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ABSTRACT

This paper presents a characterization of callable bond pricing and call decision when there are
transactions costs. When capital structure is kept constant a firm that has outstanding callable bonds
refinances them with similarly structured callable bonds. Since refinancing is costly, firms will delay the call
decision. Given that the firm's cash flows differ from investors' cash flows, the valuation of the callable bond
will be different for the firm and for the investors. We find that the investors' valuation function exhibits
three important empirical regularities for low interest rates: Inverse convexity, negative duration and market
prices higher than call prices. In the region between the next optimal refinancing rate and the first time that
the price of the bonds equals the call price, the market valuation of the bonds has a hump.

To simplify the problem we have assumed that the firm will replace the outstanding bond with an
identically structured bond. Because the firm will be replacing a seasoned bond with a new one, it will be
pasting a function with itself at two different maturities. A head for the new issue and a tail for the seasoned
bond. By following this procedure we collapse into a single step the problem of figuring out when to replace
a callable bond with another callable bond that needs to be priced before pricing the former. This exchange
of bonds will occur at a lower rate than the normal call rate when cash in hand is used. Small transaction
costs may justify waiting past the call price if the firm wants to keep a callable bond in its capital structure.

We conclude that transaction costs along may be encugh to explain the overvaluation of callable
bonds with respect to the call price. We use a general one-factor interest rate process in continuous time that
nests most of the popular one-factor interest rate models used by researchers and practitioners.

We would like to thank Siileyman Basak, Domenico Cuoco, Bruce Grundy, Haluk Unal, and Zvi
Wiener for helpful conversations. All remaining errors are ours. Comments welcome.



L Introduction

This paper prices callable bonds in a stochastic world and in the presence of flotation costs
incurred when issuing debt to obtain the funds to call the outstanding bond. This paper also
obtains the optimal call decision under these conditions for a general interest rate process. This is
the first paper to do both things for a general interest rate process.

Brennan and Schwartz (1977) solved the pricing of callable bonds without transaction
costs or call premium for a simple interest rate process givén by: dr = odW. Weingarten (1967)
solved the problem of pricing callable bonds in a perfect foresight model. Recently, Mauer (1993)
solved part of this problem for infinitely lived bonds and a particular interest rate process given by
dr = ar’dt + or*?dW which allowed him to obtain closed-form solutions.

In this paper we assume a general interest rate process that subsumes most single-factor
models. We will also present a characterization of the critical interest rate at which bonds should
be called. Pricing callable bonds is done in two steps, first the bond 1s priced from the point of
view of the borrower who not only has to pay a call premium to the investor but also has to pay
underwriting costs to the investment bank helping in the flotation of new bonds. Once the pricing
for the borrower is done, the critical interest rate is used to price the bond from the point of view
of the investors who only receive the call price.

These two valuations are very different and the market valuation will have four basic
properties for low interest rates: (I) the market bond price will exceed the call price by an amount
similar in magnitude tb the flotation costs. Since these costs are non-trivial (3%-5%) the market
price can be significantly larger than the call price. (i) the market price presents a hump before it

is called; (iii) the bond has negative duration and (iv) the bond exhibits inverse convexity.



Dunn and Spatt (1986) proposed to solve a similar model in which not only the next
refinancing had to be considered, but all future refinancings as well.

Weingarten (1967) solved the problem of refinancing callable bonds with flotation costs in
a perfect foresight model. He assumed that to decide on when to refinance the firm needed to
know all future refinancings. He analyzed the recursive problem of having to consider the optimal
refinancing of the subsequent bond when solving for the value of the current bond. Since the firm
is assumed infinitely lived, the problem becomes one of infinite recursion. For example, for a 17%
coupon bond there would be a need to analyze all bonds with lower coupons. Without costs, an
infinite number of bonds will have to be priced. When studying the decision to call a bond, one
would have to keep track of when all subsequent bonds will be called. This is possible in a perfect
foresight model, but it cannot be used with stochastic interest rates.

In this paper a callable bond is replaced by another callable bond collapsing into one step
the problem of looking at all future refinancings as in Weingarten (1967). Because the bond used
to provide the funds for the refinancing is also callable, it correctly incorporates all future
decisions to call.

We obtain sizeable over valuations with reasonable parameter values. In general, the
overvaluation is slightly smaller than the flotation costs. Vu (1986) finds no evidence of large
valuation over call price, in fact he reports three basic regularities regarding callable bond
behavior: (I) Only one of the bonds in his sample was called when the call price exceeded the call
price by more than 2% (ii) 75% of all bonds were called below call price, actually the average
under-valuation was 4.7%, and (iii) when called some bonds actually sold below par.

Given the results in Vu (1986) we propose that transaction costs alone could explain the



instances in which market value exceeds call price. Therefore, there would be no need to rely on
alternative explanations for the over valuation. The empirical question to be resolved at this point
is whether callable non-convertible bonds trade at prices in excess of call price by an amount
significantly higher than transactions costs. Crabbe and Helwege (1993) find that information
theories do not explain call behavior.

The economic explanation of the result that transaction costs alone could be enough to
explain overvaluation is fairly simple. Without refinancing costs® the firm would float new bonds
to replace bonds issued at par as soon as interest rates drop by a small amount. This is because
the firm does not have to worry about giving up the option to refinance later at even lower rates
as would be the case if the refinancing was done with non-callable debt’. However, the presence
of an initial blackout period in the newly issued bond may reduce the refinancing opportunities.

The remainder of the paper is organized as follows, section II presents the model and the
modeling choices; section III solves the problem; section I'V provides numerical results; finally
section V provides a summary and concluding remarks
II. Economic environment and other modeling assumptions

The following assumptions and modeling choices were made in order for us to solve the

callable bond problem.

*Refinancing costs are both the call premium and proper flotation costs. We are trying to
explain why the use of non-callable debt to finance a call would by itself delay the call decision.
Without call premium or refinancing transactions costs using non-callable bonds to call current
callable bonds would delay the call decision because the firm would give up completely the option
to refinance later at an even lower rate.

*Mauer (1993) proposed this framework to price the call option. To do that, a non-
callable is the right choice because the option 1s the difference between the callable and non-
callable bond.



AQ) Tt will be assumed that there is one firm which has as its objective to minimize the value of
outstanding coupon bonds given by G?(r,£;7,). The superscript B stands for borrower; r,, is the
nominal rate on the bond. The bond has current maturity of 7 (it has ¢ years until expiration) and
it was originally a 7-year bond. The coupon is paid continuously at a rate pdt per unit of time. In
general it might be the case that p =7, but we assume them to be the same.

A1)  The interest rate process is a one factor Ito-process given by the following stochastic
differential equation at current time ¢

() dr=KL-r)dr + or"dWw.

It is necessary to impose restrictions on the parameters Z, k and y so that interest rates never
become negative, L, k and y > 0. We also assume y < 2 to satisfy the growth condition so that
bond prices do not explode. or” is the volatility of the process and dW is the increment of a
standard Wiener process. By changing the different parameters in this process, many single-factor
models can be obtained. In this sense it has the same spirit as the process assumed by Chan,
Karolyi, Longstaff and Sanders (1992)*.

A2)  The bond being priced is callable after an initial blackout period [0,4;] at a call price
cp(G®,1), which is in general any function of time and/or bond price.

A3)  Other than market movements, there are no additional stochastic variables that affect bond
prices in this economy. In particular, default risk is zero. With respect to market risk see

assumption (A7).

*In fact, it is the same process, we have decided to present it in its more natural form with
a long term interest rate and a speed of reversion parameter. In their notation & = Lk, and f = -k.
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A4)  The firm prefers to replace a callable bond with another callable bond, as it is often done in
practice.

A5)  In addition to (A4), it will be assumed for computational ease that the bond used to
refinance only differs in maturity from the outstanding bond. Its maturity is equal to the onginal
maturity 7. This is only used to find the critical rate at which bonds should be switched. The
actual bond used to call may be structured with coupon rates that reflect current market
conditions,

A6)  When calling a bond, the firm incurs flotation costs given by f{ G®()) where f{) is a cost
function and G?(.) is the market price of the bond being replaced.

A7)  All financial instruments that depend on interest rates as given in (A1) will be priced using
a market risk adjustment of A, where the constant A is the price of interest rate risk.

A8)  In addition to flotation costs, there are no corporate taxes or other cashflows related to
these bonds.

A9}  Investors have no taxes or transaction costs and possess the same information as the firm.
In particular, it will be assumed that investors know when the firm will refinance. This implies
that they know the cost structure of the refunding decision {G’(.)).

One assumption is non-conventional and therefore needs further explanation: “The
replacement of a callable bond with an identically structured callable bond.” This assumption was
made to avoid the infinite regress problem of Weingarten (1967) in which one needs to solve for
all future refinancings before one can solve for the current one.

As stated before, the only purpose of this assumption is to obtain the critical interest rate

at which bonds should be exchanged. This assumption should not be taken literally because the



structure of new bonds may be such that it matches market conditions at the time of issuance. In
particular, the coupon it pays may be different from the previous one.

This assumption should also be contrasted with a parallel one made by Mauer {1993)
where a callable bond was replaced by a non-callable bond. If the objective is to price the call
options, this is the right assumption because it is the difference between the callable and non-
callable bond. But, it distorts the call decision we are after in this paper. To highlight this
difference further, assume a perfect world where there are no taxes, or costs, further assume that
there is no call premium. In this world, if a callable bond is going to be replaced with another
callable bond it will be done as soon as its price increases by any small amount above par. If, in
contrast, the callable bond is going to be replaced by a non-callable bond, then rates will be
allowed to drop further before the bond is called because the firm will be giving up any option to
refinance at lower rates. Assumption (A4) guarantees that the firm maintains this option to
refinance later at lower rates.

This analysis also helps to understand why results regarding overvaluation are so
significant. If the firm were to maintain its policy of refinancing as soon as rates dropped by a
small amount, there would be a significant accumulation of flotation costs that would grow very
quickly. To avoid most of those costs, the firm waits until the benefits obtained from one
refinancing compensate for the current and future flotation costs properly discounted.

Given the assumption for this economy, the evolution of any coupon bond will be given

by the following partial differential equation (PDE).

@) 050G () + (KL -(L+1)r)G.() -G () +p =rG().



This relationship is obtained by equating the risk adjusted return on a bond with the risk
free rate. All the equation is expressing is the fact that the expected return on bonds is equal to
the risk free rate once the risk adjustment factor has been included (Ar). Including the risk
adjustment factor allows this specification to incorporate a pure expectations hypothesis as in
Brennan and Schwartz (1977) by making A=0, as well as a more general risk premium model.
Equation (2) must be satisfied by every coupon bond (remember that p is the continuously paid
coupon rate) in this partial equilibrium one-factor model of the economy.

The only way to differentiate one bond from another in this economy is to look at the
bond covenants and imbedded options®>. These represent boundary behavior that the bond must
satisfy. It is these boundary conditions what make callable bonds different from any other bond.
Since our interest is the study of callable bonds, we will state the boundary conditions that the
bond must satisfy.

Before doing that we would like to draw attention to the difference between the valuation
of the bond by the issuing corporation (borrower) and the valuation of the same bond by the
market (investors). The only difference between these valuations is the fact that flotation costs
are paid by the corporation and go to third parties as opposed to investors. The crucial difference
between these two valuations has been generally absent in the literature until now, with the
exception of Timmis (1985) and Dunn and Spatt (1986). Stanton (1993) and Mauer (1993) also

have a very similar setup®.

By making p = 0 a pure discount bond could be studied.

Timmis (1985) is the earliest reference that we have found to this difference although he
and Stanton (1993) analyze the behavior of individual mortgages as opposed to callable bonds.
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Investors will be assumed to know the costs incurred by the firm when refinancing (A9).
They would solve the problem from the point of view of the firm and use the critical interest rate
that triggers refinancing as a boundary condition to solve their own problem, r* will be that critical

rate. With that process in mind the boundary conditions for the firm will be stated first.

(3) a). lim G2(r, 1, r,) =0

r— o

the economic value of a bond when rates increase without bounds is zero.

b. G2, 0r) =1

at maturity, the borrower returns the face value of the bond, if the bond has not already
been called. We normalize the face value to one. Finally, a differential boundary condition is
obtained at the reflecting barrier when r = 0;

c. KLG()-G()+p=0 if r=0

the natural boundary of the interest rate process assumed in (1) provides this additional
boundary condition for the bond. In addition, we have the blackout period condition that
prevents the bond from being called. At the end of the initial blackout period the bond is called if
¥ =r* We approximate the value G®(#=0, r<ty;7 ) during the blackout period as the present
value of GP(r=0, t=1,,r,) plus the coupon stream setting to zero the probability of the short-term
rate entering the continuation region’ at T = #,, conditional on r,= 0,7 < £,. This approximation
works quite well but causes small numerical distortions for < 0.004 (forty basis points).

So far, there are four conditions and, in principle, for this bond, that should be enough to solve

"The continuation region for this problem is the region in the interest rate domain where
the bond is not called, that is, the process is allowed to “continue”.
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the PDE given in (2). Indeed, they are the boundary conditions for a straight, non-callable, non-
convertible bond. Finally, there are the call boundary conditions if the firm decides to replace a

callable bond with another callable bond. In this case the following condition must be satisfied:

4  GE(@tir) =G (", Tr)
where GZ (r*, 7% r,) includes /G?()), the transaction costs function, which is the

flotation costs incurred when calling the bond.

What the firm owes after refinancing should be equal to what it used to owe minus the
refinancing costs represented by {G°(*}). All this equation conveys is the fact that at the point of
switching bonds the marginal benefits from refinancing should be the same as the marginal costs.
In other words that under the switching strategy there should be no net cashflow. Since equation
(2) was obtained using the expected capital appreciation of the bond, the firm is actually taking
into account not only the present refinancing decision, but all future ones as well.

The implicit assumption is that the objective of the firm is to minimize the value of the
bonds to favor shareholders (A(0). It is beyond the scope of the current paper to study the
optimality of the capital structure or the optimality of the bond minimization strategy. Brennan
and Schwartz (1977) and most researchers since then have used identical specifications.

What 1s new in this paper is the comparison of the usual call policy with the assumption
(AS5) that not only will a callable bond be replaced by another callable bond but that the stated
coupon rate 1s the same. Although the usual call policy is preferred in the absence of transactions
costs, switching directly from a callable bond into another one may save one transaction if the firm

wants a callable bond in its capital structure. The implication of our assumption is that the firm



will owe no more than what it owes when it refinances. This allows for a solution of the infinite
regress problem of Weingarten (1967)%. In principle, it means that the firm will be replacing the
outstanding bonds with identical bonds, except that they will have the initial maturity and will be
selling at a premium because of the lower interest rate in the current market conditions. But our
replacement strategy need not be taken literally, because all we are after is the critical interest rate
at which the firm will call the bond. Indeed, the new bond may be issued at rates which are
consistent with current market condition when the refinancing decision is made. In terms of the
numerical implementations it means that condition (4) will be used to locate the free boundary
where it is optimal to call the bond.

In the name of clarity and simplicity a flat call premium schedule will be assumed after the
initial blackout period. Adding a deterministic general call schedule would be simple to
implement and add nothing to the understanding of the problem. Also, only proportional
transaction costs will be used’.

These two assumptions imply that
(5)  SfG() =GOSy

where f{?) represents the transaction (flotation) costs which are assumed proportional to
the value of the bond being issued. We chose the transaction costs of the refinancing decision to
depend on time because at maturity the bond should be refinanced in any event. Therefore, the

incremental transaction costs due to the call, which affects the switching decision, depends on the

*Dunn and Spatt (1986) also propose a solution technique similar to Weingarten (1967).

*For this particular problem it makes no difference whether the costs are fixed or
proportional.
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time left to maturity for the bond being replaced. For simplicity we assume that f(%) is
proportional to the time until expiration.

So far we have discussed the firm’s problem. From the investors’ perspective, the only
difference is in the boundary condition (4) which they will replace with
6. a) G t; r,)= (I + 7) [the superscript M indicates market values. ]

Investors are only going to receive the call premium (remember that the face was
normalized to one), they do not receive the transactions cost for the issuance of the new bonds.
1L b. The frictionless case:

In an economy without transactions costs (or call premium), taxes, or other market
imperfections it would not make any difference whether the firm maintains its capital structure
constant or not. The solution to the model will therefore be obtained by making f=7 =0 (no
flotation costs or call premium) and using equation (6 b) as the firm's boundary condition
6. by G’ 1) =GP ) = 1.

This would imply that the firm is using cash to call the bonds and that investors only
receive the face amount. How the firm obtains the funds would be irrelevant in this frictionless
economy. The Modigliani Miller conditions would be satisfied and capital structure would be
irrelevant. This is the simplest refinancing of callable bonds as solved by Brennan and Schwartz
(1977). In the current paper it is assumed that the firm refinances the callable bond with another

callable bond of identical specification, maintaining also constant the amount of money owed"™.

1This is very important because the argument used to support the claim that it does not
matter how a corporation finances a call says that if a holder of a callable bond needs to be paid
$1.09. then it does not matter how this money is obtained. There will be a non-callable bond that
sells at par ($1.00), but there would also be a callable bond that sells at $0.95 (the difference is the
price the firm pays for the call option). By selling 1.1474 callable bonds instead of 1.09 non-
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The result from the frictionless model will be used as a benchmark in this paper.

The space and time spent analyzing and discussing the boundary conditions is essential
because, as was said earlier, in this economy all coupon bonds satisfy the PDE given in (2). The
only difference between one bond and another is just the set of boundary conditions that must be
satisfied. Imposing the wrong boundary condition would give the wrong answer. Many
researchers have used an incorrect boundary condition. Some people impose a boundary
condition that says that the bond should be called when the market price (as opposed to the
issuer's price) is equal to the premium plus transactions costs. This would give as a result a model
where at the critical interest rate the value of the bond will be equal to one plus the value of the
premium plus the transactions costs. Such a model does not satisfy the empirical regularities that
the current model captures, but more importantly it is not correct.

The problem with the latter condition is that it does not incorporate the fact that market
investors do not receive the transaction costs. The market valuation should be made with the
right amount of funds that investors receive, and that is only face plus call premium. These funds
are received when the firm finds it optimal, subject to the investment bank flotation costs.

The right boundary condition for the borrower is given by equation (4) and for the
investors by equation (6). They allow the model to explain market valuations larger than call
premium (by an amount similar in size to transactions costs).

The typical argument used to support the claim that the observed market value of callable

bonds could not be explained by transactions costs alone could be summarize as follows. The

callable bonds the firm can call the current bond using callable bonds. However this financing
strategy minimizes expected costs over the interval (0,7). Our swilching strategy minimizes costs
over the interval (0,7,+ T). Were 7, is the point in time at which the switching takes place.

12



company’s valuation G is larger than the market valuation ,GM  but it cannot be too much bigger
than the call price because costs have to be discounted. The difference between the two is the
transactions cost f that the borrower pays a third party. This implies that G* is an upper bound for
G Since G® will never be higher than the call premium by more than f G, it will be barely
larger than call price.

Under the bond switching policy the proper boundary condition for the borrower's
valuation is not 1 + 7+ £, but G*¢", T: r,) to reflect the fact that the company is switching to
this new bond and that it is the only source of funds. Since the nominal rate r,, is higher than the
market rate #” at which the bond is being refinanced, the bond is selling at a premium and G*¢, 7
r,) could be larger than the call boundary condition. This allows more room for G to be larger
than the call price. In general, G will be larger than the call price by an amount very similar to
the transactions costs involved when refinancing. For the numerical exercises performed for this
paper'?, G*(r", T; r,) is very similar in size to the call boundary condition, but the difference
between GZ(+", T r,) and G¥(¥", T; r,) at the switching point is only somewhat smaller than f.

III Results

After having discussed the model we can present and analyze some of the numerical
results. As a reference point we choose the benchmark parameter values given in the following
table. The parameters are from CKLS and we use 25 years as bond maturity.

y=15

UThis is the standard call boundary condition.

12Gee Figure 6 which shows the difference between the market and the borrowers
valuations.
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L. = 0.02 (the short-term interest rate has a long-term value of 2%)

k= 0.2 (the short term interest rate reverts in five years)

o=0.045

A=0.02

p = 0.08 [continuous coupon rate]

t=125

1+ f+ 7 =1.09

f=0.03 (This is the maximum amount of transaction costs if the switching occurs at 25 years to
maturity).

The PDE in equation (2) was solved by finite differences after making a change of vaniable
from re[0,=) to s€[0,1]. The number of time points=200, number of interest rate points=200 [for
a transformation r = (1-s/Xs)]. X was chosen equal to 10 so that most of the interest rate points
fell bellow 15%.

Figure 1 shows the value of a callable bond as a function of time to maturity and
instantaneous interest rates. We assume the call to occur at 7+ f*°. The introduction of a three-
year initial blackout period, in Figure 2, allows for the bond price to be initially higher than the
refinancing costs at very low interest rates. Note that the partial derivative of the bond value with
respect to time is discontinuous at (z = £,”, r = 0), where it jumps from -p to zero.

To start the description of the results we will first look at the vector of critical rates (r*) as

“Note that the interest rate scale is ordinal. The graph with this scale is clearer than the
one with the cardinal numbers.

!¢ is the end of the blackout period.
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a function of time to expiration (£). If the firm wishes to maintain a callable bond in its capital
structure it may decide to forgo the opportunity of calling the bond until it is optimal to exchange
the existing callable bond for a new one. Flor computational ease we assume that the new bond
has all the original characteristics of the old bond (assumption (AS5)). Such a strategy is clearly
dominated by an outright call in a world without transactions costs, however, we will show that it
may be justifiable when there are transactions costs, even if they are small. This is because not
going through an intermediate bond between the two callable ones saves one transaction. Figure
3 contrasts the critical call rate with the critical switching rate. It is apparent that bond switching
becomes optimal at rates lower than the call rates. In the interval between the two critical rates,
holding the original callable bond is suboptimal if transactions costs are not taken into account.
To measure the cost of waiting until the lower critical rate is reached, Table 1 reports the values |
of the callable bond under the two call policies for a variety of initial interest rates and blackout
periods. Panel A presents the results for the switching strategy, panel B for the call strategy and
panel C the difference. By construction the difference is zero for 7=0. After that, the difference
decreases monotonically with interest rates. The cost of using the critical rate of the switching
strategy rather than the higher call policy is very small unless the short term rate is approaching
the call region. The difference in call value under the two policies is highlighted in Figure 4,
which shows the difference between the bond values computed under the two policies. In the call
region the difference between the two bonds is close to transaction costs'. As rates increase the

price difference drops rather quickly to zero. Also, after the blackout period, as maturity

BFor extremely low values of the interest rate ( < 0.004) and at the time of first issue,
there are numerical inaccuracies that cause an area of relative high differences. This only happens
during the blackout period because of the approximate boundary condition that we use there.
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approaches the difference decreases because the advantage of the switching strategy decreases as

maturity nears. As we said before, at maturity the bond has to be refinanced in any event. Figure
5 also shows a series of cross sections at nine and a half years after the end of the initial blackout.

This figure shows the pattern previously described when interest rates increase. Similarly, Table 2
presents the results for two maturities, 12.5 and 6.25 years to maturity. The difference is constant
until rates reach 7.15% and then decrease monotonically to zero for higher rates.

It appears that moderate flotation costs may dominate the cost of following the switching
policy rather than the usual call policy. Changing the blackout period has almost no effect.
Finally, Figure 6 shows two cross section: one of (?*(r) and the other of G*(r) at a given point in
time evidencing the hump in G¥(#) at low rates. G®(r) is indeed an upper bound for G*(#) but the
latter is very close to the former. This is one of the most significant results of this paper because
it shows that for interest rates in the neighborhood of the critical refinancing rate the market price
of a callable non-convertible bond presents the empirical regularities that we anticipated in G¥(r):
() a “hump”, (ii) inverse convexity, and (i1) negative duration for low rates.

Figures 7 and 8 show critical rates for 10 different values of the call or refinancing costs
(the sum of the call premium and the flotation costs to switch). From the point of view of the
corporation (the borrower), it does not make any difference whether the call costs include
flotation costs as well as a call premium. The only difference between the two is the fact that the
call premium is part of the debt contract and cannot be changed or altered, while transaction costs
could be negotiated with the underwriters.

For the firm, call premium and transaction costs just make it costly to refinance. To

understand better the effects of the call premium and transactions costs as deterrents of
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refinancing we have changed the call or refinancing costs (f + 7) from 0.001 (10 basis points) to
0.1210 (1210 bps).

There are two striking and significant effects of this experiment. First of all, the amount
that interest rates need to fall for the bonds to be calied the day the bonds are first callable after
the blackout period (when time to maturity is 22 years) is directly affected by the costs (this is the
intersection of the critical rate curve with the vertical axis). This value changes from 7.99%
needed at 10 bps to 7.01% at 1210 bps. The other result is the time until expiration for which NO
decrease in interest rates will trigger refinancing (the intercept with the horizontal axis). For
refinancing costs equal to 10 bps the firm will refinance even one week before expiration, while
for costs equal to 1210 bps, once bonds have eighteen months until expiration, there is no positive
rate low enough that will trigger refinancing because the firm will not recover the costs of
refinancing.

This behavior explains clearly why we observe decreasing call premium schedules or even
an initial blackout period when refinancing is not possible (this could be interpreted as infinite
refinancing costs). As expiration nears, the importance of refinancing costs increases
dramatically.

Table 3 presents the most salient values of the same experiment performed with a blackout
period of three years as in our benchmark case. In addition to the blackout period there is an
“optimal” no-switch region where replacing the outstanding bond will not pay. The initial
blackout period causes a small increase in the delay.

We can now look again at Figures 7 and 8 and observe an important result regarding the

costs of refinancing and the relationship for small values of refinancing costs (again, this is both
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call premium and transaction costs per s¢). As typical with transaction costs models in continuous
time, the effect of costs per unit of costs decreases as refinancing costs increase. This means that
the strongest effect is felt for the first epsilon of transaction costs (that is, in real markets, the first
basis point is the most important). As we increase refinancing costs, the delay before refinancing
increases at a deceasing rate. Given results in other papers (see for example Delgado and Dumas
(1994)) it is tempting to conjecture that there will be initially a cubic relationship between the
delay of refinancing and refinancing costs. Due to the existence of the contractual call premium,
refinancing costs are larger than 500 basis points and such a relationship would be of limited
practical use. This analysis, however, highlights the effect of pure transaction costs (as opposed
to refinancing costs that include call premium) on the refinancing decision. Since most of the
effect of refinancing costs is due to the built-in call premium, transaction costs are not as
important as they could be without the call premium. This should not be taken to mean that they
are irrelevant, Because transaction costs go to underwriters, as opposed to investors, they create
the “hump” in the market price of callable bonds, and delay further the call decision (see Figure 6
and our previous discussion of that figure).

Our results regarding the behavior of the critical rate as a function of the time to
expiration should be contrasted with results obtained when the interest rate process allows for
negative interest rates as it would be the case with a simple Vasicek (1977) model. Figure 9
shows the critical rate for different values of volatility for the following particular interest rate
process dr = odW, which is the one used by Brennan and Schwartz (1977). Two very important
features of this process should be highlighted. The most striking one is the fact that the

relationship between the critical rate and time to expiration is actually inverted, that is, the critical
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rate increases as we get closer to expiration (time to expiration goes to zero). With k=L=y=0,
the critical rate increases as the bond gets closer to expiration because the process dr = 6dW
allows for negative interest rates. Actually, rates can be infinitely negative (to perfectly replicate
Brennan and Schwartz we also assumed zero refinancing costs, that is zero call premium and zero
flotation costs, but we have kept our three year blackout period). This means that the critical rate
will intercept the two axis just as before, but the one with the horizontal axis will give us the
smallest maturity for which it is optimal to refinance. As figure 9 shows, all curves reach the
coupon rate of 8% at maturity to indicate that rates do not have to be smaller than 8% to
optimally refinance. The critical rate decreases from that point on as maturity increases. For
0=0.049 we see that the intercept at t=22 (when the bond is callable for the first time) is 1.54%.
The economic rational of this behavior is based on the fact that, as we said before, interest rates
are allowed to became negative. Not only is it that as maturity increases the critical rate
decreases, as we increase volatility, but also there are values of volatility for which it does not
matter how low interest rate became the day the bond is cailable for the first time, it will never be
optimal to refinance for positive interest rates. For these curves, there is an intercept with the
horizontal axis which represents the minimum expiration for which it is optimal to refinance at
positive interest rates. This is due to the fact that the longer the maturity the larger the probability
that between now and expiration interest rates will become negative. As is the case in all option
valuation models increases in time to expiration and volatility produce results in the same
direction: the value of the option increases.

Table 4 presents these results in a compact manner, again, the “optimal” blackout region is

represented by the zeroes that start for some values of ¢ after eighteen months to indicate that for
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most of its life the bond will not be called. This analysis implies that for these models the éhoice
of interest rate process is crucial. In particular, whether the process allows for negative interest
rates because under those conditions the results are rather counterintuitive. The critical
refinancing rate increases as maturity approaches. This result is not only present for the Brennan
and Schwartz’s model, Vasicek’s (1977) model also has the same properties because it also
allows negative rates.

The second type of experiment that is important to perform is the change in volatility to
see the effects that volatility has on the critical interest rate. Figures 10 and 11 present the results
of these experiments. As expected, increases in volatility produce a decrease in the critical rate
(or equivalently they delay the call decision). These curves were obtained by changing volatility
(o) from 0.001 to 0.151. An important feature of this behavior should be pointed out, the effect
of increases in volatility decrease with time to maturity. They decrease so much that the
differences in the critical rates for significantly different volatilities vanish at one point. In the case
of Figures 10 and 11 this happens at about ten months to expiration. This is the point after which
it does not matter how low interest rates get, it will not be optimal to refinance. Basically, what
increases in volatility do is to rotate clockwise the critical rate schedule using the intercept with
the horizontal axis as a fulcrum. As volatility is increased, the interest rate needed to trigger
refinancing at the point at which the bond is first callable (22 years to maturity) increases almost
proportionately to volatility while after ten months to maturity there will be no effect. Table 5
presents results numerically for the most relevant values. What is important to note is that for
small times to maturity (two years or less) o has very little effect on the critical rates (the values in

each row are the same).
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An additional experiment that sheds light on the understanding of refinancing with
transaction costs is one where the mean of the interest rate process is changed. Note that the
interest rate process assumed in equation (1) is in general mean reverting with long term mean L
and speed of reversion & As we increase the long term mean of the interest rate process the
critical interest rate at which it is optimal to refinance also increases because the probability of
lower rates decreases. Figure 12 and Table 6 give us these results. The most relevant fact is the
existence of a non-monotonic critical rate (it is more clear in this figure but it can also be seen in
figure 10). It is due to the fact that as maturity approaches the advantages of switching decrease
because at expiration the bond will have to be refinanced. This is contrasted with the fact that as
maturity approaches transaction costs are have more impact on the switching decision because
there is less time to amortize the costs. The combination of these two forces causes the non-
monotonic behavior. It is important to note that changes in the market price of risk (A) have very
similar results to changes in L. A look at equation (2} will confirm this statement.

The most interesting exercise to be performed is, of course, the market price of callable
bonds at different maturities and the determination of whether they are significantly larger than
call price. As Figure 6 shows, the market price of callable bonds not only can be greater than the
call price, but the amount of the overpricing can be as large as the size of the flotation costs. For
the parameter values we have chosen, the overpricing is of the order of 3%. One of the most
important results of this paper is the fact that indeed transaction costs alone can explain callable
bond overpricing given that flotation costs are non-trivial and that 3% to 5% is a rather
conservative range for flotation costs. Also, as discussed before, we obtain negative duration and

inverse convexity for the market price of the bond.
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IV Conclusions

This paper has shown that with transactions costs alone and very reasonable parameter
values (estimated by Chan, Karoly, Longstaff and Sanders (1992)) it is possible to obtain market
prices of callable bonds that exceed call price by an amount similar in magnitude to the costs of
raising ﬁjﬁds to call the outstanding bonds.

The choice of interest rate process drastically affects the results obtained. In particular, if
the assumed process allows for negative rates one can obtain counterintuitive results. With the
possibility of negative rates the borrower has an incentive to delay refinancing in the expectation
that future rates might be significantly lower (negative). As maturity approaches, the probability
of negative rates decreases and the incentive to wait for lower rates also decreases. In the
presence of transactions costs this tendency is tempered by the time needed to take advantage of
the reduced interest rate payments.

Since a model that implies negative rates is not realistic our conclusions regarding the
effect of flotation costs do not take them into consideration. Flotation costs appear to cause a
“hump” in the market price of callable bonds. In addition, market prices can be larger than call
prices by an amount very similar to the flotation costs. Finally, transaction costs reduce the
value of the critical rate at which it is optimal to refinance bonds. This extends the period of time
during which callable bonds will not be refinance regardless of how low interest rates became.

Unanswered questions left for future empirical research are the measure of the overpricing
of callable bonds over call price and the determination of whether this overpricing can be

significantly larger than reasonable flotation costs.
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Table 1: Prices of bonds when first issued as a function of market interest rates and size of
Blackout period. The first column shows the market short term rate in percentages and
the first row the size of the initial blackout period in years. A Comparison of switching
against calling.

A; BOND SWITCHING : 4

r\78 5.25 4.873 4.5 4.125 3.75 3.375 3 2.625 2.25 1.875
.00 % 1.51865 1.438782 1458908 1429028 1.399143 1369252 1339355 1.309453 1279545  1.249632
1.03 1.424492  1.402781 1380864 1358733 1336379 131379 1290973 1267902 1244572  1.220972
2.03 1385722 1365831 1345824 1325701 1.305464 1285112 1264648 1244073 1223380  1.202597
3.02 1348162 1329997 1.311804  1.293591 1275368  1.257147 1.238939 1220759 1202622  1.184544
4.04 L310871  1.294382 1277952 1261598  1.245341  1.229203 1213207 1.197381  1.181756 1.166364
5.03 1275377 1260447  1.245659  1.231041 1216621 1202434 1.188516 1.174908 1161656  1,148814
6.08 1.239282  1.225900  1.212746 1199857 1.187272 1175036 1.163201 1151824 1.140968  1.130708
7.01 1207995  1.195925  1.184156  1.172735 1161710 1151138  1.141084 1.131619  1.122825 1.114795
2.07 1173423 1162768  1.152496  1.142662 1133329  1.124565 1.116449 1.109072  1.102533  1.096946
9.10 1140779 1131426  1.122533  1.114165 1106394 1.099302 1.092982 1.087533  1.083059  1.079656
10.07 1111154 1102953  1.095281 1.088211 1081824 1076210 1071461 1067665 1.064882  1.063104
12.11 1051356  1.045384  1.040069 1035489 1031715 1028800 1.026749 1.025491  1.024860  1,024625
14.04 0.998017  0.993885  0.990472 0.987818 0.985920 0984712 (.984058 0983775 0983684 0.983665
16.01 0.946508  0.943%18  0.942002 0.940714 0.939955 0939578  0.939429 0.939384 0939375  0.939374
1836 0.388451  0.887163  0.886357 (.885920 0.885722 0885651 0.885631 0.885627 0.885627 0.885627
20.19 0.845323  0.844651  0.844290  0.844126  0.844065 0.844048 0.844045 0.844044 0.844044  0.844044

B: CALLING THE BOND

T8 5.25 4.875 4.5 4125 3.75 3.375 3 2.625 225 1.875

0.00 % E518650  1.488782  1.458908 1429028 1399143 1369252 1339355 1309453 1.279545  1.249632
1.03 1.402632  1.380376  1.357903 1335211 1312295 1289145 1.265753  1.242111 1218208  1.194033
2.03 1.364544 1344093 1323317 1302819  1.281997 1261054 1239990  1.218807 1.197507  1.176050
3.02 1327638  1.308%04  1.290131  1.271327  1.252502 1.233666 1.214830  1.196007 1.177212  1.158461
4.04 1290994 1273929 1256510  1.239952 1223074 1206298 1189646  1.173144  1.156821  1.140707
5.03 1256115 1240603  1.225217 1.209983 1194927 1180081 1165481 1.151165 1.137178  1.123568
6.08 1220644  1.206676  1.192916 1179398 1166161  1.153247 1140705 1.128589 1.116960 1.105888
7.01 1189897  1.177237 1164856  1.152797 1141107 1.129840 1119058 1108828  1.099229  1.090348
8.07 1.155921 1144672  1.133782  1.123301  1.113289 1103813 1.094947 1.086778 1.079402  1.072930
9.10 1.123838  1.113889 1104373  1.095350 1.08689¢ 1.079072 1.071986 1.065731 1.060418  1.056160
10.07 1094722 1085924 1077625 1.069895 1062813  1.056468 1050957 1.046381  1.042831  1.040361
12.11 1035951  1.029385  1.023447 1018219 1013782 1.010212 1.007553 1005787 1.004801 1.004377
14.04 0983540 0978838 0.974846 0.971625 0969203 0967556 0966585 0.966117 0965946  0.965903
16.01 0932973 0929882 0927496 0925803  0.924734  0.924155 0.923901 0.923816 0923796 0.923793
18.36 0.876089  0.874439  0.873345 0.872709 0.872395 0.872269 0.872231 0.872223 0.872221 0.872221
20.19 0.833925  0.833012  0.832486  0.832228  0.832124 0.832091 (.832083 0.832082 0.832082 0.832082

C: DIFFERENCE

7B 5.25 4.875 4.5 4.125 3.75 3.375 3 2625 2.25 1.875
0.00 % 0 0 0 0 0 0 0 0 0 0

.03 0.021853  0.022405  0.022961  0.023522  0.024084  0.024651  0.025220 0.025791 0.026364 0.026939
2.03 0.021178  0.021738  0.022307 0022882 0.023467 (.024058 0.024658  0.025266 0.025882  0.026507
3.0z 0.020524  0.621093  0.021673 0022264 0.022866 (0.023481 0024109 0.024752 0.025410  0.026083
4.04 0.019877  0.020453  0.021042 0.021646 0.022267 0.022905 0.023561  0.024237  0.024935  0.025657
5.03 0.019262  0.019844  0.020442  0.021058  0.021694 0022353  0.023035 0.023743 0024478  0.025246
6.08 0.018638  0.019224 0.019830  0.020459  0.021111 0.021789 0.022496  0.023235  0.024008  0.024%20
7.01 0.018098  0.0I8688  0.019300 0.019938  0.020603 0.021298 0.022026 0.022791  0.023596  0.024447
8.07 0017502  0.0i8096  0.018714  0.019361  0.020040  0.020752 0.021502  0.022294 (.023131  0.024016
2.10 0.016541  0.017537 0018160 0.018815 0.019504 0.020230 0020996 0.021802 0022641 0.023496
10.07 0016432  0.017029 0017656 0.018316 0.019011 0.019742 0020504 0021284 0022051 0.022743
12.11 0.015405 0015999 0016622 0.017270 0.017933 (0.018588 0.019196 0019704 0020059  0.020248
14.04 0.014477  0.015047 0.015626  0.016193  0.016717 0.017156 0.017473  0.017658 0017738  0.017762
16.01 0.013535 0014036  0.014506 0.014911 0015221 0.015423 0015528 0.015568 0015579  0.015581
18.36 0012362 0012724 0013012 0013211  0.013327 (.013382 0013400 0013404 0.013406  0.013406

20.19 0011398 0011639 0011804 0.011898  0.011941  0.011957 0011962 0011962 0011962 0.011962




Table 2. Price Differences Between a bond that is “called” and a bond that is “switched”.
The parameter values are those of the benchmark case. The first column shows the
interest rate in percentages and the top row the time until expiration of the bonds. Until
rates are about 7.15% the difference is almost constant. After that, the difference quickly
drops to zero as rates increase.

rif 125 6.23

0.000000 | 0.026231 0.026231
0.071518 | 0.026231 0.026231
0.079094 | 0.025000 0.025047
0.080699 | 0.024770 0.024810
0.089225 | 0.023600 0.0233529
0.091037 | 0.023362 0.023237
0.098685 { 0.022396 0.021808
0.100703 { 0.022150 0.021358
0.109243 1 0.021151 0.019015
0.111503 | 0.020897 0.018272
0.118614 | 0.020122 0.015658
0.121101 1 6.019860 0.014672
0.128244 | 0.019060 0,011505

Table 3: Critical Switching Rates as Refinancing Costs are Changed, and as Functions of
Maturity. The first column represents the time to maturity of the bond in years and the

first row the total refinancing costs /+7z + f. The zeroes after 22 years represent the initial
blackout period. The zeroes close to expiration are “optimal” non-switching because

costs will not be recovered.

fl+ptf 1 1001 10068 1016 1023 1.03] 1038 1046 1.053 1061 [.068
0.125 0 0 0 0 0 0 0 0 0 0
0.25 0076 0016 O 0 0 0 0 0 ¢ 0
0.375 0.079 0048 0018 O 0 0 0 0 0 0

0.5 0.079  0.06 0.039 0018 0 0 0 0 0 0
0.625 0.079 0066  0.05 0034 0019 0 0 0 0 0
0.75 0079  0.07 0.057 0044 0032 0019 SE-04 0 0 0
0.875 0.079 0073 0062 0051 0.04 0.029 0019 0008 0 0

1 0079 0074 0066 0.056 0.047 0.038 0.028 0019 001 0
1.25 6.079 007 007 0063 0056 0.048 0041 0033 0026 0019
1.5 0079 0078 0074 0069 0062 0056 0.05 0043 0038 0031
1.75 6.079 0079 0076 0.072 0067 0.062 0056 0051 0045 0.04
2 0.079 0079 0078 0074 007 0.066 0062 0057 0051 0047
225 0.072 0079 0078 0076 0073 0.07 0.066 0.061 0.057 0.053
2.5 0.079 0079 0078 0078 0.074 0072 0069 0065 0061 0.057
3 0.079 0079 0078 0078 0076 0.074 0.073 0.07 0.067  0.065
3.5 6.079 0079 0078 0078 0078 0076 0076 0074 0072 0.07
4 0.07¢ 0079 0078 0078 0078 0076 0076 0074 0.074 0073
22 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0




Table 4. Critical Switching Rates when volatility is changed for the case when L = &k =y
= 0. Also, there are no transaction costs or Call Premium, but the initial Blackout Period
was set to three years. The first column shows time to maturity in years while the first
row the values of sigma. The “optimal” policy is not to call when time to maturity is large
because the probability of negative rates in this case increases with time to maturity.

t/o 0.04 0.049 0.058 0067 0076 0085 0094 0103 0112 0121

0.125 | 0.0800 ©0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800
0.25 0.0791 0.0791 0.0791 0.0791 0.0791 00791 0.0791 0.0791 0.0775 0.0775
0.375 | 0.0745 0.0760 00745 00730 00730 0.0715 00701 0.0687 0.0673 0.0059
0.5 0.0715 0.0715 0.0701 0.0687 0.0673 0.0659 00633 00620 0.0595 0.0571
0.625 | 00687 0.0701 0.0673 00646 0.0633 0.0608 (.0583 00548 0.0525 0.0493
0.75 00659 0.0673 00646 (.0620 0.0595 0.0559 00525 0.0493 0.0462 0.0413
0.875 | 0.0633 0.0659 0.0620 0.0595 0.0559 0.0525 0.0432 0.0442 0.0404 0.0351
1 0.0620 0.0633 0.0608 0.0571 0.0525 0.0493 0.0452 0.0404 0.0351 0.0287
1125 | 0.0595 0.0620 0.0583 0.0548 0.0503 0.0462 0.0413 0.0359 0.0294 0.0223
1.25 0.0583 0.0608 0.0559 0.0525 0.0472 0.0432 0.0377 0.0318 0.0243 0.0159
1375 [ 00571 0.0595 0.0548 0.0503 0.0452 0.0404 0.0342 0.0272 0.0190 0.0093
1.5 0.0548 0.0583 0.0525 0.0482 0.0432 0.0377 00310 00229 00142 0.0026

1.75 0.0525 0.0559 0.0503 0.0442 00385 0.0318 0.0243 0.0148 0.0026 O
2.125 | 00493 0.0525 00462 00394 0.0326 0.0250 00148 0.0017 0 0
2625 | 0.0452 0.0482 00413 00342 0.0257 0.0159 00013 © 0 0
3375 | 00394 00442 00359 0.0272 00165 0.0008 0O 0 0 0
4.5 0.0334 00385 0.0287 0.0178 00017 0 0 0 0 0
6.75 0.0243 0.0302 00184 00008 0 0 0 0 0 0
13.625 | 0.0103 0.0190 6.0004 O 0 0 0 0 0 0
22 0.0053 0.0154 ¢ ¢ 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0




Table 5. Critical Rates as we change sigma (o) for different times to maturity. The first

column contains the times to maturity in years while the first row shows the values of
sigma. Note that for times to maturity less than two years the critical rates does not

depend on the level of volatility. Basically, the time left is so small that the probability of

drastically lower rates is not affected by the level of sigma.

t\o 0.04 0049 0058 0067 0076 0.085 0.094 0.103 0.112 0.121
0125 |0 0 0 0 0 0 0 0 0 0

0.75 0 0 0 0 0 0 0 0 0 0

1 0.0093 0.0093 00093 00093 0.0093 0.0093 00093 00093 00093 0.0093
1.125 00184 00184 00184 00184 06.0184 00184 0.0184 00184 00134 00184
1.25 0.0257 0.0257 0.0257 0.0257 0.,0257 00257 0.0257 -0.0257 0.0257 0.0257
1.375 0.0318 0.0318 00318 00318 0.0318 00318 0.0318 0.0318 00318 0.0318
1.5 00368 0.0368 00368 0.0368 00368 00368 0.0368 00368 00368 0.0359
175 0.0442 00442 00442 0.0442 0.0442 00442 00442 00442 00442 0.0442
2 0.0503 0.0503 00503 0.0503 00503 0.0503 00503 0.0503 0.0503 0.0493
2.25 0.0559 00559 00559 0.0559 0.055% 00548 0.0548 0.0548 0.0548 0.0536
2.5 0.0595 0.0608 0.0595 00595 00595 0.0595 0.0583 0.0583 0.0571 0.0571
275 0.0633 0.0633 0.0633 00633 0062 0062 00608 0.0608 0.0595 0.0595
3 0.0659 0.0673 00659 00659 00646 00646 0.0633 0.0633 0.062 0.0608
3.5 00701 0.0715 00701 0.0687 00687 0.0673 00659 0.0659 0.0646 0.0633
4 0.073 0.073 0.0715 0.0715 00701 0.0687 0.0687 0.0673 0.0659 0.0659
4.5 0.073 0.073 0.073 00715 00715 00701 0.0687 0.0687 0.0673 0.0659
5 0.073 0.073 0.073 0.073 6.0715 0.0715 00701 0.0687 0.0673 0.0673
5.5 0.073 0.073 0.073 0.073 0.0715 0.0715 0.0701 0.0687 0.0687 0.0673
6 0.073 0.073 0.073 0.073 0.0715 00715 00701 0.0701 0.0687 0.0673
22 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0




Table 6: Critical switching rates as the long term value of the instantaneous rates (L) is
changed from 1 basis point to 721 basis points. As L is decreased the critical rate also

decreases because the interest rate will tend towards that value. Note the non-monotonic

relationship for the critical rate. For L equal to one basis point the highest critical rate is
744 basis points at six years to maturity. For L equal to 321 the highest value is 730 at ten

years.

L 0.0001 _ 00081 _ 00161 00241 00321 0.0461 _ 0.0481 __ 0.0561 _ 0.0641 _ 0.072]

0 0 0 0 0 0 0 0 0 0 0

0.875 0.010878 0.010878 0.010346 0.009820 0.008787 '0.008278 0.007278 0.006786 0.001708 0.001708
1 0.020287 0.020287 0.019644 0.018382 0.017763 0.017151 0.015949 0015359 0014775 0.013629
1.25 0.034231 0.034231 0032580 0031785 0030992 0.030210 0028678 0027927 0026455 0.025734
1.5 0.044163 0.044163 0042234 0041292 0040363 0.038546 0.037658 0036783 0035069 0.034231
1.75 0.051407 0.051407 0.050322 0.048204 0.047170 0.045150 0044163 0043191 0041292 0.039448
2 0.057107 0.057107 0.055929 0.054770 0.052510 0.051407 0.049255 0.048204 0.046152 0.044163
225 0.062026 0.062026 0.060764 0.059524 0.057107 0.055929 0.053631 0051407 0050322 0.048204
25 0.065948 0.065948 0.064617 0.063310 0.060764 0.059524 0057107 0.054770 0052510 0.051407
275 0.070087 0.070087 0.068682 0.065948 0.064617 0.062026 0.059524 0.058305 0.055929 0.053631
3 0.071518 0071518 0.070087 0.068682 0.067302 0064617 0062026 0060764 0058305 0.055929
35 0.074462 0.074462 0.072976 0.071518 0.070087 0.068682 0.065948 0064617 0.062026 0058305
4 0.074462 0.074462 0.072976 0.072976 0.072976 0.071518 0.068682 0.067302 0.064617 0.060764
45 0.074462 0.074462 0.074462 0.072976 0.072976 0.071518 0.070087 0.068682 0.065948 0063310
5 0.074462 0.074462 0.072976 0.072976 0.072976 0.072976 0.071518 0.070087 0.067302 0.064617
6 0.074462 0.074462 0.072976 0.072976 0.072976 0.072976 0.072976 0.071518 0.070087 0067302
10 0.072976  0.072976 0.072976 0.072976 0072976 0072976 0071518 0071518 0071518 0.070087
20 0.072976  0.072976 0.072976¢ 0.071518 0071518 0071518 0071518 0070087 0.070087 0.068682
22 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0
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Figure 2: Borrower's Bond Value

Three Year Blackout Period
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Call vs. Switching

Figure 4 Bond Price Differences:
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Figure 8: Critical Switching Rates

Varying Refinancing Cosls:
Call Premium Plus Flotation Costs
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