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Dynamic Consumption-Portfolio Choice and Asset Pricing
with Non-Price-Taking Agents

Abstract

This paper develops a continuous-time pure-exchange model to study the dynamic consumption-
portfolio problem of an agent who acts as a non-price-taker, and to analyze the implications of
his behavior on equilibrium security price dynamics. The non-price-taker is modeled as a price
leader in all markets; his price impact is then recast as an effect of consumption on the Arrow-
Debreu prices, allowing the use of martingale methods in a tractable way. Besides the aggregate
consumption, the endowment stream of the non-price-taker appears as an additional factor in
driving equilibrium allocations and prices. Comparisons of equilibria between a price-taking and
a. non-price-taking economy are carried out.
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1 Introduction

Central to the equilibrium-based asset pricing models in finance is the competitive agents paradigm:
each agent is atomistic relative to the market, and hence takes prices to be unaffected by his or her
actions. However, an observation of today’s security markets (and especially government bond
markets) reveals the ever-increasing importance of large pension funds and financial institutions
in the marketplace. “Large” investors are particularly prevalent in smaller security markets out-
side the U.S.A. (e.g., Belgium, France, Hong Kong, Singapore, Sweden). Such a “large” investor
may have a significant effect on prices, and hence may prefer to choose a strategy taking the price
impact of his own behavior into account. It is well-known that large trades do have a permanent
price impact. This is attributable partially to the information a large trade reveals about future
cash flows (Kraus and Stoll [24], Holthausen, Leftwich, and Mayers [16, 17], Seppi [33]), but
conceivably also to the effect of such a large position on security supply and demand. Inter-
nationally, there is certainly widespread anectodal evidence that large trades can affect prices
independently of any information they may contain. It would be of interest to re-investigate
the traditional equilibrium-based asset pricing models in the presence of “non-price-taking” in-
vestors, who take account of the price impact of the positions they take on (independent of any

information revealed by their trading).

The objective of this paper is to study the dynamic optimization of a non-price-taking agent
and to analyze the effect of the presence of a non-price-taker on dynamic market equilibrium.
Part of this objective is for the formulation to be fully consistent with rational expectations, no
arbitrage, and market clearing. Our approach is to introduce a non-price-taking agent into a stan-
dard asset pricing environment (Lucas [27]), while retaining the usual assumptions of complete
and frictionless markets, and symmetric information. To this end, we develop a continuous-time
equilibrium model of a pure-exchange economy consisting of N — 1 price-taking agents and one
non-price-taking agent. The presence of the non-price-taker is specified exogenously and not
generated endogenously, for example, by his superior information over the other agents, (e.g.,

Kyle [25]) or by the size of his security holdings.t

Our notion of equilibrium is in the spirit of the price leadership model in the oligopoly liter-
ature (e.g., Varian [35, Chapter 16]). Accordingly, the non-price-taker chooses his consumption-
portfolio process, aware that the price processes must adjust so that the remaining (price-taking)
agents’ optimal demands clear all security and consumption good markets.? We recast the non-

price-taker’s impact on the security market prices as an impact of his consumption choice on the



Arrow-Debreu prices. This “consumption-based” formulation of the problem allows us to adapt
martingale methods (Cox and Huang [6, 7], Karatzas, Lehoczky and Shreve {21], Pliska [31]) in a
natural way, making the analysis highly tractable. If the preferences of the price-takers are such
that their representative agent’s utility does not_depend on their individual wealth allocations,
the non-price-taker’s consumption at any given time and state affects the state price (the price
of one unit of consumption) only at that time and state; otherwise the whole state price process

is affected. We focus on the former case for most of the paper.

Solving for the equilibrium consumption allocations reveals that the non-price-taking agent
deviates from his price-taking behavior by tending to move his consumption towards his en-
dowment stream. The extent of this deviation depends on how much of a net trader the non-
price-taker is, and on the risk aversion of the other agents in the economy. In addition to the
aggregate consumption stream, the non-price-taker’s endowment stream appears as an extra fac-
tor in explaining the equilibrium asset and Arrow-Debreu prices, and their dynamics. This leads
to a two-factor consumption-based CAP.M, stating that an asset’s risk premium depends on the
covariance of its return with changes in the non-price-taking agent’s endowment stream as well

as with changes in the aggregate consumption.

To derive further implications of non-price-taking behavior, we specialize to the case of all
agents’ preferences exhibiting constant absolute risk aversion (CARA) and one risky asset. When
the non-price-taker is initially wealthy relative to the rest of the market, he is found to react
more to changes in the aggregate consumption than if he were a price-taker, and as a result his
consumption drift and volatility increase. This consumption behavior leads to an increase in the
volatility of the Arrow-Debreu price return (i.e., the market price of risk). The reverse is true
when the non-price-taker has a low endowment, compared with the rest of the market. Using
tools from Malliavin calculus, in particular the Clark-Ocone formula, we derive representations
for the agents’ portfolio strategies and the equity market volatility and risk premium, providing
insights into the effects of a non—price—taker.. {For related applications of Malliavin calculus in
finance, see Detemple and Zapatero {9]—interest rate and risk premium formulae—and Ocone

and Karatzas [30]—optimal portfolio representations.)

The closest work related to this paper is Lindenberg [26]. In contrast to our dynamic formu-
lation, Lindenberg works in a single-period mean-variance framework. Some of the agents in his
model recognize that the market clearing security prices depend on their positions and formulate

their optimization problems accordingly. He finds the non-price-taking investors to hold an op-



timal portfolio that is unbalanced (i.e., contains differing percentages of the supply of shares of
each security). A two-factor CAPM results, in which an asset’s risk premium is driven by the co-
variance of its return with the market return and with the return on the aggregate portfolio of the
price-affecting investors. Taking a quite different starting point, Jarrow {20] exogenously specifies
a dependence of asset prices on the non-price-taker’s trading strategy, hence not working in an
equilibrium framework. The main focus of his work is on the existence of market manipulation

strategies which essentially generate arbitrage opportunities for the non-price-taker.

The remainder of our paper is organized as follows. Section 2 outlines the pure-exchange
continuous-time framework of our model. In Section 3 we present the martingale formulation
of the non-price-taking equilibrium and characterize the agents’ equilibrium consumption allo-
cations. Section 4 derives the modified consumption-based CAPM and interest rate formulae.
In Section 5 we specialize to the CARA utility and one risky asset to derive further results. In
Section 6 we summarize our conclusions and propose further work. The Appendices provide the

proofs of all propositions and corollaries.

2 General Formulation

This section describes a continuous-time variation of the Lucas [27] pure-exchange economy.
The formulation follows the continuous-time pure exchange general equilibrium models recently
developed by Duffie and Huang [12], Duffie [11], Huang [18], Duffie and Zame [13)], Karatzas,
Lehoczky and Shreve [22] and Karatzas, Lakner, Lehoczky and Shreve [23]. We consider a
finite horizon [0, T] economy in which there is a single consumption good. All quantities (prices,
endowments etc.) are expressed in units of this consumption good. We let W = (Wi,..., W) T
be an L-dimensional Brownian motion on a complete probability space (Q, F, P) and let {Fi;te
[0,T]} be the augmentation by null sets of the filtration generated by W. All the uncertainty in
the economy is represented by this L-dimensional Brownian motion. All the stochastic processes

appearing in the analysis are assumed to be adapted to {#;}. All the stated equalities involving

random variables hold P-almost surely.

2.1 Securities

We assume there are L+ 1 securities. One is an instantaneously riskless bond in zero net supply;

L are risky stocks, each in constant net supply of 1 and paying out a dividend stream at rate 8;(8)



in [0,7]. We assume the following dynamics for the aggregate dividend process §(t) = 35 | 6,(¢):

L
db(t) = ps(t)dt + > os;(dW;(t), te€[0,7T],
j=1

where ps(-) and og;(-) are F;-measurable processes.

Each security price is modeled as a diffusion process relative to the Brownian filtration. The

bond and risky stock price dynamics are

dPQ(f) = Pg(t)?‘(t)dt, te [O,T] )

L
dP(t) + 8i(8)dt = P(t) |pit)dt + 3 o)W, (8|, i=1,...,L, tel0,T].
=1

The vector of ex-dividend prices P(:) = (Pi(-),..., P (-))7 must satisfy P(T) =0, i=1,..., L.
The interest rate 7(-) of the bond, the vector of drifts u(-) = (p1(-),...,p.(-))7 and the volatility
matrix ¢(-) = {o;(-)} are (possibly path-dependent) F;-measurable processes. The price system,
represented by these coefficients, is to be determined endogenously in equilibrium. Assuming that
o(-) is invertible, the market in this set-up is dynamically complete since the number of risky

securities is equal to the number of dimensions of uncertainty (L).

In our analysis, we use the martingale representation technology, which requires the con-
struction of certain processes, related to the price dynamics (Cox and Huang [6, 7], Harrison and
Kreps [15], Karatzas, Lehoczky and Shreve [21}, Pliska [31]). We briefly present the required

notions for our set-up and do not state all regularity conditions.

We define the state price density process £(t) as a process with dynamics

dE(t) = —€(t) [r(t)dt + 0() Taw (1)) (1)

where 6(¢) is the L-dimensional Fi-measurable market price of risk process, defined by 6(t) =
o ()~ u(t) = (t)1], where 1 is an L-dimensional vector with every component equal to 1. £(%,w)
is interpreted as the Arrow-Debreu price (per unit of probability P) of one unit of consumption
good in state w € € at time ¢. Under mild regularity conditions, the state price density process
provides the following relationship between the asset prices and their future dividends consistent

with no arbitrage (e.g., see Duffie {10]):

Pit—éi [/g )dslﬂ], i=1,...,L, te[0,T]. (2)



2.2 Agents’ Preferences and Endowments

We assume there are N agents in the economy. Agent N is a non-price-taker in the sense that
he takes into account the fact that his dynamic consumption-portfolio choice affects the whole
process of the price system (r(¢), u(t), o(t)), t € [0,T]. We discuss the way agent N affects prices
in Section 3. The other agents n =1,..., N — 1 are price-takers. Each agent, n, is endowed at

time zero with ey; shares of risky security 7. Then, define the initial wealth of agent n as
L 1 T
Tno = P;-Oem:—E/ tea(t)dt|, n=1,...,N,
3 R0 = 2 | [ ettt

where €,(t) = 2L eni6i(t) and the second equality follows from equation (2). €,(t) can be
interpreted as the endowment stream of agent n since it is the sum of dividend streams from the

initial endowments of the agent.

For each agent n, we define a consumption process c,(t), and an L-dimensional portfolio

process an(t) = (an1(t),..., aar(t))T, where an;(t) denotes the number of shares of asset 7 held

by agent n at time t. Then the nth agent’s wealth process follows

dX,(t) = (3)

L L L
r(Xn(t)dt — ca(t)dt + 3 i) Pi()[i(t) — r(0)]dt + 5.5 ai(t) Pi(t) o5 (1) dW;(t) .

i=1 i=1j=1
Each agent is assumed to derive time-additive, state-independent utility w,(c,(¢)) from con-
sumption at all times in [0,7]. We assume the utility functions are continuous with continu-
ous first derivatives, strictly increasing and strictly concave. Throughout the paper, a symbol
with a caret (") denotes the optimal (expected utility maximizing) quantity, corresponding to
(én(l), Gn(t)). A symbol with an asterisk (*) denotes equilibrium in a non-price-taking econ-
omy; a symbol with an overbar (7), equilibrium in a price-taking economy (where all agents are

price-takers).
3 Agents’ Optimization and Equilibrium

This section presents the agents’ optimization problems and defines equilibrium in a multi-agent
economy consisting of one non-price-taking agent and N — 1 price-taking agents. We define
equilibrium based on a price leadership model. In such a model, the non-price-taker observes

the demands of the other agents as a function of the price processes, and then simultaneously



chooses price processes and his own consumption-portfolio process so as to maximize his abjective
function subject to the condition that all markets must then clear. The non-price-taker solves

both his optimality and for the equilibrium prices simultaneously.

As the first step, we solve for the price-takers’ optimal demands. A price-taker maximizes his
expected lifetime utility subject to his dynamic budget constraint (3), taking the price system as
given. Using the martingale representation approach, each price-taker’s dynamic optimization

problem is converted into the following static variational problem (Cox and Huang [6], Karatzas,

Lehoczky and Shreve [21]):
T
/0 f(t)en(t)dtl |

Using the Lagrangian method, the first order conditions of the price-takers are

<E

Ez?,))cE [/OT un(cn(t))dt} subject to E [/OTg(t)cn(t)dt

uﬂ:z(én(t)) =yag(t), te [0,7], n=1,...,N-1 ’ (4)

where each y, is the Lagrange multiplier such that agent n’s static budget constraint holds with

equality at the optimal, i.e., y, satisfies

T

where I,(-) is the inverse of »’s marginal utility. Equation {4) states that for a price-taker, the
marginal benefit from an extra unit of consumption at time ¢ and state w is proportional to the

cost £(,w) of that extra unit of consumption.

For notational and analytical convenience we introduce a representative agent formulation for
the price-takers (following, for example, Huang [18]). We define the price-taker representative

agent’s utility function by

U(c;A) = max Z/\nun(cn

c1 ...,CN 1 n=1

subject to YN le, = ¢, where A = (At,...s A=) € (0,00)Y~1 Tt can be shown that the
inverse of U'(¢; A) is given by J(h;A) = SV L (h/A). ). Identifying A = (1/y1,...,1/yn—1) and
summing (4) over all price-takers, the aggregate optimal consumption is given by

N-1

> &alt) = JE; 1 /y, . 1 ywo) - (6)

n=1

Formally, we define equilibrium as follows.



Definition. Eguslibrium in an economy with one non-price-taker and N — 1 price-takers is
defined as a price system (r(-), u(-}, #(-)) and consumption-portfolio processes (c*(-), a*(-)) such
that the price-takers choose their optimal consumption-portfolio strategy at the given prices, the
non-price-taker chooses his optimal consumption-portfolio strategy taking account of the fact
that the price system responds to clear the markets, and the price system is such that the good

and the security markets do clear, i.e.,

L

N N N
doat)=6(); Y olt=1, i=1,..L; S X:0)=Y_P(), te[0,7]. (7)
n=1 n=1 n=1

=1

We now formulate the non-price-taker’s optimization problem. According to the definition
of equilibrium, the non-price-taker acts as a price leader in all (consumption good and security)
markets. However, it is well-known that in dynamically complete markets to ensure clearing '
in all markets at agents’ optima, it suffices to simply clear the consumption good market (e.g.,
Karatzas, Lehoczky and Shreve [22], Basak [1]). Hence, we need only focus on the price leadership
in the consumption good market. Recalling the representative price-taker’s demand in equation

(6), clearing in the consumption good (7) implies

en(t) =60t — JE@)K 1/y, - 1) (8)

This expression can be interpreted as the “residual supply curve”, analogous to the notion of
residual demand in the price leadership model of oligopoly theory (e.g., Varian [35, Chapter 16]).

Hence we have the following relationship between £(t) and the non-price-taker’s consumption:
B P

£t) =U'(8(t) — en(t); 1/y1, -, 1/yw—1) - (9)

So, as a price leader, the non-price-taker’s influence on prices manifests itself, via {9), as the
consumption process affecting the Arrow-Debreu prices. Recasting the non-price-taker’s effect
in this way combines naturally with the martingale method of solution of the agents’ optimiza-
tion problems. However, since the agent finances his consumption process through his portfolio
strategy, and since asset prices are determined from the state price process via (2), this non-
price-taking price dependence is equivalent to a dependence of the asset prices on the trading

Strategy.3

The non-price-taker, then, solves the following dynamic optimization problem:

T
max E/ cxft))dt
(en (D Or{)u e () [0 uv(en(t)) }

10



subject to the dynamic budget constraint (3) and equation (9). Similarly to the case of the
price-takers, we may convert this problem into a static variational problem. In the well-known
case of price-taking agents, the dynamic budget constraint (3) is equivalent to the static budget
constraint (10) for all price systems (e.g., Karatzas, Lehoczky and Shreve [21]). This result under

the restricted price system obeying (9) applies to our non-price-taker, and so we can rewrite his

max E [for uN(cN(t))dt}

optimization problem as
en(-h&()
T T
subject to E[/ £(2) en(t) dt SEU §(t)eN(t)dt] (10)
0 0

and  E(t) = U'(8(t) — en(t); /31, .- 1/yn-1) ,

where (y1,...,yv-1) satisfy (5). The remainder of the analysis depends upon the nature of the

representative price-taker’s utility function, which can be divided into two cases.

3.1 The Case of Price-Taker Representative Agent Independent of Individual
Weights

In this subsection and throughout most of the paper we take the case where the representative

agent’s utility function can be written as
Ule; A) = R(AU(c).

Examples of this include the case of only one price-taker, or all price-takers having the same log
or power or negative exponential utility function. In general, it can be shown that in equilibrium
the vector (y1,...,yx-1) is only determined up to a multiplicative constant, since it is only the
relative weights of agents that matter. So without loss of generality we let h(A) = 1, meaning
we express all agents’ weights relative to this aggregate weight, implying U(e;A) = U(e) and
J(h; A) = J(h). Hence, from {9) we obtain the mapping

£t w) = U'(8(t, ), —cx(t,w)) (11)

In this case the non-price-taker’s time ¢, state w consumption only affects the state price at
that time and state, with £(¢,w) increasing in cy(t,w). The following proposition characterizes
the non-price-taker’s solution to his dynamic optimization problem, and hence the equilibrium

consumption allocations and state prices.

11



Proposition 1. Assume U(c; A) = (A)U(c). If an equilibrium exists, then the non-price-taker’s

equilibrium consumption and weight, ¢&(t) and yu, satisfy

(G (1) = yw [U'(8(t) — i (1)) — U"(8() — (0N (D) —en(t))], te[0,T],  (12)

and r r
E U U'(8(t) — c;;,(t))cj;,(t)dt] =FE U U'(8(t) — & (1)ex(t)dt] . (13)
1] 0

Subsequently, the equilibrium state price density is determined from (11) and the price-takers’

equilibrium consumption and weights from (4) and (5).

We assume from now on that equilibrium exists, and proceed to characterize the equilibrium
behavior implied by (12) and (13). The effect of agent N being a non-price-taker is an extra term
on the right-hand-side of his first order condition (12). His marginal benefit from an extra unit
of consumption at time ¢ and state w is proportional to the cost £(¢,w) = U'(8(f,w) — ey (2, w)) of
that extra unit of consumption, plus an additional “cost” term, —U"(6(t) — c& (£))(c% (t) — ex(t)),
due to the direct effect of this incremental change in consumption on the price of consumption.
Since U"(:) < 0, when (c}(t) — ex(t)) is positive the additional term in (12) is positive, hence
increasing u), (¢} (1)) or decreasing c}(t); and vice versa when {¢%(¢) — ex(2)) is negative. So the
presence of the additional term tends to induce the non-price-taker to deviate towards his “own”
dividend, ey(f). The intuition is that when ¢} (t) is greater than ey(t), say, the non-price-taker
1s a net “buyer” of consumption in that state; he is consuming more than the dividend from his
“initial endowment. So it is in his interest to reduce the price of consumption in that state, and

he recognizes that he can do this by decreasing his consumption.

So, the non-price-taker’s consumption tends to move towards ey (¢) compared with his price-
taking equilibrium consumption. (Since yy and U'{§(¢) —c% (¢)) differ across economies we cannot
say that c}(¢) is always closer to ey(t) than is N’s consumption in the price-taking economy,
but it is reasonable to assume that this will be the case when agent NV is enough of a net buyer
or seller of consumption good.) This behavior leads us to the intuition that the instantaneous
volatility of the difference between cy(t) and ey(t) is lower in the non-price-taking economy. We
formalize this idea in Section 5 when we put more structure into the model, Rewriting equation
(12) as

N-1 «

h(er (D) =V 60 - 50) 1= TEEED G0 )], e, 1

12



we see that the extent of agent N’s deviation towards ey (f) depends both on how much of a net
consumer he is (¢}, (t) — ex(f)} and on the absolute risk aversion of the representative price-taker
(=U”"/U"). The more risk averse the price-takers, the less their consumption reacts to changes
in the state price or, conversely, the more the state price reacts to their (and hence also the
non-price-taker’s) consumption and so the more it is in the non-price-taker’s interest to deviate.
In the limit of risk neutral price-takers, the non-price-taker cannot affect the state price at all

and so he does not deviate from his price-taking behavior.

The following proposition establishes formally that in the limit when agent NV does not trade
then there is no effect on the equilibrium of making him a non-price-taker, On the other hand if

he does trade as a price-taker, then there is an effect of making him a non-price-taker.

Proposition 2,

(a) Suppose the agents’ initial endowments are such that agent N does not trade in equilibrium
in the economy where all are price-takers. Then in equilibrium in the economy where agent
N is a non-price-taker, he does not deviate from his price-taking consumption-portfolio

strategy.

(b) Similarly, if equilibrium in the non-price-taking economy is such that agent N does not

trade, then he must not be deviating from his equilibrium price-taking strategy.

(c) If the initial endowments are such that agent N does trade in equilibrium in the economy

where all are price-takers, in the non-price-taking equilibrium the non-price-taker N does

dewiate from his price-taking strategy.

If the price-taking optimal behavior of agent N is to not trade and consume his “own”
dividend, it turns out that he always makes himself worse off by deviating from the price-taking
case. Suppose in some state he increases his consumption a little so that cy(t) is greater than
ex{t). Now he is a net buyer of consumption good in that state. Unfortunately, by increasing his
consumption he simultaneously raises the price of consumption in that state, which would affect
him adversely. If he decreases his consumption, he is a net seller of consumption but at the same

time reduces its price; deviation in either direction has an adverse effect.

We note that the non-price-taker’s influence on the equilibrium does not depend on how
wealthy he is, but on how much of a trader he is. Even if agent NV has no initial wealth (ey = 0)

it may still be the case that he changes the equilibrium by being a non-price-taker. For example,

13



for the CARA utility and one risky asset case considered in Section 5,itisnotey =0butey =1/2
for which there is (no trading and hence) no deviation from the price-taking equilibrium. In the
case of CRRA (constant relative risk aversion) utility agents, however, if agent N has no initial
wealth (e, = 0) he never consumes nor trades in the price-taking economy and so his non-price-
taking strategy does not deviate from his price-taking one. The reader should keep in mind,
though, that the reason he has no effect is not that he has no wealth, but that he does not trade
at all.

An appropriate question is whether the non-price-taker gains any advantage through taking
into account his effect on prices. Proposition 3 states that indeed the non-price-taker is at least as
well off as if he were a price-taker. This is because when solving his optimization problem the non-

price-taking agent always has the option of choosing his price-taking equilibrium consumption.

Proposition 3. In equilibrium, in the non-price-taking economy, agent N's expected lifetime

utility from consumption is greater than or equal to that in equilibrium in the price-taking econ-

T T
EUO uN(c}(t))dt}ZE[/D uN(EN(t))dt].

We have seen in this section that, unlike for the price-takers, the non-price-taker’s equilibrium

omy, i.e.,

consumption is not simply proportional to the state price. Hence his marginal rate of substitution
between consumption in different states and times is not necessarily equal to the ratio of the state
prices, whereas each price-taker’s is. As stated below in Proposition 4, this discrepancy between
agents’ marginal rates of substitution, implies that the non-price-taking equilibrium consumption

allocations are not pareto optimal.

Proposition 4. If the non-price-taking equilibrium differs (with probability greater than zero)
from the price-taking equilibrium, then the non-price-taking equilibrium allocations are not poreto

optimal.

Remark (Time-Consistency). In this paper we solve the problem where the agents choose
their plans at time 0 and do not subsequently deviate from these plans, i.e., we characterize a
self-commitment solution. A natural question to ask in a model with non-price-taking behavior
is whether the agents have any incentive to deviate at a later date, in other words, whether their

strategies are time-inconsistent (e.g., Sargent [32, p. 11], Merton [28, p. 177]).

14



It is well-known that the standard price-taking (n =1,..., N — 1) strategy is time-consistent.

The non-price-taker’s optimization problem from some intermediate time s € {(0,7") onwards is:

en ()

max I [/ST un(cy(t))dt | Fs}

subject to FE [fTé(t)cN(t)dt | Fs| < E(s)ano(s)Po(s) + F

T
/s E(t)es, (1)t | ﬂ]

and equation (11), t € [s,T], where €3,(#) = X | ani(s)6;(2). The first order conditions become
un(en(t}) = ux [U'(6() — en () = U"(8(8) — en (1)) (e (t) — ,(8))], t € [5,T],

where y3, is such that the non-price-taker’s budget constraint at time s holds with equality.
Generically the solution differs from the commitment solution, since €, (¢) differs from en(t),
implying that the non-price-taker’s strategy is not time-consistent. The intuition for this time-
inconsistency is similar to the familiar situation of time-inconsistency arising in the analysis of
pricing by a durable-good monopolist (e.g., Tirole [34, Chapter 1] and references therein) and
related to the Coase Conjecture (1972). The financial assets in our model are similar to durable
goods in that their value is durable over many periods. The reason for the time-inconsistency
is that at time 0, say, the non-price-taker takes account of the effect of his future (say time s)
actions on the current asset prices (through equation (2)). However, when agent NV gets to time
§ he no longer cares about his effect on the past prices and so he changes his optimal strategy.
We note that time-inconsistency also arises in a deterministic version of our model, with an asset

paying out deterministic dividends, for the same reason.*

Since the non-price-taker has an incentive to deviate from his optimal strategy as time unfolds,
and given that the price-takers should be aware of this, the question arises as to how meaningful
our equilibrium is. However, given that it is optimal for the non-price-taker to follow a “self-
commitment” strategy, it is reasonable to assume that he will create some mechanism to force
himself to commit, and so the equilibrium is not unreasonable. For example, the non-price-taker
could hire an agent or an institution at time 0 to carry out the optimal strategy for him, and
part of the contract would be for the agent to agree to not let him come back and change his
mind later. Tn this paper we do not discuss further the means by which the non-price-taker might

force himself to commit, instead we focus on the dynamic consumption and price behavior.

It might be valuable for comparison to also solve for the non-price-taker’s subgame perfect

strategy, by backward induction. This can be thought of as the “shoft-sighted” strategy, since
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the non-price-taker acts in a short-sighted way by reoptimizing every period (Blanchard and
Fisher [2, p. 595]). Our preliminary analysis suggests that this problem is intractable in our
general framework for the type of non-price-taking agents we are considering. One obvious
comparison is that the non-price-taker is better off to follow his commitment strategy than his
short-sighted strategy, becasue when looking for the subgame perfect strategy he is restricted
to only follow strategies which are optimal in all subgames. We finally note that, due to the
time-inconsistency of the non-price-taker’s strategy, this problem provides us with an example
where dynamic programming cannot be used to solve for the commitment solution. In this case,

to our knowledge, the martingale method is the only way to solve this problem.

3.2 [Extension to Representative Price-Taking Agent Not Independent of In-
dividual Weights

Here we extend the analysis of the previous subsection to the case of one non-price-taker and
multiple price-takers whose representative agent utility function is not independent of the indi-
vidual price-takers’ weights. According to (9), now agent N’s consumption at time ¢ in state w,
depends not only on £(f,w) but also on the weights A. Since these weights are determined from
the budget constraints (5) of the price-taking agents which are driven by the whole process of £ (),
cn(t,w) depends on the whole process £(-). Hence cy(t,w) affects the whole state price density
process {(-); there is no longer a one-to-one mapping between cy(f,w) and £(£,w). Now, when
the non-price-taker chooses his optirnal consumption he has to worry about the externalities he
imposes on the other agents by his choice of consumption (and hence state price process), which
determines the distribution of wealth across these agents. As a result the analysis of his opti-
mization problem becomes much more complicated, as can be seen from his first order condition,

presented in Proposition 5.

Proposition 5. If an equilibrium ezists, then the non-price-taker’s consumption and all agents’

weights, ¢y () and (y1,...,yn), satisfy

ue(h(8) = yw[U ( — e (0;4) = U (50 - (1 A) (eh (1) — en(D))] (15)
S g UM i)
(T U (6(8) — e (1))

[0 (808) = 5,13 A) (a0l (8(0) = € (8 AN (TnwnT"(5(8) — € (1):84)) = en(t))]

T ! * * T ! *
E[/ U(é(t)—cN(t);A)cN(t)dt]=EU0 U(é(t)—cN(t);A)eN(t)dt], (16)
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and
T
E [fﬂ U'(6(t) — ey (8); A Ln(ynU'(6(2) — C}(t);A))dt] =
T
E Uo U (5(t) — cj‘v(t);A)en(t)dt] L n=1,...  N-1. (17)

Subsequently, the equilibrium stale price density is determined from (9), and the price-takers’

equilibrium consumption from (4). If U(c; A) = h(A)U(c), then K, =0 foralln=1,...,N — 1.

Equation (15) is similar to equation (12) but with N — 1 extra terms on the right-hand- -
side. Again, the marginal benefit the non-price-taker gets from an extra unit of consumption
at time ¢ and state w must be equal to the total “costliness” to him of that extra unit of
consumption. As in Section 3.1, the first and second terms on the right-hand-side of (15) are the
cost &(t,w) = U'(6(t,w) — ¢ (t,w); A) of that extra unit of consumption, and the costliness to
him due to the direct effect of cn(#;w) on £(t,w). We note that the second term again has the

effect of making ¢} (t) tend towards ey(t) as compared with a price-taking economy.

In this case, however, an extra unit of consumption is costly to agent N in a third way,
represented by the extra N terms in (15). The non-price-taker also realizes now that an extra
unit of cy(t;w) can affect the effective wealths of the other agents which in turn affect the whole
state price process (), and hence his satisfaction at all other times and states. We argue in the
proof of Proposition 5 that the extra terms in (15) are indeed the indirect incremental change in
agent /V's expected lifetime utility E [fOT un{Cx (t))dt] via the effect of an extra unit of cy(t;w)

on each of the other agent’s budget constraints.

As a final note, the last statement of Proposition 5 shows that expression (15) indeed collapses
to our previous expression (12) in the case when the price-taker representative agent utility

function is independent of the individual weights.

4 The Equilibrium Interest Rate and the Consumption-Based
CAPM

Here we look more closely at the effect of the presence of a non-price-taking agent on equilibrium
asset and state prices, and on the consumption-based CAPM. We discuss only the simpler case
of representative price-taking agent’s utility independent of individual weights, as in Subsection

3.1.
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It is well-known that in the economy with agent N also a price-taking agent, the equilibrium
consumption allocations, ,(8(t); 7w, %n), n =1,...,N — 1 and €x(6(t); 7~), are only a function
of the aggregate consumption 6(¢). Hence, all agents’ consumption processes are perfectly corre-
lated. Furthermore, the equilibrium state price density process £(6(¢); Jv) and its dynamics (7(t)
and #(t)) are also driven only by the aggregate consumption. The equilibrium interest rate #(t)
is given by

7(t) = As(8)us(t) + Ds(B)llos()* As(t) > 0
where As(t) = —V"(8(2); G )/V'(8(t); Giw), Z5(t) = —V™(8(t); Gw)/(2V'(8(2); Gw)). Here V(- gn)
is the utility function of the representative agent of all N agents. (This representation is just the
pure-exchange, multi-agent version of Cox, Ingersoll and Ross [8].} Since As(t) > 0 for concave
utility functions, the interest rate is positively related to p5(t). Furthermore, if V" (6(t); gx) > 0
then the interest rate process is negatively related to the variance of the aggregate dividend
llos ()

The pure-exchange version of Breeden’s CCAPM (3, 4] in this price-taking economy is (see
Duffie and Zame [13] or Karatzas, Lehoczky and Shreve [22])

B(t) — 7(£)1 = As(t)cov (%&t)),dé(t)) : As(t)>0.
The risk premium of an asset is positively related to the (instantaneous, conditional) covariance

of its return with dé(¢), the change in the aggregate consumption.

In our non-price-taking economy, the solutions (if they exist) for the equilibrium consumption
allocations from Proposition 1, ¢, (8(t), ex(t); yn,¥a), n =1,..., N =1 and c%{6(t), en(t); yn ), are
driven by two factors, the aggregate consumption §(¢) and the dividend stream from N's initial en-
dowment, ey (t). Consequently, the agents’ consumption streams are no longer (instantaneously)
perfectly correlated with each other, nor with the aggregate consumption §(t). Furthermore, the

equilibrium state prices process £(6(t), ex(}; yw) is also driven by the two factors, as summarized

in Proposition 6.

Proposition 6. Assume an equilibrium ezists in an economy with N — 1 price-taking and one

non-price-taking agent, where U(c; A) = h(A) u(c). The equilibrium interest rate is given by:
() = 05 (Ons (L) + miy (Dpen () + i Wl os (O + vl (Olloen BI + 5% @)as(t) Toey (8, (18)

and the risk premia of risky securities are given by:
dP(t)

W) = ()1 = A (D) eow (%(tt)),dé(t)) + A7, (t)eov (W,defv(t}) , (19)
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where pey (t) and ||lo, ()| are the drift and volatility of ex(t), and

_UT(8() — en(2)) { ui (G (D) + un U (8(8) — ex (1)) . }
U(8(t) — ex (1)) Lui(ch ()} — ynU™(8(2) — 3 (1)) (cx () — en(t)) + 2yn U7(6(2) — c3e(2))

* yNUH((S(t) - C;i (t)) *
Arlt) = T ®) T 070 - ey

For general utility functions, the coefficients (5, v, ) in the interest rate formula are rather

(I

As(t)

Il

complicated, and not especially illuminating. So, we do not present them here. The signs

of the dependence of r*(t) on ps(t), pey (t), los()||?, ||loey ()12 and os(t) T e, (t) are in general

ambiguous. In Section 5, we look more closely at the interest rate under a specific utility function.

The CCAPM is now a two-beta CCAPM, driven by the covariance of the price return with
both dé(t) and dey(t). Since U(:)" < 0, both X’s are nonzero and have the same sign, so the
dependences of an asset’s risk premium on the covariance of its return with the non-price-taker’s
dividend and with the aggregate consumption are of the same sign. It can be shown that at the
equilibrium, A and A}, are positive for price-taker representative agent with HARA utility and
any non-price-taker’s utility function defined over some domain (e, 00), where ¢, > —o0, and
satisfying lim._.oo uy(c) = 0 and lim_.., u)y(c) = 00.> It is an open question whether for other
utility functions the A’s can go negative, depending on U"(.) and (¢%,(t) — e (t)). If so, the usual
implication of the consumption CAPM would fail; the risk premium would be negatively related to
the covariance of the asset return with changes in the aggregate consumption. A traditional one-
factor consumption CAPM arises when §(¢) and €y (¢) are (instantaneously) perfectly correlated,
collapsing the two terms together. For the case of one risky asset, for example, §(¢) and ey(2)

are perfectly correlated.

5 The CARA Utility and One Risky Asset Case

In order to derive further implications of non-price-taking behavior, we now specialize our general
set-up to the case of the equity market consisting of only one risky asset (one dimension of
uncertainty) and where both the representative price-taker (agent R) and the non-price-taker
(agent N) exhibit CARA preferences, i.e., the utility function of both agents is of the form
u(c) = —exp{—act/a; a > 0.5 We frequently assume that ©s(t) is positive, i.e., that the
economy is expanding. We sometimes assume that the risky asset’s dividend process follows an

arithmetic Brownian motion.”
Assumption Al. pus(t) = us, 05(t) = o5 are constants.
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In this section our focus is on comparisons of equilibria between a benchmark price-taking
economy (where both agents NV and R are price-takers) and the non-price-taking economy. We
first analyze equilibrium consumption allocations and then compare state and market price dy-
namics, as well as the equilibrium portfolio strategies and wealths of the agents. The results for

the benchmark economy are straightforward to derive and are often quoted without proof.

5.1 The Equilibrium Consumption Allocations

In the benchmark price-taking economy, the equilibrium consumption processes are

1 1 1

enlt) = 500 = 5 1(Ex) s 2a(t) = 26(0) + 5 In(a) (20)

where 7y is given by

1o 1 \E[ e {-{as} ¢t
= In{gn} = (__ N) E[foTexp{—%aﬁ(t)}dt] .

2
2a 2 ¢ (21)
Each agent shares the risk equally, hence consuming half of the dividend plus a constant depend-

ing on how wealthy that agent initially is. When ey > 1/2, agent N consumes more than half of
the dividend 6(¢), and when ey < 1/2 he consumes less than half of &(¢).

In the non-price-taking economy the equilibrium consumptions of the two agents are given

by Proposition 1. Hence for exponential utility, ¢y (t) and c%(t) solve

() = 560 - 5ot +a{6 (0 - exlt)] — o ) (22)
() = %6(t)+;—aln[1 a(cy(t) - ex(t))] -!—%In(y,v), (23)

where yy is such that the process c},(¢) satisfies

E [/OT cy(t) exp{—a(cS(t) - c‘;,(t))}dt] =exE [[OT 6(t)exp{-—a(é(t} -y (t))}dt} .

In the non-price-taking economy, agents consume half of the dividends plus additional stochas-
tic terms. The following proposition compares the levels of consumption of agent N across

economies, and the levels of consumption of agents N and R within economies.

Proposition 7.

e (t) t)  when §(t) > beri

> en(
(a) Forey > 1/2:{ ch(t) = cn(t) when 8(t) = borit
cn(t) <Cn(l) when 8(t) < bepit ;
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(t) < én(t)  when 6(t) > berit
En(t) when 6(t) = bt
En(t) when 8(t) < 8ot ;
),

(b) When ey > 1/2: &x(t} > €g(t) a.s., but in the non-price-taking economy we may have
cn(t) < cp(t). When ex <1/2: &y(t) < Ca(t) a.s., but in the non-price-taking economy we
may have ¢y () > c5(t).

The comparison in part (a) depends on whether the non-price-taker initially owns more or
less than half of the market. Furthermore, this comparison can be divided into two regions of
the dividend. When the non-price-taking agent initially owns Iﬁore than half of the market, as
the dividend increases above a critical level he consumes more than when he is a price-taker
and as it decreases below the critical level he consumes less; in a sense he is reacting more to
changes in dividend. The intuition for this can be seen by considering the price-taking economy,
where for ey > 1/2, when the dividend is relatively high, agent NV is a net seller of consutnption.
Hence as a non-price-taker, agent N increases his consumption, thereby increasing the price of
consumption, in that state. He does the opposite when the aggregate dividend is low. For the
case when the non-price-taker is initially less wealthy, the opposite happens. When e, = 1 /2, in
the benchmark economy, no trade takes place. Then as a special case of Proposition 2 there is

no effect of the presence of one non-price-taking agent.

In the case of an expanding economy where § grows over time on average, Proposition 7
implies that, when initially endowed with more than half of the market, the non-price-taker on
average postpones consumption to later in his lifetime relative to if he were a price-taker. When
initially endowed with less than half of the market, he on average consumes more towards the

beginning of his lifetime, i.e., is more impatient, than if he were a price-taker.

Part (b) of Proposition 7 compares agents N and R within economies; we note, for example,
that even if the non-price-taker initially owns more than half of the market, there are states in

which he chooses to consume less than the less-endowed price-taker.

Next we compare the dynamics of the agents’ consumption streams across economies. We

define the drift p. () and volatility o., (¢} of agent n’s consumption by

den(t) = pie, (£)dt + o, (1) dW(t), n=N,R.
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In the benchmark economy the equilibrium drift and volatility of both agents’ consumption are

given by
1 1
jic, () = -z—,ug(t) , O, (t) = 505(?&) , n=NR.

Proposition 8. In the non-price-taking economy, the equilibrium drift and volatility of the non-

price-taking agent’s consumption are given by

120 (8) = 0(0hne(t) + 10 [0 +.9(6) ~ 3] (e, (24)
and
7ty (1) = 9(D)os(t) (25)
where
10 = —exp{-2(0 - 360} 10> 0, (26)
L ent S _ () | en>1/2, g(t)>1/2,
oty = PE=TEd sweons jor {8N<1/2, 210 2D

As a consequence:

(i) For en > 1/2 ol () > |Gey ()], ond pl, (8) > fie, () if ps(t) >0
en <1/2: |og ()] <|Gen (O], and pf (1) < fic,(t) if ps(t)>0.

(i) var(d(ci (1) — en(8))) < var (d(ew(t) — ex(t))) .

The comparative statics results of Proposition 8 are derived from the properties of the process
g(t), which captures how the non-price-taker reacts to changes in the aggregate dividend. In
Result (i) we see that if the non-price-taking agent initially owns more than half of the market,
he increases the drift and volatility (riskiness) of his consumption compared with the price-taking
case; otherwise he decreases the drift and volatility. To see why, suppose that the non-price-taker
initially owns, say, 3/4 of the market and consider two consumption strategies: (1) he holds on
to his initial endowment at all times (absorbing 3/4 of the dividend risk and growth), or (2) he
follows his price-taking strategy (sharing the dividend risk and growth equally with the other
agent). Recall from Section 3 that the non-price-taker deviates from his price-taking consumption
(strategy 2) towards his endowment (strategy 1), hence absorbing more of the dividend risk and
growth. Result (ii) of Proposition 8 states that the instantaneous voiatility of the difference
between cy(f) and ey(t), is lower in the economy where N is a non-price-taker than in the

benchmark economy, as anticipated in Subsection 3.1.
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5.2 The Equilibrium State Prices, Interest Rate and Market Price of Risk

We now begin to investigate the effect of the presence of the non-price-taker on the equilib-
rium prices. In the benchmark economy, the equilibrium state price density process is £(t) =
exp{—ad(t)/ 2}37;1/ 2, Comparisons of the absolute level of { are not meaningful, but an applica-

tion of It6’s Lemma yields its dynamics, the interest rate and the market price of risk, as

0‘,2 — a
F(t) = gus(t) = Tos(t), 0(t) = Sos(t)

In the non-price-taker economy, £*(t) satisfies equation (9). By applying Itd’s Lemma for the

case of exponential utility to (9) and making use of (24)—(25), we derive the following results.

Proposition 9. In the non-price-taking economy, the équilibm’um interest rate and market price

of risk are given by

(1.2
() = o1 = gOst) = T [o(0 +9(0) = 5] el = S0 - g)oseR (28)
(t) = a1 ~ g(O)os(t), (29)

where f(t) and g(t) are defined as in equations (26) and (27).

As a consequence, if ey > 1/2, |8°(t)] > |8(t)|; if en < 172, |67()] < |B(2)].

As in a price-taking economy, the market price of risk is positively related to the aggregate
consumption risk in the economy. When the non-price-taker initially owns more than half of the
market, he increases the market price of risk. In other words he makes the Arrow-Debreu state
prices (the price of consumption) riskier. This follows from the result of the previous section that

he chooses a riskier consumption stream. The opposite holds for ey < 1/2.

As in a price-taking economy, the interest rate is positively related to the growth in aggregate
consumption, and negatively related to the aggregate consumption risk. Comparisons between
r*(t) and 7(¢) are not urambiguous as they are for 6(t). This is because (when p4(t) > 0) there
are competing effects of the non-price-taker’s higher {or lower) consumption drift and his higher
(or lower) consumption volatility deduced in Proposition 8. Which of these effects dominates

depends on the ratio 2us/ac?.8

We may investigate the expected growth of state prices across economies by appealing to
results for mean comparison of solutions to stochastic differential equations (Ikeda and Watan-

abe [19], Hajek [14]).° Existing mean comparison theorems do not accommodate comparisons
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between two processes both of whose drifts and volatilities are stochastic (unless one process is
Markov), so in Corollary 1 we make assumption Al. We see later that Corollary 1 is relevant for

asset price volatility and portfolio strategy comparisons across economies.

Corollary 1. Assume Al with ps > 0. Then forey < 1/2

£ () £(s)
E[E*_(tj'lft]SElm|ft‘|a s>1t,

T ex(s) T &(s)
E[[t g*(t)ds|ftl§E[/t mdsmﬁ].

The first terms compared correspond to the price at time ¢ of a bond paying a certain payout

and so

of one unit at time s; the second terms compared correspond to the price at time ¢ of an annuity
paying a certain payout of one unit at all times until the end of the horizon. We mentioned
before that, with §(¢) drifting upwards, when ey < 1/2 the non-price-taker on average consurmes
more earlier on in his lifetime compared with when he is a price-taker. Hence he puts a lower

value on a bond providing sure future consumption than if he were a price-taker.

5.3 Agents’ Portfolio Strategies

For the remainder of this section, we no longer obtain unambiguous comparisons. Instead we
merely offer insight and intuition into the effects of the non-price-taker, as well as representations
for various quantities. We have discussed the intuition that the non-price-taker's consumption
tends to deviate towards his endowment, ey (t). This might seem to suggest that the non-price-
taker deviates his portfolio strategy in the risky security towards not trading at all. This in turn
would lead to less net riskless lending and borrowing in the non-price-taking equilibrium. Here

we look at the trading strategies in detail to see if this is indeed the case.

In the benchmark economy, the equilibrium portfolio strategies are
1 1
an() =37 aal) =7

Regardless of their initial endowments, identical CARA utility agents share the risk equally in
the economy, and hence each agent holds half of the risky asset. As long as ey 3# 1/2 there is
net riskless lending and berrowing in equilibrium. If ey > 1/2, the initially wealthier agent IV is

a lender; if ey < 1/2, agent IV is a borrower.
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Proposition 10 provides explicit representations for the trading strategies of the agents in the
non-price-taking economy. These expressions are derived by appealing to the Clark formula and
some properties of Malliavin derivatives. This use of Malliavin calculus has also been employed

by Ocone and Karatzas [30]. We say more about Malliavin calculus in the next subsection.

Proposition 10. Assume Al. The equilibrium portfolio strategies in the non-price-taking econ-

omy can be erpressed as

o T ¢*(s
Q1) = 5 + ot [ -E;%[g(s) ~1/2]ds | ﬂ]

-+

a T ¢£*
P*(ét)zE Ut Z*((i)) [9(s) — g(®)](ex{s) — 8(s)/2)ds | -’Ft] ’

lod T g*(s
o) = 5~ Pt [ [ Gt - 1/ake | 7 }
s T €*(s) .
- P*(t)? |: 6*—@)[9{3) - g(t)](CN(S) — 6(s)/2)ds | ft:I .

Agents no longer hold half each of the risky asset as they do in the benchmark economy; there
are additional terms in their portfolio strategies. If ey > 1/2, we have g(s) > 1/2, so the second
term in the non-price-taker’s portfolio strategy is positive, making the non-price-taker tend to
hold more than half of the risky asset and hence supporting our intuition of less net trading. For
ex < 1/2, the second term is negative, again supporting our intuition. The sign of the third term
on the other hand is not unambiguous and prevents our conjecture of less trading from being
exact. This term is driven by the changes in the non-price-taker’s reaction to dividend stream
changes (g(s) —g(¢)), and by how much the non-price-taker is deviating from consuming one half
of the aggregate dividend (c}{s} — é(s)/2).

5.4 Market Price, Volatility and Risk Premium in Equilibrium

When the non-price-taker initially owns (sufficiently) more than half of the market, he is a net
seller of the market, and so we would expect him to raise the market level in the non-price-taking
economy as compared with the price-taking economy (i.e., we expect P*(t) > P(t) for ey > 1/2).
Similarly, we expect P*(t) < P(t) for ex < 1/2. We have not proved these results though.'°

Our intuition in Subsection 5.3 is that the non-price-taker should tend to hold more than
half the market when ey > 1/2. Hence to clear the markets he must make the risky asset

less attractive to the price-taker. One way to achieve this would be to increase the market
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price volatility, so we might conjecture a higher volatility when ey > 1 /2. Similarly, we might
conjecture a lower volatility when ey < 1/2. To compare market volatility across economies,
we make use of some techniques of Malliavin calculus (Tkeda and Watanabe [19], Ocone [29]),
in particular the Clark-Ocone formula. These techniques can be used to write representations
of, and in some cases evaluate, the dynamics of conditional expectations. In particular we may
derive the following representation for the market volatility when £(t) and 6(¢) are driven by

general Ité processes.
Lemma 1. When £(t) and 8(t) follow the processes

dg(t)

i

—&£(t) [r(t)dt + 6(t)dW (2)]

and
dé(t) = ps(t)dt + os(t)dW(t) ,

the market price volatility in a one risky asset economy may be expressed as

8| [ S [ Dustartat [ Posaw) m]
-F [/tT EES {f Dyr{u) du+/ Df(u)dW (u / Dy(u) du} |}'}] . {30)

where DeF is the Malliavin derivative of the functional F, as described in the Appendiz.

P(t)o —a(t)E[/ —d | 7

The Malliavin derivative of a Brownian functional represents the change in that functional due
to a perturbation in the path of W(t). Equation (30) shows that in an arbitrage-free economy,
the market price volatility, P(t)a(t), is equal to the aggregate dividend risk times the price
of an annuity paying one unit of sure consumption till the terminal date, plus two additional
terms arising from the stochastic nature of the coefficients of the processes in the conditional
expectation. Individual contributions arise due to shocks in the market price of risk, the interest
rate, and the drift and volatility of the aggregate dividend process. We apply Lemma 1 to our

two economies, for the case when 6(¢) is driven by an arithmetic Brownian motion.

Proposition 11. Assume Af. The equilibrium market volatility and risk premia in the two

economies are given by

P(t)g = 5( 8
P(t)a(t) = 6E[t §(t)d ‘frla

DA (1) o ) — T &(s)
P(t)(u(t) —7) = aUEE{ t E_(fjds | f:] ;



and

T *s T &%
P =8 | [ Sl 7] +anep Sl - 0las| 7)o
PO () - (1) (32
T ¢ s T ¢* g
- a1 g)ei | [ Slglas 7] 4o~ gz [ S50 - st 7.

There are extra terms in the volatility of the non-price-taking economy introduced because

£*(t) is no longer driven by a geometric Brownian motion, i.e., due to the stochastic nature of

the market price of risk and the interest rate.

We argued previously from Corollary 1 that ifey < 1/2 and ps > 0, the price of the annuity in
the first term of the market volatility expressions is lower in a non-price-taking economy than in a
price-taking economy. In other cases we cannot make such unambiguous statements. The second
term in equation (31) does not have an unambiguous sign. This term is driven by the changes
in the non-price-taker’s reaction to dividend stream changes, g(s) — g(#). Similar comments can
be made about equation (32). We cannot draw unambiguous conclusions about the effect of the

non-price-taker on the market price volatility, or the excess drift of the market price.

6 Conclusion

In this paper we develop a continuous-time, pure-exchange, general equilibrium model to include
an agent who acts as a price leader in the security and good markets. We analyze the equi-
librium consumption-portfolio choice of this non-price-taking agent for gemeral time-additive,
state-independent utility functions and in more detail for the special case of CARA utility. We
also investigate the effect of the presence of the non-price-taker on the asset and state price

dynamics.

A major methodological contribution of this paper is to demonstrate that the non-price-taker’s
dynamic price-impact manifests itself through an impact of his consumption choice on the state
price density process. The advantage of this formulation is that the problem can be analyzed
using martingale techniques, making its analysis highly tractable. A main conclusion of this work
is that, in addition to the aggregate consumption, the non-price-taking-taker’s endowment stream
is an extra factor driving the equilibrium allocations and prices. This leads to modified formulae
for the consumption CAPM and the interest rate. Further comparisons of the price-taking and

non-price-taking equilibria are carried out.
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Further work related to this paper may include the following. An extension to multiple
non-price-taking agents would be of interest. One could initially formulate this extension as a
one-shot Cournot game played in the Arrow-Debreu securities market. The main results of the
single non-price-taker economy would extend qualitatively, with multiple additional factors now
driving the economy, the endowment streams of each non-price-taking agent. Furthermore, one
could extend the analysis in Section 5 as a starting point towards investigating the case of multiple
risky assets. More than one risky asset is needed for the non-price-taker’s endowment to not be
perfectly correlated with the aggregate dividend, and for the two-beta consumption CAPM to
apply. This extension should yield further insights, such as the effect of the non-price-taker on
individual asset prices and on the correlations between state prices, consumption allocations and
dividends. Finally, an application of this paper would be to study non-price-taking behavior in
the currency markets, a natural non-price-taking environment. Here, one could have a central

bank representing a country, and model each central bank as a non-price-taker in its own currency.
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APPENDICES

A Agents’ Optimization and Equilibrium

Proof of Proposition 1: Applying the Lagrangian method to agent N's static variational
problem implies (12) and (13). Q.E.D.,

Proof of Proposition 2:

(a) By assumption, &y(t) = ex(t) is a solution to equilibrium in the price-taking economy.
Hence there exists a constant §x such that u(ex(t)) = Fn&(t) = GuU'(8(t) — ex(t)). Adding a

term equaling zero to the right hand side of this equation, we obtain:

iy (en(®)) = o [U(8(6) = ex(0)) = U (8(8) = ew () (entt) ~ ex(1))]

the sufficient condition for equilibrium in the non-price-taking economy, equation (12), for ¢%, () =
en(t) and yy = Fv. Clearly agent N’s budget constraint holds with equality for cn(t) = exf(t).
So cy(t) = ex(t), t € [0,7], is also an equilibrium in the non-price-taking economy.

(b) By assumption, ¢} (t) = ex(f) is a solution to equilibrium in the non-price-taking economy.

So, there exists yy such that

Wi (ex(8)) = o [U' (88) = e (8)) = U"(8(8) = en (1)) (en(t) - ex(D)] = ynU'(8(8) — ex(®)) -
‘Together with V's budget constraint (which must obviously hold at &y () = ey(#)), this condition
is sufficient for 2y () = ex(t) = c3(t), t € [0, T to be an equilibrium in the price-taking economy.

(c) By assumption, ¢y(f) is a solution to equilibrium in the price-taking economy. Hence
there exists a 7y such that ) (Cy(f)) = yxU'(6(t) — Ex(t)). Assume y(¢) is also a solution to

equilibrium in the non-price taking economy. Then there exists a constant yw such that

i (en(®) =y [U(8(6) = en(0)) = U" (8(8) = w(®)) (e () - ex@))] . £ € [0,17]
and ¢y (t} satisfies N’s budget constraint with equality. The above expressions imply

gn —yn _ U"((E) ~ ex(8))(En(t) = en(t))
Un U'(6(t) — en(t)) ’

Since U"(-) < 0 and U’(-) > 0, and by assumption &y(t) — ey(t) # 0 for some interval of ¢

teo,7].

with probability > 0, for the right hand side of the above expression to be a constant, we must
have either (i) ex(t) — ex(t) > 0, ¢t € [0,T] or (ii) &x(t) — ex(t) < 0, t € [0,7], either of which
contradicts N’s budget constraint holding with equality. Q.E.D.
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Proof of Proposition 3: Define the set of price-taking equilibrium agent-N consumption

processes:

N
Ay = {en();  there exists 71,..., 5w, () such that Y L(7.£(t) = &(t), te[0,T],

n=1

T _ _ _
EUO (In(gnf(t))—en(t))é(t)dt]=0, n=1,...,N, and cy(t)=Iy(GsE(t), te€i0,T]}.

In a non-price-taking economy, agent N solves

cen{-)EBN

max E [/OTuN(cN(t))dt] ,

where
~ N—l —~
By = {en(-); there exists §1,...,Jn,&(-) such that en(t) = 6(8) — Z L(g.4(t)), te[0,7],
n=1
E U)T (£(GmE(t)) - en(t))f(t)dt] =0, n=1,...,N-1, and E UOT(CN@) - eN(t))é(t)dt} =0} .

We need to show that Ay is a subset of By so that the non-price-taker could always have
chosen any price-taking equilibrium consumption. Take any en(-) € Ay. Then there exists
91y« G, E() such that &y (2) = 6(t) N1 I, (5.£(1)), t € [0,7), and E [f[}"(EN(t) - eN(t))E(t)dt} =
0.80 ey(-) € By with §, =g, m=1,...,N,&(-) = £(-). Q.E.D.

Proof of Proposition 4;: We first argue that if the non-price-taking equilibrium differs with
probability > 0 from the price-taking equilibrium, then there exist subsets A, B C £ and time
intervals (ta1,ta2), (fo1,te2) C [0,7] such that c(t,w) > ex(f,w), t € (ta1,ta2); w € A and
cn(t,w) < en(t,w), t € (th1,t2); w € B. Assume not, and that cf(t) = ex(t) as., t € [0,7].
Then, from (12), uiy(en(t)) = yxU'(6(t) — e (t)), t € [0,7), and % (t) clearly satisfies N's budget
constraint, implying that ¢} (t) is also the solution to equilibrium in the price-taking economy.
Hence, by the contrapositive there must exist a finite time and probability interval such that
cx(t) # ex(t). By the continuity of ¢} (¢) and ey (t) and by (13), there must exist finite time and
probability intervals in which ¢}, (2) > ex(t) and in which ¢ () < ex(2).

Define a process ¢(t) by

o) =5 (L s o).

Then by concavity of uy(-) and U(-), and continuity of u,(-) and U’(-), and by (9) and (12) there
exists T > 0 such that, for all v € (0, 1),
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U (ch(tw) | uh(ch(tw) +)

n o > p(t,w) > U(6(t,w) — ch(t,w) —v)
> U'(8(t,w) — ci(t,w)), € (tar,tag), we A (33)

Bl )  SGED D) ) < vt - i) +o)
< VSt w) = cx(tw)), te(tute), weB.(34)

Next define a process 9(t) where 9(t,w) > 0 for ¢ € (ta1,%4) and w € A; P(t,w) < 0 for

t € (to1, te2) and w € B; ¥(t,w) = 0 otherwise; and Y(t) satisfies E [féf gb(t);b(t)dt] = 0, implying
ty2 taz

By | [ " oo = B4 [ [ sownar (35)

where K4 and Ep denote expectations over the subsets A and B, respectively. Then we choose
€ > 0 such that ¢|¥(¢)| < T te[0,7).

We perturb ¢ (t) to ex(t) = i (t) + ev0(t) and TV e (2) to 8(2) — én(t), which is feasible.

Agent N’s and the price-taker representative agent’s expected lifetime utility become

T T e t)+ed(t)
E f un (G ())dt| = E f () + ] oy (e)de b dt
0 0] c}‘\,(t)
ta  (t+ev(t) £ ey (t)
f ’ {/ ¥ uf\,(c)dc} dt sz {—-/ N u’N(c)dc} dt]
tal cple) ta1 e (t)+ew(t)

+Ea co(tyu(t)dt] - Es / ot > 1| [ ! w(c;,(t))dt} ,

ta1 ts1

T ) - T ) ehD4ew)
E VO U((S—cN(t))dt} —E U@ {U(é(t)—cN(t))~/c;V(t) U(é(t)—c)dc} dt}
T a2 pche(t)Fed(t) ’ tez e (t)
-F [ fu U(6(t) — i () dtJ —E4 [ / f 8(t) = e)ded| +Bp | [ /CN“ oV )—c)dcdt}

30
+Eg [ /t:z egb(t)d;(t)dt] > E

/ U((t) = ci( ))dt]—EA [/j‘”eqb(tw(t)dt

al

—E [ f ' wn (5 (8))dt | +E 0 +Eg
0

T
> E fo wn(ch (£))dt

>FE

/0 Us(t) - c;<t>)dtJ ,

using (33)—(35). Hence the non-price-taking equilibrium is not pareto optimal. Q.E.D.,

Proof of Proposition 5: The optimality of ¢%(t), n=1,... N — 1, given by (4), the expression
for £(¢) in (9), and the N agents’ budget constraints holding with equality imply (16)—(17).

Substituting for £(¢) using (9), agent N solves

T
mac £ [ fo uN(cN(t))dt]
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: T T
subject to F [f g(t)dt] =0 and F [[ hn(t)dt] =0, n=1,...,N-1,
1} 0

where by g(t) = U'(8(t) — en(t); A)(cn(t) — en(t)) and h,(t) = U'(6(t) — en (8); AY(In (U (6(2) —
en(t); A)) — en(t)) representing the cost of N's and n’s “net” consumption at time ¢.

We may define the mappings G, G~! and H,, n=1,... , N — 1, as follows:

Gle,y1,. - yn-1i t,w) = U'(6(t,w) — ¢ (1/y1, ..., 1 yn—1))(c — en(t,w)),

g=U"(8(tw) = G g, m,- - yw-1;t,w); Vs, Yywo1) (G7Hom, - ywarstyw) - en(t,w))

Hn(g,y1,- - yv-13t,w) = U’ (5(t,W) -G Mgy yn-stw); (U, 1/yN_1)) *
(Zn (00" (6(6) = GG, 010- s w1600 (191, 1 w1)) = enltiw))

We will use the notation G,, G;! and H,; to denote the derivatives of these mappings with

respect to their kth argument. Then agent N’s optimization problem can be written as

max B UOT un (G798, 91, w13 1)) dt]

T T
subject to F [/ g(t)dt} =0 and F [/ Hn(g(t),yl,...,yN_l;t)dt} =0, n=1,...,N-1.
0 0

Suppose that c},(-) is an equilibrium agent-N consumption process with associated weights
Yl yx—1 and that g*(t) = G(ch(t), 41, ..., ¥h_1;1), t € [0, T]. Let us use the notation G(*,t),
G 1(%,1), etc., to denote the various mappings evaluated at this equilibrium at time #. Then
perturb the process g*(-} to g*(t) = g*(¢)+ en(t). Since by assumption g*(-) is the solution to the
above optimization problem we must have

T
lim 4 [ L (6716 @m0, pnater ) dt} (36)

e—0 de

=FE UOT wl (ch (NG, n(t)de

N-1 T
+ L OE [ | )65k e | =0
7=1
for all processes n(t) satistying E [IOT ﬂ(t)dt] = 0, where the functions y;(e) are determined from

T
E l:/O Hn(g‘(t),yl(e),...,yN_l(e);t,w)dt} =0, n=1,...,N—-1. (37)

If we define a matrix H by
T
H"jEE f Hj"(g*(t)ayra'---:y;f—l;t:w)dt ) ﬂ,j=1,...,N—1,
0
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then by taking derivatives of (37), evaluating at ¢ = 0 and rearranging we solve for the y3(0) as

N—
y;(0)=— [f Hﬂl yls . 3y;u11taw)n(t)dt:|s j=1,,N—-1

n=1

Substituting into (36) we obtain the condition

T N-1
fo {u;,(c;;( Z E [ / (et (s))c:;;l(*,s)ds} T (H—l)janl(*,t)}n(t)dt] =0,

E

for all 5(-) satisfying E [fOT n(t)dt] = 0. Hence we must have

N—-1N-1

T
U (OG0 3 S E [ / u;(c;(s))c:;il(*,.s)ds] (M), Horoit) = i

n=1 j=1
Evaluating the GT! and H,,; terms and rearranging we arrive at (15) with

N-1

T
K=Y E Uﬂ u&:(c;(S))G}Jll(g*(S),yI,-.-,y}'&-l;s,cb)dS] (H“)

i=1 o
The extra terms compared with equation (12) are —K,H,.1 /G 1_1. Each expectation term in K, is
the marginal utility to N due to a change in agent j's weight ;. The elements H,; represent the
sensitivity of agent n’s budget constraint to agent j’s weight ;. Hence K, is the sensitivity of
agent N’s expected lifetime utility to agent n’s budget constraint. Then H,,; is the sensitivity of
agent n’s budget constraint to agent N's cost of “net” consumption, and G;! is the sensitivity of
agent N’s current consumption to his cost of net consumption. Hence H,; /G is the sensitivity
of agent n’s budget constraint to agent N’s time ¢, state w consumption. Therefore each extra
term —Kanl/Gl"l represents the indirect marginal disutility to N of an extra unit of en(t,w)

via agent n’s budget constraint.

Finally, we show that (15) collapses to (12) when U{c; A) = h(A)U(c). For j =1,...,N — 1,

T ) N(cw())U’ (8(8) = en(8); A)en(®) — ex(1))
B U U (ROIGT ”‘“] = U T7(608) — ex ()i A) = UP(300) — o () A)(cw(t)—eN(t))‘“]

E [f U'(8(2) — en(8); A)(en(t) — EN(t))dt] =0,
0

where we have used Uy .(¢;A) = (Oh(A))/(8y,)U’(c); have supposed that (12) does hold, and
finally used agent N's budget constraint. Hence K,, = 0. Q.E.D.
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B The Equilibrium Interest Rate and the Consumption-Based
CAPM

Proof of Proposition 6: Apply Ité6’s Lemma to (9), use (1), and equate terms to derive

U"(6(t) — cx (1) " U™st) — e (1)) .
T(t) == U,(é-(t) — C?\,(t)) (ﬂ&(t) - JU’CN (t)) - 2U’(6(t) _ C}(t)) ||U5(t) - ch (t)||2 H (38)
U"(6(t) — cx (1)) R
o) = ~ s — ) (s(8) - o2, (1)) - (39)

To express the endogenous parameters e (t) and or,(t) in terms of the exogenous parameters
6(t) and ey(t), apply 1t6’s Lemma to both sides of equation (12) and equate terms. Substitution
into (39) and using u(t) — 7{t)1 = o(t)4(t) yields (19), where we write a(t)os(t) and o(t)oc, (t)
as cov(dP(t)/ P(t),d6(t)} and cov(dP(t)/P(t),dey(t)). Similar substitution into (38) would yield
an expression for r(¢) in terms of us(t), pey (t), 05(t), and o, (¢) as shown. Q.E.D.

C The CARA Utility and One Risky Asset Case

Proof of Proposition 7: From (20) ¢,(t) — 6(¢)/2 is a constant. (22) can be rearranged as
exp{~2a(ci(t) — 8()/2)} = yw [L + a(ck(t) — 6(t)/2) — ad(t)(ey — 1/2)] (40)

and differentiated implicitly (state by state) with respect to 6(t,w) to give

ey (t,w) = 8(t,w)/2) oYy L
(1, w)  ayy +2a exp{—2a(ck (f,w) — 6(t,w)/2)}( n—1/2) .

We conclude that (cy (t,w) — 8(t,w)/2) is strictly monotonically increasing in §(t,w) if ey > 1/2;
strictly monotonically decreasing in 6(¢,w) if ey < 1/2, and constant if ey = 1/2.
Let us now show there exists a é.i; such that ¢ (t) — 6(t)/2 = tn(t) ~ 6(£)/2. At bppze we

have ¢, (t) = ¢x(t), so we substitute (20) into (22) and rearrange to yield

Yn

Then, for ex > 1/2, since (Tx(t) — 6(¢)/2) is constant and (cx(t) — 8(t)/2) is monotonically
increasing in 8(t), for 6(¢) > 8erir, ci () — 8(£)/2 > En(t) — 6(t)/2 and for §(t) < bepir, c%(t) —
8(t)/2 < en(t) — 8(t)/2. The analogous results for ey < 1/2 or ey = 1/2 provide part (a).

For part (b), again use the fact that (c% (t) — 8(z)/2) is monotonically increasing (ey > 1/2),

. , = -1

decreasing (ey < 1/2) or constant 7(eN = 1/2). Define 6§ = m;’fm-?_—) where, from (40),
ch(t) = 6(t)/2 = 0. Hence for §(t) < &, c%(t) < §(¢)/2 for ey > 1/2, 5, (£) > 6(t)/2 for ey < 1/2,
and ¢y, (t) = &(t)/2 for ey = 1/2. Since ¢i(t) = 6(t) — cy(t), we deduce part (b). Q.E.D.
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Proof of Proposition 8 Equation (22) can be rewritten as

1 . *
~ exp{—2acy (1)} exp{ad(t)} = [1 + a(cy (t) — ex(t))] = £(2) . (41)
N
Applying It8’s Lemma to both sides and matching coefficients yields (24)-(27).
When ey > 1/2, g(f) > (1/2 + f(£))/{1 + 2f(t)) > 1/2, when ey < 1/2, g(t) < 1/2, yielding
the comparisons between &, (t) and oty (t). When g(t) > 1/2, g(t)? + g(t) — 3/4 > 0; when
9(t) < 1/2, g(t)* + g(t) — 3/4 < 0, yielding the comparisons between Ficy (t) and g% (). Finally,

| Ten (t) = ae () |= [1/2 = enllos(t)] <| ok, (1) — ocy () |= |9(t) ~ enlioe(t)], by the conclusions
about g(t). Q.E.D.

Proof of Proposition 9: Substituting for U(c) = —exp{—ac}/a into equations (38) and (39)
in the proof of Propesition 6, we obtain
2
* * a * * *
() =@ [us(0) ~ iy (O] = Flos() = o2, O, 6°0) = a (os(t) - o2, (1))
Substitute for uy, (t) and o7, (¢) from (24) and (25) to obtain (28) and (29). The properties of
g(t) in Proposition 8 imply the comparisons between #*(¢) and (t). Q.E.D.

Proof of Corollary 1: We will need the following Lemma.

Lemma 2. (Hajek 1985) Letx andy be semimartingales with representations dz(s) = u(s)ds+
a(s)dw(s), dy(s) = mds + pdv(s), where w and v are Wiener processes and m and p are con-

stants. Suppose that u(s) < m and |o(s)| < p and that 2(0) < y(0). Then for any nondecreasing

conver function ¢ on R

E¢(x(s)) < B(y(s)) -
Applying It6’s Lemma at s to the process In(£(s)/&(2)), s > ¢, yields

d [m (i—((j%)] — d(In(€(s))) = — ('r(s) + %9(3)2) ds — 6(s)dW(s) . s> 1t.

We have 7 4+ 6%/2 = aus/2 and from Proposition 9,

)+ 50060 = ol —o0s = 7LD [o(6 o001 - 3 o2

Soif ey < 1/2, g(t) < 1/2, g(t)? + g(t) — 3/4 < 0 with ps > O implying — (r*(s) + %8*(5)2) <
— (F + %52) - We also have | —0*(s)| < | - 0] = aos/2. We apply Hajek’s Lemma to the processes
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z(s) = In(£*(s + t)/€*(¢)) and y(s) = In (E(s + ) /E(t)), with z(0) = y(0}) = 0. Now define the
function ¢(z) = exp(x) and we conclude

£(s +1)
£(t)

R

obtaining the desired result. Q.E.D.

| ft] E¢(x(s)) < Eo(y(s)) = E [ ! ft] y 8>0,

Proof of Proposition 10: First we briefly state required notions and results from Malliavin
calculus. For more details see Ikeda and Watanabe [19] or Ocone [29].

Malliavin Calculus of Smooth Brownian Functionals

Suppose F = F(W(t1),...,W(t,))} is a smooth Brownian functional, i.e., a functional of a
finite dimensional Brownian motion W at a number of points in time such that the function

F is bounded and has bounded derivatives of all orders. Then the Malliavin derivative of the
functional F' is defined by

PiF=). Sy TV ) WDl @ =1,

and can be interpreted as the change in F due to a perturbation in the path of W;(t). The
Malliavin derivative of a continuously differentiable function o) (F ! yees ,FM) of a finite number

of Brownian functionals, with bounded partial derivatives is given by!!

Dy (F',... . F") = E:iﬂBDF‘

The Malliavin derivative of an integral and a stochastic integral are given by
T T
tho W(s)ds = f Dop(s)ds , th D (5)dW (s / Dy(s)dW (s) + () .
t
The Clark-Ocone Formula: A Brownian Junctional F' can be represented by

T
F=mﬂ+L,EwaﬂMW@L

and hence .
E[F | F) :E[F]+/ E[D.F | F.]dW(s),
0
or
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It is well-known (e.g., Cox and Huang [6]) that an agent’s wealth can be expressed as

T
Xolt) = €(t) B [ | e@eas)as| ﬂ] .
We rearrange as
T
d(¢(t)Xn(t)) = dE [/[; §(s)en(s)ds | }-tJ = {(t)en(t)dt

Then by the Clark-Ocone formula, equation (42), we have
4(€(0X(1)) = [Dt [ e@eatoras | ft} AW (t) = E@)en(t)it

. We can also apply Ité’s Lemma directly to £(¢)X. »(t) and use (1) and (3) to obtain
dE(Xa(t)) = £() lan(t)P()o(t) ~ Xn(t)B(1)] AW (£) — &(t)en(t)dt

Equating the “dW ()" terms on the right hand sides of the two last equations yields

B o(t) 1 T
an(t) = Xn(t)P(t)a(t) + P(t)cr(t)g(t)E [Dgft £(s)en(s)ds | ’f'"t:l .

Using the above stated properties of Malliavin derivatives of integrals we may expand this as

Xa(0)6(1) 1
P(t)a(t) ~ P(t)o(t)(2)

*E[/tTg(S)CH(S{ fvt )b a(u du—/Dt w)dW (u) — 6(%) }dst

+m ['/t {f Dipte, (w0 du+/ngac w)dW(u) + o, ( )}dsl]—}} .

Using Propositions 8 and 9, we obtain

[ (w4 502 du [y - “o{ [ Pty wans [0 MOLEOIE

Now let us look at the Malliavin derivative of cy(s). Note from equation (22) that (s, w) =

an{t) =

C*N(‘S(Saw);i‘imyw), $0 we have

oy = Oh(s0) O (s:)
Dicy(s,w) = _BWTDt(S( w) = m

= f Dipy, (u}du + /s Dyog, (w)dW (u) + an, (t}.
t t

75 = g(s,w)os = o} (s,w)

Using these results the above expression for 0 (t) becomes, for the non-price-taker

a, T " *
%0 = mmpap? [ f )9+ (1+ack(s)) (g(s)—g(t))}dsm} .
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Anticipating and rearranging the result of Proposition 11 {32) yields

T
Pt = [/ & ds|ftJ + e [/ﬁ f(s)a(s)[g(s)—g(t)]dslft],

which when substituted into the previous expression and rearranged gives the required result for
oy (t). Then a}(t) is found from o} (t) = 1/2 — an(t). Q.E.D.

Proof of Lemma 1: From equation (2) and fhe Clark-Ocone formula we have
()P(t) = Ua 6(sdsJ ] [ fg 6(u)du|F}dW fg(s

Then
T
dEWPL) = B [ | Pletossnas | ﬂJ AW (1) - £(2)3.(t)

t

Applymg Itd’s Lemma directly to £(t)P;(t) we obtain
AEWP(E) = EOPE) [u(t) - 00)] dW (1) — (D)oi(t)at ,

and equating coefficients with the Clark-Ocone representation yields the ith row of o(.) as

g (t [ ] Di(€(5)8:(s))ds | J—}} (43)

By the properties of the Malliavin derivatives (stated earlier), we have

Di(£()8i(s)) = £(s)Debi(s) + 6:(s)De&(s)

ailt) = 8(t)T

pats) = DI{a0)+ [ sy + ) esaw )
_ /:Dg,ugi(u)du+ﬁsngadit(u)dwl(u)+J‘5l.j(t),
!

Die(s) = Dﬁ{é(mexp{—fos (du= 56w - 5 [ o) d}}
& . . 1 & .
= £(8)4{—{ Dir(u)du—8;{u) - DI (w)dW,(u) — = ’Df@u“zdu}.
5(){/t (o =0,0) = [ S pla@awic) - 3 [ Do

Substituting into (43) yields the desired result. Q.ED.

Proof of Proposition 11: We use Lemma 1. By assumption A1, Dius{u) = Dios(u) = 0 so
the second term in (30) is zero in both economies. In the price-taking economy, 7(¢) and #(¢) are
constants and hence the third term in (30) is zero and the volatility is as quoted. In the proof
of Proposition 10, we evaluated the {} term in the third term of (30) for the non-price-taking
economy. Substitution in gives the required result for the market volatility. To find the risk

premia we use u(t) — r(f) = 0(¢)o(t) and substitute for 0(t) from Section 5.2. Q.E.D.
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FOOTNOTES

n a frictionless economy such as ours, the size of agents’ security holdings is not restricted
by their wealth, so it should not be argued that an investor with large net wealth can affect prices
more than a small investor; however, in practice given the presence of short sales constraints and
transaction costs in the marketplace, it is plausible that some investors are able to make larger

trades and hence affect prices more than others.

2The non-price-taking strategy we solve for is a “self-commitment” strategy in which the

non-price-taker chooses a plan initially and then does not deviate from that plan.

3We could alternatively work from the price leadership in the securities markets by calculating
the price-taker’s asset demands as a function of the entire process of the price system, writing

the residual supplies as

N-1 N-1
anilt) = 1= 3 aan(r(0a000)) s i=1o L5 ano(0) = = Y Guor(r(), (), 0())
n=1 n=1

and then attempting to deduce the effect of ax(t) on the price system. However, a derivation of
the price-takers’ asset demand functions in our general set-up {by, for example, Malliavin caleulus
as in Ocone and Karatzas [30]), reveals very complicated expressions in terms of the whole price
process (in [0, T]). In general, inverting such expressions does not yield a simple non-price-taking
effect such as increased asset holdings leading to a higher asset price. On the other hand, if
instead of following a price leadership model, we were to specify a particular price-dependence
in an asset market (as, for example, in Jarrow [20]), for an equilibrium analysis it would be
necessary to ensure consistency of this specification with market clearing and optimality. This is

not a straightforward exercise and in general may not be possible.

4If instead we had a deterministic model with deterministic endowment streams and a zero
net supply (riskless) security, this security is no longer like a durable good and its price today

(Po(t) = 1/£(t)) depends only on today’s actions of the non-price-taker. Hence in this case the

strategy is time-consistent.

*The HARA form of utility is Ufe) = lff—”f (% +n)7, defined over the domain where
(fjif +n) > 0, where § > 0,7 >0, v # 1; for v = —00, 7 = 1. The HARA family in-
cludes power utility (8 =1, 7 =0, v < 1), log utility (8 =1, =10, v = 0) and negative
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exponential utility (y = —cc, 7 = 1). For /\g,)\:N > 0, we also need to assume that agents’
“own” dividend processes, ey (t) and ZNN:_ll €n(t) lie within the domains of their respective utility

o DINENC
functions, i.e., ex(f) > coo and —==—— 49 >0, te[0,7].

®With power or log utility and one risky asset, in the price-taking equilibrium (when N is
also a price-taker) each agent holds on to his initial asset endowment and no trading occurs.
Hence, according to Proposition 2, a power or log utility non-price-taking agent does not deviate
from his price-taking behavior and there is no effect on the optimal strategies or equilibrium
prices. So instead we choose the case of exponential utility in which trading does take place in

the price-taking equilibrium even in one risky asset.

"This process has the undesirable feature that the dividend can go negative since it is nor-
mally distributed at each point in time. However, the probability of this happening can be made

arbitrarily small, and hence we do not concern ourselves with this inconvenience,

80ur numerical analysis reveals that when 2us/aci > 1, for ey > 1/2, r™(t) < 7(t); for
en < 1/2, r*(t) > 7(¢). Calibrating the price-taking economy to “normal” market conditions of

r=8%,0 = 20%, p = 15%, yields 2us/ac? = 1.15.

°I thank Steve Shreve for bringing to my attention these mean comparison theorems of solu-

tions to stochastic differential equations.

%A modified mean comparison theorem applied to the price formula of equation (2), might

prove applicable to this comparison.

1 The Malliavin derivative defined here is a special case of the more general Malliavin deriva-

tive defined on Brownian functionals satisfying certain smoothness and integrability conditions.
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