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Abstract

This paper investigates the properties of contingent claim prices in a one dimen-
sional diffusion world and establishes that (i) the delta of any claim is bounded above
(below) by the sup (inf) of its delta at maturity, and (ii), if its payoff is convex (concave),
then its current valne is convex (concave) in the current value of the underlying. These
properties are used as the foundation for a detailed study of the properties of option prices.
Interestingly, although an upward shift in the term structure of interest rates will always
increase a call’s value, é. decline in the present value of the exercise price can be associ-
ated with a decline in the call price. We provide a new bound on the values of calls on
dividend-paying assets, We establish that when the underlying’s instantaneous volatility is
bounded above (below), the call price is bounded above (below) by its Black-Scholes value
evaluated at the bounding volatility level. This leads to a new bound on a call’s delta. We
also show that if changes in the value of the underlying follow a multidimensional diffusion
(i.e., a stochastic volatility wozld), or are discontinuous or non-Markovian, then call option
prices can exhibit properties Vvery different from those of a Black-Scholes world: they can

be decreasing, concave functions of the value of the underlying.



I. Introduction

The Merton (1973) Theory of Rational Option Pricing emphasizes the distinction
between distribution-free bounds on option prices and properties of option prices conditional
on distributional assumptions. Merton’s meticulous analysis was one of the keystones of
the subsequent explosion of interest in option pricing by both academics and financial
markets. An explosion of such power that now, looking back, and reading in the Theory
that “[blecause options are specialized and relatively unimportant securities, the amount of
time and space devoted to the development of a pricing theory might be questioned” one
can not help but smile at Merton’s self-deprecating nascence. Now it seems intuitive that
a call option is a wasting asset, that a call’s value is an increasing convex function of the
underlying stock price, and that a replicating strategy will involve increased borrowing to
purchase additional stock as the stock price rises, while selling stock and repaying borrowing
as the stock declines. As will be shown, much of this intvition is intimately related to
the convexity of option prices. Yet Merton’s proof of convexity is careful to highlight
its underlying assumption, that the stock’s distribution is such that the option price is
homogeneous of degree one in the stock and exercise prices. In fact, Appendix 1 of the
Theory provides an almost universally overlooked example in which the stock’s distribution
is such that the homogeneity property is not satisfied, and, over some range, the option

price is concave in the value of the underlying.

Our research has two goals focused on the intimate relation between call price
properties and the underlying asset’s return distribution. Our first goal is to demonstrate
that the bulk of the common intuition is, in fact, rigorously correct in the type of world
typically assumed in the option pricing literature; i.e., when the underlying asset follows a
diffusion whose volatility depends only on time and the contemporaneous level of the stock

price. We refer to this as a one-dimensional diffusion world. In such a world, calls are
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always convex in the stock price, though they need not satisfy the homogeneity property.
Still some caveats are in order: Although an upward shift in the term structure of interest
rates will increase a call’s value, a decline in the present value of the exercise price can be
associated with a decline in the call price; and, a call’s elasticity need not be everywhere

increasing with the passage of time, or everywhere decreasing in the level of the stock price.

Our second goal is to sow seeds of doubt concerning a one-dimensional diffusion
view of stock price dynamics. We suggest that is quite reasonable to model a stock’s
current volatility as reflecting the firm’s past investment and financing decisions. Whenever
those decisions were influenced by the health of the company, and were not subsequently
continuously and “appropriately” adjusted, a stock’s current volatility will reflect the firm’s
past health. The current volatility will then be linked to past stock prices. For such non-
Markovian stock price processes, a call option can be a ‘bloating’ asset, which, over some
range of stock prices, is a decreasing, concave function of the underlying’s value, and is
replicated hy shﬁrting the underlying, and selling increasing amounts of stock as the stock
price rises. Further, an upward shift in the entire term structure can decrease a call’s
value. We also show that these ‘unfamiliar’ properties of option prices can arise if instead
of relaxing the Markovian assumption we relax the continuity assumption of a diffusion
world. We provide examples of decreasing, concave call prices when the underlying follows
either a diffusion-jump process or a binomial process. In the one-dimensional diffusion case,
the continuity and Markovian properties of a diffusion are together sufficient to guarantee
that the common intuition of option pricing properties is well founded. But when changes
in the underlying are driven by a multi-dimensional diffusion, as in a stochastic volatility
world, we show that call prices can be, over some range, decreasing and concave in the

value of the underlying.



The plan of the paper is as follows. Secfion II demonstrates that under the stan-
dard one-dimensional diffusion assumption, and for certain restricted forms of a multi-
dimensional diffusion, a call option’s price is an increasing, convex function of the stock
price. Section III examines further properties of a call option’s price and its replicating
portfolio in a one-dimensional diffusion world; in particular, the relation between a call’s
delta and its sensitivity to changes in the exercise price. Still within a one-dimensional
diffusion world Section IV explores the comparative statics of the effect on call prices of
changes in the term structure of interest rates, in dividend policy, and in.the functional
form of the relation between the volatility and the contemporaneous stock price and time.
With respect to dividend policy, we are able to bound the relative values of call’s on oth-
erwise equivalent dividend- and non-dividend-paying assets. With respect to volatility we
present two fascinating results. First, we demonstrate an equivalence between (i) a com-
parison of different functional forms for the relation between instantaneous volatility and
the contemporaneous stock price and time and (ii) increasing risk in the Rothschild-Stiglitz
sense. Second, we show that when the instantaneous volatility is bounded above {below),
the call price is bounded above (below) by the Black Scholes {1973} model value evaluated
at the bounding volatility level. An immediate implication is that we can place upper and
lower bounds on the stock positions necessary to hedge a given option position irrespective
of the functional form of the bounded link between instantaneous volatility and the con-
temporaneous stock price and time. Section V examines the relation between the value of
a put option and the value of the underlying asset, and provides some sufficient conditions

for the put to become worthless as the underlying becomes infinitely valuable.

Section VI challenges one’s intuition about the properties of option prices by ex-
amining option prices in a stochastic volatility world, a discontinuous Markovian world,

and a continuous Non-Markovian world. Non-Markovian worlds are shown to arise natu-
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rally when the underlying firm will make investment and/or ﬁna_ncing decisions prior to
the maturity of options written on the firm’s stock. Qur examples demonstrate that call
prices can be decreasing and concave in the value of the underlying, and that a put need
not become valueless as the underlying becomes infinitely valuable. Section VII contains

our closing remarks.

I1. A Diffusion Process for the Underlying Asset

Consider a contingent claim maturing at time 7. Let s; denote the time ¢ value
of the underlying asset.! The stochastic process describing changes in s; is either a one-

dimensional or a multi-dimensional diffusion.

Definition 1. The value of the underlying asset will be said to follow a one-dimensional

diffusion when

d&'t = t’)’(')dt‘i‘O’(St,t)StdBt. (1)

The instantaneous volatility, o (-), is a function of s, and ¢ only, while the drift parameter,

ce(-), Is not necessarily so restricted. B, denotes a standard Brownian motion.

We follow the finance literature and refer to o (-), rather than a{-)s, as the volatility.
Following Karlin and Taylor (1981, p. 159) we refer to the product o(-)s as the diffusion
parameter. The functions «{-) and o(-) are assumed to satisfy whatever regularity condi-
tions are necessary for (1) to be a well-defined stochastic differential equation.? We refer

to the special case when volatility is deterministic, ¢ (t), as a Black-Scholes world.

The term ‘stochastic volatility’ has come to be associated in the finance literature
with a setting where changes in o(-) are driven by a random variable, y;, other than the

contemporaneous level of s, though clearly the volatility in the one-dimensional case need

! We use = to denote time when ¢ is already used to denote an earlier date. We use

w to denote time when both ¢ and + have been used to denote earlier dates.
? See Chapter 6 of Arnold {1992).



not be deterministic. The dimension of 4 may be greater than or equal to unity. For ease
of exposition only, we consider the case where Y is a one-dimensional diffusion, and hence
changes in s, are driven by a two-dimensional diffusion. Our results for the case where
changes in s; are driven by a two-dimensional diffusion can be easily extended to the case

where y is multi-dimensional.

Definition 2. The value of the underlying asset will be said to follow a two-dimensional
diffusion when

dsy = a(-)dt + o{ss, ys, t)sed B, {2a)
dye = B(st,ye, t)dt + 0(sy, e, )dBY, (20)
Superscripts on dB; are indices not powers.

dB}dB} = p(s,y,t)dt. (2¢)

We use the shorthand ‘one-dimensional case’ and ‘two-dimensional case’ to dis-
tinguish definitions 1 and 2. We consider only deterministic interest rates, r(¢).> Unless
otherwise noted, we assume that the underlying asset pays no dividends over the life of the

option. We consider only European-style contingent claims.

Let c(s,t) denote the time ¢ value of a contingent claim in the éne—dimensional
case. Although we will often take ¢(-) to be the value of a call option, the notation ¢
Is intentionally mnemonic for ‘contingent claim’. Subindices denote partial derivatives:
c1(s;t) is the first partial of the claim’s price with respect to the stock price; ¢y (s,t) is
the second partial with respect to the stock price; ca(s,t) is the first partial with respect
to time, etc. We consider only limited liability underlying assets. Hence for a call option,
c(0,t) = 0. The c'ontingent claim’s time T payoff is given by c(s,T) = g(s). We assume

explicitly that the value of the claim can be expressed, using the Feynman-Kac Theorem,

3 Some, but not all, of our results generalize to the case where interest rates are

stochastic.



as the discounted expectation of its payoff under a risk-neutral probability measure.? In

the one-dimensional case, ¢(s, t) is then given by

o(s,8) = B{e™ J 7O (g1, (3)
where £%% solves the SDE
alr = T'(T)gfd'r +0'(f‘ra1')f'rd3'r (4)

with initial condition s at time ¢.

In the two-dimensional case, we assume that the price of volatility risk takes the
form A(s,y,t), and that the claim’s time T payoff is given by c(s,y, T) = g{s). Given the
restriction on the function A, the time ¢ value of a contingent claim will have the form
c{s,y,t).

A.  The Intuitive Link Between A Diffusion Process and Properties of Option Prices.

'The intuition underlying the properties of contingent claim prices developed in this
section is most clear in the one-dimensional case. For the one-dimensional case Figure 1
depicts potential paths for the ¢ process for a given realization of the B, process. The
crucial observation is that, for a given realization of the B; process, if the &, process starts
from & = s’, the subsequent level of the process at any time is at least as great as the
level the process would have attained at that time had it started from any value s” < s'.
To understand why this is so, consider the following thought experiment. Suppose the
path with the lower starting value were to attain a level above the path with the higher

starting value. Since sample paths of & are continuous®, the two paths must have met

# Rather than assuming some particular set of restrictions on the diffusion pa-

rameters in {1) and (2) known to be sufficient for the applicability of the Feynman-Kac
Theorem, we prefer to implicitly consider the full set of diffusion parameters consistent
with the Theorem.

> With probability one.



at some earlier time, t/. But, given the process in (4), the two sample paths will have
become identical from time ¢’ on. Therefore the path starting from s” cannot exceed the
path starting from s’. An immediate implication of this ‘no-crossing’ property is that the
distribution of £. conditional on ¢, = s first-order stochastically dominates the distribution
of £, conditional on ¢ = s”. Thus if a contingent claim’s payoff is non-decreasing (non-
increasing) in the maturity date value of the underlying asset, the claim’s current price

must be non-decreasing (non-increasing} in the current value of the underlying.

Our demonstration of the no-crossing property required that the risk-neutralized
process for s; be both continuous and Markovian. A diffusion is, by definition, both a
continuous and a Markovian process: see Karlin and Taylor (1981, p. 157). If one considers
a stochastic process that is either discontinuous or non-Markovian, then the process need
not possess the no-crossing property. Section VI will show that the value of a call can then

be decreasing in the value of the underlying.

Conditions sufficient to guarantee that, in the two-dimensional case, the value of a
call is an increasing function of the value of the underlying will be shown to be conditions
under which, despite its dependence on the contemporaneous y, an analogous no-crossing

property continues to hold for the risk-neutralized stock price process.

B. Suflicient Conditions for a Call's Replicating Portfolio to be Long in the Underlying,
But by Less than One Share.

Theorem 1 establishes bounds on the first partial of the value of any contingent
claim with respect to the value of the underlying asset that are applicable in the one-
dimensional case, and in certain restricted versions of the two-dimensional case. The The-
orem as stated is applicable whenever the function g(-) is everywhere differentiable. At
any points of non-differentiability, one should first replace the original g function by a new

smooth function of s arbitrarily close to the original function.
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Theorem 1. If changes in s, are described either by (i) a one-dimensional diffusion, or
(ii) a two-dimensional diffusion with the property that the drift and diffusion parameters

of the risk-neutralized process for y do not depend on s, then for all s, i and ¢,

i%fgl(Q) <eils,y,t) < supgi(q).
q

Proof:  Given condition (i), the value of the call can be expressed as in (3) and
(4). Consider the path followed by & for a given realization of the process B.. The level
of £, attained at time 7 with initial condition s’ at time t, £ ;"t, is at least as great as the
level attained when the process starts with initial condition s” < s’ at time t, 5;””5. Let X
denote the difference in the levels attained. X is a non-negative random variable with the
property that

B{x} = B{er*} - B{es ™} = ol Ty

els',t) = B{e™J O (e5ne 4 gy
r " [T r(r)dr .
> E{e_ft T(T)drg(ﬁ; ’t)} + E{e ft (r)d 11;?1fgl(q)X}

=c(s”,t) + inlfgl(q)(s’ —~s");

e(s' ) —cls” ¢t

g’ — g

ie., > inf g1 (q}.
q

Similarly, one can demonstrate that

e(s' t) —e(s" 1)

g — 5"

< sup g;(q).
q

Now consider condition (ii). For the two-dimensional case, we again assume ex-
plicitly that the value of the call can be expressed, using the Feynmac-Kac Theorem, as its

discounted expected payoff under a risk-neutral probability measure. (See Appendix A)

o(s,3,8) = B{e™ i T (1o (5)

T
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. o it it
where the superscripts ‘1’ and ‘2’ on £ denote indices not powers, and ¢!**" and g2y

solve the system of SDE’s

dé; = r(r)erdr + (¢}, €2, r)elaBl, (6a)

de? = (B(s7,62.7) = MeL €2, 7)0(eL, €2, 7)) dr + (€L, €2, 7)d B2, (6b)

with initial conditions s and y respectively at time t. Further, the correlation between
innovations in the two Brownian motions, B! and B2, is such that dBldB2 = p(el, &2, 7)dr,

The SDE’s in (6) describe the ‘risk-neutralized’ processes for s and .

Condition (ii} implies that there exists functions G! and ¢ 2 where the superscripts
denote indices not powers, such that
GHEm) = 8¢, r) = A(e! 2 r)a(ed e 7).
and G*(¢% ) = [0(,¢%, 7)),

In this case, expression (6) simplifies to

der = r(r)érdr + o(e), €2, 7)ekdBl, (6a”)

d€2 = G'(¢7,7)dr + \/C2{eZ, 7)dB2. (6v)

For any given realization of the B2 process, condition (ii) guarantees that the path fol-
lowed by ¢2 is independent of the initial condition for £1. Now consider two paths for
¢} differing only in their initial conditions. Given the realization of the BZ process, we
construct each path for £ from innovations dB} constructed as dBL = p(el g2, )dB2 +
(1 - [p(&7,€2,7))2)V2dB3, where B2 is a standard Brownian motion independent of B2,
Now suppose these two paths for ¢! did come together at, say, time ¢'. Could they cross?
Consider the SDE in (6a’). By construction, both paths for ¢! always share a common
realization of the £2 process and hence, must become identical subsequent to t’. Suppose

s < s'. Starting from {¢! = s', €2 = y}, the subsequent level of ¢l attained at time 7 is
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at least as great as the level attained when the processes start from {s” y}. Again let X

denote the difference in the levels of 5} attained.

: T T
B{x}=B{g"""} — p{el ") = ol i gy

T H
sty = LTI ey )

T

T H T
5 ple J (el W)} +E{e om0+ inf g1(g) X'},
=c(s" y,t) + iI{}fgl (@)(s" = s").

The remaining steps parallel those of condition (i}. QED

Theorem 1 is an extension of Proposition 5(a) of Grundy (1991) to the case of
general contingent claims and two-dimensional diffusions. Note that the condition (i}
restriction on the drift of the risk-neutralized process for y will be satisfied whenever v is

the price of a traded asset, that drift being equal to r(¢#)y.

Theorem 1 extends easily to the case where for all r [t,T], the underlying pays
a continuous proportional dividend at the rate §¥(7) and the contingent claim pays a
continuous proportional dividend at the rate §9(7). In this case, under the conditions of

Theorem 1 we have that for all s, y and t, the contingent claim’s delta satisfies

sup g1{q).

eftT(5D(T)*‘5M(T))d’finfgl(q) < eifs,y,t) < ELT(SO(T)—d“(T))dT
q v

Proposition 1 (Bounds on the first partial of a call).

Under the conditions of Theorem 1, the partial of a call option with respect to the value
of the underlying satisfies 0 < ¢y (s, y, ty < 1.

Proposition 1 is an immediate implication of Theorem 1, and itself immediately
implies that a call option’s replicating portfolio always involves a long position in the

underlying stock, but never by more than one share.
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For a call option, satisfaction of the inequality, 0 < ¢ (s, ¥, t) < 1lforalls, yandt,is
a precondition for ¢(s, y, t) to be convex in s for all 5, y, and .5 Suppose that for some s’ and
y', e1{s’,y',t) < 0. Since ¢(0,y',t) = 0 and, for all s, y, and ¢, (s, y,t) > 0, c1(s’,y',t) <0
implies that there exists an 5" € (0, s") such that ¢(0,¢,t) < c(s”, 7/, t) > e(s’,y',t), and
hence c(s,y’,t) will be strictly concave in s over some region. See Figure 2a. Now suppose
that for some s’ and some 3/, c1(s’,3',2) > 1. If for all 5, y and ¢, cy1(s,y,t) > 0, then,
as illustrated by the dotted line in Figure 2b, for high enough s, ¢(s,y’, ) will violate the
upper bound on its value: namely, that for all s, y and t, c(s,y,t) < s. Thus, as illustrated
by the solid line, in order to preclude the violation of this upper bound there must tflen
exist an s” > s’ such that 1(s"”,3’,t) < 1, and the call price will again be strictly concave

over some region.

C. Sufficient Conditions for Call Price Convexity.

The work of Merton (1973), Cox and Ross (1976), and Jagannathan (1984) estab-
lishes that, when the risk neutral process for the underlying is a proportional stochastic
process, then any contingent claim whose payoff is convex (concave) in the maturity date
value of the underlying will have a value that is convex (concave) in the current value. of the
underlying. In the one-dimensional case, a risk neutral proportional stochastic process im-
plies a deterministic volatility function; i.e., a Black-Scholes world.” While a proportional
risk neutral process is sufficient for the convexity of call prices, Theorem 2 shows that it is
not necessary in either the one- or two-dimensional cases. In fact, Theorem 2 establishes

that call price convexity is always true in the one-dimensional case.

 Footnote 16 of Chapter 8 of Jarrow and Rudd {1983) contains the results that for
a call option, if ¢ is everywhere convex in s, then ¢1(s,¢) < 1 and e1(s, t}s/c(s, t) > 1.

" The statement that the underlying follows a risk neutral proportional process
is equivalent to the statement that the value of a call option written on the underlying
is homogeneous of degree one in s and K. To see intuitively why homogeneity implies
convexity, imagine a doubling of s and K. The option would then double in value. But if
only s were doubled and the exercise price were held constant, ¢ would more than double.
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Theorem 2. Suppose changes in s, are described by either (i) a one-dimensional diffusion,
or (ii) a two-dimensional diffusion with the twin properties that {a) the drift and diffusion
parameters of the risk-neutralized process for y do not depend on s and {b) the covariance
between instantaneous changes in s and y is linear in s. Then, if a contingent claim’s payoff
is everywhere convex (concave) in the maturity date value of the underlying, the claim’s

current price is everywhere convex {concave) in the current value of the underlying.

Proof: See Appendix A.

The method of proof contained in Appendix A is analogous to the above method of
proof of Theorem 1. The result is obtained by combining the Feynman-Kac Theorem and
a suitable no-crossing property. Appendix B contains an alternate geometric proof of call
price convexity that is based on the stochastic maximum principle. This alternate proof is

not superfluous. It proceeds by developing tools useful in the analysis of the properties of

any region in which ¢ is concave in 5.3

Condition (ii) of Theorem 2 is more restrictive than condition (ii) of Theorem 1.
To guarantee convexity we require the additional restriction, condition (ii)(b), that the
instantaneous covariance between changes in s and y be linear in s. The instantaneous
covariance between s and y is given by o(s,y,t)s8(s,y,t)p(s,y, ). That the function 6{)
not depend on s is required by condition (ii}(a). Hence linearity of the covariance in s
requires that the product o(s,v,¢)p(s, y,t) not depend on s. This could occur in three
ways. First, and pathologically, both ¢(-) and p(-) may depend on s, but ir such inverse
ways that their product does not.? Second, p(-) may be zero for all s, y and ¢. Coupl.ed with
condition (ii)(a), this implies that instantaneous changes ir the risk neutral process for y are

independent of the contemporaneous s. Finally, both #(-) and p(-) may not be dependent

8 As will be seen in section VI, long-dated call options written on a corporation’s
stock can quite naturally possess such regions of concavity.

¥ We use ‘pathological’ in its strict mathematical sense, namely, that many readers
are likely to consider this first possibility to be uninteresting,
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on s. In this third case, there exists functions s}, k%, &3 and x4, where superscripts denote
indices not powers, such that the risk neutral processes for s and y take the form:

dgp = r{t)g;dt + &' (67, 1)€;dBY,

de} = (&7, t)dt + n3(eF, 1)dBY,
with dB}dB}? = x*(£2,¢)dt; i.e., the risk-neutralized process for s is a proportional stochas-

tic process.10

Theorem 2 does not require the absence of dividends. The proof is unchanged
when, for all = € [¢,T], the underlying pays a continuous proportional dividend at the
rate §(7) and the contingent claim pays a continuous proportional dividend at the rate
59(r).11
Proposition 2 (Call price convexity).

Under the conditions of Theorem 2, a call’s price is everywhere convex in the value of the

underlying: for all s and ¢, cy1(s,y,t) > 0. Further, for all s and t such that max[0,s —

T
Ke*ff. T(T)dT] < ofs,t) < s, we have strict convexity: e11(s,y,t) > 0.

Weak convexity is a direct implication of Theorem 2. A proof of the strict convexity
claim is contained in Appendix C. In the following sections III, IV, and V, we explore further

properties of option prices for the one-dimensional diffusion case.

III. Properties of a Call Option’s Price and its Replicating Portfolio

All the Propositions established in this section are predicated on the twin assump-

tions that (a) the underlying asset follows a one-dimensional diffusion, and (b) the call’s

1% Hull and White (1987) examine a model of stochastic volatility where the risk-
neutralized process for s is a proporticnal stochastic process. Their closed-form expression
for the call price is, therefore, everywhere convex in the value of the underlying.

11 Theorem 2 need not be applicable when dividends are non-proportional. For
example, consider a zero exercise price European call written on a stock paying a centinuous
version of the non-proportional dividend discussed in footnote 16 of Chapter 4 of Cox and
Rubinstein (19853).
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price can be expressed as its discounted expected payofl under a risk-neutral probability

measure. In the one-dimensional case, the value of a call, c(s,t), is given by the solution of
1 2
r(tei(s,t)s ~ r(t)e(s, t) + cals, t) + E[J(s,t)s} c11(s,t) = 0, (7)

subject to the terminal condition ¢(s, T') = max][0, s — K].

Figure 3 illustrates the feasible shapes of the relation between e{s,t) and s given
Propositions 1 and 2. Figures 3a, 3b and 3¢ are familiar from a Black-Scholes world with
infinite, finite and zero time to maturity respectively. Figures 3d, 3¢ and 3f illustrate the
relation when the underlying asset has zero probability of finishing in-the-money {out-of-
the-money) for low (high) stock prices. Interestingly, Propositions 1 and 2 do not seem to
rule out the type of relation illustrated in Figure 3g and 3h. We will examine the possibility

(T)dr

T
that lims o c(s, t) — max|0,s — Ke“fr. ] > 0 in section V.

A. Bounds on A Call’s Elasticity

Proposition 3. For all s and t such that 0 < c(s,t) < s, the call’s elasticity, Q(s, ),
satisfies 1 < Q(s,t) <1+ Ke f, rir )dT/c(s,t}.

Proof:  We first consider the lower bound.
¥ &
ols,t) = e(0, ) +] ex(y, )y = / ey, t)dy.
0 0
Proposition 2 implies that for 0 < ¢(s,t) < s, we have
[ cr{y, t)dy < / c1{s, t)dy = e1(s, t)s.
a 0

Therefore (s, t) = M)Tb > 1. Turning to the upper bound, we have from Proposition 1

and the no-arbitrage bounds on call prices that

T T
c1{s,t)s 5 . ofs, 1) +K€7J"t r(r)dr . Keift r(r)dr
C(S,t) - C(S,t) - C(S,t) == T

QED
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B. A Bound on a Call’s Delta

An immediate implication of Proposition 3 is:

Proposition 4. For all s and ¢ such that 0 < e(s,t) < s, the position in stock in a call’s
replicating portfolio, ¢1(s,t), satisfies ¢1{s,t) > ﬂi—q

C. A Call is a Wasting Asset

Proposition 5. For all s and t, e2(s,t) < 0. For all s and t such that either (i) max{0, s —

T
Kefft T(T)dT} < e(s,t) < s and o(s,t) > 0, or (ii) 0 < c(s,t) < s and v(t) > 0, a call is a
strictly wasting asset: cq(s, t) < 0.

Proof:  Rewriting expression (7) gives
L 2
ca(s,t) = -5[6(5,03] cyi(s, )~ r{the(s, ) (s, t) — 1).

Consider the first term, —%[U(S,i)s]chl(s,t). From Proposition 2, we have that for all s
and ¢, this term is non-positive. Now consider the second term, ~r{t)e(s, t)(Q(s, ¢) — 1).
From Proposition 3 we have Q(s,#) > 1 for all s and ¢ such that 0 < ¢(s,t) < s. For
c(s,t) = s, Qs,t) = 1. For ¢(s,t) = 0, we have the immediate result that cols,t) = 0.
Thus, since (t) > 0 for all ¢, the second term is non-positive for all s and ¢. Since for all
s and t, both the first and second terms are non-positive, the weak inequality claim of the
Proposition is established. Turning to the strong inequality claim, Proposition 2 implies
that for all s and ¢ such that max|0, s — Ke_ffT T(T)dT] < ¢{s,t) < s, the first term is strictly
negative provided o (s,t) > 0. When 0 < c(s,t) < s and r{t} > 0, the second term is strictly
negative.

QED

D. The Dynamic Behavior of a Call's Replicating Portfolio

A call is replicated by continuously adjusting a position in the stock, given by
1(s¢,t), and a position in bonds, given by c¢(ss.t) — c1(sy,t)sy. How does the position in
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stock change as the stock price changes for a given time to maturity? Propesition 2 gives

the answer immediately.

Proposition 6. For all s and t, the position in stock in a call’s replicating portfolio,

c1(s,t), is non-decreasing in the stock price, and is strictly increasing whenever (s, t)

T r(Tidr

satisfies max|[0, s — Ke_ft | <els,t) <s.

Proof: Proposition 6 is simply a restatement of Proposition 2. The change in the
position in stock as s changes, being the change in ¢;(s,¢) as & changes, is simply c11{s, ¢).

QED

Does the position in bonds in the replicating portfolio, c(ss, t) — ¢ (84, t)sy, involve

borrowing or lending? Again, Proposition 2 gives the answer immediately as:

Proposition 7. For all s and ¢ such that 0 < c{s,t) < s, a call’s replicating portfo-

lio consists of a levered position in stock, with the amount of borrowing being less than

Ke—ff‘r(r)dT'
Proof:  For all s and ¢ such that 0 < c{s, ) < s, we have from Proposition 3 that

the call's elasticity with respect to the stock, Q(s, 1), satisfies O(s,2) > 1.

(11(8, t)S

Us.8) = ¢(s,t)

>1 = efs,t)—ci(s, t)s < 0.

Hence replication requires a short position in bonds. From Proposition 1 we have:

T
C(S,t) - (!1(3j t)g > C(S,t} — 5> —Kegft r(r)d-r.

QED
Proposition 7 is a special case of the following Theorem (the proof of which is available

upon request).

Theorem 3. If the underlying follows a one-dimensional diffusion, then for any contingent

claim, the bond position in a replicating portfolio is bounded below (above) by the product

T
ofe_ff- Y aud the inf (sup) of the bond position at maturity.
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Theorem 3 is a natural counterpart to Theorem 1. The number of bonds in a
replicating portfolio is bounded by the number held at maturity (Theorem 3) just as the
number of units of the underlying in a replicating portfolio is bounded by the number held
at maturity (Theorem 1). One can think of Theorem 3 as using the price of the underlying
as the numeraire, reversing the roles of the ‘risky’ and ‘riskless’ assets, and reapplying

Theorem 1.

E. The Risk Premium on a Call Option

A call is equivalent to a levered position in the stock, with ((s,t) as the leverage
ratio: ‘total assets’ in the portfolio of ¢;{s, t)s relative to ‘owner’s equity’ in the portfolio
of e(s,t). Let u°(-) and u°(-) denote the instantaneous expected rates of return on the
underlying stock and the call, respectively. Consider the relative size of the risk premium

on the call (the levered position) versus the risk premium on the underlying.!?

Proposition 8. For all s and ¢ such that 0 < e(s,t) < s, the absolute value of the risk

premium on a call exceeds that on the underlying stock.

Proof: The arbitrage-free price of the option is such that the instantaneous

returns on the option and stock are perfectly correlated, which implies

pE0) =) = Qs ) (0°() - ().

From Proposition 3 we have Q(s,t) > 1for 0 < cfs,t) < s, and hence

|1°0) = r(8)] = Qs,t) () = ()] > () — r(t)].

QED

12 Grundy (1991) shows that option prices contain information not only about the
risk-neutralized distribution of the underlying, but also about its true distribution, provided
the underlying follows a one dimensional diffusion and the risk premium on the option can
be bounded. Proposition 8 establishes that the particular bound examined in that paper
is always satisfied for a one-dimensional diffusion.
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F. A Call’s Elasticity is Increasing in its Exercise Price

Consider two otherwise equivalent calls on the same stock with exercise prices of
KA and KB with K% > KA Let oA and ¢® denote their respective prices at time ¢, and
assume that ¢® > 0. Let 4 and Q8 denote their respective elasticities with respect to the

underlying stock.

Proposition 9. For all s and t < T such that 0 < (s, t) < s, the elasticity of a call is

increasing in its exercise price.

Proof:  For A = K- K4, we have max]0, 5~ KB = max [0, max[0, s, - K4]—
AJ. Call B is equivalent to a call option with an exercise price of A written on call A.
We wish to consider the properties of call A as an underlying asset. From Propositions 1
and 2, we have the result that for all s and ¢ such that c(s,t) > 0, the function c(s,t) is
invertible in s. Thus there exists a function V(eA, t) such that, applying Ito’s Lemma and

simplifying, the diffusion describing changes in the value of ¢ can be expressed as
deft = o ()t + Ve, therdz. (8)

When call A is viewed as the asset underlying call B, we see from (8} that changes in this
underlying asset take the form of a one-dimensional diffusion: the volatility of the underly-
ing, V(cf, t), depends only on its contemporaneous value, c;“, and time. From Proposition
3 we then have that the elasticity of call 8 with respect to call A must exceed unity; t.e.,
n?(c"t(s,t),t)cA(s,t)/(:B(cA(s,t),t) > 1. Applying the chain rule of differentiation, the
elasticity of call B with respect to the underlying stock can be expressed in terms of its
elasticity with respect to call A as

OF — rls(cA(s,t),t)cA(s,t) s, t)s B eA(s, 1), t)eA(s, 1)
B eBleA(s,t), 1) cAls,t) eBeA(s, 1), 1)

A4 s oAt

QED
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G. The Relation Between Delta and a Call’s Sensitivity to Changes in the Exercise Price

Qur notation ¢(s, t) subsumes the dependence of a call’s price on its exercise price
K. Breeden and Litzenberger (1978) have shown that the value of a state claim, defined as
a contingent claim paying $1 if and only if s, 2 K, is given by —aca(‘;(’t).” Note that the

payoft to such a state claim is non-decreasing in s...
Proposition 10. A call’s delta is nop-increasing in K .

Proof:  Given that a state claim’s payoff is non-decreasing in s.., Theorem 1
immediately implies that —a—ﬁlaif(&—t), being the first partial of the value of this contingent
claim with respect to the value of the underlying asset, must be non-negative. Thus %

b

being the first partial of the call’s delta with respect to the exercise price, is non-positive.
QED

Proposition 11. The percent decrease in a call's delta as jts exercise price increases is

not greater than the percent decrease in the call’s value.

Proof:  Proposition 9 gives:

de{s.1)
IK

9Q(s, t) s dei(s, t)

Bcl(s,t)‘
( aK <
0K R\ ek

ci{s,t) — els,t)

de(s, t)
oK

c(s,t) — e1(s,t) } >0 ie., - (9)

QED

The following Proposition provides a bound on a call’s delta in terms of the call’s

sensitivity to K, af?(;(,f,), that is applicable whenever the underlying asset’s diffusion param-

eter is non-decreasing in s; e.g., in a Black-Scholes world, or in a CEV diffusion world where
the underlying asset’s diffusion parameter takes the form & 59 with & > (). The proposition
will be of most practical importance when one can use observed call prices to determine

. dels,t)
tight bounds on Yt

13 In the one-dimensional case, the partial %“l is equal to the position in bonds in

a replicating portfolio if and only if the volatility of the underlying asset is deterministic.

19



Proposition 12. If the underlying asset’s diffusion pbarameter is non-decreasing in s, then

T
a call's delta exceeds the negative of eft rir)dr times Q-C(}(LKQ

Proof: Let g(s) = max[0,s — K] and Z(s,t) = [o(s,£)s]?. Z is the square of
the underlying asset’s diffusion parameter. The proof of Theorem 2 in Appendix A has

established that the call’s delta can be expressed as

c1(s, t) = E{gl (E;S!t)}’

where 515’1' solves the SDE

45t = (r(r)eb+ ) Z3(eh, 7)) dr + /2 (e, TV,

with initial condition s at time ¢t. The superscript ‘1’ on ¢ and B is an index not a power.

If the underlying’s diffusion parameter is non-decreasing in s, it follows that

cr(s,t) > E{gi(e2™)}.

where EQW solves the SDE

d¢7 = r(r)eddr + \/Z(€2,r)dB2,

with initial condition s at time ¢. The superscript ‘2’ on ¢ and B is an index not a power.
The inequality follows from two observations. First, under the conditions of the Proposition,
the drift of the £2 process is always at least as great as the drift of the ¢l process. Hence,
the distribution of ¢ ;S’t first-order stochastically dominates the distribution of £ is’t. (See
Proposition 2.18 of Chapter 5 of Karatzas and Shreve (1991).) Second, the function g1(s)

is non-decreasing in s:

1, ifs> K,
91(5):{

0, otherwise

Given the form of the g; function, the expectation E{gl (gﬁ%”)} can be written as

2 8,¢

E{q (2™} =Pr(2™ > k).
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Breeden and Litzenberger (1978) have shown that

_Oelst) [T g

o (2™ 5 k),

Hence

s o J v Bclent)

(st
c1ls, K

QED
H. The Relation Between Elasticity, Time and the Value of the Underlying

In the deterministic volatility world of Black-Scholes, it is well known that for all
s and ¢, (s, t) < 0 and Qa(s,£) > 0. These properties do not necessarily generalize
to a one-dimensional diffusion with non-deterministic volatility. Still, they will be true
for sufficiently large s and sufficiently large (T —¢t). Consider first the relation between
elasticity and the share price. From Proposition 3 we have that for all s and ¢, (s, ) > 1.
Since

lim Q(s,t) =1,

=00
2 must be decreasing in s for sufficiently large s. Now consider the relation between
elasticity and the passage of time. Assuming that the time ¢ value of a pure discount bond

maturing at time T goes to zero as ¢ — —00,
lim Q(s,t) =1,
f——oa

and €} must be increasing with the passage of time for ¢ sufficiently small relative to T.
To see that these properties need not be true in general, consider first Q) (s, t).

Cll(s,t)s CI(S,t)

hist)= =" o(s.1)

(1 — Q(s,t)).

The second term on the right-hand-side is non-positive and, from Propositions 2 and 3, is

T
bounded below by ~Ke~ J; T(T)C'ET/[c(s, t)]%. The first term is non-negative and unbounded
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above. Whenever the relation is sufficiently locally convex, the positive first term will

dominate and £2; will be positive. Now consider Qo(s, t):

S

Qa(s, t) = EemIE

(nlg(s,t)c(s,t)‘f cl(s,z)CQ(s,t)).

Lo see that {25(s, t) can be negative, suppose that for some s and ¢, ¢(s, ¢} is locally quadratic
in s, and, for simplicity, assume that for all ¢, r(¢) = 0. Differentiating the p.d.e. in (7)

with respect to s, and assuming that r(t) = 0 for all ¢, gives

c1a(s,t) = —cr(s,t)s(al(s, tis + J(s,t))cll{s,t) — %[J(s,t)s}zclu(s, t),

which for ¢111(s,¢) = 0 simplies to
ci2{s,t) = —a (s, t)s(o1(s,t)s + o s, t))er1(s,t).
Substituting for cs(s,t) and c12(s,t) in Qo(s, t) gives
1
Qo(s,t) = [7(:7)]2 (cl(s, t)i[o(s, t)s]%er11 (s, t) — o(s, t}s(al(s, ths +a(s,t))er1(s, t)els, t))

Cll(s, t)ar(s, t)[s]2

= (s 12 (r?](s,t)%a(s, t)s — (crl(s,t)s + (s, t))c(s,t)).

For (s, t) sufficiently large and positive, Q3(s, t) will be negative.

IV. The Comparative Statics of Changes in Interest Rates, Dividends,
and Volatility

As in section III, the tesults of this section are predicated on the twin assumptions
that (a) the underlying asset follows a one-dimensional diffusion, and (b} the call’s price can
be expressed as its discounted expected payoll under a risk-neutral probability measure.
The demonstration of some of our results will be made more transparent by measuring
the prices of stock and call options thereon relative to the price of a pure discount bond

maturing at time 7; i.e., using the bond as numeraire. Using upper (lower) case notation
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to denote relative (absolute) price levels, the normalized prices take the form:

T
S, = eft 7"(1’)0!'1'S

ts

T T T
and C(S:,t) = eft T(T)dTC(St,t) = eft T(T)dTC(eft LT(T)dTSt,t).

The normalized call price has the following partial derivatives:
C1(8,t) = e1(s,t).
C11(S,t) = c1i(s, ) eif*T rmar,
Note that convexity of C(S,¢t) in S for all § and ¢ implies the convexity of c{s,t} in s for

all s and ¢, and vice-versa. Using the normalized pricing system, the option’s value satisfies

the following p.d.e.,

Ca(S,t) + %[’U(S, £)812C11(8,t) = 0, (10)

T
where »(S,t) = O’(e—‘[; T(T)dTS,t) = o(s,t).

The notation v(-) is used to emphasize that this is a different function from a{-). The
transformation from o(-) to v(-) is non-trivial. Other than in a deterministic volatility
(Black-Scholes) world, the transformation requires knowledge of r(r) for all + ¢ [t, T]. The

implications of this observation will be made clear in subsection A.2.

A.  The Comparative Statics of Interest Rate Changes

We wish to compare the prices of options across two economies. In economy A
the interest rate is rA(t). The interest rate in an otherwise equivalent economy, economy
B, is 7B(¢). In each economy the underlying asset pays no dividends prior to the option’s
maturity. Theorem 4 establishes that if §(r) = rB(r) — rA(r) 2 0 for all 7 € [t, 7] and
LTé {r)d7 > 0, then calls in economy B are at least as valuable as otherwise equivalent

calls in economy A.

23



A.1.  An upward shift in the term structure increases call prices

Theorem 4. Consider two otherwise equivalent economies, A and B, differing only in
their instantaneous forward rates, r(+) and rB(r) respectively. Suppose that for all + €
.7, r5(r) > rA(r) and ftT rB(r)dr > ftT r(r)dr. For all s and ¢ the value of a call in
economy BB maturing at time T, 5(s, t}), is at least as great as the value of an otherwise

equivalent call in economy A, (s, t). For all s and t such that 0 < B(s,t) < s, then
Bs,t) > s, t).

Proof:  Consider the following transformed price systems:

g, = Steff TA(T)d'r:
CA(Sy,t) = A (Ste‘ff r(rydr t) e A
CB(S; 1) = cﬁ(ste—ff P iryar t) ST
One can think of the transformation as setting the interest rate to zero in economy .4 and

to §(r) = rB{(r} — »(7) in economy B.

C4(S,t) solves the p.d.e.
1
CH(S,t) + 5@(5,05?0{}(5, t) =0 (11)

7fT A {rVdr
subject to ("4(5,T) = max[0, 5 — K], where ¢v(8,t) = of{e Ji S.t) = o(s,t).

CB(5,t) solves the p.d.e.
CBs,t)+ %[v(S,t)S}QC’IBl(S,t) = =8(t)(CT(8,1)S — ¢5(8,1)) (12)

subject to C3(S,7T) = max[0, § — K].

Let X (84,t) denote the difference across economies in the transformed values of

the two calls:
X (St t) = CB(5,,¢) — CA(84, 1)
Note that X (5y,¢) > 0 implies ¢®(s;, 1) > cA(sy, ¢).
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From {11) and (12) we have
X2(S,t) + é[v(S, £)S12 X 11(S, 1) + 6(6) (CE(S,6)8 — ¢B(s, t)) = 0. (13)
For a given value of S_. at maturity, the time T prices of the two calls coincide:
X (87, T) = C8(5,,T) = CA4(S,,T) = max[0, $, — K| — max0, S, —K]=0.
Thus X (5,¢) is given by the solution to the p.d.e. in (13) subject to the terminal condition

X(5,T)=0.

From the Feynman-Kac Theorem we have

T
x(s.)=£{ f ST, 1)e — P, ))ar ),

where £2* solves the SDE
d¢r = v(ér, 7)67d B,

with initial condition § at time t.

For cP(s4,t) = 54, the weak inequality is satisfied immediately since (s, 1) < s,.
For cB(sy,t) = 0, it follows that for all + ¢ [t,T], CB(¢,,7) = 0, and the integrand,
6(1—)((7{3(&,?).5’T — C'B(§T,T)), is zero for all 7 € [t,7]. The weak inequality is then
satisfied. Finally for 0 < B(s,, t) < s¢, it follows that for all r € [t, 7], 0 < CB(g,, T) < £y
For C8(¢,, 7) = 0 the integrand is zero. For 0 < C’B(gf, 7) < &, we have from Proposition 3
that CF(e,, 7)e, — CBLe,, 7) > 0, and hence 6(1’)(0{3(@}, mér — CB(g,, 7)) is non-negative,

and strictly positive for 6(7) > 0. Thus for 0 < eBls,, t) < sy, since LT(S(T)dT > 0,

T
X(5,t) = E{/ s(ry(CP(es est — o f’t,T))dr} > 0.

QED
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Rather than apply the Feynman-Kac Theorem, the task of demonstrating that

X (8,t) > 0 can be transformed into a familiar, and intuitively positive, valuation problem.

Suppose first that in the normalized (zero interest rate) economy A, we wished to
value a contingent claim, Y (S, ¢), with the following contractual terms: The party long
the contract will at all times 7 ¢ [t, 7] receive a continuous income stream from the short
equal to 6(r)(CP(5,, )8, — CB(3,, 7)), and nothing thereafter. Given the assumptions of
Theorem 4 such an income stream is always non-negative. Further, when 0 < 8 (s,t) < s,
the income stream will, with positive probability, be strictly positive over some time interval.
Thus at time ¢ this income stream contract has a strictly positive value to the long; ie.,

Y (S:.t) > 0. At its maturity, the income stream contract is valueless, and YV (5., T) = 0.

Now we wish to show that this income stream contingent claim has the same value
as the across economy difference in value of the two calls. Consider a portfolio in the
normalized economy A consisting of a long position in one income stream contract and a
short position in ¥7(S;,t) shares. Changes in the normalized wealth of the holder of such
a portfolio are non-stochastic, and given by

dY (84, 1) + 8(t) (CT(Sh,1)Ss — CB(S,, ¢))dt — Y1(5y, 1)dS,

1
= (yg(st,w + 5 (8L )82V, 1) + 6() (CP (S, 1), - GB(St,t)))dt.
Hence to preclude arbitrage, ¥ ($,¢) must solve
1
Yo(S,t) + 5[ﬂu(s,1:)5]2151(5, t)+6()(CT(S,1)8 — CB(5,4)) =0

subject to Y'(S,T) = 0. The p.d.e. and terminal condition for this income stream contingent
claim are identical to the p.d.e. in (13) and the terminal condition whose solution determines
X (5,t). It follows immediately that X (5,t) =Y(S,t) > 0. Further, provided 0 < Bis, 1) <

s, X(S5,t) > 0.
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A.2. A decrease in PV(K) can decrease call prices

It is important to recognize what we have not established in Theorem 4. It is not
the case that ftT rB(r)dr > ftT rA(7)dr and 0 < c¢B(s1,t) < s, are sufficient conditions to
establish that c®(s;, 1) > ¢A(s,, ). In order to guarantee that ¢®(s;, ) > ¢(s, 1) it is not
enough that the term structures differ across the two economies in such a way that the time
t value of a riskless bond maturing at time 7" is smaller in economy B. Theorem 4 requires
in addition that +5{r) > rA({r) for all r € [t, T]. Note that the stronger comparative static
result is, in fact, true in a world where the volatility parameter of the underlying asset’s
diffusion depends only on time and not on the value of the underlying; i.e., the stronger
comparative static result is true in a Black-Scholes world. In fact, it is only in Black-Scholes
world that the time ¢t normalized call price that solves the p.d.e. in (10) does not depend

on the set of r{7) for 7 € [t, T].

A necessary condition for this stronger comparative static result to be true is that
whenever LT rA(r)dr = ftT rB(r)dr, then eS8y, t) = cB(S¢,1).1* Whenever this equality
restriction is not satisfied, it will be possible to construct a counter-example to the stronger
comparative static result. To see that this equality restriction can be violated, consider the

following two otherwise equivalent economies. In economy .A the interest rate is given by
1 :
r‘A(-r) _ R, forre[t,T— (T —1);
0, forre(T-3(T-1),T]
In economy B the interest rate is given by

() = {0, for r € [t,7 — 3(T —));

R, forre (T - 4(r—-1),T)

Interest rates in the two economies are depicted in Figure 4a. Note that
T T
T -1t
[ ?‘A(T)dT =5 R = f ?‘B(T)d’.".
t t

14 In the deterministic volatility world of Black-Scholes only the integral, ftT r{r)dr,
enters the Black-Scholes model.

27



Suppose that the underlying asset follows a diffusion of the form
dsr = r(7)s,d7 + o(sr,7)s,dB~,

where the volatility function depends on both the underlying asset’s contemporaneous value

and time in the following way: For some H > 0 and some strictly non-zero n(s, 7),

U(S,T):{ﬁ(S,T), if5>Ha‘HdTE[t1T_I.2;{};

0, otherwise,

Suppose that s;“ = sf” = 5, and that s;, H and K are such that

RT*f. .
s < H<e™ 2 g <« K.

A

7 will grow deterministicly at the interest rate R until, at time ¢ +

In economy A, s
In(H/s:)/R, the value of the underlying asset reaches the level H. After that time, s

T

will follow the diffusion

dsf =

Rs7dt + (s r)stdBr, for 7 € (t+ In(H/s,)/R,T - L],
0, for r € (T - L2 7).

A possible sample path for 3;4 is depicted in Figure 4b. With positive probability s;j* > K,

and hence ¢(sq,t) > 0.

In economy B, sf will remain equal to s; until time T — % After time T — %,
8 will grow deterministicly at the rate R until it reaches the level s, ® =" at the option’s
maturity. The sample path for s? is also depicted in Figure 4b. With certainty sf < K,

and hence ¢B(s;,t) = 0.

Thus, in this non-Black-Scholes world, shifts in the term structure that leave the
current value of a bond maturing at the option’s maturity unaffected can affect the option’s

value. In this example, simply ‘reordering’ the interest rates affects option prices.
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B. The Comparative Statics of Dividend Rate Changes

Consider two assets A and B. For all 7 ¢ [t,T], asset A pays a continuous propor-
tional dividend at the time-varying rate 6(r) > 0, with LTé(T)dT > 0. Asset B will pay
no dividends prior to time T. For all s and ¢, o(s,t) = oB(s,t). We wish to comparc
the prices of otherwise equivalent call options written on A and 5. Not surprisingly, given
sP = sf , options on the dividend-paying asset are no more valuable than options on the
non-dividend-paying asset. What is less obvious, is that one can place an upper bound on
the relative values of the two options purely in terms of the fraction of the dividend-paying

stock’s price that is due to dividends to be paid beyond the option’s maturity. When div-

idends are paid at the continuous rate 8(7), the present value at time ¢ of the stock price

&(r)d

T
at time T is e“f: Ty equivalently, the time ¢ value of the distributions beyond time
-

T is e_-ft S(T)de,,. The bound we will develop is familiar from a Black-Scholes world. In
a Black-Scholes world, the value of a call on asset A when sl = &' is equal to the value of

T
an otherwise equivalent call written on the fraction e_fn Slrydr of asset B when s? = ¢’

In turn, such a call has the same value as an otherwise equivalent call written on one com-

7 8(r)ar

plete unit of asset B when sf = e_J s'. From the strict convexity of call prices in a

Black-Scholes world, we then have

T T
cAs, t) = cs(e_ft blrydr s, 1) < e_ft 6(T)d708(3,t).

C“;‘(S;t) - e—ftTé'(T)d'r-
I (s,t)

In a non-Black-Scholes world, when the volatility depends on the (contemporane-

ous) stock price, it is no longer necessarily the case that

T
(‘,A(s, t) = (‘.B(G_ft slmydr 5,1).
Still, as is shown in Theorem 5, it is always the case that
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T
As, 1) < e Jo B

with strict inequality for all s and ¢ such that § < B(s, t} < s.

Theorem 5. Suppose that for all s and t, oA (s,t) = oB(s,t). Suppose further that
assets A and B differ in the following way: For all r (t,T], asset A will pay a continuous
proportional dividend at the rate §4(r) > 0, with ftf §4(r)dr > 0; asset B pays no

— [T 52 (ryd
dividends prior to time T. Then, for all s and t, (s, t) <e fr 5 "eB(s,t), with the

inequality being strict whenever 0 < ¢P{s t) < s.

Proof: Suppose that changes in the value of a third underlying asset, I{, are also
described by a one-dimensional diffusion, with oH{(s,t) = oA(s,t) = oB(s,t) = o(s, t).
Suppose further that asset i/ pays a continuous proportional dividend at the rate §“(r) for
all 7 € [t,T]. The superscript ‘U4’ is a mnemonic for underlying. Consider a call option
written on asset U, c“(s,t), with the usual payoff at maturity of max]|0, sg - K], and
the additional contractual feature that at all times + € [t,T], the short pays the long a
continuous proportional dividend, proportional to the value of the call, at the rate 60(7-).
The superscript ‘0 is a mnemonic for option. We introduce the following notation to

describe this call: (s, 1,6, 69), Using this notation we have

s, t) = s, t, 6,59,
r:'A(s, t) = c(s, ¢, 6“4, 0),
and

Bs, ) = (s, t,0,0).
To preclude arbitrage it must be that

cu(s, t) = eft EO(T)ch(s, t,64.0). (14)
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The value ¢¥(s,t) is given by the solution of the following p.d.e.

1
His 1)+ slals. 82y (s, 6) + 7 (8)e (5, 6) (Q4(5,1) = 1) + 69 (8)e(s, ) — ex(s, t)6"(t)s = 0,
(15)
subject to the terminal condition (s, T) = max[0,s — K]. Now suppose further that for

all 7, 64(7) = §9(7) = 64(7). Substituting into the p.d.e. in (15) gives
1 5
His,t) + 5[0(5,1%)5]26%{1(5,1:) +r(8)e (s, 6) (M (s, 8) = 1) + 64) M (s, 1) — (s, 1)624(1)s
1
= (s, 1) + E[a(s, t)s]zczf'l(s, t)+ (r(t) — 6A(t))cu(s,t) (Qu(sj t) — 1) =0 (16)
Thus, the p.d.e. in (16), whose solution determines the value of (s, t), is identical to the
p.d.e. that would determine the value of ¢B(s, t) in an otherwise equivalent economy

in which, at all times v € [t,T], the interest rate was lower than r(r) by the

amount 6A(T). It then follows from Theorem 4 that, for all s and t,

CB(S,t) > cu(s,t) (17a)
and, for all s and ¢ such that 0 < e%(s,t) < 3,
Bls,t) > M(s,2). (178)

¢
Further, substituting §“(r) = 6°(r) = 64() into expression (14) gives
sty = edd SO (o154 0) = T Dy (18)
Combining (17} and (18) gives, for all s and ¢,
Als 1) < e OB

and, for all s and ¢ such that 0 < e8(s,4) < s,

T ca
cA(s,t) < e_fr b (T)chB(s,t).

QED
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C. The Comparative Statics of Volatility Changes

Jagannathan (1984) clarifies the relation between the value of a call and the riski-
ness of the underlying stock. Consider two stocks 4 and B, but this time oA (s,7) # aB(s, 1)
while, for all 7, 64(7) = 6%(r) = 0. Given s7' = 5P, a sufficient condition for calls on stock
B maturing at time 7" to be at least as valuable as otherwise equivalent calls on stock A,
Is that the risk-neutral probability distribution of sf is more risky than the risk-neutral
probability distribution of sf in the Rothschild-Stiglitz sense.’® In this section we show
that if changes in the value of A and B are described by one-dimensional diffusions with
oB(s,t) > 0(s,t) for all s and ¢, then given sy* = 5P, the risk-neutral probability dis-
tribution of sf is more risky than the risk-neutral probability distribution of s;f‘ in the

Rothschild-Stiglitz sense.
Theorem 6. Suppose that for all s and t, aB(s,t) > oA(s,t), and o5(s, 1) > oA (s,t) for
s and t in some region. For all s and t, ¢®(s,t) > ¢A(s, t), with the inequality being strict
whenever 0 < ¢B(s,1) < s.
Proof: Let 57! and SP denote the time ¢ normalized prices of the two assets.
A1 = at()dr +vA(SA 7)SAdB, .

dS’E = GB(~)dT + UB(SE,T)SdeT.

For all S and 7, v?(5,7) > vA(S, 7), and, for § and 7 in some region, v5(5,7) > vA(g, 7).

Let X (5,¢t) denote the difference in values of the normalized call prices:

X{(8,t) = CB(5,1) - ¢S, 1).

X is more risky than ¥ in the Rothschild-Stiglitz sense if

4

X2Y +% and E{ZX} =0 for all X,
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CA(S,1) solves

CHS 1)+ %[«M(s,ﬂsﬁc{}(s\t) =0, (19)

subject to CA(S,T) = max|[0, S — K]. CB(S,t) solves
cB(s, 1) + %[UB(S, )S12CE (S,1) = 0, (20)
subject to C4(S, T) = max[0, S ~ K]. X{S,t) solves
X(5, 1) + %[M(s, )S]12X (S, ¢) + +% [[UB(S, D2 - [, t)]QJSQCﬁ(S, £)=0, (21)

subject to X (5,T) = 0.

IFrom Theorem 2, the term

[ SN

B8 )7 = [vA(5,1)]? | S2CE (8, 1) (22)

in the p.d.e. in {21} is non-negative, and strictly positive for § and ¢ in some region. The

remainder of the proof parallels that of Theorem 4.

QED

Reviewing the proof of Theorem 6 we see that the critical element is that in expres-
sion (22), C11(5,¢) > 0 for all S and ¢. Theorem 6 applies, not just to regular call options,
but to any contingent claim whose value is always convex in the value of the underlying. It

B

is this observation that allows us, conditional on s = si', to characterize the risk-neutral

probability distribution of sf as a mean preserving spread of the risk-neutral probability

"distribution of sf.

Theorem 7. Suppose that for all s and t, oB(s,t) > a“‘d‘(s,t). For s = sP, the risk-
neutral distribution of sf is more risky in the Rothschild-Stiglitz sense than the risk-neutral

distribution of sf.
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Proof: Rothschild and Stiglitz (1970) have shown that the claim in Theorem 7 is
equivalent to the claim that for every convex function g(+), E{g(gfs’t)} > E{g(gfs’t)}.
Here ¢ > and £ " are the time + risk-neutralized prices of assets A and B, with changes

therein given by

det = r(r)eftdr + oA, r)eAdB,
and

¢ = r(r)e8dr + oB(e8 r)eBanB,,

respectively, and a common initial condition of s at time #.

The proof then involves three observations. First, from the Feynman-Kac Theorem,
E {g (5;*)} is cftT rirydr times the value of a contingent claim on an underlying asset worth
s at time ¢, provided that (i} changes in the underlying’s value are described by a one-
dimensional diffusion and (ii) the claim’s payoff at its maturity date T is g(s,.). Second,
Theorem 6 has established that, for s5 = 57, the value of any contingent claim written
on asset B is always at least as great as the value of an otherwise equivalent claim written
on A, provided the value of the claim is convex in the value of the underlying asset; i.e.,
provided c11(s,t) > 0 for all s and ¢. Finally, from Theorem 2, we have the result that,
when ¢{s,t) denotes the value of a contingent claim whose payoff at maturity, g} is a
convex function of the value of the underlying at maturity, ¢11(s,¢) > 0 for all s and ¢.

QED
D.  Conditions under whick Black-Scholes provides Bounds on Option Prices

Interesting special cases of Theorem 6 occur when, for all s and ¢, either o%(s, t) =
g(t) = oA(s,t), or oB(s,t) > oM (s, 1) = oft). Let (@} (s, ¢) denote the Black-Scholes

value of a call on a stock with deterministic volatility o(s,t) = o(t) for all s and ¢.
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Theorem 8. If for all s and t, oP(s,t) = 5(t) > (s, t), then s, t) < PO (g 8). IF
for all s and t, oB(s, t) > 0'4(3, t) = o(t), then ¢5(s, t) > chs(z)(s,t).

Proof: Theorem 8 is a special case of Theorem 6.6

Q.E.D.

Of major practical relevance to anyone charged with hedging an option position is
that, despite a lack of knowledge of the functional form of the relation a(s,t), knowledge
of bounds on that relation over the option’s life, 7 and o, provides bounds on the option’s
delta for any s and ¢. These bounds are an immediate implication of Theorem 8§ and the

convexity property of option prices.

Proposition 13. If for all s and t, o(t) < o{s,t) < 5(t), c?s(&)(s”,t) < (s, t) <

c?s(a)(s’,t), where 5" solves P(%) (s 1) = M@ (5" 1) + c?s(a)(s”,t)(s” — 5) and s’ solves

@ (5,8) = PE) (57 1) — PO 1) (s - ).

Proof: As depicted in Figure 5, if the lower bound on delta were violated, then,
even if the option took on its minimal possible value, convexity would imply that for some
s < s", the option’s value would violate its upper bound. Similarly, if the upper bound on
delta were violated then, even if the option took on its minimal possible value, convexity

would imply that for some s > s/, the option’s value would violate its upper bound.
QED
If the value of the option is known, the bounds on its delta can be strengthened to

Proposition 14. If for all s and t, o(t) < o(s,t) < @(t), then for any s and ¢ such

that one knows e(s, t), rz?s(ﬁ)(s”,t) < eifs,t) < c?s(a)(s’,t), where s solves ¢(s,t) =

P (" 1) 4 c?s(&)(s”, t)(s" — s) and s’ solves (s, t) = "0 (s 1) — c?s(&) {s" 1)(s" = 5).

Proof: The logic is the same as that of Proposition 13.

16 E] Karout, Jeanblane-Picque and Visvanathan provide an alternate proof of the

special case result in Theorem 8. We thank Darrell Duffic for bringing this paper to our
attention.
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V. The Asymptotic Behavior of Option Prices

We return to our observation that, as illustrated by Figures 3g and 3h, a one-

dimensional diffusion does not seem to rule out the possibility that

T
lim (c(s,t) — max|[0, s — Ke_ft T(T)dT]) > 0;

?
S0

t.e., Theorems 1 and 2 do not seem to imply that the difference between the value of a
call and the lower no-arbitrage bound thereon must go to zero as the underlying asset
becomes infinitely valuable. It may be that this possibility is ruled out by one of our
assumptions underlying Theorems 1 and 2, namely that the option price can be expressed
as its discounted expected payoff under a risk neutral distribution. In this section we
will briefly consider sufficient conditions to guarantee that the above limit is zero. T hese
conditions will be recognized as conditions often invoked as part of a set of conditions

sufficient for the Feynman-Kac Theorem to be applicable in our setting.

Given put-call parity, our exploration of the properties of call prices, c(s,t), can be

easily translated into a study of the properties of European put prices, p(s, t):
T
pls,t) =s+ Ke_ft r(mdr _ cfs, t).
If

T
Hm (c(s,t) — max[0,s — Kol ’"(T)‘”]) >0

1
§— 00 B

then

T
lim p(s,t) = lim (c(s,t) + Ke J; rmar 3) > 0.

& —+ 00

If a put is to retain a strictly positive value even as the underlying becomes infinitely
valuable, it must be that

lim Pr(s, < K) > 0.

84 —0Q
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To get an intuitive sense of how this might occur, consider the following two limits in the
familiar Black-Scholes world.}7 Let pbs(")(s, t) denote the value of a put option on a stock
with constant volatility, o{s,t) = o, for all s and t. First, consider the effect of an increase

in the value of the underlying asset on the value of a put thereon:

P s 1) < 0, (234)

and

lim p*{9) (s ¢) = 0. (230}
8§—00

Now consider the effect on the value of a put of an increase in the underlying asset’s

volatility:
9 bs(o) £
L G (24a)
do
and
T
m p*@(s,8) = ke Jo T g, (24b)

700
Now suppose, that rather than being deterministic, the stock’s volatility is an increasing
function of the level of the stock price. It may be, that in such a non-Black-Scholes world,
put options become ‘suspended’ somewhere between the two limits in (23b) and (245), held
there by the two opposing forces in (23a) and (24a). Whether this can happen despite the
satisfaction of the conditions underlying the applicability of the Feynman-Kac Theorem
remains an open research question. In this section we examine conditions under which,
although the volatility may increase with the level of the stock price, the volatility does

not increase sufficiently for the force in (24a) to offset the force in (23a).

Suppose that for all t, o(s,t) < &(t) for all s. Theorem 8 then states that

e(s,t) < cbs(ﬁ)(s,t). (25)

17 Note that in a Black-Scholes world, lim, . Pr(s, < K)=1.
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Thus )
hm p(s,t) - hm ((ﬁ(sjt) — + KE_-L T‘(T)d'r)

§—00 85— 0

T
< MH(&da@J)—S+BEgL dﬂﬁ)

p— O_
Since for all s and ¢, p(s, ) > 0, it follows that

lim p(s,t) = 0.

8—00

Thus an upper bound on volatility implies asymptotic behavior familiar from the Black-

Scholes world.

It is also interesting to consider a second property of option prices well established
in a Black-Scholes world: When the volatility function is deterministic, ¢1(0,¢) = 0. This
property of a zero partial at s = 0 also remains true so long as the volatility function is

bounded above. Since we are considering only limited liability underlying assets, we have

that
c(0,t) = 0. (26)
Together (25) and (26) imply that
e1(0,8) < 250 1) = 0, (27)
Proposition 1 and (27) imply that
(?1(0,15) =0,

When might volatility be bounded above? Suppose the product ¢(s,t)s in the
diffusion in (1) satisfies a global Lipschitz condition. This would imply that the product

satisfied both a local Lipschitz and a growth condition.'® Given appropriate restrictions

'8 See Duffie (1992), page 240.
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on a(-), the existence and uniqueness of a solution to the stochastic differential equation in
(1) would then be guaranteed. Tn addition though, much structure would be imposed on
the values of options written on the underlying asset. If o (s, t)s is globally Lipschitz, then

there exists a constant k, such that for any s and s’ and any time ¢,
lo(s, t)s — als’, t)s'] < ks — 5. {28}
For our limited liability underlying asset we have

o(s’ t)s’

0

s'=0 "

and hence (28) implies that for all s and ¢
o(s,t) < k.

For %’ equal to the smallest value of & satisfying (28), we have from Theorem 8 the imme-

diate result that

(s, t) < cbs(k’){s, t).

VI. Option Prices when the Underlying does not follow a One-Dimensional

Diffusion

The preceding sections have examined the pricing of options in a diffusion world
and have established that much of the intuition familiar from the Black-Scholes model
carries over to the case where the underlying asset’s volatility depends on time and the
contemporaneous value of the underlying asset. In this section we show that there are
many interesting settings not captured by a one-dimensional diffusion world, settings in
which option prices need not possess any of their familiar properties. In particular, we will

demonstrate that if the process describing changes in the value of the underlying asset is
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a multi-dimensional diffusion, or is non-Markovian, or discontinuous, then it can be that,

for s in some range, ¢;(s,t) < 0 and ¢;1(s,¢) < 0.

A.  Option Prices and Stochastic Volatility

We wish to show that if the underlying asset’s price is described by a multi-
dimensional diffusion, a call option need not be everywhere increasing and convex in the

value of the underlying. Suppose that interest rates are zero and the risk-neutralized pro-

cesses for s and y are given by

ds; = o'(st, Yi, t)SgdB}.
and

dyt = g(st: Wty t)dsz

As depicted in Figure 6, if s is high and y is low, then a(s,y,t) = 8(s,y,t) = 0. If 5 is
low and y is low, then o(s,y,t) = 0 and (s, ,£) > 0. If y is high, then o (s, 1) > 0 and
8(s,y,t) > 0. With initial condition {s’,y'}, s, = s’ < K and e(s’,y', t) = 0. With initial
condition {s",y’}, there is a positive probability that s; > K and c(s” y' t) > 0. Thus
over a range of s values, the option price is decreasing in s and can not then be everywhere

convex in s. Note that our example does not satisfy condition (i) of Theorems 1 and 2.
B. Option Prices in a Discontinuous Markovian World

Suppose that there are jumps in the value of the underlying and that the probability
of a jump is related to the level of the process. As a very simple example, consider the

following stock price process:

Foralltandalls; > H > 0, ds, = r(t)sdt; i.e., for s; high enough, the underlying

grows deterministicly at the rate of interest.
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For all t and all 0 < s, <« H, ds; = (r(t) —A(J — l))stdt + s¢dgy; 1.e., for stock
prices below H, the underlying follows a simple version of a mixed diffusion-jump
process.'9 Here ¢, is a Poisson process governing jumps in the stock price, the mean
number of jumps per unit time is A, and (J ~ 1} is the percentage price increase in

the stock if the Poisson event occurs.

Possible stock price paths are depicted in Figure 7. Now consider a call option on
this asset with an éxercise price of K. Consider two possible time ¢ stock prices, s’ and
s”, with 0 < 5" < H < ¢, s'eff-T rlmdr K, and s"J > K. Conditional on s; = s’, the
option will, with certainty, finish out-of-the-money. Conditional on s; = s”, the option has

a positive probability of finishing in-the-money. Thus we have
0 =¢{0, t) < c(s”,t) > c(s’, t} =0

L.e,, the option price is not everywhere imcreasing and convex in the value of the underlying,

A second example of a Markovian world in which eall prices are not i‘ncreasing
convex functions of the value of the underlying is depicted in F igure 8.2° The underlying
asset’s price can be represented as a non-recombining binomial tree. Such a tree may
be the outcome when the management of the underlying firm faces the following incentive
problem. Suppose that management will be evaluated on the basis of the stock price at date
T relative to a goal, G. Failure to meet the benchmark level, G, will result in termination.
Exceeding the goal will bring forth a bonus. If at date 7 — 1 the firm has done poorly
and the stock price is low, say s,._, = s, the firm must switch to high variance projects
in order for there to be any chance of meeting the benchmark necessary for management

to retain their posts. Alternately, if the stock price is high at date T — 1, say s = g’

T—1 ?

1 See Merton (1976) for the development of an option pricing model applicable when
jumps in the value of an underlying asset are diversifiable.

20 For a further example, see footnote 14 of Chapter 4 of Cox and Rubinstein (1985).
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management can, and will, effectively lock in their future bonuses by switching to a low
risk investment strategy. Now consider the date T — 1 value of a call option with a date T
maturity written on the stock of this company. For the level of K depicted in Figure 8 we
again have that

0=0c{0,7T 1) <e(s",T'=1) > e(s’, T — 1) = 0.

One implication is that if the stock price back at time T — 2 is equal to s, then the

replicating strategy at that time involves shorting the underlying stock and lending.

Figures 7 and 8 depict settings where, for a given realization of the random compo-
nent of the processes, the stock price path starting at s, = s” can, in effect, jump through
the path starting at s; = s > s”. Continuity precludes this in a one-dimensional diffusion
world. We now turn to non-Markovian worlds in which something like this happens quite
naturally. As an introduction to the properties of option prices in a non-Markovian world,
it is interesting to consider a thought experiment under which Figure 8 can be viewed as
depicting a continuous, but non-Markovian process. Suppose that between trading dates
one could observe (but not trade along) the trajectory of prices. Now suppose that at time
t, one observed a trajectory level of 5. One could not then characterize the distribution of

sr given only the knowledge that s; = 5. One would also need to know a past stock price

as well; e.g., whether s,._. was equal to s’ or .

C.  Option Prices in a Continuous Non-Markovian World

We are interested in the properties of option prices when the underlying asset fol-
lows a retarded process® such that the instantaneous volatility depends not only on the
contemporaneous price and time, but also on past prices. To motivate such a characteriza-

tion of volatility we first ask why it might be that volatility depends on the contemporaneous

1 For a discussion of such processes, see Mohammed (1978).
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price level. A natural answer is that the volatility of a stock reflects the underlying firm’s

investment policy and capital structure decisions.

Consider first a potential link between firm investment policy and stock volatility.
Suppose that an unlevered firm has two divisions. One division undertakes an effectively
riskless project and the other undertakes a risky project. The variance of the firm’s stock
will then change through time as the proportion of the firm’s asset portfolio devoted to the
risky division changes. Assuming that assets are not reallocated across the two divisions,
the proportion will change as a function of how well the risky division has performed
relative to the riskless division. The asset mix at any time ¢ can then be proxied by the
contemporaneous stock price, s;. Rubinstein (1983) has developed the Displaced Diffusion

Option Pricing Model to price options written on the stock of such a firm.

Now consider a potential link between firm capital structure and stock volatility.
Assume the firm is levered and, for simplicity, assume that the volatility of the firm’s
portfolio of assets is constant through time. The equity of a levered firm is analogous to
a call option on those assets. If the firm does not recapitalize during the option’s life,
then, following the steps in section IIIF, the volatility of the equity can be expressed as
a function of the contemporaneous s, and time. When the firmn does well (poorly), the
volatility of the stock will decrease (increase). Geske (1979) has developed the Compound

Option Pricing Model to price options on the stock of such a firm.

In both the investment policy and capital structure settings considered above,
it is theoretically possible that the firm might continuously and appropriately adjust its
investment and financing decisions so as to offset any changes in the stock’s volatility
associated with changes in firm value. In fact, if, in these settings, there were an optimal
asset mix, an optimal capital structure, and zero costs of reallocating and re.capitalizing,

then the volatility of the stock of an optimizing firm could be a constant. But in the
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presence of adjustment costs, the optimal controls will not be continuous function of the

underlying firm value; instead, they would exhibit hysteresis. 22,23
Thus the volatility function at time 7 can take the form o(sr,7), when

i) a stock’s volatility reflect’s the underlying firm’s investment and capital structure

decisions, and
iia) those decisions will remain unchanged over the life of the option.
Our twist is to change iia) to iib):
lib} at time t' prior to the option’s maturity, the underlying firm will make an in-

vestment and/or financing decision that will remain unchanged over the option’s

remaining life,
and to add
iit) the decision made at time ¢ will depend on the value of the firm at t' as proxied

by 8.

The time line below depicts the setting we have in mind. For simplicity, we assume

that prior to time ', the stock’s volatility is a constant 5.

L | 1
t ! T
G (s, 840, 7) —m—
Option Capital Structure/ Option
Valuation Investment Choice Maturity
Date

It is true that, ex-post, it will be possible to represent the volatility of the stock at all

times 7 € [t',T] as some function %(s,, 7). But the functional form of () can not be

22 Dixit and Pindyck (1984) model optimal investment policy given the irreversibility
of investment. Fischer, Heinkel and Zechner (1989) model a firm’s optimal dynamic capital
structure choice given recapitalization costs.

3 That the firm faces adjustment costs is not inconsistent with our implicit assump-

tion that the securities issued by the firm, and contingent claims thereon, are traded in
frictionless capital markets.
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determined exante. Exante, the volatility at all times r € [t', T] takes the form o (s, s, 7).
Exante, the process is non-Markovian. Qur setting will be most relevant for the valuation

of long-dated options such as warrants.?4
C.1.  Firm Investment Decisions prior to the Option’s Maturity

Consider an unlevered firm that will pay no dividends prior to time T. At time
t' < T the firm will replace its assets — franchises may have expired, existing assets may
fully economically depreciated. Management will choose the replacement assets in a manner
that reflects an incentive problem similar to that underlying Figure 8: The lower the value
of 54/, the higher the volatility of the replacement assets. The following example is chosen

only for its analytical tractability. Assume that for r it Ty,

T T
- |, r(w)dw 7 — |, r(w)dw,
o(sr,50,7) = o (511) = { ~In(sp/me e TN LTI tor s < g S v,

0, otherwise,
(29)

Tr(w)dw

For sy < Beﬁft' , the firm chooses replacement assets that subsequently have con-

T
stant volatility. The level of that volatility is zero when Sy = Be_fr' r(w)dw and is in-

?

T r(w)dw

creasing as sy decreases. For sy > Be—fr , the firm chooses zero risk replacement

assets.

Now consider the time ¢’ value of a call option on this stock with a time T maturity
date and an exercise price equal to B. Since subsequent to ¢’ the stock will have a constant

volatility, the level of that volatility being determined by s as in {(29),

ofs, ) = ebololeig 4y, (30)

24 Lauterbach and Schultz (1990) conclude that a square root CEV model, where
volatility depends on the contemporaneous s, outperforms a deterministic volatility (Black-
Scholes) model in explaining observed warrant prices. We suggest that allowing volatility
to reflect the stock price history may yield significantly better predictions still.
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The value c(s,¢') is plotted in Figure 9a for T — ' = 1 year, r{r) = 10% for all 7, and
K = B = §$3. The plot consists of the locus of points where a vertical line drawn from the
X-axis at, say, the point s', intersects the dashed convex curve which plots cbs(“(sl))(s, '},
Notice how the vertical drawn from s” < s’ simultaneously intersects the locus and a
second dashed convex curve that lies everywhere above bl g, ¢! ). This higher convex
curve plots ¢**(0"N (s ) From the volatility specification in (29) we have o(s") > o(s')
since s” < s’. The humped shape of the plot is determined by two opposing forces. As
s increases, the underlying stock becomes more valuable; but the underlying stock also

T
becomes less volatile over the remaining life of the option. For all sp > Be_ff’

r(w)dw
the locus of points is very easy to construct. With zero volatility in the future, the call is

T
certain to finish-in-the-money, and is worth s — Be ft’ e oy time #’.

It is worth considering how c(s,t') would be determined in a Markovian world,
The humped shape could not survive. As an example, suppose that for all 7 ¢ [¢, 71,

T

—J ‘l"{w)dw
U(ST,S;/_,T) :g(sf){> 0, for s, < Be ff : (31)
=0, otherwise.

Comparing (29) and (31) we sce that in the non-Markovian case, (29), the volatility at any

* r(w)dw

time + > ¢’ is positive so long as s, was less than Be ft’ . In the Markovian case,

(31), the volatility at any time » > ¢’ is only positive so long as the contemporaneous s, is

T r(w)dw

less than Beift’ .

Because the stock price process is continuous, it cannot be that the stock price
= [ rtwa
grows from a value below Be™ Ji* ™"/ at time ¢’ to a level above B = K at time T, without
= [T rwa
at some interim date being equal to Be Jv "’ Byt at that date, the underlying stock
will become riskless, and will subsequently grow deterministicly at the rate r(7). There
-
is then zero probability that s, > K = B. Hence for all s < Be_ft’ r(w)dw, we have

c{s,t') = 0 and the hump vanishes. Thus under the Markovian counterpart to (29), given
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by (31),

T
C(S, t") - max[(), s— Ke ft, "r(w)dw}

1

and the option price is once again an increasing, convex function of the value of the under-
lying stock.

We now turn to the valuation of the option at some earlier date + < t'. We assuine
that for all + ¢ [t,t') the stock’s volatility is a constant 5. Thus during the interval from ¢

to ¢’ we are in a Markovian world. Rearranging expression (7) gives

co(s,t) = f%[a(s,t)s]gcll(s,t) —r(t)e(s, t) (s, t) - 1). (32)

When the call is convex in s for all s and ¢, the two terms on the right-hand-side of (32)
are non-positive: ¢)1(s,t) > 0 and Q(s,¢) > 1. When, as here, the call is strictly concave
in s over some region (and o(s,t} = o > 0), then the first term is strictly positive in that
region, and the second term can also be strictly positive in some region. Thus the call can
be a “bloating” asset. Figure 9b illustrates the “non-wasting” nature of the call over some
range of s, by depicting both ¢(s,t) and c(s,t') when ¢/ —t = 1 year, T — ' = 1 vear,
o = 30% per annum, K = $3, and r{r) = 10% per annum for all = € ¢, 7).

When s = 81, ¢(s,t) = $0.106885. Over the region in which the call’s value is
decreasing in s it appears to act more like a put in a standard Black-Scholes world. The
value of a put in a Black-Scholes world is a decreasing function of the interest rate. A value
for s of 81 is in the put-like region of the above example. Now suppose that the interest
rate during the first year, the period from ¢ to ¢, were to be higher and equal to 11% not
10%. This upward shift in the entire term structure will cause a decline in the call’s value

to e(s, t) = $0.103806.
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C.2. Firm Financing Decisions prior to the Option’s Maturity

Consider a currently unlevered, non-dividend-paying firm. The value of the firm’s
assets are assumed to follow a diffusion as in (1) with a constant expected rate of return,
#, and constant volatility, 5. At time ¢’ the firm will issue pure discount bonds promising
F at time M. Let Vi denote the post-issue value of the firm’s assets. The firm has an
optimal debt to asset ratio such that F will be chosen as F — V. If Vag < F the firm
will be bankrupt at time M, and, in that event, s- = 0 for all 7 > M. At all times 7 > #/,
the volatility of the firm’s stock will depend upon the amount of debt outstanding, which
will depend upon the past value Vy as proxied by sy ; ie., s; will follow a non-Markovian

process.

Now consider the properties of options on this firm’s stock. Tn particular, consider
a very long-dated option with 7 > AM. What is the likelihood that a very long-dated put

option, with an exercise price of K > (), will finish in-the-money?
Pr(s, < K) 2 Pr{s; = 0) > Pr(sp = 0)

= PI‘(VM S .7'—)

(In(th/f) + (- %52)@\/{ — t'))
v M — ¢

B In(1/v) + (A - &%) (M - /)

_1—N( Py i_tf )

=1-N

Now consider that likelihood when the underlying stock becomes infinitely valuable today.

lim Pr(s, < K)> Hhm [1 - N(In(l/T) + (2 - 35%) (M - t’))]

B —+00 S0

_ 1—N(1n(1/7) + (i - 35°) (M _tf)) > 0.

Qu
<
bl

Thus, no matter how valuable the stock is today, there is always a positive probability

that it will be valueless at time 7. The more valuable the stock today, the more debt the
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firm is likely to issue at time ¢’. Hence, we have an illustration of the type of asymptotics

portrayed in Figures 3g and 3h.

T r(w)dw

lim p(sy, t) > eift K - [1 - N

VII. Conclusions

This paper has established that the bulk of the option pricing properties established
in Merton's classic Theory for the case when the option price is homogeneous of degree
one in the value of the underlying and the exercise price, extend to any one-dimensional
diffusion world. We show that, for any contingent claim, a replicating portfolio’s positions
in the underlying asset and in riskless bonds are bounded by the inf and the sup of the
positions at maturity. This means that a call’s delta is bounded between zero and one;
equivalently, a call’s price is increasing in the value of the underlying. We further establish
that, for any contingent claim, if the claim’s payofl at maturity is convex (concave) in
the value of the underlying at expiration, then the current value of the claim is convex
(concave) in the current value of the underlying. We show that the bounds on a contingent
claim’s delta also apply in a world of stochastic volatility provided the drift and diffusion
parameters of the risk-neutralized version of the process driving changes in volatility are
independent of the value of the underlying. The convexity (concavity) result applies in a
world of stochastic volatility if, in addition, the instantaneous covariance between percent
changes in the underlying and the process driving volatility is independent of the value of

the underlying.

As a consequence of the bounds on delta and inherited convexity, we are able to
undertake a comparative static analysis of the effect of changes in interest rates, dividend

rates and volatility on the value of options. Two of our comparative static results are
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particularly striking. First, it is only in a Black-Scholes world that a decrease in the present
value of the exercise price necessarily leads to an increase in call prices. Second, when the
underlying asset’s volatility is bounded above (below), then, whatever the functional form of
the relation between volatility, time and the contemporaneous stock price, the option’s price
is bounded above (below) by its Black-Scholes value calculated at the bounding volatility

levels. Further, the option’s delta can be bounded above and below.

We also examine the properties of option prices in worlds where the price of the
underlying asset follows a general multi-dimensional diffusion (as in the case of stochastic
volatility) and in worlds where we relax either the continuity or the Markovian properties
inherent in a diffusion. We show that in such worlds, call options can be ‘bloating’ assets,
whose value over some range is a decreasing, concave function of the value of the underlying,
We argue that when considering the valuation of long-dated options on the stock of a firm,

it is intuitive to view the dynamics of the underlying stock price as non-Markovian.

It is worth reflecting that the Black {1976) and Nelson (1991) empirical docu-
mentation that volatility tends to increase (decrease) following negative (positive) returns
strongly suggests that history matters. Perhaps modeling stochastic volatility as driven by
both the current and past levels of the market will prove a fruitful direction for research

into the pricing of index options.

50



Appendix A
The Cauchy Problem

For given T > 0, find f € C3Y(IRY x [0,T)) solving

Df(z,t) — R(z,t)f(z,t) + h{z,t) = 0, (z,t) c RN x [0,T), (A1)
with the terminal condition
f@T) = g(z), zeRY, (42)

where

N n N
Df($>t) = fN+1($:t) + Zfi(as,t),ui(z,t) + % Znyi(x,t)’yj(:c,t)’r]ij(.r,t)fij(m,t), (A3}
i=1

i=1 j=1
where fyi1(z,¢) denotes the partial of f with respect to ¢, and, fori =1,..., N, filz, t)
denotes the partial of f with respect to the i’th element of the vector z, R : IRY x 0,7 —
IR, h: IRY x 0,7} - IR, g: RY — IR, and plz, i) is an N x 1 vector whose i'th element
'z, t) is such that u® : RY x [0,7] — IR, and the superscripts on Yz, )y (2, t)n¥ (z, 1)
do not denote powers but are instead indices. v(z,t) is an N x 1 vector whose 7’th element
vi(z,t): RY x [0,7] - IR, for i = 1,...,N. Each function n(z,t) = 97z, t): RY x

0,7] - IR, foralli,j =1,..., N.
The Feynman-Kac solution to (A1)~(A3), when it exists, is given by
T
fla,t) = E{f oerh(EEH T - 0, 19 (62%) ], (44)
t
where
and the elements, 5*’“, of the N x 1 vector £%¢ solve the system of SDE’s
dér = p'{&r, 7)dr + 47 (&5, 7)dBL,

with initial condition z at time t, and with dB2dB7 = (¢, 7)dr.
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Example 1:

Suppose the underlying asset follows the two dimensional diffusion given in (2)

i

interest rates are deterministic, and the price of volatility risk is given by As, y, t).

As shown in appendix 12B of Hull (1993), the value of a contingent claim is given

by the solution of the p.d.e.,

1
eals,y,t) + (s, y, tr(t)s + cals, v, t)(ﬂ(s,y,t) — As,y,0)0(s,y, t)) + ECH(S’ v, t)[o(s,y,t)slz

—t—%czg(s, v, t)[8(s,y, t)]2 + ci2(s, v, t)a(s,y, t)s0(s,y, tip(s,y.t) — r({t)e(s,y,t) =0, (A3)

subject to the terminal condition ¢(s,y, T) = g(s), where, for example, if the contingent

claim is a call option, g(s) = max[0,s — K|.

Thus f = ¢ solves the p.d.e. in (A1) when

izzs) plz,t) = (5(3="t)‘;Ei),sz,r,t)e(s,1,t))'

v/ ot :(a(s,z,t)s).
h(:&',t)zo. ’Y( ) B(S!Tst)
ij(r t):{p(s,’t,t), if i # 53
Ris,t} =r(t). T I otherwise.

The Feynman-Kac solution for the value of the contingent claim, when it exists, is

then given by expressions (5) and {6).
Example 2:

Let the superscripts on the functions Y'!, ..., ¥4 denote indices not powers, and

define the functions as:
Y,y t) = B(s,y,t) — As,u,2)8(s, y, 1). Y3(s,y,t) = [8(s, y, 1))
YB(S:y:t) = {g(sjy’t)s]g_ Y4('S!y!t) = a(s,y,t)sﬁ(s,y,t)p(s,? :t)
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We can then rewrite (A5) as

1
ca(s, t) +e1{s,y, t)r(t)s + cols, g Y s,y t) + 5611(5’ Y, )Y 3(s,y,t)

+%C22(Sl ! ,t)Y3(.5',T )t) -+ 612(8, y,t)Y4(3, Y, t) - T‘(t)C(S,’l ’ t) = 0. (Aﬁ)

Taking the partial of (A6) with respect to s gives

c13(s,9,8) + cra(s, y, t)r(8)s + ca{s, y, )r(t) + cra(s,y, )Y 1(s, y, ) + ca(s, v, )Y (s, 9, t)+

1 1 1 .
Eclll(ss? >t)Y2{5)y: t) + Ecll(sr y,t)Y12(S) yrt) + 56122(31y)t}yd(55 i, t)+

i .
ECQQ(Su o, t)Yl‘}(sl i, t) + ‘5‘:112(‘5'"l :t)Y‘L(Si yrt) + C12(S, Y, t)Y14(Sr y1t) - T(t}cl('S}? :t) = O (-A?)

Let f be the value of the first partial of a contingent claimn’s value with respect to

the value of the underlying. The p.d.e. in (AT) can then be rewritten as

1
F3(s,u,8) + f1(s,y, 8)[r(t)s + §Y12(3, v+ fols,y, )Y (s, g, 8) + Y (s, y, 1)

1 1 .
+§fll(55yu t)YQ(S;y:t) + §f22(s>1 :t)Y‘j(S!y:t) + le(S)yj t)Y‘i(S)! )t)

1 .
+eals, y, )Y (5,9, ) + 5022(5,1 )Y (s,y,t) = 0. (A8)
Expression (A8) is in the same form as (A1) with

1 .
Rz, t) = cz(s,y,t)Yll(s, y,t} + 54:22(3,1 ,t)Yf‘(s,q .t

N =2 _ r(t)s + 2Y&(s,y,t)
ulat) = (Yl(s,?,t)+Y14(s,7,t)))

"'z(y> W):(\/m)_

R(S,t)zo, YS(S,T,t)
77 p(s:yut)s lf’-’,%j,
n(z,t) =
1, otherwise,

Thus the Feynman-Kac solution for c1(s,y,t), when it exists, is then given by

T
it Wt .t .t
t
1 1$,y,t 28y, 15,4t s,y.t syt
+genle ™ YRE Y )i 4 g (6207
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where éls’y't and gzs’y’t solve the system of SDE’s
1
dér = (r(r)é: + 5Y2 (6.8 7))dr + /Y 2(el, €2, 7)dBY,
der = (Y1(eh €2, m) + YiAeh €2, 7)) dr + YOl €5, 7)d B2,
with initial condition {s, y} at time ¢. In addition, dB}dB?2 = p(¢'tau, 2, 7)dr.

Proof of Theorem 2

Condition (i) of the theorem implies that there exists a function Z such that
Z(s,t) = [o(s,1 ,t)s]z.

The Feynman-Kac solution for the first partial of the value of the contingent claim with

respect to the value of the underlying given in Example 2 then simplifies to

ers, t) = E{g1 (1)},

where 5% solves the SDE

1
dé; = (r("r)f-,— + 521(51-, T))dT +\Z{&s, T)dBr,
with initial condition s at time ¢.

Suppose s’ > s”. The distribution of {;"t first-order stochastically dominates the

distribution of 513_””‘. If for all s, g11 > 0 then g, is non-decreasing in s, and hence
als' 1) = B{ai(60)} 2 B{01(62")} = euls”, 1),
Similarly, if for all s, g3 < 0, e1{s’,t) < ¢1(s”, t).
Now consider condition (i) of the theorem. Condition (i) implies that there exists
functions G, G? and G?, where superscripts denote indices not powers, such that
Gy, t) =Y'(s,y,2),
Gy, t) = Y3(s,y,1),
Gs(y,t)s = Y4(s,y,t).

a4



The Feynman-Kac solution for the value of the first partial of the contingent claim

with respect to the underlying given in Example 2 then simplifies to

it
c1(s,y,t) = E{Ql(&is g )},
where fls’y't and fzs’y't solve the system of SDE’s

il = (r(r)eh+ SYREL €, m))ar + TPEL 5 asl,
dé; = (GM(e} . 7) + G*(¢%, 7))dr + /GEEL, 7)dB,

with initial condition {s,y} at time ¢. In addition, dB1dB2 = p(¢l, ¢2 7). Suppose s’ > §”.

1
C Lyt . . . "oyt
The distribution of ¢ q{ *¥" first-order stochastically dominates the distribution of 5;5 wr

If for all s, g11 > 0, then g; is non-decreasing in s. Hence

erls' v, t) = B{ar (™)} > B{o(e) ) = en(s”, v,

Similarly, if for all s, g;; < 0, then ¢ is non-increasing in s. Hence ¢q(s, y,t) < e1(s”, y, t).

QED
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Appendix B
Properties of Solutions to P.D.E.’s With Convex Terminal Conditions

Suppose C(S,t) is the solution to
1
Ca(S,t) + E[u(s, t)S]2C11(8,t) = 0, (B1)

subject to

C(S,T)=g(S) for all S.

C(St t) can be thought of as the time t normalized value of a contingent claim on an
underlying asset worth S;, where the payoff to the claim at its maturity date T is given by
9{5)-
Further suppose that ¢(-) has the following properties:

L} ¢(0) =0,

2.) g(S) in non-decreasing in S,

3.) g(S) is convex in §,

4.) limg_ oo g-g—, =k < o0, and

5.) there exists an H < oo such that for all S, g(S)> kS - H.

The relation between &, H and g($) is as depicted in Figure Bi. Note that from

the characterization of ¢(S) it follows immediately that

max[0, kS — H]| < g(S) < kS.

In this appendix we show that for all $ and for all ¢ < T, C11(8,t) = 0. Wé first

establish some bounds on C(3,t) and C1(S, ).
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Lemma 1. Forallt <T, max[0,kS — H] < C(S,t) < kS.

From the Feynman-Kac Theorem, C(S,t) can be expressed as

C(S,¢) = E{g(&2")},
where dé, = v({,, 7)€ dz,. (B2)

The distribution of ¢, is the distribution of Sr under the equivalent martingale measure.

First consider the upper bound.
C(5.1) = E{g(e2")} < BE{ke*} = kS,

where the second equality follows from the martingale property of £.. Now consider the

lower bound.
C(5,t) = B{g(¢2*)} > E{max[0, ke5* — H))

> max[0, kE{£2'} — H] = max[0, kS — H].
QED
Lemma 2. Forallt<T, 0<C:(8,t) < k.

Proof: Lemma 2 is an immediate implication of Theorem 1.

Armed with Lemmas 1 and 2, the proof of convexity proceeds by contradiction. We
initially assume that there exists at least one region within which ¢ (S,t) is strictly concave

in S. Let a(t) and b(¢) denote the boundaries of any one such region, with b(t) > a(z).

When b(t) is finite, b(t) is the time ¢ value of S such that the relation is strictly
concave for § = b(t) — ¢ and convex for § = b(t) + ¢ for arbitrarily small positive e. Thus
Cr1(b{t),t) = 0.

When a(t) > 0, a(t) is the time ¢ value of § such that the relation is convex for
S = a(t) — ¢ and strictly concave for § = .a(t) + ¢ for arbitrarily small positive e. Thus

Cila(t),t) = 0.
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We first introduce some properties of the option price at the end points of this

strictly concave region.
Lemma 3. For b(t) finite, C(b(t),t) > C(a(t),t).

Proof: The inequality is strict since C1(S,t) > 0, b(t) > a(t) and the relation
between C'(5,t) and S is strictly concave for § € (a(t), b(2)).

QED
Lemma 4. For b(¢) finite, Ci1(b(t),t) = 0 = Ca(b(¢),t).

Proof: The zero value for Cy1(b(t),t) follows from its definition. The zero value

for Ca(b(t),t) then follows from the p.d.e. in (41).

QED

Lemma 5. Fora{t) >0, Cufa(t),t) =0= Cala(t),t).

Proof: The proof parallels the proof of Lemma 4.

QED

Lemma 6.1 For b(t) finite,

ﬂ%ﬂ = C1a(b(t),t) = —%[v(b(t),t)b(t)FClll(b(t),t) <.
Proof: dC1(b(t),¢t) o db(t)
—ar = Culblt) t) ==+ Cra(b(e), 1)

= (C12(b(t),t) since C11(b{t), t) = 0.
Differentiating the p.d.e. in (A1) with respect to S we have

EB’UQ(S,(JZ)

1
535 S2C1(8,t) + v3(5,¢)SC11 (8, t) + E[’U(S, £)S12C111(S,t) + Ca1 (S, t) = 0.

Bl Note the implicit assumptions that Cqqy, C'y2 and %(:l exist. These assumptions
can be relaxed at the expense of vast tracts of forest reserves. We subsequently use only
the result that C';(b(¢),¢) is non-increasing with the passage of time.
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Evaluating this equality at S = b(¢) gives

%[U(b(f)w EB(E)°Cr11(b(t), 8) + Car (b(2), £) = 0;
ie, Ca(b(t)t) = ~%[v(b(t),t)b(t)}20111(b(t),t).

C11 switches from negative to non-negative at b(t) and hence

Cu:(b(t), t) > 0.

QED
Lemma 7. Fora(t) > 0,
d—cl(:t(ﬁ = Ci2(a(t),t) = —%UQ(a{t),t)aQ(t)Cm(a(t), t) > 0.
Proof: The proof parallels the proof of Lemma. 6.
QED

Lemma 8 For b(t) finite, C1(b(t),t) < k.

Proof: The result follows from the combination of the bound C(S5,t) < k of
Lemma 2 and the definition of the value b(t), namely that there exists a value ¢ > 0 such
that C'(S,t) is strictly concave in § for § e (b{t) — €, b(2)).

QED

Lemmas 6 and 7 provide the heart of the proof by contradiction. The following
is an intuitive, geometric presentation of the reasoning. Consider the angle formed by the
intersection of a line through the point [a(t), C(a(t),t)] with a slope of C; {a(t),t) and a
line through the point [b(t), C(b(t),1)] with a slope of C1(b(t}),t). This angle is depicted in
Figure B2 as §. At the terminal date 7', the relation between C(S,T) and S is everywhere

convex. Thus on or before the terminal date the angle must go to either 180° or 0°. The
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angle can’t become less than an angle of size ¢ as depicted in Figure B2 without Lemma 2
being violated. Can the angle increase from 8 to 180°7 The slope of the line tangential at
the point (b(t), C(b(t),t) is always non-increasing (Lemma {6)), while the slope of the line
tangential at the point (a(t),C(a(t),t) is always non-decreasing (Lemma (7)). Hence the
angle § is non-increasing with the passage of time. If we think of a measure of the degree
of concavity as the deviation of ¢ from 180°, then the concavity does not disappear with

the passage of time — rather it becomes more pronounced.

As further aids in the formal proof, we define a number of deterministic auxiliary
functions and explore their properties. When b(t) is finite, define the deterministic functions
g(t) and h(t) as

C(b(t)) t) — Cl(b(t)n t)b(t)

9(t) = k—C(b(¢),t)

and

hit) =  C00L1) — CLe(8), )(b(t) — H /)
- k—C1(b(t),t) ’

respectively. Note that from Lemma 8 the denominator common to the definitions of both

g9(t) and h(t) is strictly positive. While h(t) is always non-negative, ¢(¢) can take on either

sign.
When b(t) is finite and a(t) > 0, define another deterministic function m(t) as
m(t) = C1(at), )(b(t) — a(t)) = (C(b(2), 1) — Cla(t), 1)) > 0.

The relation between a(t), b(t), g(t), h(t) and m(¢) is as depicted in Figure B3.

Lemma 9. g¢(t) < C(b(t),t).

Proof:
_ OO, 8) = cib(), 0b(t) k= C1(6(t),t) iy
g(t) =k PECNTIES = C(b(t),t) A ATOE
<o),y —a2CWY _pp

L= C(b{t), t)
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QED

Lemma 10. %ﬁl > 0.

Proof:
dgt) _ kcl(b(t),t)%ﬁl + Ca(b(t),t) — Cra(b(t), 1) Ll y)
dt k—Cr(b(t),1)
Ci2(b(t), £)b(2) + C1(b(2), £) 2l
B k ~ C1(b(t), 1)

() - 00,000 (=016, 2. ~ C1a6(0),0)
(k - C‘(b(t),t))

L Cule@, 000 | (OG0 - 10600, 000 Cra(o(1),
k—C1(b(1), 1) 2

—k

Cra(b(t), ¢) (C(b(t))t) - kb(t))
k

= - > ()
(k= o), 1)
The inequality follows from Lemmas 1, 6 and 8.
QED
Lemma 11. &{t} > C(b(t),1).
Proof:
o) = £ CO0-0) = b 000 - H/R) OO0, 0(1- Culoi). ) L)
(1) = k—Cy(b(t),t) B k= Gy (b(2),t)
N kC(b(t),t)(l - Ci1b(e) t)/k) (), 1) (k - C1{b(t), t})
= k—CL(p(t), 1) B k= Cy(b(2),1)
= C(b(t),1).
The inequality follows from Lemma 1.
QED

Lemma 12. ﬂ;tﬂ < 0.
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Proof:
ah() _ , Coab(®),8)(C0(0),2) — (kb(e) = 1)
dt (k — Cl(b(t),t))z

<0

The inequality follows from Lemmas 1, 6 and 8.

QED
Lemma 13, M’Ziﬂ = 0.
Proof:
dm.(t
) — Coafa(0). 9060) - o) 2 0
QED

Armed with Lemmas 1 through 13 we can now prove that the convexity of the

terminal condition is inherited by the solution C(S,t) at all earlier dates.

Inherited Convexity Theorem. Let C(S,t) denote the solution to the p.d.e. in (A1)
subject to the terminal condition C(S,T) =g(S,T), where g{(-) possesses the five properties
listed at the start of Appendix B. For all t < T, C(5,t) is convex in S.

Proof: Suppose otherwise, and that for some t, C(S,t) has one or more strictly
concave regions. Any strictly concave region can be characterized as (I) C(85,t) strictly
concave in S for all § > a(¢) > 0; i.e., no finite value for b(t) exists, or (II) C(S,t) strictly
concave in S for all § < b(t) finite; i.e., no nonzero value for a(t) exists, or (III) C(S,¢)

strictly concave in § for all 0 < a(t) < § < b(¢) finite.
Case (I}. C(S,t) is strictly concave in S for all § > a(t) > 0.
Strict concavity in S for all § > a(t) implies that for A > 1 and § > a{t},

C(AS,t) < C(8,t) + (A - 1)SC1(8,t),
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Le, for all S > a(t) the graph of the function lies strictly below a line tangential to the
function at the point S. For e > 0, strict concavity and Lemma 2 imply Cq(a(t) +¢,t) < k.
Consider a value for A such that

Cla(t) +e,8) + H — (alt) + €)Cy(a(t) +e, t)
(a(t) + €}{k — C1{a(t) + ¢, t))

S kla(t)+¢) —H + H — (a(t) + €)C1{alt) + ¢, 1)

- (a(t) + €)(k — C1(a(t) + e, t})

A >

For such a value of A we have
CA(a(t) +€),8) < Clalt) +e,8) + (A = 1)(alt) + €)Ca(a(t) + ¢, 1)
< Cla(t) +¢,t) + (Mkla(t) + ) — Claft) + ¢, t) — H)
< Ak(a(t)+e)— H

which violates Lemma 1. Thus Case (I) and Lemma 1 are inconsistent.

Case (II}. C(S,t} is strictly concave in S for all § < b{¢) finite.

At maturity the relation between C and § is convex. Thus the strict concavity at
time ¢ must disappear at some time 7 < T. The event that at some earlier time 7, prior to
the disappearance of the concavity at time 7, the relation between C(8,7) and S becomes
convex for values of 5 € (a(r) — €,a(7)) with ¢ > 0 and a{r} < b(7) finite is considered
under Case (IIT). We consider here only the event that at all times + < T, C(8,7) remains

strictly concave in S for all § < b(r).

Define 47 as lim,_7 b(r). We first establish that whenever a finite value for b(t)
exists and the region of concavity disappears at time 7, then 47 is finite. It follows from

Lemmas 1 and 11 that for every + ¢ (¢, T),

kb(r) < H + k(7).
Lemma 12 then implies
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kT < H + lim h(r) < H + h(2).
T—

So b7 is bounded from above and cannot go to infinity as + — 7. Thus and the region
of strict concavity cannot disappear through a process whereby Case (I1) first merges into
Case (I}.

Having established for Case (II) that 57 < oo, we now also establish for Case (IT)

that 7 > 0. Since, under Case (I}, C(8,t) is strictly concave in § for § € (0, b(t)),

and hence

Cb(t), 1) — C1(b(t), £)b(t)

glt) =k k- C1(b(t), t)

> 0. (B3)

From Lemmas 1, 9 and 10 and relation (A3), we have for every r € (£, 7)

kb(r) = C{b{r),7) > g(r) > g(t) > 0
and therefore

im b .
A >0

With these bounds on 57 determined, it follows that at time T when the region of

strict concavity disappears, C'(S,7) becomes affine in § for § € (0, b7). The existence of

C11{(Sr,7) for all 7 < T, and the condition that C(0,7) = 0 for all 7, then imply that

lim Oy (b(r), ) = =T TOT)T),

5T
Thus
I§: T b ) -1l T— ! bT
ling () = k=T GO D) = ey G0, 7 (54)
—T k— hmr—»T C]_(b(T), T)

The quantity lim,_7 g(v) is well defined since, from Lemmas 6 and 3,
111'[%_01(?)(1’), ‘f‘) < Cl(b(t),t} < k.
T
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But relations (A3), (44) and Lemma 10 are contradictory. It cannot be that for
t < T, g(t) >0 (relation {43)), yet d—fé_ﬁ > 0 {(Lemma 10) and limr 7 g(r) = 0 (relation
(44)). Thus the option price cannot exhibit the strict concavity considered under Case

(1),

Case (III). C(S,t) is strictly concave in § for all 0 <a(t) < S < b(t) < oo.

Again the region of strict concavity must disappear at some time 7 < 7. Recall
that lim. 7 b(7) is finite. The disappearance of the region of strict concavity requires either
that (i) lim, 7 a{r) = lim,_,1 b(r) > 0, or (ii) lim,_,1 Cila(r), ) = lim, _+ Cr(b(r), ),
or (iii) lim, .7 b(r}) = 0 and for some time ¢ « 7, im. o a{r) = 0.

In the event of either (i) or (i),

li (T) = 0.
T.l_I}:le(T} 0

But this contradicts m(¢) > 0 and Lemma 13,

In the event of (iii), C(S,#") is strictly concave in S for S € (0,8(t")) and hence
g9(t") > 0. Combining Lemmas 1, 9 and 10 gives kb(r) > C(b(r),7) > g(r) > g(t") for all

T € (t”, 7). Hence

lim kb(7) > g(t") > 0
7T
and therefore

lim b(7) > 0

T—=T

which is inconsistent with the occurrence of event (iil) itself. Thus the option price cannot,

exhibit the strict concavity considered under Case (1I1).

QED
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Appendix C

Proof of strict convexity of call prices for all s and ¢ such that max[0,s —

T
Ke_ft 1"(T)Gh—] < (s, t) < s,

3 and C are the normalized prices of the underlying asset and the call as defined
in the introductory paragraph of section IV. Suppose that at time ¢ the strict convexity
claim is violated for prices in some region. Let a(t') and b(t) > a(#') denote the normalized
prices marking the end points of that region; i.e., for all § € (a{t'),b(t")], max[0, § ~ K] <

C(S,t") < 8 yet C11(8,¢') = 0.

Suppose a(t’) > 0. Since Cla(t'),t) > max(0,a(t') — K|, yet Cla(t'),T) =
max[0, a(t') — K], there must exist a set of times + (#, 7] at which Ca(a(t'),r) < 0.
Let us then consider the particular value of ¢ such that not only is max{0, a(t') - K] <
Cla(t'),t') < a(t’) and C11(a(t'), ') = 0, but for some ¢ > ¢ we have that for all r € (¢, ¢")
» Cala(t’),7) < 0. Given the p.d.e. in (7) we see immediately that for all r & (¢, ",

Cr(a(t’),7) > 0 and v(a('),7) > 0. Assume that v(a(t'),t’) > 0.¢1

Since Cala(t’),t’} = 0 and v(a(t'),t') > 0, there then exists an arbitrarily small
positive £ such that for all e € (0,), not only is Cula(t’) -&,t') > O and v(a(t) - ¢, t') > 0,
but Cip{a(t’) — e,¢') > 0. Further, since Ca(a(t’),t') = 0 and for all S, Ca(S,¢) <0, it
follows that C'12(a(t'), ') = 0.

Strict convexity for all 7 & (#,t") requires that for time ¢/ +,

NP+ _ A i+
im C120).0%) = Cilaft) —e, 1)
E— 3

> 0.

“1 The condition v(a(t'),1) > 0 can be relaxed. But this leads to the significant
use of mathematical tools like Newton diagrams and the analysis of singularities. More
about the techniques used to analyze dynamic behavior near local minimum can be found
in Wiener (1993). Observe that [v(8, ¢)S]? is a non-negative function which can therefore
have zero values only at local minimurns. In any particular case, one should differentiate
the p.d.e. in (7) a sufficient number of times until the singularity is resolved.
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But since Cy5(a{t’),t') =0,

VAR Y ¥ Ny no_ -
lim Cila(t'),t'") — Cy(alt’) —¢,t } — hm Ci(a(t'), ) — C1(al(t') — ¢, ¢ )’
e—0 £ e—=0 €

which, since C1a(a(t’) — ¢, ¢) > 0,

noary AN r
< g 1) = Crlolt) — e,1)
E—r £

= Cll(a(t’), tf) = (),

and we have a contradiction,

Analogous arguments rule out a finite value for b(¢'). Finally, the possibility that
a(t’) = 0 and b(t'} is infinite is equivalent to the internally contradictory claim that for all
§ > 0, max(0, 5 - K] < C(5,¢') < $, yet C11(S, ') = 0.

QED
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Figure 1. Illustration of feasible sets of sample paths for ¢,

given { =s" and & = 5" > 7, d¢, = r(7)&rdr + a(Er, 7)E, dB.



o(s,y",t)

e1(s’, y’, t) <0

Figure 2a.

—

e(s,y t)

ex(s”,y',t) <1

Figure 2b,

Figure 2. Demonstration that unless 0 <eafs,y,t) <1 for all s, v, and ¢,
¢{s,y,t) is concave in s over some region.
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Figure 3. Illustration of the possible relations between c(s,t) and s
consistent with 0 < ¢;(s,¢) < 1 (Proposition 1) and eyy(s,t) > 0 for all s
and ¢, and cy;(s,¢) > 0 for all s and ¢ such that
0 < e(s,t) < s (Proposition 2).
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Figure 4a. Interest rates in the otherwise equivalent economies A4 and B.
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Figure 4b. Possible sample path for sf.

Certain sample path for s§. sf < K <« sf.
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Figure 5. Illustration of the bounds on a call’

s delta when for all s and ¢,

g=o(s,t) <7,



ety b T R U N VAN
“. . ... . Reglonof - -
a0

BT S
g _'__‘__"—'"‘-.—..—.?.—."".—..—'?:—?i. E )
K3 E Region of
: | als,y,t) >0
S E 8(s,y,t) >0
__________________________________ R |
- : . | 1
Region of . ) |
os,y,t) =0 - ,I ' .'l
S0y, ) >0 i
s kL . b— !
A '
I i
1 |
1 ;
|- i
I :
y' y

Figure 6. Two-dimensional diffusion. Certain sample path given
initial condition {s’,y'}. Possible sample path given initial condition {s”,y'}.
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0=1c(0,9,t) <e(s”,y 1) > c(s’ v’ t) = 0.



._//

certain
sample path | Sfef:T r{r)dr

Region of ¢
Zero jump
probability

_-possible. .~
. ~sample path -~

v -

- Rogion of

o ‘pdsitive jump .- -
-+ probability - -

i T

Figure 7. A Markovian world with a mixed diffusion-jump process for
s < H and a deterministic process for s > H. Possible sample
path given s; = 5" < H. Certain sample path given s; = s' > H.



Figure 8. Non-recombining binomial tree.

0=¢(0,T-1) < e(s",T-1} > (s, 7=1) =0.
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Figure 9a. The relation between ¢(s,t') and s in a non-Markovian world.
The call is not everywhere non-decreasing and convex in s.
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t < t’. The call is not, for all s and t, a “wasting” asset.
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max[0, kS — H] < g(S) < kS

slope = &

Figure B1.

i

The relation between &, A, and g(S).
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C(s,t) A slope = k

Figure B2. The angle 4 as a measure of the concavity
in the relation between C(S,t) and 5.
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Figure B3. The relation between a(t), b(t), g(¢), k(t), and m(t).



