O-’,Ja Uu)

Here the parameter vector w = (e, 6, 0,) consists of a location «, a volatility persistence ¢ and a
volatility of the volatility ,. We denote this standard model by SVOL(h,w).

The major assumption relaxed in this paper is that of an uncorrelated bivariate normal distri-
bution for ¢; and v;. The natural directions for an extension of the model are for example; skewed
and fat-tailed error distributions; correlated errors. Straightforward alternative extensions not
considered here include regressors in the mean/volatility equations; ‘jumps’ in the volatility pro-

cess as in McCulloch and Tsay (1993). They can be accomodated by the hierachical framework



which we use. We also describe two multivariate hierarchical models for stochastic volatility, a
stochastic discount factor model and a stochastic factor structure model. Finally, we address the

issue of sensitivity analysis available in our approach.
2.1 Fat-tailed Departures from Normality

One of the conclusions of the literature on the estimation of ARCH models for financial time
series (see Bollerslev, Chou, and Kroner {1992) ) is that the conditional errors are non-normally
distributed with fat tails. To perform a similar diagnostic with the stochastic volatility model, it
is necessary to extend the model to allow for fat tails in the error of the mean equation. A fat tail
in the error of the variance equation can be modelled in a fashion nearly identical to tha shown
below.

In the simple stochastic volatility model defined in equation (??) € is modelled as a standard
normal. In order to fatten the tail of this distribution whilst keeping symmetry, we mode} the
distribution p(e;) as a scale mixture of normals, a special case of which is the student-t distribution.

Consider the stochastic voiatility model defined by the conditionals

L
ye=hie, e~ /N(O, Adp(Ad)d, (2)
lOgh¢2(]!+§10ght_1+O'UUt, tzl,,T
(Q‘, 5} JU) ~ p(a? 6) JU)

where the distribution p(};) is chosen to reflect the appropriate fat-tailness required in the dis-
tribution p(e;). By varying p(A;) the distribution p(e,) can exhibit a wide range of fat-tailed
behaviour ranging from the double exponential, exponential power, stable, logistic, or t-family of
distributions (see Carlin and Polson (1991}, for details). Within the hierachical framework it is
also straightforward to model heavy-tailed errors for v; in the variance equation. Apply the same
scale mixture of normals idea and adapt the modelling of section 3.3.

A natural choice is to model the distribution p(e;) as a t,-distribution with v degrees of
freedom. The appropriate choice of p(A¢) for this specification is an inverse gamma distribution,

specifically v/A; ~ x% for a hyperparameter v. Given a fixed v, this extends the basic model and



can be thought of as an outlier robustification. Fixing v at small values will downweight outliers
in the estimation of stochastic volatility parameters. Posterior inferences about A¢ can be used
as an outlier diagnostic. The scale mixture model accomodates an outlier at time t by increasing
the scale. Observations with marginal posteriors centered on large values of ), are candidates for
outliers.

The hierarchical structure allows us to go one step further and model » with a distribution

p(r). It is then possible to let the data infer about the severity of the departure from normality

through the marginal posterior distribution p(v|y).
In Section 3 we describe how to construct a MCMC algorithm to implement this model. It

will be useful to re-write the model as
L1
= hf Ag Zy, (3)
loghy = a+ébloghiy +oyvy, t=1,...,T
(aa 51 U’UJ /\) ~ p(°—’1 5: gﬂ)p(’\)
(Zt, vt) ~ NZ(Ow I)

where p(A) = [TZ., p(A;). We will use the vector of latent variables A to construct an algorithm
to simulate from the joint posterior w(h,w, Aly). The posterior distribution of interest m{h,w|y)

is then a marginal distribution from this joint distribution. See Section 3.2 for further details.
2.2 Skewed Departures from Normality

One simple way of introducing an asymmetric skewed distribution for ¢, is to consider a contami-
nated normal mixture of the form ele, p, 7 ~ (1— ) N (=np, 1) +eN (i, 7%) for parameters (g, 7, €).
We chose 7 = ¢/(1 ~ ¢} to force the mean of the conditional error ¢, to be zero. Note that the
framework here can extend beyond the modelling of conditional skewness. For example, when
t = 0 we have a symmetrical fat-tailed mixture distribution. The conditional variance of returns
is multiplied by 7% with probability e. This is similar to the regime switching model used by
Hamilton and Susmel (1994) for ARCH models. The difference is in the formulation of transition

probabilities. Our main goal is to model skewness, so we introduce one probability of being in



state 1 or 2, € and 1-¢. Hamilton and Susmel think of regimes and model two transition probabil-
ities from state 1 to state 2, and from state 2 to state 1. With g = 0, our model is easily extended
to accommodate this regime switching framework which appears to be a successful extension of
the basic ARCH framework.

The parameter p is used to reflect asymmetrical departures in the error distribution. The
parameter ¢ helps model a probability of each observation being an “outlier”. Heuristically,
u governs skewness and 7 influences the kurtosis of the error distribution. In our hierarchical
framework, these parameters can themselves be modelled with a distribution p{e,u,7). The
model is specified as

yo=hic, e~ (1= N (=np,1) + N () @)
logh: = a+dloghi_1 +oyuy, t=1,...,T

(a‘l 5’ T, € /-L‘.' T) ~ p(Oé, 5? Uﬂ)p(ejp(”‘l T)

A standard approach to re-writing the first stage of the hierarchy that allows easy implementation
of MCMC methods is to use a set of unobserved indicator variables I = {I;}. Each error term
¢; has an indicator variable I; with conditional distribution €|l = 0,€, 4,7 ~ N(~nu,1} and
&)l = 1,6, 4,7 ~ N{p,7%) where p(I; = 1]e) = e. Under these conditionals we get the appropriate
marginal mixture distribution for e:e, g, 7 ~ (1 — €)N{—nu, 1)+ eN(u, 7%). The third stage prior
distribution for the vector of indicator variables is given by p(Ile) = [T, p(Is|¢). This allows the
first stage of the model in (?7) to be re-written as

_L
he 2y — (—n)Hp
rl

=2z, z~ N(0,1)

T

p(le) = [T piile)

=1

One of the important features of our analysis is that we can use the data to learn about the
parameters {7, u,€). In particular, given the data, we can compute marginal posteriors for the
{p,€,7) parameters. For example; the posterior distribution p{uly) can be used to assess the
severity of the departure from symmetry whilst p(¢|y) and p(r|y) can be used to assess the

proportion of outliers and fat-tailedness, respectively.



2.3 Correlated Errors Model

The final extension of the univariate SVOL model which we consider is a correlation between the
two errors €; and v;. This may be particularly important for stock returns. For éxample, with a
negative correlation, a decrease in price, i.e. a negative return ¢ is likely to be associated with a
positive variance shock v, therefore producing the behavior referred to as the leverage effect. As

a hierarchical model we have

1
W= htzeta
loght:oz-l-éloght_l-{—crvut, t:].,,T

(a: 5: Ty P) ~ p(am 5: Ty, P)

(e, v¢) ~ N | 0, p’
p 1
The ex post analysis of this model now requires simulation from the joint posterior distribution
w(h,w, ply). Two difficulties arise. First, one needs to specify an appropriate joint prior distri-
bution for the correlation p and the volatility of volatility o,. Second, the algorithm needs to be
modified to accommodate the correlation p. We address these problems by reparameterising the
model in terms of («, 4, £*), where ©* and the joint distribution of the data and the volatilities
are given by

-3

—1
p(Yu hlai 612*) = H ht p(ht zytwloghtlh't—lr &, 6: 2*)
t=1

po, @

It is algebraically easier to rewrite this joint distribution in terms of the residuals (r¢, u¢) where
_1

vy = (hy *ys,us) and uy = loghy — @ — Slog by for 1 < ¢ < T. The joint distribution of the data

and the volatilities is now

2
2

T
: 1
) = h, 2|E7 "2 e —— *=1
Pl b4, ) = [T i exp (~Jur(mt )

where 4 = 37, r;r} is the residual matrix. In Section 3 we use this likelihood function to develop

an MCMC algorithm for the analysis of the posterior distribution.



The difficulty in specifying a prior p(Z*) on £* is that the top left element is equal to one.
Unfortunately, we cannot use the standard conjugate the inverse Wishart family as it is impossible
to model beliefs where some elements of the matrix are known and others are not. We rewrite
the covariance matrix with a hierarchical structure to the probability distribution. Let P =
poy, 2 = 0}(1 - p?) with inverse transformation o2 = Q-+ %2 and p = 9//QF 2. We elicit
the prior distribution on T* in a conditional fashion via p(X*) = p(¥[Q)p(2). The intuition of
this reparameterization is straightforward: we reformulate the covariance matrix of ry and ug in
terms of the linear regression of u; on ry. The new parameters are the slope coefficient and the
variance of the noise for which a normal-gamma prior is natural. We report quantiles of the exact
posterior distribution of p to document its uncertainty. Qur empirical results will show that the
posterior for p is relatively diffuse although its mass is concentrated primarily on negative values.
Given this and the bounded nature of the correlation parameter, it is all the more important to

make finite sample inferences without resorting to asymptotic methods.
2.4 A Stochastic Discount Factor Model

In the multivariate case the data vector y; is a ¢ x 1 vector of (excess) asset returns. The stochastic

discount factor model is defined by

e

1
Yt:hfz €ty

loghy = a+dloghs_y +ao,v, t=1,...,T
(Oc’, 65 G'U,E) Np(a15? JU) p(E)

where (¢, v¢) is typically modelled as a standard ¢ + 1 multivariate normal. The indeterminacy
in the level of variance is resolved by the use of priors or by simply fixing . Extensions to fat-
tailed distributions or a vector of correlations between ¢; and v; can be made easily by adapting
the models in Sections 2.1 and 2.3. This model is a stochastic generalisation of the discount
dynamic model using extensively in Bayesian forecasting (see Harrison and Stevens (1976), and
West and Harrison (1989)). Quintana and West (1989) provide an application of discount dynamic
models to exchange rate data. An implication of this model however is that asset returns cross-

correlations are non stochastic. On the other hand the covariance matrix 3 is not constrained by



any simplifying assumption.
2.5 Factor Structure Multivariate Stochastic Volatility Model

An alternative to the previous specification is a factor structure for the variance covariance matrix,
in which the factors possess stochastic volatility. This allows the cross-correlations to be stochastic.
The factor structure, widely hypothesized in asset pricing, helps reduce the dimensionality of the
parameter space. This type of specification is needed in the study of cross-sections of assets
when dynamic factors are hypothesized to be priced. See Engle, Ng, and Rothschild (1990} for
an incorporation of the factor structure into the ARCH framework. See also Harvey, Ruiz, and
Shephard (1994}. Consider ¢ assets with returns y; = (1t, .« -, yge)! where 1 < t < T. Suppose
that there are & underlying time varying factors F; = (Fit, ..., Fre)? that generate the returns
according to

v = AF + Qﬁ%fta
Ft ~ Nk(0= Hf)
loghit = a; + 6;log hi i1 + iy vy,

k
P(8,20) = p(Q) [ p(Ai)p(w:)
i=1

where H; = diag(hy), A = (A, .. ., Ak} is a matrix of factor loadings, and €, ~ N(0,1;). Let
o = (81,-..,0k) be the vector of persistence parameters for the volatilities of each factor and
L, = diag(s,,) the matrix of volatilities. Then, this model assumes that the & underlying factors
are independent of each other and follow a simple univariate stochastic volatility model as in JPR.
Under these assumptions we have a time-varying factor structure to the evolution of the variance
of the observations Var(y;) = AH;A’ + Q. We do not necessarily assume that € is diagonal.
That is, the k factors are introduced to model the stochastic variation in the covarialice matrix
of y;. If one wants to assume that the factors also explain the non-diagonality of this covariance
matrix, then {2 can be assumed to be diagonal.

The advantage of this specification of the multivariate evolution of the covariance matrices is
that the posterior distribution ={F,A,w|y) can be broken into conditionals ?F(FjIF(_j), A w,y)

(1 < j < k) and 7(A,w|F,y) where the first set of conditionals can be simulated via a simple

10



transformation of the JPR Metropolis algorithm used in the univariate model (see section 3.7 for

details).
2.6 Parameter Estimation and Sensitivity Analysis

Given a model and the data y, inference about the volatilities h and parameters w is given by the
Joint distribution 7 (h,w[y). In the univariate volatility case, the posterior distribution 7(h,w|y)
is known up to proportionality and is given by

T T

7(h,wly) o [] plyelhe) H (helhty,w)p(w)

t=1 t=1
Parameter inference is based on the marginal posterior distribution p(wly). JPR (1994) provide
a number of examples for stocks, stock indices and exchange rates. The empirical evidence shows
that the posterior distribution for the persistence parameter p(d | ¥) is concentrated away from
the random walk case (§ = 1) but exhibits strong skewness. This renders standard classical
asymptotics inappropriate. For asymptotic methods, the use of asymptotic standard errors and
the normality assumption may result in significant probabilities of explosive behavior or negative
standard deviation. A similar problem is reported by Harvey and Shephard (1993) with respect to
the coefficient p. The asymptotic normal approximation to the distribution of the QML estimate
of p puts mass outside [-1,1]. The simulation based estimator allows us to obtain quantiles of the
exact posterior distribution of the parameters or variances.

In the fat-tailed error model, we can address a number of inference problems as well as sen-
sitivity issues. For example, consider the model in section 2.1. Sensitivity of inference for ¢ to
the normal error distribution is conducted using the conditional posterior distribution p(d|v,y)
for which we have draws. Qutliers are pinpointed using the draws of the posterior distribution of
the latent scale variable A;. In our empirical examples, we compare the posterior mean E(X;]y)
with the 95 % quantiles of the prior distribution p(A;) for each observation. In the hierarchical
framework it is also possible to conduct inference about the size of departure from normality
in the error distribution. The degrees of freedom parameter v is modelled with a distribution
p(v) and the data infer about the severity of the departure from normality through the marginal

posterior distribution p(v|y). In all but one of our series we find evidence for non-normality.

11



There is a number of other advantages to using our approach to inference. Aside from the
unifying perspective on implementing these models, inference for nonlinear functions of the param-
eters or variances is straightforward. Prediction for unobservables like future average volatility,
needed in option pricing is easy (see Jacquier, Polson, and Rossi (1994a)). Typical nonlinear
parameters of interest can be the half-life of a shock to volatility log(.5)/logd, or the coefficient
of variation of the volatility sequence exp (o2/1 - 62} — 1. JPR. provide a number of examples for
stocks, stock indices and exchange rates. Our simulation based approach therefore provides an

exact finite sample inference with no need to appeal to delta-method asymptotics.

3 Implementation of SVOL models via MCMC Algorithms

To construct a Markov chain Monte Carlo algorithm for simulating draws from a stochastic
volatility model, it is usual to consider the following conditional posterior distributions m(h|w,y)
and 7(wlh,y). While the latter distribution is available for direct simulation, the former is
not. Under the normal assumption, a number of solutions have been proposed. JPR (1994)
decompose 7 (h|w,y) further by considering the one dimensional conditionals T (hslh(_yy, @, ¥)
where by = (hy,..., he—1, heyt, ..., h7). A Metropolis algorithm is used to perform this step of
the algorithm,

For the models that depart from the normal assumptions, we simulate from the joint posterior
distribution of all the volatilities, the parameters and additional state variables. For example, in
the fat-tailed model the state space x = (h,w, A) where X is the vector of scale parameters, and in
the skewed departures x = (h,w, I) where I is the vector of indicators. A MCMC algorithm spec-
ifies an irreducible and aperiodic Markov chain, see Tierney (1991), with stationary distribution
given by the desired joint distribution. There is a variety of choices for the underlying Markov
chain. The Hastings-Metropolis algorithms (Hastings (1970) ) provide a family of algorithms that
can be defined using only local movements in the parameter space and knowledge of the joint
posterior only up to proportionality. To simulate elements from the posterior distribution we
proceed by picking an inittal state, possibly at random, and then simulating transitions of the

chain. The draws of the simulated distribution converge to draws of the stationary distribution

12



namely the required joint posterior.
3.1 Metropolis algorithm

A Metropolis algorithm requires the specification of a Markov transition kernel, ), density ratio
m(y}/m(x) and state space for the chain. The researcher then runs the Markov chain based on
@ and ’adjusts’ its movements using the density ratio as follows: suppose the chain is at x,
generate a candidate point y from Q{x,y). If 7(y)Q(y,x) > 7n(x)Q(x,¥), the chain goes to y.
If n(y)Q(y,x) < m(x)Q(x,y), accept the new draw y with probability 7 (y)Q(y, x) /7 (x)Q(x,¥),
otherwise repeat the last draw x. This new process is a Markov chain that is time reversible with
respect to 7 and therefore 7 is its stationary distribution. The acceptance probability of a new

draw is related to the transition kernel and the density ratio by:

7 (y)Q(y,x)
FX)Q(X,y)’ 1)

Tierney (1991) and Miiller (1991) describe extensions and implementations of Metropolis-type

a(x,y) = min (

algorithms. Note how this algorithm nests the cases when we can make direct draws from =.
Then, Q(x,y) x n(y), the acceptance probability is one, and we are back to a standard Gibbs

sampling framework.
3.2 JPR univariate Metropolis algorithm

In the univariate stochastic volatility model with posterior m(h,w|y), JPR (1994) use a product

form for the Metropolis algorithm of the form

T
Q(xy way HQh;

Here the suffix is used to indicate which component of x = (h,w) gets updated conditional
on the rest of the variables. The one dimensional blanket Qy,(x,y) is specified to mimic the
conditional 7 (h|h(_y,w,y). Specifically Q,(-,-) is an inverse gamma density A; ~ 1/Z where
Z ~ Gamma(p, 1 /1) with parameters

Po= (6= Det7" 45y (5)
1—2¢
Pt P

13



with y; and o are given in JPR. The blanket Q. (x,y) which updates the parameter vector given
the volatility sequence can be set equal to the conditional posterior m(w|h,y) since the latter is

available from standard linear models methodology.
3.3 Fat-tailed Departures from Normality

For latent variable modelling we augment the posterior distribution with the vector of unobserved
latent variables A. A MCMC algorithm needs to be constructed for the full posterior r(h,w, A| ¥).

This is done by decomposing the distribution in terms of the conditionals

m(h,w| A y)
(A | hyw,y)

We can now construct an algorithm to simulate from the joint posterior 7(h,w, Aly). Notice that
we can simulate from m(h,w|A, y} using the original algorithm with y; replaced by ,\t_%yt. As for
m(A{ h,w,y), it can be simulated using results from Carlin and Polson (1991).

To draw from the conditional 7(A | h,w,y,») notice that 7(\ | h,w, y, v)=[Ip(Mlh,w,y,v)
where

Py, he,v) = pO LR Py, 0) o p(R7H 2y | My, )20 | ) (6)

The form of the conditional posterior therefore depends on the choice of prior p(A; | v). Two

useful fat-tailed distributions are given by the following priors and conditional postetiors
2 -1
o If p(e) ~t, then v/X; ~ x2 and A;|y;, tNIG( (v+1),2 (%% +V) )
o If p(e;) ~ DE(0,1) then Ay ~ Exp(2) and |y, by ~ GIG (%, 1, %2‘;)

where DF' denotes the double exponential distribution and GIG' the generalized inverse gaussian
distribution. To let the data gauge the severity of the departure from normality we can extend the
hierarchical model by letting 1 have a prior distribution p(»). This adds a conditional distribution

to our simulation procedure, namely p(v[A, h,w, ¥} ~ p(v|). By Bayes theorem,

T
p(v|A h,w,y) < p(v H (Ad]v)
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Therefore,
1 v 1 /2
viAhywy)x ————exp| —= = | =——n(v
The prior distribution of v is a simple discrete distribution on an integer interval such as [1,60]

or [1,30]. Simulations from this one dimensional distribution can be handled directly.
3.4 Skewed Departures from Normality

Instead of exploring possible fat-tailed departures from the standard normal assumption we can
model skewness and fat-tails directly by taking ¢, to be a contaminated normal mixture. Specif-
ically, we take ele, pu, 7 ~ (1 — )N {~ne, 1) + €N (p, %) for parameters (i, 7, ¢). These hyperpa-
rameters can themselves be modelled with a distribution p(e, 1, 7). The hierarchical specification

of this model is

eI

- . 1-1;
by Py (I 7) B mm NO,T)
Tt

logh =a+dloghi—y +oyvy, t=1,...,T

(@, 8,005,161, 7) ~ p(w) p(I|e) p(e) p(u, )

where p(Ile) = [T, p(l:]e) with p(l; = 1|¢) = e. We now construct a MCMC algorithm to
simulate from the joint posterior p(h,w,I, 7, i, € | y) where we have augmented the state space with
the unobserved indicator variables. We can simulate from this joint distribution by cycling through
the conditionals p(h,w | I, 7, ¢, €, ¥), p{Ilh, 7, 1,6, ¥), p(7, 2 | h,1,¢,5) and p(c | 7, uh, 1, y). Let
us now consider each of these conditionals. To simulate from the conditional p(h,w|L, T, u, €, y)
notice that given I, 7,4, ¢, the random variables {z} are N(0,1). As in the basic algorithm, this
conditional is simulated by cycling through p(w | b, -) and p(h | w, ). The distribution of w given
h is identical to that of the simple model. The distribution of h given w is broken down into

univariate distributions p{h; | h_;,-) given by

L 2
_2 1 h 2y, — (—p)l~1 _ 2
p(h:iht._l,ht+1,w,I,T,,u,,e,y) o h’t 2 exp —5 ( t Yt ( n) P‘) exp {_M}

i 202

where (p¢, o) are given in JPR. We can use the same blanketing density as in (??) but with y2

transformed to y7/72%. This accounts for the extra variation 7 in the skewed distribution. The
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remaining term exp{(—n)l—r‘#yt/hé‘r) accounts for the location shift 4. We partially incorporate
it into the blanketing density by expanding it around the \/1/k;. The remainder term in the
expansion appears is accomodated via the acceptance probability. As we iterate between this
step and the indicators and hyperparameters we have a different data sequence for the volatilies
each time. In fact, one can see how the hyperparameters affect the weighting of each observation
in the conditional posterior of the volatility sequence.

The conditional posterior p(I | h, 7, 4, €,¥)is a product of independent univariate distributions

Iy | by, T, 1, €, 1), each of which is a simple binary draw where

-3 2RSS AN
1 (h Py~ (=n) p«)) 0

€
P =11 he, 7,1 €, 31) 0 - exp (—-2- -y

Now consider the conditional posterior distribution of the parameters plp, 7\, 1 e, y). It is known

up to porportionality as

1

1 1 (hy Ty = (=) Tep)?
pig, 7| h e y) x exp | -z plu, 7
( I ) TZ: I, ( 2 Z:: 1_2_[: ( )

where p{u,7) is the third stage prior for the parameter. If we assume a normal/inverse gamma

prior p(u, 7) we can simulate directly from the conditional posteriors

1 1 (h 2y — (=)o p)?
p(T|,u,I, h,e,y)oc E—}:exp (_2 Z el p(?")

t:lp=1

_1
p(slr. I, by, y) o exp (_%_; (hy 2y —T(z—;:n)l—rgﬂ)z) ol
Notice that this differs from the standard conjugate implementation of the normal/inverse gamma
prior where the joint posterior is directly available.

Finally, we need the conditional distribution of the outlier probability ¢. We take ¢ to have a
Beta prior distribution with hyperparameters ¢; and €. The Beta distribution is very flexible and
can include a flat prior as a special case. However a flat prior is not appropriate for, presumably,

we do not expect a large amount of outliers. For example, a prior mean of ¢ equal to 0.05,

and P(e < 0.5) = 0.99, can be modelled by the hyperparameters ¢; = 0.2 and €3 = 3.5, The
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conditional posterior distribution of ¢ is
ple|pmLhy) o ple)p{u, 7, Lh,y|e)
o< ple}p(I]€)ply|u, 1 he)

where we have used the fact that p(h, y,7) = p(h,u,7|¢,I). This is because ¢ and I carry no
information on h, g, T in the absence of the data. Under the Beta prior assumption, we can

combine the product p(e) p(I | €) by noting that p(I | ¢) corresponds to a Binomial experiment

with t; successes, where t; is the number of I;’s equal to one. We have
ple ], 7,1 h,y) oc Beta(ey +ty,62+T —t1) p(y | 1, 7,1, b, €) (8)

The second term in this conditional is given by

1
1 hy 2y — (—)i=Tey)2
p(y !l p, 7 Lh, e) x exp (_§Z (T -,-(Zlg ) ) (9)

t
where 7 = ¢/{1—¢). Although simulation from the conditional distribution of ¢ in (?7) is not direct
it is only one dimensional. We use accept/reject by simulating from the Beta(e; +t1,e2+71 — 1)

distribution and using (7?) as an acceptance probability.
3.5 Correlated Errors Model

When the observation equation and the variance equation errors are correlated the joint posterior

m{h,X*, a,d|y) is given by

T 3 .
m(h,E7, o, 8]y) < p(E*) p(a, 8) [] by 2|2% "7 exp (_%tr(E"lA))
t=1

-1
2

where A = 37, ryr} is the residual matrix with ry = (h; >y, logh; — o — §log hi—1). Under the
reparameterisation of £* in terms of 4 = po,,Q = 0Z(1 - p?) we have a prior distribution on
Z* given by p(Z*) = p(¥|Q)p(Q). Tt is natural to take a conditionally conjugate prior where
Y| ~ N{tho, Q7 r5"} and Q ~ IG(ag, Bo) for specified hyperparameters {ag, 8o, %, 70).

The analysis of the posterior distribution 7 (h, @, §, £*|y) is performed by cycling throﬁgh the

three conditionals

7 (h|¥, 2, 0,4,y)
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p(¥,Qla, 4, h,y)
ple, é, |9, Q, b, y)

The latter conditional is a normal distribution. The conditional p(v, |a, §, h,y) is dealt with as

follows:
P, 91,81, 3) o 5 exp (2715(CA)) b1, Q)
v
e
Expanding the term tr(CA) we have tr(CA) = g + (¥ — $)/Ap1(9 — ) where ¢ = A5} Ay

¢ =

By conjugacy of the prior p(¢, Q) we can use standard linear bayes methodology to simulate the

Joint conditional postertor of {¢, ) with the conditionals
P(¥I 0,8, b,y) ~ N (4, (A1g + 7))

p(Qle, 6, h,y) ~ IG (Ofo-l- = B0+ A221)

where % = (Ap1 + TO)_I(AIIT/) + m1pp). Finally, we need to consider the conditional distribu-
tion-w(hi, Q, @, d,y). As usual we cycle through the one dimensional conditional distributions

w(helhi—1, hep1, &%, @, 8, y). By Bayes theorem,
-8 1 . 1 _
T(Aelhier, By, 5%, 0, 6, y) o by 2 exp (‘5“‘(2 lrtr;) - 5“(2* 1r¢+1ri+1)>

We can now rewrite this in terms of (¢,£) to get a conditional posterior

-2 Ph? ul  ul byu Y1ty
T 2 + —t _ 4l it Yt+1Us41
(h:th—l,ht-f-},"p,Q,y)OCht exp( th ( Qz) 20 o .\/—t+ ht -

As in JPR we use an inverse gamma blanketing density which is calculated by collecting together

the terms in ~; ' and the log-normal terms (see the uncorrelated case in section 3.1). The blanket

Qn (-, -} is given by a IG (¢, v;) distribution where

1 —2exp(o?) z,béyt_l_l
= " g 10
¢ = 1 - exp(o?) Y s Vit (10)

vi = (¢ ~ 1) exp(pe + 50%) +

[ SN
TN
—
+
N) !\J
\.._____/
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and 6% = Q/(1 + 42). The parameters of the inverse gamma have therefore been modified to
account for the correlation parameter. The remaining term exp(y¥y:us/Qv/h:) is left in the accep-

tance probability of the Metropolis step.
3.6 Stochastic Discount Model

In the multivariate stochastic discount model we have a time varying covariance matrix of the
form A;E for the ¢ x 1 observation vector y¢. The discount factor h; follows a standard log
AR(1) volatility model and it is natural to model ¥ with a standard inverse Wishart distribution.
The analysis of the posterior distribution «(h,w, X]y) is performed by breaking it into the three
conditionals

7{h|w, Z,y)
p(w|Z, h,y)
PZ|w, h,y)

The last two conditionals follow directly from standard linear Bayes methodology: the posterior
p(wlZ, h,y) ~ p(wlh) is the same as in the basic univariate case. p(2|w,h,y) is an inverse
Wishart with updated parameters due to the conjugacy. We now show that the first conditional
can be dealt with by using a simple transformation of the univariate JPR algorithm. The desired

conditional 7 (h|w, ¥, y) is given up to proportionality as

T L 1 1
m(hlw, T, y) x [] &, %52 exp (—ay;E_lyt). p(hl|w)

t=1
It is equivalent to the posterior of the univariate case but with y? replaced by y/X~!y;. Conditional

on % we can therefore use the univariate JPR algorithm to generate the h sequence.
3.7 Stochastic Factor Structure Model

The stochastic factor structure model is specified by the sequence of conditionals
ye=AF, + Q_%Et:

Ft ~ Nk(o, Ht)
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loghyy = a; +d;loghi i1 + ouvy, 1<i<k

P(A,Qw) = Hp

where H; = diag{hi:) and T, = diag(c;,). The joint posterior n(H,w, A, Q|F,y) is then given by

H(vaa A19|F1Y) =< |Ql_2z eXp ("’%tr (Q.—l Z(yt - AFt)’(Yt - AFt))) (le)p( ) A Q)

where p(H|w}) is the product of independent log AR (1) volatilies and A, has a standard matrix

normal/inverse Wishart prior distribution given by
_k 1 -1
p(819) 198 exp (~3tr (271(a - B0) Aol ~ A9)))

p() o |82|7 7 exp (—%tr (Q—IBO)>
for specified hyperparameters (A, By, vo)-
We consider two cases. First, the underlying factors are observed as in the case of factor
mimicking portfolios or economic variables. Second, the factors are unobserved. The first case
is straightforward under independence of the factors as the joint posterior of the volatilities and

parameters, 7{A, H,w | F, y) decomposes as a product

k
7(A,Q,H,w|F,y) = (A, QF,y) [] 7 (hi,w|F)

1=1
The individual terms x(h;,wi|F) can be generated using the univariate algorithm of JPR (1994)
and the term m(A, Q[F,y) follows from standard conjugate multivariate analyss.
When F is unobserved we need to simulate from the joint posterior (A, Q, H,w, F|y). This

can be broken into into conditionals
(A, Q, H,w|F,y)

(F|A, @, H,w,y)

The first distribution is conditional on F. It reduces to the case described above where F is

known. The second conditional can be decomposed as

T
T(F|A,Q, H,w,y)x p(F | H)ply | F, A, Q) = p(F{H) [] p(y: | F;, A, Q)
t=1

20



That is
T{(FIAQH,w,y) x [Q|‘% exp (—%tr (Q"l(y - AF)(y ~ AF))) exp (—}z-tr (F'HF))

where F = {F,}. This is a standard matrix normal muitivariate distribution from which we can

make direct draws.

4 Empirical Applications

4.1 Fat-tailed Errors

In this section, we report the results of our analysis of weekly and daily series using a heavy-tailed
t,-distribution for the mean equation as outlined in section 3.3. v is also modelled as random
which provides the benefit of inferring about the severity of the departure from normality. We also
provide a set of outlier diagnostics by computing the posterior distribution of the scale paré,meters
Aq for each observation.

Table 1 reports summary statistics for the posterior distribution of the model parameters
for weekly returns on the equal-weighted and value-weighted CRSP stock indices, while table 2
provides information on the posterior of the daily S&P500 series for the 80s, and three exchange
rate series, Canadian $, UK £, and Deutsch Mark. The posteriors of the persistence parameters
and volatility equation variances resemble those found in JPR. The most striking finding is that
the posterior of v ~ the scale mixture parameter — is centered at fairly low values (low teens for
most series). Figure 1 shows the posterior distribution of v for each of the six series. We employ
a uniform prior for  on the range [1,60]. With the sole exception of the Canadian $ exchange
rate, all series put substantial posterior mass on values of v which represent a departure from
normality.

A closer examination of the posterior distributions of v shows that while there is considerable
evidence of non-normality, it is difficult to infer precisely about the values of v. The relatively
spread-out distribution of v, especially for the weekly series, might cause estimation difficulties for
a maximization approach to estimation (see Gallant, Hsieh and Tauchen (1994) for a discussion of

these problems). However, the MCMC estimator does not get stuck on a flat area of the likelihcod
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surface. Instead, it simply navigates across the flat and provides an accurate representation of
the posterior uncertainty.

While the data provide fairly strong evidence against normality, they do not support a very
low degree of freedom t distribution such as those found necessary in the ARCH literature. This
is because stochastic volatility models possess an extra level of mixing through the variance
equation that is not present in the ARCH-style models. Qur results show that this mixing does
tesult in a somewhat less fat-tailed conditional distribution than the ARCH models, but in no
ways eliminates the need to model the fat-tailness of this conditional distribution.

Some would argue that the real problem with these time series is the presence of extreme
outliers which cannot be accommodated by t-distribution with 10 or 15 degrees of freedom. We
address this question by conducting two methods for outlier analysis. The first method is an
outlier sensitivity analysis. As v varies, the relative weight accorded to outlying observations is
changed. For example, for very large values of v we are very close to the normal case and outliers
receive very high weight in posterior inference about the persistence and o, parameters. On the
other hand if » is very low, outliers receive little or no weight. We fix v at 5, 10, 15 and 30
and compute the posterior distribution of other model parameters conditional on v. F igures 2
and 3 present the results of this outlier sensitivity analysis. For both the equal-weighted weekly
return (figure 2) and daily S&P 500 index (figure 3), the weighting method has a strong effect on
the posterior distributions of § and ¢,. As outliers are downweighted (v declines), the posterior
distribution of delta shifts to higher values representing greater persistence. As expected, o,
declines so that the marginal variance of log(h;) remains roughly the same l—ﬁ—; This finding is
consistent with a view that the bulk of the data are generated from a model with higher persistence
than the outlying observations. This result has important implications for prediction as the basic
model will produce predictions with an underestimated persistence.

A unique feature of our analysis is the ability to infer about the draws of the scale-mixing
parameter Ay, for each observation in the time series. This is the second method of outhier
analysis which we document. If a particular observation is outlying, our model will attempt to

accommodate it with a posterior of A; centered at a large value. This will reweight the outlier
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and bring it more in line with the rest of the observations. We can use the joint posterior
distribution of (Ay, ..., A7) to identify outliers by looking at each marginal posteriors p(A;|y). One
attractive feature of this approach is that it avoids the masking effect that plagues standard
outlier diagnostic procedures. The time-varying volatility feature of our model complicates the
detection of outliers. Obviously, October 17, 1987 is easily detected by a mere time series plot
of the series. Other observations which are outlying in terms of the pattern of returns around a
given time period may be more difficult to detect.

The top panel of Figure 4 shows the daily S&P 500 index returns {filtered to remove calendar
effects as in Gallant, Rossi, and Tauchen (1992)}, from 1/2/80-12/30/87, T = 2023. In the bottom
panel, we plot the posterior means of each of the A;’s. This estimation is carried out conditional
on a fixed v equal to 5. This implies a very diffuse prior for each of the scale parameters,
A: ~Inverted Gamma(v,1). We plot the 75'* and 95** quantiles of this prior distribution as
horizontal lines on the bottom panel. A number of observations are flagged as outlying according
to this diagnostic. These are observations that even a t distribution with 5 degrees of freedoms
has difficulty accommodating. For reference there are 12 outliers. The posterior means of A,

observation number and date are given in the table below.

E(A:| D) | Observation Date

5.44 1972 | 87/10/19 *
3.5 1693 | 87/09/11 *
2.5 1257 | 84/12/18
247 1974 | 87/10/21
2.36 664 | 82/08/17 *
2.35 1279 | 85/01/21
2.28 1522 | 86/01/08 *
2.18 1977 | 87/10/26
2.17 78 | 80/04/22
2.15 1215 | 84/10/18
2.14 525 | 82/01/28
2.10 1646 | 86/07/07 *
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It is interesting to compare this diagnostic with that of Nelson (1991). Nelson uses an ex-
pected frequency criterion, in essence computing the expected number of appearances of a given
(absolute) value at least as large as the one observed in the sample. The basis for his computation
is the actual return R, standardized by the MLE point estimate of ;. The largest outliers he
identifies are by order of decreasing size on the dates: 87/10/19 , 87/9/11 , 82/8/17 , 86/1/8,
and 86/7/7. The *’s in the above table are the Nelson outliers which we also identify as outliers.
However, we also locate other outliers at least as severe which are not spotted by the Nelson
analysis.

We then provide a diagnostic of the ability of the SVOL model to capture the marginal
distribution of the data for the S&P 500 daily series. We simulate from the model with parameters
equal to the estimated posterior means. We then make a Quantile-Quantile plot of the simulated
data against the actual data distribution. Alternatively, one could have used the predictive density
of the data by simulating multiple series for each draw of the parameters. We have omitted the
day or week of Oct 17, 1987 in order to make the Q-Q plot more informative. Granted that none
of these models fits that week very well, a Q-Q plot including it prevents us from seeing how
well the rest of the distribution is fitted. Note that the discrete mixture model of section 2.2 can
easily be combined with the fat-tailed model if one wanted to see if the two models together can
accomodate even an exceptional outlier like October 17. The top panel of figure 5 shows the Q-Q
plot of the actual returns with data simulated for v=30 (normal case), the middle for y=posterior
mean, and the bottom panel for ¥=5. As might be expected, the middle panel shows the closest
correspondence in the distributions. There appears to be a very close correspondence between

the marginal distribution implied by the SVOL model and the marginal distribution of the data.
4.2 Correlated Fat-tailed Errors

We now implement a SVOL model that simultaneously allows for correlation and fat tails. In
our error specification we have ¢ = )\:/ zzt with (v¢, 2;) distributed as a correlated bivariate
normal and A; as an independent inverted gamma distribution. Clearly there is going to be a
posterior correlation between the correlation parameter p and the heavy-tail parameter v. The

large negative returns will have greatest influence in determining the posterior for p.
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As in Section 3.5, we model the pafameters (p, 0,) with a normal, inverted gamma natural
conjugate prior on (4, ©2). The advantage of this prior is that it facilitates a direct draw of both
1 and §2 given the other model parameters and the data. We now show that we can elicit a prior
that is reasonable for the more interpretable (p, o) parameterization.

Figure 6 shows the implied prior distribution of p and o, for a particular set of prior hyperpa-
rameters, chosen so that the implied priors are very diffuse. The left panel shows that the prior
on p is very nearly uniform in the interval (-.95, .95). The right panel shows a very diffuse prior
on ¢, which puts most mass in the (0, .5) range encountered in most data analysis. We should
note that it is possible to place an improper diffuse prior on these parameters as well. We believe
that proper but very diffuse priors are more reasonable in applied work.

In addition to introducing correlation into the basic model, we also use the scale mixture
strategy outlined in section 3.3 to simultaneously introduce fat-tailed error densities. Table 3
provides summary statistics of the posterior calculated for the correlated case for three CRSP
series - weekly equal and value weighted returns and daily value-weighted returns. The daily
CRSP value-weighted is exactly the same series used in Nelson’s seminal (1991) paper in which
he introduces the EGARCH model with asymmetric conditional variance functions.

Asin the uncorrelated case, table 3 shows a high level of persistence in the volatility equation
(-97 to .99 for the CRSP daily index). The distribution of § is not affected by the introduction of
the correlation parameter. It is important to note that while the posterior distribution of delta
is massed at a high value near 1, there is little evidence of unit roots in the volatility equation.
The posteriors damp down near 1 so that no appreciable mass is put on the region over .99. This
occurs in spite of a prior which is locally uniform around 1.0 (a diffuse normal prior truncated at
1.) The introduction of the correlation does not appreciably affect the level of persistence.

There are two striking features of the posteriors shown in table 3. First, the posterior dis-
tribution of p is massed around fairly low values. Figure 7 graphs the posteriors for p for each
of the three datasets. For the EW and VW series, the posterior distribution is massed around
-.3 with about .9 posterior probability of negative correlation. Even with 6000 plus observations

in the Nelson/CRSP daily dataset, the posterior of p still has a large standard deviation of .16
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and there is a 5% probability of p > 0. Second, table 3 shows that the posterior mean of v, the
scale mixture parameter is relatively high. For all three series, it hovers around 25 degrees of
freedom. This is in contrast to the results reported in section 4.1 for the uncorrelated case, where
the posteriors of v put substantial mass on values from 10 to 15. This results suggest a rather
subtle interaction between the correlation and scale mixture parameters in the model. It is pos-
sible that the fat-tail results with no correlation are simply an artefact of model misspecification.
Nelson (1991) estimates an exponential power density with a coefficient of 1.5. This is far from the
low degree of freedom t found in our analysis without correlation and it is more consistent with
the higher degrees of freedom found when we introduce correlation into the model. However, it
is difficult to make exact parallels between the fat-tailness of the errors in the EGARCH and the
SVOL models. The magnitude of the conditional variance asymmetry found here deserves further
comment. It is difficult to compare the asymmetry parameter of Nelson’s EGARCH model with
the SVOL correlation parameter. We need a measure of asymmetry that is independent of model
parameters. We consider the differential effect of a one o rise or fall in the mean equation error,

i.e. €, on log-volatility. Consider for the EGARCH model the quantity
Ac = {Inhygi|lnhg, 6o = =1) — (In ey | In by, &6 = +1)
Given Nelson’s (1991) notation, we have A = —26. For the SVOL model, the quantity
Ag=(lnhyInhs_1, 0401 = =1} — (In by} In hyy, € = +1)

is equal to —2p x o,. We are interested in standard deviations +/A; rather than log volatilities. We
transiate A into a percentage differential between the response to negative and positive shocks
by considering the quantity exp % - 1. Using Nelson’s parameter estimates § = ~0.12, for the
CRSP daily series we find that the EGARCH implies a 13 per cent larger increase in volatility
for a negative than for a positive shock. Using the SVOL estimates from the same dataset and
period, we find a 3 per cent asymmetry. With the QML method, Harvey and Shephard (1993)
find a p value of -.66 which implies a 7% asymmetry. So, even with the largest SVOL correlation
estimates, the asymmetries in the conditional variance function are smaller than those reported

by Nelson.

26



Finally, we report some diagnostics on the convergence and information content of our chain.
Kim and Shephard {1994) in a discussion of JPR (see also Carter and Kohn (1994) and Shep-
hard (1994)) make a case for the use of an approximate "multi-move” sampler as opposed to the
"single-move” sampler used in JPR; it should be noted that, as proposed, the Kim and Shephard
algorithm can not be extended to the correlated case. They argue that the convergence rate of
the single-move samplers may be slow, especially near the limiting case of a unit root coupled
with o, = 0. If we were near this limiting case, we should see slow dissipation of initial conditions
and high autocorrelation in the chain draws. For the CRSP daily return, we made 15000 draws
of p. Figure 8 shows the acf of the last 10000 draws of p, and one boxplot for the distribution of
each subsequence of 3000 draws. For daily CRSP data the posterior distribution of § is high. It
is primarily the correlation in the draws of the volatility sequence which will induce correlation
in the p draws. The acf shown in figure 8 does show reasonably high dependence (ACF, = .7)
but this does not suggest that we are at all close to the singularity which would occur if we
approached a unit root as o, declines to zero. This limiting case is the constant variance model
so often rejected in the extensive ARCH/stochastic volatility literature and therefore of limited
practical relevance. The bottom plot of figure 8 shows that, a,ftér the first 3000 draws which

exhibit higher variance, the distribution of the draw sequence stabilizes and remains unchanged.
5 Summary

A hierarchical approach to the modelling of stochastic volatility models is presented. Typical
extensions of the simple model result in the introduction of additional latent variables. These
new latent variables are then incorporated into a Markov Chain Monte Carlo algorithm through
data augmentation. This allows for efficient parameter estimation and variance smoothing and
prediction, for a large class of stochastic volatility models. This approach also provides a sensitiv-
ity analysis for parameter inference and an outlier diagnostic. This framework is implemented for
major extensions of the basic stochastic volatility model such as non normality (skewness and fat-
tails) of the conditional mean, correlation between conditional mean and variance shocks (leverage

effect). This hierarchical framework is also applied to two multivariate stochastic volatility models,
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with constant (stochastic discount factor) and time varying (factor structure) cross-correlations.
The empirical analysis performed for various financial and economic series shows that the distri-
butional extensions modelled are validated by the data. These extensions modify the prediction
of variance. Economic models which use variance forecasts as inputs may therefore benefit from

the incorporation of these extensions.
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Table 1

Posterior Analysis for Selected Weekly Series

Parameter EW VW
o -0.33 -0.31
(0.12) (0.11)

[-0.63,-0.15 ] | [-0.56,0.14]

§ 0.960 0.961
(0.015) (0.013)
[0.92,0.98] | {0.93,0.98]

o, 0.211 0.197
(0.038) (0.036 )
[0.15,0.30] 1[0.14,0.28]

/l;% 0.86 0.74
h
(0.30) (0.29)
[0.46,1.56 ] | [0.4,1.35]
v 15 25

(7.5) (13.7)
8,13,37] | [10,20,57 ]

“The first number is the posterior mean. The number between parentheses is the posterior standard
deviation. The two numbers between brackets indicate the 95% posterior credibility interval. For v we also
give the posterior median. p is fixed at 0. EW = Equal-weighted NYSE; VW = Value-weighted NYSE;

weekly returns , 7/62-12/91. T = 1539. Returns are prefiltered to remove AR(1) and monthly seasonals
from the mean equation.
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Table 2

Posterior Analysis for Selected Daily Financial Series

Parameter SP500 UK.£ DM CD$
a -0.0034 -0.21 -0.32 -0.53
(0.003) ( 0.066 ) (0.08) 0.11
[-0.01,0.0015] | [-0.35,-0.09] | [-0.50,-0.18] | [-0.75,-0.34 ]
) 0.986 0.98 0.969 0.958
(0.007 ) ( 0.006 ) ( 0.008) 0.009
[0.969, 0.996 ] | [0.966,0.990] | [0.952,0.983 ] | [0.94,0.972 ]
oy 0.099 0.11 0.157 0.24
(0.021) (0.017) ( 0.023) 0.023
[0.07,0.15] | [0.086,15.1] | [0.12,0.20] | [0.20,0.29]
lE’% 0.80 0.42 0.52 1.07
h
(2.5) (0.16) (0.14) 0.24
(0.24, 1.49 ] [0.24,0.78 ] [0.30,0.86] | [0.72,1.63]
v 11 10 11 47
(2.6) (2) (3) 9
[7,10,17 ] [7,10,15 ] [8,10,19 ] [28,49,60 ]

®The first number is the posterior mean. The number between parentheses is the posterior standard
deviation. The two numbers between brackets indicate the 95% posterior credibility interval. For  we also
give the posterior median. p is fixed at 0. The S&P500-daily change in log of the index, filtered to remove
calendar effects as in Gallant, Rossi, and Tauchen (1992);1/2/80-12/30/87; T=2023. UK £ and DM/$ daily
noon spat rates {log change) from the board of Governors of the Federal Reserve System, supplied by David
Hsieh; 1/2/80-5/31/90;T=2614. CD$ daily noon interbank market spot rates from Bank of Canada supplied

by Melino and Turnbull (1990); 1/2/75-12/10/86; T=3001
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Table 3

Posterior Analysis for Selected Financial Series - p estimated

Parameter EW VW CRSP Daily
a -.217 -.215 -.071
{.064) (.065) (.019)
§ 971 973 .99
(.0082) (.0084) (.0019)
[.954,.987] | [.954,.987] | [.989,.996)
T 17 16 10
(.020) (.020) (.010)
g% .86 76 1.2
(1.63) (1.34) (1.3)
Half-life 27.2 27.7 103.0
(10.3) (10.8) (33.0)
v 24.5 25.5 28
(4.4) (3.8) (1.9)
[15,30] [16,30] [23,30]
P -.33 -31 -.30
(.20) (.22) (.16)
[-.66,.13] | [-.66,17] | [-.58,.06]
Pr(p <0) 93 90 95

*The first number is the posterior mean. The number between parentheses is the posterior standard
deviation. When applicable, the two numbers between brackets indicate the 95% posterior credibility in-
terval. For p, we also indicate the probability of p being negative. EW = Equal-weighted NYSE; VW =
Value-weighted NYSE; weekly returns , 7/62-12/91. T = 1539. EW and VW Returns are prefiltered to
remove AR(1) and monthly seasonals from the mean equation. The CRSP Daily returns are from 07/03/62
to 87/12/31; T=6409.
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Figure 5. Quantile-Quantile Plots: SP&500 Daily Returns
vs Data Simulated from SVOL Model
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