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Abstract

This paper examines the individual's consumption and investment problem when la-
bor income follows a general bounded process and the dollar amounts invested in the
risky assets are constrained to take values in a given nonempty, closed, convex cone.
Short sale constraints, as well as incomplete markets, can be modeled as special cases
of this setting. Existence of optimal policies is established using martingale and duality

individual’s utility function. This result is obtained by reformulating the individual’s
dynamic optimization problem as a dual static problem over a space of martingales.
An explicit characterization of equilibrium risk premia in the presence of portfolio con-
straints is also provided. In the unconstrained case, this characterization reduces to

Consumption-based Capital Asset Pricing Model.

“This is a revised version of the second chapter of my doctoral dissertation at the University of California
at Berkeley. I thank Hua He for several conversations on this topic and Jakza Cvitani¢, Darrell Duffie and
seminar participants at M.I.T. and Northwestern University for comments. Financial support from the Haas



1. Introduction

This paper examines the individual’s consumption and investment problem when labor
income follows a general bounded process and the dollar amounts invested in the risky
assets are constrained to take values in a given closed, convex cone. Short sale constraints,
as well as incomplete markets, can be modeled as special cases of this setting.

Available results on the existence of optimal consumption policies in incomplete mar-
kets with stochastic income are surprisingly fragmentary. Merton (1971) used stochastic

ric Brownian motion, the investor has an infinite horizon and negative exponential utility,
and the income follows a Poisson (jump) process. Svensson and Werner (1993) obtained
solutions for the same setting, but under the assumption that that the income process is
either locally riskless or an arithmetic Brownian motion. These explicit solutions exploit
the fact that with negative exponential utility the agent’s portfolio choices are independent
of wealth. Moreover, they ignore the non-negativity constraint on consumption. Duffie,
Fleming and Zariphopoulou (1991) and Koo ( 1991), also used stochastic dynamic program-
ming to show existence of optimal policies in an incomplete market model in which security
prices and labor income follow a geometric Brownian motion and the investor has an infinite
horizon with preferences displaying constant relative risk aversion. For this case, the indi-
rect utility function possesses a homogeneity property that makes it possible to reduce the
Hamilton-Jacobi-Beilman (HJB) equation to an ordinary differential equation which can be
solved explicitly. Duffie and Zariphopoulou (1993) recently employed the theory of viscosity
solutions to the HIB equation to show existence of optimal policies in the infinite-horizon
model with incomplete markets and constant price coefficients when labor income follows a
more general Markovian Ité process.

Results on the characterization and existence of optimal consumption and investment
policies with a finite horizon and general security price processes were obtained using mar-
tingale and duality techniques by He and Pearson (1991), Karatzas, Lehoczky, Shreve and
Xu (1991) and Xu and Shreve {1992a)—who examine the optimal consumption /investment
problem with incomplete markets and/or short-sale constraints—and by Cvitanié and Ka-
ratzas (1992)—who consider the more general case in which the portfolio weights are con-
strained to take values in a closed convex subset. However, all of these papers assume
that individuals are only endowed with some nonnegative amount of wealth at the initial
date and there is no labor income, so that they do not address the problem of a nontraded
endowment. Their approach consists in transforming the primal constrained maximiza-
tion problem into a dual unconstrained minimization problem that solves for the individual
shadow state prices (intertemporal marginal rates of substitution). Given the general char-
acterization of state prices as martingales due to Harrison and Kreps (1979) and Kreps
(1981), it seems natural to conjecture that these shadow state prices should be martingales.
On the other hand, the mentioned papers established existence of optimal policies by al-
lowing the shadow state prices to be local martingales, rather than trye martingales. As
explicitly observed by Karatzas, Lehoczky, Shreve and Xu (1991, p. 705), while such gener-
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alization is sufficient for the treatment of models with no income streams, it also precludes
the applicability of their results to models with stochastic income.

The only successful application of martingale techniques to establish existence of optimal
policies in the presence of stochastic income and constraints on the investment policies is in
a recent paper by He and Pagés (1993), who consider the case of limited borrowing (modeled
as a non-negativity constraint on wealth). For this special case, the dual problem amounts
to a minimization over a set of absolutely continuous processes, and thus the issue of the
martingale property of shadow prices is sidestepped.

This paper generalizes the existing literature by allowing for the presence of nontraded
stochastic income in finite-horizon models with general price coefficients and cone con-
straints. Moreover, we accommodate more general utility functions than those covered
by existing work: in particular, our approach does not require the somewhat artificial (al-
though customary) introduction of a bequest function for final wealth with infinite marginal
utility at zero. Finally, we show that the individual shadow state prices should indeed be
martingales (rather than just local martingales), and in fact we establish the existence
of optimal constrained consumption/investment policies by formulating the dual problem
directly over a space of (uniformly integrable) martingales. Since a uniformly integrable
martingale can be uniquely identified with its terminal random variable, this allows us to
reduce the dynamic optimization problem to a static problem formulated over a standard
L' space. This reformulation constitutes the methodological innovation of this paper and
should be usefully applicable to other optimal consumption problems. We emphasize that
differently from Cvitani¢ and Karatzas (1992) we focus on the case of constraints on dollar
amounts invested in risky assets, rather than on portfolio weights: this different formulation
is required by the fact that with nontrivial income streams, and hence possibly negative
wealth, portfolio weights are not defined.

Our main result not only provides conditions for the existence of an optimal consumption
policy, but also shows that under the stated conditions the stochastic Euler equations will
hold, even in the presence of the class of constraints we study: in other words, the marginal
utility process of an optimizing agent is proportional to a state-price density. This result is
important since the stochastic Euler equations are often assumed in applied and empirical
work. In particular, we provide a characterization of the viable state-price densities. This
characterization involves some subtleties. For example, in the case of incomplete markets,
we find that state price densities correspond (after normalization by the bond price) to
the densities of probability measures under which the gain processes for traded assets are
local martingales: however, unless the individual preferences incorporate a bequest function
for final wealth with infinite marginal utility at zero, these probability measures are not
necessarily equivalent to the probability representing the agent’s beliefs.

Finally, an explicit characterization of the equilibrium risk premia in the presence of
portfolio cone constraints is also provided, leading to a constrained version of the consump-
tion-based Capital Asset Pricing Model of Breeden (1979}).

2. The Economic Setting

We consider a continuous-time economy on the finite time span {0, 7'), in which an individ-
ual endowed with some initial wealth and a stochastic income stream chooses an optimal



consumption and investment policy.

Information structure. The uncertainty is represented by a filtered probability space
(0, F,F, P), on which is defined a n-dimensional Brownian motion

w={(wi(t),...,w, ()T : t e [0,7)}.

The filtration F = {£,} is the augmentation under P of the filtration generated by w.! We
assume that F = o(Uogt<r ), or that the true state of nature is completely determined
by the sample paths of w on [0,T). We interpret the sigma-field F: as representing the
information of the individual at time ¢ and the probability measure P as representing his
beliefs. All the stochastic processes to appear in the sequel are assumed to be adapted to
F and all the equalities mvolving random variables are understood to hold P-a.g..?

Consumption space. Thereis a single perishable good (the numeraire). The consumption
space C is given by the set of adapted consumption rate processes ¢ with fot [e(T} dr < oo
for all t € [0,T). The individual consumption set will be shortly specified as a subset of the
non-negative orthant €,

Securities market. The investment opportunities are represented by n + 1 long-lived
securities. The first security is a locally riskless bond paying no dividends. Its price process,
denoted by B, is given by

B(t,w) = exp(j:r(‘r, w) d'r). (1)

for some interest rate process r.

Assumption 1. The interest rate process v satisfies

T
[ a<k, (2)
0
for some K. > 0, where x— = max(0, —z) denotes the negative part of the real number .

Clearly, the above assumption is in particular satisfied if the interest rate is nonnegative or
bounded below.

The remaining n assets are risky. Letting § = (§y,..., Sn) denote their price process
and D = (Dy,..., Dy) their cumulative dividend process, we assume that S + D is an Ito
process:

1 £
S(t,w) + D(t,w) = S(0) + /ﬂ Is(r,w)u(r,w) dr + /0 Is(r,w)o(r,w)dw(r,w),  (3)

where Ig(t) denotes the n x n diagonal matrix with elements S (t).

'The augmented Brownian filiration F = {F} is defined by Ft = a(F¥ UN), where F& = o(w(r) :
7 € [0,¢]} is the smallest sigma-field with respect to which w(r) is measurable for every T € [0,t] and
N={ECQ:3C ¢ F with E € G, P(G) = 0} denotes the set of P-null events. It is well known that the
augmented filtration is continuous and that u is still a Brownian motion with respect to it (Karatzas and
Shreve (1988), Corollary 2.7.8 and Proposition 2.7.9).

A process X = {X():tefo, )} is adapted if X (t) is measurable with respect to F, for all ¢,
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Assumption 2. The diffusion matriz o(t) satisfies the nondegeneracy condition
T o(t)o(t) x > elz|? (4)

almost surely for all (z,t) € R" x [0,T) and some ¢ > 0. Moreover, letting

ko =—0 H(p—rl) (5)
where 1= (1,...,1)7 € R", we have
E[exp(% /OT|n0(t)]2 dt)} < co. (6)

Condition (4) implies in particular that o(t) has full rank a.s. for all ¢ € [0, T), so that in
the absence of portfolio constraints markets are dynamically complete, and that o{t,w)!
has essentially bounded matrix norm, uniformly in (¢,w) € [0,7") x £ (Karatzas and Shreve
(1988), Problem 5.8.1). Condition (6} could be relaxed and is used to guarantee the existence
of an equivalent martingale measure.

Trading strategies. Trading takes place continuously and there are no market frictions.
An admissible trading strategy is a n-dimensional vector process § = (6y,..., 0, )—where
0 (t} denotes the dollar amount invested at time ¢ in the k-th risky asset—satisfying

L1y (utr) = re Dl + [0 P ar < o ¢
0 0

for all ¢ € [0, T). The set of admissible trading strategies is denoted by O.

Preferences and endowments. Preferences for the individual are represented by a time-
additive utility function®

Ulc) = E[ /0 u(e(®), ) dt}, (8)

which is well defined for all consumption processes ¢ € C, satisfying

E [ ]D L ule(t) 1) dt] < 0. (9)

The individual consumption set, denoted by C1, will be accordingly given by the consump-
tion processes ¢ € €y satisfying (9).

Assumption 3. The function u(-,t) is increasing, strictly concave and continuously dif-
ferentiable on (0,00) for all t € [0,T). Moreover, it satisfies the Inada conditions

lifg uc(e,t) = oo and l%m ue{c, t) =0, (10)
and there exist constants § € (0,1) and v € (0,00} such that
buc(e, t) 2 uclve,t) V(e t) € (0,00) x [0, 7). (11)

Finally, u(c,-) is continuous on [0,T) and integrable for all ¢ > 0.

®The case in which the economy is extended to {0, T} and preferences include a bequest function for final
wealth is not substantially different and will be briefly discussed after the statement of the main theorem.



Remark. Condition (10) is well understood and it implies in particular that the derivative
function u.(-,t) has a continuous and strictly decreasing inverse f(,t) mapping (0, 00)
onto itself. Condition (11) has the purpose of guaranteeing that certain functionals to be
introduced in the sequel can be differentiated under the integral sign. It is easily verified
that this condition holds for the utility functions u(c, t) = p(t)loge or u(c,t) = p(t) cll_-;' ,
b>0,b%#1. Also, taking ¢ = f(y,¢) in (11), applying f(-,t) to both sides and iterating
shows that the following property holds

V6 € (0,00), 3y € (0, oo) such that F(6y,8) < vf(y, 1), Y(y,t) € (0,00) x [0, 7). (12)

The individual is endowed with some initial wealth Wy > 0 and a bounded stochastic
income stream y ¢ Ci.

3. Portfolio Constraint Sets

We fix from now on a nonempty, closed, convex cone 4 C IR™ and denote by
A={yeR :z.y<, vz e A)

the polar of A, which is also a nonempty, closed, convex cone (Rockafellar ( 1970), Theorem
14.1). We assume that the portfolio of the individual is constrained to lie in A at all times
t. The following are examples of interesting constraints that can be modeled with the above
setup.
(a) No constraints: A =R", 4 = {0}.
(b) Nontradeable assets (incomplete markets): 4 = {z € R": e =0, k=m+1,..., n},
A={yeR":y, =0, k=0,...,m}.
(c) Short-sale constraints: A — {€R 124 >0, k=m+ L...,n}, A= {y € R"
=0 k=1....m; y <0, k:m+1,...,n}.
(d) Buying constraints: A = {TeR” 12, <0, k=m + 1,...,n}, A = {yeER™: gy, =
0, k=1,....,m; y >0, k=m+1,...,n}.
(e) Portfolio mizr constraints: A ~ {zeR": 30z > 0, z € A(Z,Ll Tx}}, where 4 is
any closed, convex subset of R A={yeR":z .y < 0, ¥z € 4}.
(f) Any combination of the above.

4. Feasible consumption processes

Given the price coefficients P = (r,p,0), a consumption process ¢ € C} is said to be feasible
if there exists an admissible trading strategy 6 € © and a wealth process W such that

t t -
W(t) = Wy + /0 r(r)W(r) dr + fo B(r) T (u(r) — r()1) dr (13)
t t
+ 80 ot du(r)~ [e(r) - y(r) e
W(t) > -KB(t) (14)
W) >0 (15)



for all t € [0,T) and some K € R, where W(T ™) = limy;r W(t). The consumption process
¢ is said to be A-feasible if the above conditions are satisfied and in addition #(¢) € A for
all £ € [0, T). In either case, the trading strategy  is said to finance c. We will let B(P, A)
denote the set of A-feasible consumption processes given the price system P.

Equation (13) is the usual dynamic budget constraint: it states that the wealth at any
time ¢ € [0,T) equals the initial wealth, plus the trading gains, minus the cumulative net
consumption. Equations (14) and (15) state that, while the investor is allowed to borrow
against future income and thus to have short-term deficits, the final wealth must be non-
negative: in other words, final wealth must be sufficient to cover any amount borrowed.
Moreover, the discounted wealth process is required to admit a uniform lower bound: this
is necessary to rule out arbitrage opportunities, such as the doubling strategies discussed
by Harrison and Kreps (1979).4

5. Solution of the individual consumption problem

Since security prices and the individual income stream are allowed to be possibly non-
Markovian processes, dynamic programming techniques cannot be applied to analyze the
individual consumption problem. Therefore we will derive a martingale characterization of
the optimal policies: such a characterization has been developed by Karatzas, Lehoczky
and Shreve (1987) and Cox and Huang (1989, 1991) for the unconstrained case and by He
and Pearson (1991), Karatzas, Lehoczky, Shreve and Xu (1991} and Cvitani¢ and Karatzas
(1992), among others, for the constrained case. In all of these papers it is assumed that
y = 0, i.e., that agents are only endowed with some amount of wealth at date 0. In
this section we therefore briefly review the results of those papers that will be needed in
the sequel, with the necessary modifications to account for stochastic income.> We start
by introducing a set of probabilities measures that will play a key role in characterizing
optimal consumption policies.

Definition. A probability measure @ on (2, F) is locally equivalent to P if the restriction
of Q to F; is equivalent to the restriction of P to F; for all t € [0,T).

For t € [0,T), let (Q; denote restriction of the probability measure @Q to F,. Also, let @
denote the set of locally equivalent probability measures ¢} that are absolutely continuous
with respect to P on ({2, F). We then have the following characterization of the set Q.

*The fact that a uniform negative lower bound on discounted wealth is sufficient to rule out free lunches
was proved by Dybvig and Huang (1989). This is a natural requirement in our setting, since in the absence of
arbitrage opportunities discounted wealth must be greater than minus the shadow value of the endowment,
and the latter will be shown to be bounded given our assumptions.

SHe and Pages {1991) have examined the individual consumption problem in the presence of complete
markets, stochastic income and borrowing constraints. Our analysis of the individual consumption problem
differs from theirs, as the only constraints on borrowing are given by (14}-(15), but we impose the cone
constraint on portfolio holdings.

®A probability measure Q is absolutely continuous with respect to a probability measure P if Q(E) = 0
whenever £ € F and P(E) = 0. Q is equivalent to P if Q) is absolutely continuous with respect to P and P
is absolutely continuous with respect to @ (i.e., if P and @ have the same null events).



Proposition 1. For any Qv € Q, let &, denote the corresponding density process with
respect to P (ie., &,(t) = dQ,./dP,, t € 0,T)). Then

{SU: Que Q} = {{V: &v is a uniformly integrable P-martingale with &(t)>0veelo, T)}

Moreover, the limit §AT) = limyyr &,(t) exists, and we have £,(T) = dQ, /dP. Therefore,
Qv is equivalent to P on (, F) if and only f&(T) >0, P-as..

PROOF. This follows immediately from Propositions 7.2 and 7.11 in Jacod (1979). O

Finally, we recall that a stochastic process {£(t) : t € [D, T)} is said to be of class D if
the family of random variables {E(r):7 €T} is uniformly integrable, where 7° denotes the
set of stopping times = with < 7 almost surely. The following Proposition complements

martingales on [0, T').

Proposition 2. Let ¢ = {&(t) : t € [0,T)} te a local martingale. Then the following
conditions are equivalent:

(a) € is of class D;

(b) € is a uniformly integrable martingale;

{e) {£(t) 1t e (0,71} is @ martingale, where §(T) = Limyr £(8).

PROOF. The assertion follows from Proposition 1.1.47 and Theorem 1.1.42 in Jacod and
Shiryaev (1987). O

3.1. The unconstrained case

Consider first the unconstrained consumption problem (4 = IR"). Define the exponential
local martingale

&o(t) = exp (/Otiio(T)wa(T) - %/ﬂt |ko(T))? dt) . (16)

By (6), & is in fact a uniformly integrable martingale, so that Proposition 1 implies that
the probability measure Qo defined by dQo/dP = &(T) belongs to the set Q. Also. it is

neutral probability or the equivalent martingale measure. Moreover, the process o = B¢,
can be interpreted as the state-price density for the economy, in the sense that the value
at time 0 of any consumption process ¢ satisfying an integrability condition is given by
E[fT (t)e(t) dt]. In particular, we have:



Lemma 1. If c € B(P,IR") is a feasible consumption process, then

T
E{ fo To(£)(e(t) — y(t))dt] < W (17)
ProoOF. Using It6’s lemma, it is easy to show that (13) holds if and only if

’fro(f)W(t)+f0t7ro(‘r}(0(f)~y(’f)) dr = Wo+f0two(’f)(B(T)TU(THW(T)HU(T)T) dw(r). (18)

For each positive integer n, let
t
T =TA inf{t €[0,7): f |mo(T)(B(T) o (T) + W(T)ko(r)"}2 dr > n},
0

with the usual convention, maintained for the remainder of the paper, that inf() = oc.
Since the stochastic integral on the right-hand side of (18) is a martingale on [0, 1], taking
expectations gives

Elwo(ra)W ()] + E [ [ mo(s)ets) - w() ds] ~ Wo. (19)

Letting n T oo, we have 7, T T (because of (6), (7) and the continuity of 7y and W).
Applying the monotone convergence theorem twice and using the fact that E| fg mo{t)y(t)dt]
is finite under our assumptions, shows that

Tn T
B[ [ rols)(e(e) ds - u(9) ds] — B[ [ mo(e)els) ~ u(s)) as]
As for the first term in (19}, we have from (14)

(mo(m}W(mn))™ < K&o(7n)-

Since &g is of class D by Proposition 2, Fatou's lemma for random variables uniformly
integrable from below (Chow and Teicher {1988), Theorem 4.2.2) gives

lim inf Blma(r)W ()] > Blmo(T)W(T)] > 0,
where the last inequality follows from (15). This establishes (17). O

We will refer to (17) as the static budget constraint. Karatzas, Lehoczky and Shreve
(1987) and Cox and Huang (1991) have shown that, with no income stream and a nonnega-
tive wealth constraint, a consumption process is feasible if and only if it satisfies the static
budget constraint. Theorem 1 below shows in particular that, with complete markets, the
same result holds for our economy.”

"This is of course hardly surprising, as the presence of an endowment stream is irrelevant with complete
markets and unrestricted borrowing against future income, and Dybvig and Huang (198%) have shown that
a uniform lower bound on discounted wealth is equivalent to a nonnegative wealth constraint.



Assume that there exists a ¥* > 0 such that

][ mo( £ mo(0.0) - yi0) & = w, (20)

where f denotes the inverse of the marginal utility function w,. It thep immediately follows
from the Lagrangian theory of optimization that the consumption policy

co(t) = f (v mo(t), ), (21)

is optimal for the problem of maximizing expected utility subject to the static budget
constraint in (17). Moreover, this policy is also optimal in the original program.

Theorem 1. Suppose that A = R™ and that there exists o ¥* > 0 solving (20). Then the
optimal consumption policy is given by (21) and the optimal wealth process is given by

Walt) = mo) B[ [ no(r)eo(r) — y(r)y | 7| (22

PROOF. By the continuity of f and &g, it is clear that f(fco {1} dr < 00 holds for all ¢ € {0, T).
Also, from the inequality

U(I, t) -y < 1}3133{[1;(6, t) - y(.‘] = U(f(y, t)1 t) - yf(yv t)': (23)
we have
E[/OTu(CO(t), )~ dtJ < fOTu(l, i) dt+ w*E[/O-TB(t)—l{o(t) dtJ < 00

(where the last inequality follows from Assumption 3, (2) and the martingale property of
). Hence, ¢ € Cx. ,
Next, let cc B (P,IR™) be arbitrary. Since by concavity

u(f(y: t):t) - u(C) t) 2 y[f(yv t) - ] Ve > U:y > 01 (24)
we have
T T
) ~06) = B [ (ua(t, 0 - wie), ) ] » L motentt ~cp ] o
where the last inequality follows from the fact that
T
E[ [ ma(tenl®) - u(t) &) = w,
by the definition of ¥*, while (17) holds for all ¢ B(P,IR™). Therefore, cj is certainly

optimal if it is feasible.

Define the process Wo(t) by (22). Then (15) is clearly satisfied, and we have (from (2)
and the martingale property of &)

Wa(t) > —mg() 1 E[[tTﬂ'o(T)y(T) dr ‘ f}] > -—TeK'ng(t),
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where § < oo is an upper bound on y, so that (14) is also satisfied, and we are only left to
show that there exists a process € such that {13), or equivalently (18), holds. Since

Ro@Wolt) + [ mor)olr) ~ v dr = B[ [ olo)eolt) ~ u(t) at | 7]

it follows from the martingale representation theorem {Jacod and Shiryaev (1987}, Theorem
111.4.33) that there exists an adapted process  with f |o(£)|2dt < oo such that

R @W(®) + [[molr)(eolr) =y dr = Wa+ [ p(r)Tdu(r).

Comparing the above equality with (18) then shows that

o) = (o()") " (molt) ™ (t) — Wo(t)mo(®))

finances cp, so that ¢y is marketed and the wealth process is given by (22). 0O

5.2. The constrained case

The consumption policy ¢g of the previous subsection satisfies the first-order condition

uc(co(t), t) = uC(CU (O)a O)Wﬂ(t):

which states that the individual’s intertemporal marginal rates of substitution equal the
state-price density wg. In fact, it follows from the work of Harrison and Kreps (1979} and
Huang (1985) that, when the portfolio policies are unconstrained (4 = IR"), 7 is the unique
state-price density consistent with the absence of arbitrage opportunities. On the contrary,
with constrained portfolios (4 ¢ IR™), there exist infinitely many state-price densities that
are consistent with no arbitrage, and we have the following characterization.

Let A denote the set of n-dimensional adapted processes v with values in A satisfying

t
/ lo(r) ()P dr < oo (25)
0
for all ¢ € [0,T). For each v € N the processes

ru(t) = —o(t) " (u(t) = v(t) = r(t)) = ko + o ()" ¥ (t),

are well defined on [0, T') and &, is a local martingale. Let A* denote the subset of elements
v € N for which £, is of class D. We remark that A'* is non-empty, since (6) ensures that
we always have 0 € N*.

It follows from Propositions 1 and 2 that each £, with v € AN™* can be interpreted as
the density process corresponding to some probability measure @, € Q. It is easily venfied
by It6’s lemma that in the case of incomplete markets (example (b) of section 3) the set
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{Qu:veN *} corresponds to the set of probability measures v € Q under which the
discounted gain process

Gr(t) = B()718, () + /OtB(s)-l dDy(s)

for the tradeable assets is a loca] martingale. Similarly, in the case of short-sale (buying)
constraints (examples (c) and (d) of section 3) the set {Qu:venN) corresponds to set of
probability measures Qv € Q under which the 1scounted gain process for the unconstrained
assets is a local martingale, while the discounted gain process for the constrained assets isg
a local supermartingale (submartingale). Of course, in the unconstrained case A* — {0},
and we recover the unique state-price density 7, of the previous subsection.

Also, it is clear that each ™, with & € N™* can be interpreted as the unique state-price
density in a fictious unconstrained economy with price coefficients P — {(r,p — v,0). More
generally, the following analogue of Lemma 1 shows that each 7, with v € A™* constitutes
an arbitrage-free state-price density in the original economy when the portfolio policies are
constrained to lie in 4.8

Lemma 2. Ifq consumption policy c € CY is A-feasible, then

B [“n6)(e(t) - yio) ] < wo (26)
holds for all v € N,

PROOF. Using (13) and Ité’s lemma shows that the equivalent
¢ ¢
Tty W (t) + /0 A7) (e(T) — y(7)) dr — f T (T)(7) " (7) dr (27)
0

= Wp + /0 tm,(T)(e(T)Ta(f) + W(r)m(r)T) du(r).

of (18) holds for all v € A™*. The claim now follows from a localization argument similar to
that in the proof of Lemma, I, using the fact that 6(t)Tv(t) < 0 for B(tte A, v(t) e A.

The previous lemma shows that an A-feasible consumption process has to satisfy an
infinite number of static budget constraints of the form (26), one for each v € A™*. The
following theorem gives a converse to this result by showing that the satisfaction of these
budget constraints is also sufficient for A-feasibility.

Theorem 2. Let ¢ e C} be a consumption process and suppose that there exists q process
v* € N* such that for all v € N*»

T T
E[/{; m{t)(c(t) — y(t))dt] < E,'/O T {t)(c(t) — y(t)) dt] = Wy. (28)
Then c € B(P, A).
PROOF. See Appendix A.

8Tn our setting, an arbitrage opportunity is a nonzero consumption process ¢ € C} that is A-feasible for
zero initial wealth and zero income. Equation (26) shows that there are no arbitrage opportunities if the
shadow state-price-density in the economy is given by i, for some v € A -,
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Now suppose that the consumption plan c in the above Theorem is the optimal policy
c*. If the associated state-price density =,~ satisfying the condition of Theorem 2 existed
and were known, then ¢* would be the solution to the problem of maximizing utility subject
to a single budget constraint of the form (26). This suggests, heuristically, that there should
exist a Lagrangian multiplier ™ > 0 such that (c*,9*,*) is a saddle point of the map

T
Cle,$,v) = U(c) - w(E | mote)et) - v(w) de - Wo), (20)

where we maximize with respect to ¢ and minimize with respect to (v, v).
Let

iy, t) = maX[u (¢, t) — yel = u(f(y, 1), ) ~ yf(y,t) (30)

denote the convex conjugate of —u(—c,t). The following lemma collects some properties of
the function i that will be used repeatedly in the sequel.

Lemma 3. The function @(-,t) : (0,00) — R is strictly decreasing and strictly conver for
allt € [0,T"), with a%ﬁ(y, t) = —f(y,t). Moreover

{0+, t) = u(co, t), @(00,t) = u(0+,t).
PROOF. BSee, e.g., Karatzas, Lehoczky, Shreve and Xu (1991), p. 707, a

Maximization of {29) with respect to ¢ gives

J(,v) = U (1), t)dt+¢/7r,, dt} + W, (31)

where we remark that the above expectation is well defined for all (¢,v) € (0, 0c) x N™*,
since we have from (23)

U Fm,(2) a't] / u(l, ¢) dt+wE[f m(t) dt] < 0.

Therefore J : (0,00) x N* — IR U {o0} and we are left with the shadow state-price problem

wh g /) =)

The following theorem establishes the duality between the individual’s constrained opti-
mization problem and (P*).

Theorem 3. Assume that (¢*,v*) € (0,00) x N* solves the shadow state-price problem
(F*) and

T
E[/O ﬂy‘(t)(f(q,b*:rr,,* (t),t) — y(t)) dt] < 00. (32)
Then the policy

e () = f(} m~ (1), 1) (33)

is optimal in the constrained problem and the optimal wealth process is given by

T

Wart) = me (07" B| [ mon(r)eun(7) = w(7)) | 7). (34)
PROOF. See Appendix A. O
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We state as corollaries two special cases of Theorem 4.

Corollary 1. Assume that u(00,t) = 0o for all t € [0,T) and u(c,t) is bounded below on,
(0,00) x [0,T). If conditions (b) and (c) of Theorem 4 hold, then a minimag state-price
density and o constrained optimal consumption /investment policy exist,

PROOF.  We only need to verify that conditions (a) and (d) of Theorem 4 are satisfied,
Condition (a) is obvious, as u is bounded below. For § € (1,00) arbitrary and some
7 € (0,00), (12) and the properties of 4 in Lemma 3 imply

w(y, 1) ~ (o0, t) > @y, t) — sy, t) > (6 - yf(éy,t) > i;—lyf(y, £).

Taking y = u.(c, t) in the above inequality and recalling (30) gives

u(c, t) — cuyfe, t) — w(0,¢) > d ; 1cuc(c, t).
Therefore
§d-1
(14 = cwlet < sup w00 1o
Y te[0,T)
and hence condition (d) also holds. O

Among the isoelastic utility functions with u(e, t) = ,a(t)cll—_—b"i for some b > 0, b £ 1 and
some bounded measurable funetion 0:[0,T) — (0,7], the above corollary covers the cases
in which b € (0,1). The next corollary treats the important special case of logarithmic

utilities.

Corollary 2. Assume that u(c,t) = pltyloge for some bounded measurabie function p :
[0,T) — (0,]. If conditions (b) and (c) of Theorem 4 hold, then a minimaz state-price
density and a constrained optimal consumption /investment policy exist,

Proor. By concavity, we have log(1) ~ log(c) < ¢71(1 - ¢), s0 that u(c,t) > —pe=! and
condition (a) of Theorem 4 holds, Also, in this case we have cuc(c,t) = p(t) < j, so that
condition (d) is satisfied as well, [
Remark. Since 0 € A*, 5 sufficient condition for assumption (c) of Theorem 4 is that
J(1,0) < oo for all ¥ € (0,00). In particular, if u(c, t) is nonnegative and satisfies the

growth condition w(c, t} < k(1 +c'8) for some £ > 0,5 € (0,1), then (c) will also hold
provided that (6) is strengthened to

T
|} e < x
0
for some K > 0 (cf. Karatzas, Lehoczky, Shreve and Xu (1991), Remark 11.9).
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We can interpret the constrained-optimal policy c,» as the unconstrained-optimal policy
in an economy with price coefficients Py« = {r, t — v*, &), as ¢, also solves the problem

e e

sit. E[ /{)Trr,,w(t)(c(t)—y(t))dt < W

In other words, v* represents the change in the assets’ expected instantaneous returns such
that the individual would optimally choose an investment policy with 68(t) € A for all ¢.
Following the terminology introduced by He and Pearson, we will refer to £, as the minimaz
martingale measure and to 7~ as the minimac state-price density for the individual. They
must clearly be unique when they exists.

The next theorem, which constitutes the main result of the paper, provides suflicient
conditions for the existence of a minimax state-price density and of a constrained optimal
consumption/investment policy.

Theorem 4. Assume that

(a) u{oo,t) = oo for all t € [0,T) and u(e,t)™ < k(1 +¢'~) on (0,00) x {0,7") for some
k>0, 621,

(b) either Wy >0 or y/B > ¢ (A x P) —a.e. for some € > 0;
(c¢) Vi € (0,00), Jv € N* such that J(¢,v) < oo.

Then the manimum in (P*) is attained and hence @ minimax state-price density exists. If
in addition '

(d) cus(c,t) < a+ (1—>bulct) on (0,00) x [0,T) for somea >0, b>0,

then condition (82) of Theorem 3 is also satisfied, and hence there exists a constrained
optimal consumption/investment policy.

PrROOF. See Appendix B. O

Remark. Since the space A'* does not have any nice topological structure, existence
of a solution to the dual problem is proved in the Appendix by reformulating (P*) as a
minimization problem directly over a space of uniformly integrable martingales. In fact,
since a uniformly integrable martingale can be uniquely identified with its terminal random
variable, we reduce the dual minimization problem to a standard problem over a closed
convex subset of a L! space, and then use the conjugate duality theory of Rockafellar {1974,
1975) to establish existence. This reformulation of the problem constitutes a methodological
innovation of this paper and should be usefully applicable to other optimal consumption
problems. By contrast, the papers by He and Pearson (1991), Karatzas, Lehoczky, Shreve
and Xu (1991), Xu and Shreve (1992a} and Cvitani¢ and Karatzas (1992) attacked the
corresponding dual problems directly, and this allowed them to only prove existence by
allowing the shadow prices to be local martingales rather than true martingales.
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For the important special case of incomplete markets and/or short-sale constraints, the
above theorem generalizes the similar existence results in He and Pearson (1991), Karatzas,
Lehoczky, Shreve and Xu (1991) and Xu and Shreve (1992a) by allowing for a stochastic
income stream. Moreover, we verify a conjecture by Karatzas, Lehoczky, Shreve and Xu
(1991, Remark 10.3) by showing that the minimax martingale measures are indeed (uni-
formly integrable) martingales, rather than just local martingales, a result that is critical

utility at zero. However, it should be easy to see that exactly the same argument used in
the proof of Theorem 4 would apply to the case in which the economy is extended to [0, T
and a bequest function V(W) is added to (8), provided that V satisfies the same conditions
Placed on u(-,t). Moreover, in this case we necessarily have £, (T) > 0, so that the minimax
martingale measure is equivalent to P op (8, F).

6. The Markov Case

We now specialize our model by assuming that the price coefficients (r, u, 7), as well as the
income stream y, are deterministic functions of time and some s-dimensional vector of state
variables V', whose stochastic process is Markovian and satisfies

Y{t,w) = Y(0) + [D ‘(¥ W), 7) dr + /O ‘Bove, @), 7) dw(r,w).

Introducing the additional state variable Z, = Yy, it follows from Itd’s lemma that Z
satisfies the stochastic integral equation

t t
20 =%~ [ 1(n2(r)dr + [ w2 dugr). (35)
0 0
Let D, denote the differential generator of (Z,,Y):
1 1
DV = 5‘””’2Z2VZZ + 5 tr(ﬁﬁTVyy) + nIﬁTZVZy —rZVz 4 OzTVy,

and define the dual indirect utility function® vV by

T T
V{(Z,Y,t) = 161}5_ E{/ u(Zu{7),7) dr + f Zu(T)y(T)dr | Z,(t) = Z, Y(t) = YJ. (36)
v * + t
It is easily verified that V(Y t)is decreasing and convex (because of the convexity of (-, t)
and of the set {Z, : v € A/ *}). Moreover, it follows from the standard argument of dynamic
programming that, under some regularity conditions, V must solve the Hamilton-Jacobi-
Bellman equation of optimality

1
0 = min [Z2VZZ (5[0_12:|2 +r307lz) + ZViy B0 x| + DoV + V, + i+ 2y (37)
TEA

®The notion of a dual indirect utility function was introduced by He and Pagés (1993).
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with the boundary condition
V(Z,Y,T) =0. (38)

Conversely, if there exists a solution V' to the above partial differential equation which also
satisfies the conditions of a verification theorem from stochastic dynamic programming,
then V' coincides with the indirect utility function of (36), and we have the following result
on the existence of constrained-optimal consumption and investment policies.

Proposition 3. Suppose that there exists a solution V to the partial differential equation
(37) with the associated boundary condition (38) and that V satisfies the conditions of a
verification theorem of stochastic dynamic programming. If the conditions of Theorem 4
hold, then there exists a solution ¥ to the problem

min V{1, Y{0),0) + W,
plan (v, Y{0),0) + Wy

and the constrained-optimal consumption policy is given by

Cp~ (t) = f(Zu" (t)% t)!

where Zy+ denotes the optimally controlled process with initiel condition Z,+(0) = ¢*. The
optimal wealth process can be recovered as in (34).

PROOF. The argument used at the end of the proof of Theorem 4 ensures that (32) is
satisfied under the given assumptions. The claim then follows immediately from Lemma
Bl in Appendix B and Theorem 3. a

In the special case in which the security price coeflicients and the endowment are de-
terministic functions of time only, it follows from the convexity of V' that the differential
equation (37) reduces to

1
0= 5 min||ko + 0~ 'z|*|Z2Vzz — rZVz + V, + i + Zy, (39)
€A

so that v is independent of the state variable Z. Standard results (e.g., Theorem 3.12.1 in
Luenberger (1969}) guarantee that the minimum norm problem in (39} always has a solution
and that it is unique. Moreover, for this case we can prove directly a simpler verification
result.

Proposition 4. Assume that the security price coefficients (r,u,o) and the endowment
stream y are deterministic functions of time and suppose that there exists a solution V to
the partial differentiol equation (39) with the associated boundary condition V(Z,T) = 0,
such that V is decreasing, convez, three times continuously differentiable with respect to Z
and continuously differentiable with respect to t, and that Vz is continuously differentiable
with respect to t. Suppose further that the following conditions are satisfied:

(a) there ezists a process v* € N™* such that

v*(t) = argmin |ke(t) + oty 'z]* (A x P)-ae.,
zEA

where X denotes the Lebesque measure on [0,T);
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(6) =Vz(¥*,0) = W, Jor some ¢ > 0;
(¢) the stochastic integral

/Zw (VZ + Z sz)lﬂ;*dw
is @ martingale, where Z,+ is the process of (35) with initial condition Zy+(0) = yr*.

Then the constrained-optimal consumption, wealth, and portfolio processes are given by

e (t) = F(Ze (1), 8
Wi (t) = —Vz(Z,. (1), 1)
O8) = (@O (O)T) " () — r(1)1) Zr () V(1) — (o)) o™ (8) 2o () Vi 2 ().
PROOF. We start by showing that 6(¢) € 4 and BE)Tv () = 0 (A x P)-ae.. Let v be an

arbitrary process taking values in A. By the convexity of A we have v(t)+e(v(t)—*(t)) € A
for all € € [0,1], and hence, since p* (t} € argmin__ ; [k, t)? (A x P)ae.,

0% Gt o) 1 Ot O] = 2 070 ) (A% Pac.
Since 6(t) = ~(o(¢t) )Tk, (£)Z~(t)Vzz(t) and V is convex, this implies

UO () - v () <0 (Ax P)ae.
Taking v(t) = v*(t) + z, 2 € A, shows that 0(£)Tz < 0 (A x P)-ae. for all z € A. By
Theorem 14.1 in Rockafellar (1970), this implies 8(t) € A. On the other hand, taking

v = 0 shows that 8(¢)Tv*(¢) > 0 (A x P)-ae.. Since v*(t) € A, this implies 8(t) "L (t) = 0
(A x P)-ae..

Next, we show that 6 finances v+ By It6’s lemma, and the fact that ~Vz(0}) = Wy
2o OWer () + [ 2 (1) () — y(r)) dr
= ¥"Wo-— fOtZw (7) (%[nw (20 (1)Vzz2(r) < r(7) 2, (T)Vzz(7) + Vm(?)) dr
+ /0 2 (r) (r()Va () = e ()2, (T)Vzz(r)) dr + /0 2, () (e (1) = y()) dr
— fOtZ,,-: {(7) (Vz(‘r) + Z,- (T)VZZ(T)) Ko (1) dw(T)
= VW [ 2 (Vi) + 20n (20 1) )
= W Wot [ 2o (0 otr) + . (m)oo (7)) da(r),
where the second equality follows from differentiating (39) with respect to Z and the last
is immediate from the definitions. Since 871" = 0 () x Plae. and Z,.(t) = *n,. (t),

this shows that the budget constraint in (27) is satisfied. Hence, (13) also holds. Finally,
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dividing both terms in the last equation by ¢* and using the fact that Vz(Z,T) = 0 and
the stochastic integral is a martingale, gives

R Wi )+ [ () = () dr =B [ 7 (e ()~ st ar | 7).
Wi (£) = mpe (£)"1 E[ /: e () (on (1) — y(r)) dr | }‘t].

Therefore, (14) and (15) are also satisfied and hence ¢,» € B(P, A).
The optimality of ¢, now follows from the fact that

B[ e (£) e (1) — yO)dt] = Win(0) = W

so that for any ¢ € B{P, A) we have

T
Uley) — Ulc) = E[ fo (wlew(8), ) — u(c(t), £)) dt] > E[ /0 e () (0o (8) — e(t)) ] > 0

because of (24) and (26). O

7. Equilibrium Asset Prices

In this section we briefly discuss, in a quite general setting, the implications of portfolio
cone constraints on equilibrium risk premia. In particular, we show that the risk premium
on any security can be separated into two parts: a component that is proportional to the
asset covariance with the aggregate consumption process, and a component that depends on
the type of constraints imposed on the individual investors. The first component coincides
with the risk premium implied by the Consumption-based Capital Asset Pricing Model
(CCAPM) of Breeden (1979).

We consider an economy with I individuals indexed by i == 1, ..., . Each individual has
a time-additive utility function and we denote with u;(c,t) the utility function of individual
t for instantaneous consumption at time . We assume that these functions are three times
continuously differentiable in their first argument and continuously differentiable in their
second argument. The portfolio policy of individual ¢ is constrained to lie in a closed convex
cone A; C IR" at all times. We assume that the equilibrium prices are Itd processes and that
a minimax martingale measure §,, exists at the equilibrium prices for all agents i (sufficient
conditions for this to happen are given by Theorem 4): in other words, letting ¢; denote
the optimal consumption choice for investor i, we have w,.(c;{t),t} = v; B(¢) 1€, (t) for all
i. Let € = Y.L, ¢; denote the aggregate consumption process and

_ uic(ci(t), t)

) =~ @D

the Arrow-Pratt coefficient of absolute risk tolerance for individual i at time ¢.
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We recall that if X and vV are continuous semimartingales, their quadratic covariation
is the finite-variation process defined by

[X,Y](t) = X ()Y (t) - X(0)y (0) — /0 tX(T)dY(T) . /0 tY(T) dX (7).

In particular, if X and V are It6 processes with diffusion vectors ox and oy, respectively,
then

¢
(X, Y)(t) = f ox (7Y oy (+) dr,
0
so that %[X, Y](t) = ox(t) "oy (t), which is usually written ag cov(dX(t),dY(t)).
Proposition 5. Under the stated assumptions, the equilibrium risk premia are determined
by
= Is(t) ! RPN,
u(t) — r(t)] = s(t) coIv(dS(t),dC(t)) + Etziat(t)u,(t).
2 i=1 o (t) 25y o4(t)

PROOF. Let wu(t) = uic(ci(t), t). Under the stated assumptions, ¢; is an Ité process for all
t, so that It6’s lemma gives

(40)

wie(t) = w;(0) + /Utum(ci(T), T)dei{t) + fotuict(ci(ﬂ, T)dT + %/Otu,;ccc(ci(T), T} d[ci, ci] (7).

Since the quadratic covariation between a continuous semimartingale and a process of finite
variation is zero (Jacod and Shiryaev (1987), Proposition 1.4.49), we have

[tic, §](t) = [/uicc dci,S](t) = /O.tu,-cc(c,-(r),f) dlc;, S)(1),

where the last equality follows from Theorems 1.4.40 and 1.4.52 in Jacod and Shiryaev
(1987). On the other hand, since u;, = Y%y, we also have

(e, S)(2) = [, Sty = | f Wiy, ] dw, / Iso du) (t)
= [T (T (Y ) = [l s ) = ()1 o)y
The last two equations imply
it u(t) — 7)1 — vi(t)) dt = Is(t) ' de;, S)(t).
Summing over 7 gives

I
D@ O(u(t) — r(6)1 — vy(t)) dt = Is(t)~ 1 dC, S)(1),
i=1

and hence

I B I
0 = (0= (3 o) ™ (15 216, 5100 + S ai(tu(s). o
i=1 i=1
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Equation (40) gives a constrained CCAPM. It shows that the assets’ risk premia can
be decomposed into two components: the first corresponds to the risk premium implied by
the standard CCAPM, while the second is a weighted average of the processes v; identify-
ing the minimax martingale measures for the individuals in the economy. Clearly, in the
unconstrained case (A; = R™) we have v; = 0 for all { and the above relationship reduces to
the CCAPM. More generally, in the case in which the portfolio of each individual is either
unconstrained or constrained to take values in some convex cone A (independent of 4), i
follows from the convexity of A that the last term in (40) must take values in A. There—
fore, knowledge of the set A allows to draw immediate conclusions on the type of possible
deviations of equilibrium risk premia from the CCAPM.

For example, it is immediate to see that the CCAPM must hold—as observed by Gross-
man and Shiller (1982)—in the case of incomplete markets (example (b) of Section 3),
while the CCAPM will overpredict {underpredict) risk premia in the presence of short sale
(buying) constraints (examples {c) and (d) of Section 3). As a less obvious example, con-
sider the case in which some agents (e.g., mutual funds) are required to keep a nonnegative

amount invested in risky assets: in other words A; =IR" fori=1,...,m, and A; = A for
i=m+1,...,], where A = {x € R" : }7_, 2 = 0}. It is easily verified that we have
A={yeR":y =...=yp, 1 > 0}. Therefore, (40) implies that in this case excess

returns will be linearly related to their covariances with aggregate consumption: however,
contrary to what implied by the CCAPM, this linear relationship has a positive intercept.

8. Concluding Remarks

This paper has examined the individual’s optimal consumption and investment problem
with portfolio cone constraints and stochastic labor income. The main result is related
to the existence of optimal policies under fairly general assumptions on the security price
coeflicients and on the income process. As pointed out in the remarks following Theorem
4, even if we have agsumed no bequest function for final wealth, the introduction of such
a function can be easily accommodated, and in fact would simplify the statement of some
results. Of course, the case in which the agent is maximizing the expected utility from final
wealth only could be treated similarly.

We also point out that while we have assumed that the set A is the same at all times,
all the theory would go through, under a regularity condition, if we are given a family
{A(t,w) : (t,w) € [0,T) x Q} of nonempty, closed, convex cones in IR™ and require that
8{t,w) € A(t,w). Finally, the assumption that the constraint sets A4 be cones could also
be somewhat relaxed to their being convex sets with the property that the support function

6(y|A) = sup,e 4 zTy is constant on its effective domain A = {y € R™ : §(y|4) < oo} (if A
is a cone, then A is the polar cone and 6§(-|4) = 0 on A). However, the treatment of more
general convex subset constraints in the presence of stochastic labor income is beyond the
scope of this paper and is left for future research.

"*The regularity condition is the same as in Cvitani¢ and Karatzas (1992, p. 804): letting A denote the
set of processes satisfying v(t,w) € A(t,w) and f; |#(7)|* dr < oo for all ¢, there exists a sequence {1} C N
such that for every x € A(t,w) it is possible to find a subsequence frm, } with limgyee vn, (t,w) = .
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Appendix A

This Appendix is devoted to the proof of Theorems 2 and 3. The argument of the proof
follows Cvitani¢ and Karatzas (1992), the main difference being the presence of an income
stream.

PROOF OF THEOREM 2. For v € N*, define the process W, by

T
Wolt) = m &) B[ [ 1) e(r) = ytr)) at | 7.
We intend to show that W+ is the optimal wealth process associated with ¢, Clearly,
W,<«{T~) = 0 and hence (15} is satisfied. Also, the same argument used in the proof of

Theorem 1 shows that W,. (t} > *TeK”gB(t), where § < oc is an upper bound on y, so
that (14) is also satisfied. Finally, since the process

M) = mu- (Wi () + [ T (1) elr) — y(r)) dr

is a P-martingale with M (0) = Wy, it follows from the martingale representation theorem
that there exists an adapted process ¢ with fUT le(t}? dt < 0o a.s. such that

o OWor () + [ 7un(m)elr) = ) dr = M) = o 4 [emrane.
Define the portfolio strategy 8 € © by
o (0 1700 + Won ()1 6)) = (1) 42

A comparison with (27) then reveals that in order to prove that ¢ € B(P, 4) we are only
left to show that
f(t,w) € A, (A% P)-a.e. (43)

(where A denotes the Lebesgue measure on [0,T)) and that
0(t,w) T v*(t,w) = 0, (A % P)-ae.. (44)

We intend to show that (43) and (44) are implied by (28).
Fix an arbitrary v € & and define the process

<(0)= [ (o) wtr) = 1) ()~ e 1)),

as well as the sequence of stopping times
t
n = TA inf{t €[0,7) : Ic(t)| +f o (™) w(r) = v ()2 dr > n,
0

or |m (t)| + [We| > n, or £t|0(T)T3(T) + Wor () k= (1)) 2 dr > n}
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Then 7, TT as.. Also, letting
ven(t) = v () + £[v(t) — v ()]l fcr, )

for £ € {0,1), we have v, € N (because of the convexity of A) and
52 tATH -1 9
brcn®) = & exp(6t A ) = 5 [ 100 Hotr) - v () Par).

It then follows from the definition of the stopping times 7, that

e (1) < &y, (1) < e (1), (45)

so that §,, ,, is of class D and hence v, , € A™*.
We will show below that for any v € A we have:

. ”Vsn(o)_”v‘(o)
lim ‘
el0 £

- EUoTﬂ”w(t)ﬁ(t)T(V(t) - v (t)) dt]. (46)

By (28), the left-hand side of (46) is nonpositive, and thus so is the right-hand side.
Taking v = v* + p, p € N, it follows from the fact that A is a convex cone that v € N ,
and hence (46) gives

EUOTnvr,,. ()8()" p(t) dt] <0.

Since p € N was arbitrary, this implies the existence of a set £ having full (A x P) measure
such that )
8(t,w) z <0, Y(it,w)e E,ze€ A

By Theorem 14.1 in Rockafellar (1970) the above implies (43).
On the other hand, for v = 0 (46) gives

E[ fo " e (6(8) 1 (2) dt] >0

and it then follows from the fact that 6(t)o*(t) < 0 for 8(t) € A, v*(t} € A, that (44) also
holds.

To show the inequality in (46), we start by observing that for all & € (0,1)
v, - +(0 Tl - v, t
Pes® W) gl [T =008 (7l )
i

£ £ T {t)

and (from (45))
Mg (1)

e = 1‘ <emo1, (47)
so that ;
ey LI (22l 1) < s 0ett) + 0,
where on
Ky = sup £ —1<oo. (48)
£€(0,1) 3
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Since the above expression is integrable, it follows from Lebesgue’s dominated convergence
theorem that

15%1 Wug,n(o)s_ W0} E[/OTW,,¢(t) (c(t) - y(t)) lslirgl % (%%? - 1) dtJ (49)

B[, me 02t ) et - 3t0)

= E[/OTHWW (t)C(t) (C(t) - y(t)) dt + 7. (Tn)C(Tn)Ww (T”)J'
Using (41), (42) and It6's lemma shows that

Mo ()W () = [ e ()W (1 1) — L e 0o (e - y0) ar (50)
+ fa " (8)C(0) (oty76¢e) + Wi () (1)) " dus(t)
+ fo e (t) (o()708) + Wi (- ®) o) (w(t) - V(1)) dt
= [ W0 (o) w0 v ) e
+ [T (owrew + Wor (8- (1)) duo(t)
+ [ @07 (10 - v7(0) - ) (e - )| a,

which implies, since the stochastic integrals in the above expression have zero expectation,
B[ [ (060e0) ~u0) -+ im0, ()] = B[ [ 008" (9 - 2y at|.

Substituting the above expression in (49) gives (46). O

|

i

PROOF OF THEOREM 3. Assume that (¥*,v*) € (0,00) x A™* solves (P*), and that (32)
holds. Define the consumption policy ¢~ and the wealth process W, by (33) and (34),
respectively (the latter is finite because of (32)). The argument used in the proof of Theorem
1 shows that ¢,. € C%. In order to prove that ¢y~ is constrained-optimal we wiil proceed in
two steps: first we will show that [/ (cws) > U(c) holds for all ¢ e B(P, A), and then that
c € B(P, A).

Step 1: Since the process By is bounded, (12) and {32} imply that

T
B [ 5n () om0, 1) ] < o0 (51)
0
holds for ali ¢ ¢ {0, 00). By the optimality of ¥*, we then have
J( +e,0%) — J(y*, v*)

0 = lim
e—} g
_ E[ i W(Y" + ) (1), £) — @ mye (2), ) dt + fTw,,* oror +W0J
n e—=0 € 0

= E[[ n 000 - ant) it] + w,
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where the second equality follows from Lebesgue’s dominated convergence theorem, using
the fact that m,y is integrable and

ﬂ((¢*+e)w(t),t)—ﬂ(w*w(t),t)‘ o W@ —lehme 0,8) — a(yrme(2). )

£

el
< meOF (8" = lelme (1) < me (O F (07 /2)mn(8), 1)

for |e| < ¢*/2, because @(-,t) is decreasing and convex B% (y,t} = —f(y, t), and f(-t) is
decreasing. Therefore

E[ fo U (e (8) — y(®)) dt] - Wo.

For any consumption process ¢ € B(P, A) we then have (from (24) and (26))

Ulcy) — U(c) = [[OT( (e (8).6) = u(e(t), 1)) de] = 4" B fOT'frut(t)(c,,~(t)—c(t))dt > 0.

Hence, ¢,- must be optimal provided it is A-feasible,
Step 2: By the martingale representation theorem, there exists an adapted process ¢
with f l¢(t)i? dt < oo a.s. such that

B (OWer () + [ n(7)(en () = u(r)) dr = W+ [ o(r)Tao(r).

Defining the portfolio strategy & by (42), it is immediately verified that (14) and (15) are
satisfied and a comparison with (27) reveals that in order to prove that ¢« € B(P, A) we
are only left to show that (43) and (44) are satisfied.

Fix an arbitrary v € A and define the process (, as well as the stopping times 7, as in
the proof of Theorem 2. For ¢ € (0, 1), let vea(t) = v*(t) + &[¥(t) — v*(t)|1{<r,}- By (47),
we then have

Uy s (1), 8) — (g m, o (1), 1) + (D) (Wu* (t) — Wue,n(t)){
£

£
e ™ me (1), 1) + y(t)
£

Mire (t)
7o {t)

< W EamO(F (@ e e (8),8) + y(2))

where K, is as in (48). Since the last expression is integrable (because of (51)), Lebesgue’s
dominated convergence theorem gives

lim J("p L ) - J(lb aVa,n)
el0 €

][ O A 0) e [T (0 Ta)

z]0 £

< w*ﬂ'y‘ (t)

_1’

- w*E[ fOTW(t)g(t/\fn)(c,,*(t)—y(t))dt] - w*E[ fo wu—(t)ﬂ(t)T(u(t)—u*(t))dt],

where the last equality follows from Ité’s lemma as in (50). Since J(y*,v.p) reaches a
minimum at € = 0, the last term is nonpositive, and (43)-(44) then follow by taking
v=v"+p, pe N, and v = 0 as in the proof of Theorem 2. This shows that c,- € B(P, A).

]
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Appendix B

This Appendix is devoted to the proof of Theorem 4. Since the proof is rather long, we first
provide a brief outline. We will start by showing (Lemma B1) that, under the assumptions
of Theorem 4, a sufficient condition for the minimum in (P*) to be attained is that for all
¥ € (0,00) there exists a solution to the problem

min J(,v). (52)
However, the above problem is not easy to attack directly, since the set A/* does not have
any obvious topological structure. We will therefore reexpress (52) as a problem formulated
directly over a space of martingales, as follows. Recall from Propositions 1 and 2 that
for any v € A™* we can extend the corresponding process £, to a martingale on (0,77 by
setting &, (T) = limyp §u(t). Let M(Qq) denote the space of Qg-martingales on [0, 77,
where Qg denotes the probability measure with dQo/dP = €o(T). Since any martingale
n € M(Qo) can be uniquely identified with its terminal random variable nT) € LYQy),
the space M(Qq) comes equipped with a natural topology, which is generated by the norm
”W”M(Qg) = ||7?(T)”L1(QU)-11 Moreover, we will show in Lemma, B3 that

{{V:VEN*} = {&m:neH, 7(t) > 0Vte [O,T)}

where H is a closed, convex subset of M(Qo) to be defined below. This suggests that we
can rewrite (52) as an equivalent problem

min J{, ),

techniques from Rockafellar (1974, 1975).
We will now proceed to substantiate the previous sketch through a series of lemmas,

Lemma B1. Under assumptions (a)-{c) of Theorem 4, if for all y € (0, o0) there exists a
solution to (52), then there exists solution to (P*).

PROOF.  Let V(¢) denote the value function in (52). We will prove below that V is
strictly convex and continuous on (0,00} and that it satisfies the coercitivity conditions
V{0+) = V(o0) = oo. Therefore, V must attain a (unique) minimum on (0,00), and hence
(P*) has a solution,

Let ¥, > 0 be arbitrary and let v; (i = 1,2} denote the solution to (52) with ¢ = 4;.
It is easily verified by Ité’s lemma and the convexity of 4 that the set o :venN *} is
convex. Therefore, for all A (0,1) there exists a vy € N* such that

E — )"/)151/1 + (1 - /\)1,926:/2
2 Mo+ (1= A)ghy -

1See section IV.1(d) in Jacod (1979) for a description of this topology.
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The strict convexity of V' then follows immediately from the strict convexity of @(-, t), as

V(Mo + (1= Ae) < T + (1= Ay, )
< ML)+ (1= M2, e) = AV{gh) + (1 — A)V ().

Since V is convex and finite on (0,c0) {by condition (c)}, it must be continuous there
(Rockafellar (1974), Corollary 84).

Let £ > 0 be such that y/B + Wy/T > € (such a e exists by condition (b) of Theorem
4). By (2), Fubini’s theorem, the properties of & and Jensen’s inequality we then have

V(¥) 2 min fo Tﬂ(weKr E&(t),t)dt + 9T > /0 Tﬁ(weK’, t)dt +yTe (53)

and therefore it follows from condition (a) and Lemma 3 that V() — oo as 1 | 0. Also, it
is easily verified that condition (a) of Theorem 4 implies i(y, t) > —k(1+ y*~1/%) for some
k > 0, so that {(53) gives
V() 2 —kT(1+ (9ef)F ) + yTe,
which shows that V() — 0o as ¥ T oc. O
Next, we recall that we have from (6) that 0 € A™* and that the probability measure Qg
with dQo/dP = &(T) is equivalent to P on (), F), so that we can use the term “almost

surely” unambiguously. Also, it follows from Girsanov's and Lévy’s theorems (Jacod and
Shiryaev (1987), Theorems I11.3.11 and I1.4.4) that the process

wo(t) = w(t) — ]Otng(f) dr

is a standard Brownian motion under }g.
Let M(Qo) denote the space of Qp-martingales on [0, T} and define the set

M(Qo, A) = {n € M(Qo) : 3 € T(4) s.t. n(") = n(0) + fo (a(t)*‘w(t))‘rdwo(t)},
where ¥(A) denote the set of adapted n-dimensional processes % such that

/Ot lo(7) ()P dr < 0 aus.

for all ¢ € [0,T) and )
P(t,w) e A (A x P)ae..

Letting M, {Qq, A) denote the set of nonnegative martingales in M(Qy, ;1), we have

Lemma B2. The set

H= {TI € M+(Qo, A) « |1l mgy) = 1}
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is convex and closed in M (Qo).

PROOF. Convexity follows immediately from the convexity of A. Suppose that {m}C H
and ||n, — Matio) == 0 as n T oo for some n € M{(Qp). Then clearly I7lirti00) = 1 and
7(t) > 0 for all ¢ (since 7(T) is also the a.s. limit of a subsequence of {n(T)}). By the
martingale representation theorem (Jacod and Shiryaev (1987), Theorem 111.4.33),

t
n(t) =1+ /0 (o(r) ™ (7)) dug(r)

for some 9 € ¥(R™), and we are only left to show that Y(t,w) e A (A x P)-ae..

We will show below that the set of martingales 7 € H with l7T))l L=(Qe) < 0C is dense
in H. We can therefore assume without loss of generality that each n, is (essentially)
bounded. Fix an arbitrary process P € ¥(A), and for each integer k define the stopping
time

Tp = T/‘\inf{t €[0,T]:nt) >k or !/Otp(T)TJ(T) dwo(T)' > k}.

By Ité’s lemma

(¢85 [ ote) (e ot = [ s o) o
# (o 0000 010501t + L e an

Since the stochastic integrals in the previous expression are (Jo-martingales, we have

2 [ o etnar] = 5 feany J ooty )]
= i%IOIéEQO[’r]n(t/\Tk)-/OtATkp(T)TO'(T)dwO(T)} < 0,

where the second equality follows from the fact that 7, (¢) — n(t}in LY Qo) for all £ (0, 7]
and the dominated convergence theorem, while the mequality follows from the fact that
T € M(Qq, A), p ¥(A), and another application of Ité’s lemma (using the fact that
each 7, is bounded). Since p € ¥(A) was arbitrary, the above implies the existence of a set
E C{0,T) x O having full (A x P) measure such that

Pt w) <0, V(t,w)ER, z€ A.

By Theorem 14.1 in Rockafellar (1970}, this implies ¥ € W(A). Therefore, n € H and H is
closed.

Finally, we prove our previous claim that the set {5 ¢ H . (73T || L®(Q). < o0} is dense
inH. Let n € H be arbitrary and define the stopping times 7,, = TAinf {tef0,7): 7t) > n}
and the sequence {7, } with () = n{t A 7). It is immediate to see that n, € H for all n
and ”nn(T)HLuo(Qo) < n. Moreover 1,(T) — 7(T) a.s. as n T 0o because 7 T T as.. Since
{m(T)} = {n{7)} is uniformiy integrable, it follows from the mean convergence theorem
that ln,(T) - n(T)HLl(QO) — 0, and hence 5, — p in M(Qo). 0
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Qur interest in the set H is motivated by the following result.

Lemma B3. We have
{&iven}={enneH, nt)>0ve T}

PROOF. First, note that for v € N* we have £,(t) = &(t)n,(¢), where

t

(@) = exp( [ (o) (0 du(r) = § [Uor) win) + 2eotr) Muir)) ).

Clearly, ,(t) > 0 for all t € [0, T). Also, since £, is a martingale under P, 7, is a martingale
under @ (Jacod and Shiryaev (1987}, Proposition II1.3.8), and hence |, (T")|| L1(Q0) =
7,(0) = 1. By Itd’s lemma

WO = 1+ [ el ) dutr) — [ o) um) ol dr
= 14 [ o)) dun(r)

for all ¢t € [0, T). Taking ¥ = n,v and using the fact that v € A, 5, > 0 and A4 is a cone, it
is then immediate to see that ¢ € ¥(A), and hence n, € H.

Conversely, suppose that 7 € H and n(t) > 0 for t € [0, T). Then there exists a 9 € ¥(A)
such that

() = 1+ [ (o) p(o) dun(r) = 1+ [ (o) 600y dwtr)— [ (o(r) b)) mo(r)dr

Setting v = 1 /n € N, it then follows by It6’s lemma that

Eo(tyn(t) = exp( [D k(7" du(r) — : fo 15 (7)2 dr).

Also, since 77 is a Qp-martingale on [0, T, £o7 is a P-martingale on [0, T]. Therefore, v € N'*
(by Proposition 2). O

For a fixed but arbitrary ¢ € (0, 00}, define the functional jw(fi) : Hw— RU {00} by
- T T
Jyln) = E[ Ji ﬁ(¢3(t)—1§0(t)n(t),t Jat+v [ BOoOn(®u(e) d + ol
= B[ [Co (4O om(0,) de +b [ B (030 de]

where () = y(t) + %2 B(t), and consider the problem

f P**
inf Ju(n). (P™)
I, should be clear from the definition of J, and Lemma B3 that if the above infimum is
attained by some n* € H and n*(t) > 0 for all ¢t € [0, T), then there exists a v* € N'* such
that J(¢,v*) = inf,ep+ J(#,v). In fact, the following lemma shows that the requirement
that n*(¢) > 0 for all t € [0, T) is always satisfied under our assumptions.
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Lemma B4. Under conditions (a) and (c) of Theorem 4, if n* solves (P**), then () >0
for all t € [0,T).

PROOF. Suppose n* € H solves (P**). Then jw(’?*) < 00 by condition {¢) in Theorem 4.
Also, letting 7 = T' A inf{t € [0,7] : n*(t) = 0}, it follows by Lemma II1.3.6 in Jacod and
Shiryaev (1987) that n* = 0 a.s. on [7,T]. Since a(0+,f) = u(00,t) = 0o by condition (a),
this implies + > 7. ]

We next remark some Properties of the functional jw that will be useful in the sequel.

Lemma B5. Under assumption (a) of Theorem 4, f,p is (i} strictly convex and (ii} lower
semicontinuous: for every n € H and {nn} C H with ||n, — M rm(@o) — 0, we have

lim inf Jy(na) > Jy(n).
ntoo

PROOF. Strict convexity is immediate by the strict convexity of 4. Suppose that jw is not
lower semicontinuous. Then there isaneH and {n,} C H with i — 1| M(Qo) — 0 such
that

Jp(Me) < Jyn) for all n. (54)

On the other hand, since Tn = 1 in M(Qo), n.(t) — n(t) in LYQg) for all ¢ € [0, T7.
Therefore, 7, — 5 in L'(A x Qo) (where A denotes the Lebesgue measure on [0,77)), and
hence there exists a subsequence {7, } such that Ty — N (A X P)ae.. Also, by (2) and
condition (a) of Theorem 4, there exists a constant & > 0 such that

(5B ) 60(t)n, (5, 8) + 0B () 6o t), (B)3i(t))~

S Xut) = B(Lt @e gt (1)),

We will show below that the family {X,, } is (A x P)-uniformly integrable. Therefore, it
follows from Fatou’s lemma for random variables uniformly integrable from below that

lim inf J, > Jy(n).
iminf Jy (M) 2 Jy ()
This contradicts (54) and thus establishes the lower semicontinuity of Jy.

Finally, to prove our claim that the family {Xn, }is (A x P)-uniformly integrable, we
need to show that

lim sup f | X, (£, )] (A x P) — 0,
K100 k J|Xa,|>K

To this extent, it is clearly enough to show that for alle > 0 we can finda K > 0 such that

f‘ o mEDIAX P S for al k.
X"k >K

Fix ¢ > 0. Since the function k(1 + y(b‘l)/b)/y —0asy — 0, we can find a Ye > 0 such
that k(1 + y(b‘l)/b) < w—e;f’;-q—,y for all y > . Letting K = k(1 + yéb_i)/b), we then have

j!.Xnka | Xn, (t,w)d(A x P) = ‘[DEKTEOﬁnk>ye fc(l + (weK’"fO(t)ﬂnk(t))_;—) d(A x P)

&
= TRT Joryen VO G0t @ (tw)dA x P) = &, 0
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The following lemma, which uses the theory of conjugate duality in Rockafellar (1974,
1975), is the critical step in establishing that the infimum in (P**) is attained.

Lemma B6. Under conditions (a)-(c) of Theorem 4, the sets

{'r]eH: jd,(?]) Sa}

are weakly compact in M(Qq) for all a € IR.1?

ProoF. Let A* denote the measure on [0,T] equal to the Lebesgue measure on [0, T)
plus a point mass at T, let v = X* x Qo, and consider the spaces L1(Q x [0,7], 0, v) and
L2 (Qx [0,T], O, v) of integrable and essentially bounded optional processes, respectively.!?
Then H C L'(v). We will take the norm topology on L'(v) and the L'-Mackey topology
on L*(v}, so that they become paired spaces in the sense of Rockafellar (1974, p. 13).14
Let f: 2% [0,7] x R — R U {oc} be defined by

—Eg(t,w)_lu(g(t, w) — ¢‘1B(t,w)x,t), ift<T, z<yB{tw) gt w)
fltw,z) =< g, ift="T,|z| <1
20, otherwise

and let f*(t,w, 2} = sup,cplrz — f(t,w, z)] denote the convex conjugate of f. It is then
immediately verified that

fo(t,w)‘lﬁ(wB(t,w)“lao(t,w)z,t) +¥B(t,w) t2g(t,w), ift<T, 220
f*(t,w,z)z |z|, ift=T
o0, otherwise,

so that the integral functional s« : L'{v) — R U {oc} defined by
It-(n) = / it w,n(t,w)) dv
Qx[0,T]

equals j¢, + 1 on H. Define the integral functional Iy : L°(v) — R U {oc} similarly.

Since I¢(0) < oo (because § is bounded below away from zero) and there exists by
assumption an n € H such that Iy.(n) = j,p(n) +1 < o0, it follows from Theorem 3C and
Corollary 3D in Rockafellar (1975) that /; is lower semicontinuous in the L!-weak topology
on L*™{v), and that I7 = Iy« on LY(v), where I7 denotes the convex conjugate of I;.

Next, we intend to show that I is bounded above on a neighborhood of (). By assumption
{b) of Theorem 4, there exists an £ > 0 such that §/B = y/B + Wy/T > ¢, (A x P)-ae.
(and hence (A x Qp)-a.e.), and without loss of generality we can assume that 1c < 1. Let

o= — /[)Tu(%e_m,t) dt < oo,

ZA set Ho C M{Qo) is weakly compact if the set {#(T) : n € Hy} is compact in the weak topology
induced by L>°(Qg) on L'{Qy).

*3The optional sigma-field 7 is the sigma-field on {0,T) generated by the adapted right-continuous pro-
cesses. An optional process is a process measurable with respect to 0.

*The L'-Mackey topology on L°°{v) is the finest locally convex topelogy such that the dual space of
L>®(v) is L' (v).
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where K, is the constant of (2), and consider the level set C={ze L*W): If(z) < a}.
Clearly, it is enough to show that 0 ¢ int(C). First, note that ¢ Is convex and Ll—weakly
closed by the convexity and weak lower semicontinuity of | #» and hence closed in the [l
Mackey topology (since this topology is finer than the Ll weak topology). Moreover, it is
immediately verified that {z € L®(v) : [ FRIS ¥e/2} C C, and hence 0 € core(C).15
Since L'(v) is weakly complete (Dunford and Schwarts (1988), Theorem IV.8.6), L>(y
with the L'-Mackey topology is a “barrelled space” (Schaefer (1986), Theoremn IV.5.5), and
hence int(C) = core(C') (Rockafellar (1974), p. 31). Therefore, 0 € int(C).

Since If is bounded above on int(C'), it follows by Theorem 10(b} in Rockafeliar (1974)
that the level sets

{n€L'@): 11-(m) < a)

are weakly compact for all ¢ ¢ R, and hence weakly sequentially compact (Dunford and
Schwartz (1988)-henceforth DS—Theorem V.6.1).1% Clearly, this implies that the sets

{nGH:If.(n)Sa}={n€H:jw(n)_<_a—l}

are weakly sequentially compact in M(Qy). Finally, since the latter sets are convex and
closed in M (@o) by Lemmas B2 and BS5, they are weakly closed (DS, Theorem V.3.13),
and hence weakly compact (DS, Theorem V.6.1). O

We now easily obtain the following result.

Lemma B7. Under conditions (a)~(c) of Theorem 4, the infimum in (P**) is attained by
some n* € H.

PROOF. Let {5,} C H be a sequence such that

Jolm) Lo = inf Jy(n)

and consider the level sets {ne H: ij (n) < jw(nn)}. By the previous lemma, these sets
are weakly compact. Since a nest of nonempty compact sets hag honempty intersection,
it follows that the set {ne H: f¢(n) < a}is nonempty, and hence that the infimum is
attained, ]

PROOF OF THEOREM 4. Let n* € H attain the infimum in (£**) (such a n* exists by
Lemma B7). Then () >0foralite [0,T) by Lemma B4 and hence &on* = &, for some
v* € A”* by Lemma B3, By the definition of j,j, and Lemma B3 again, we conclude that
J(t, v*) = inf,c pre J(1,v). Since ¥ € (0, 00) was arbitrary, it follows from Lemma B1 that
(P*) has a solution,

BIfCisa subset of a vector space X, then
core(C) = {ye C:VYre X, 3> 04, ¥+ 6x ¢ C for |6) SE}.

15A subset A of a topological vector Space X is weakly sequentially compact if every sequence {z,} C A
contains a subsequence which converges weakly to a point in X.
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Finally, we show that (32) is satisfled. Taking ¢ = f(y,t), condition (d) of Theorem 4
gives
yf(y,t) S a+ (1-bju(f(y, 1), t).

Subtracting (1 — b)yf(y,t) from both members and recalling the definition of @ shows that
1-b

wmﬂs§+ 5wy t)-
Therefore,
T a 1-0 T
EUO (O T (0, ) ] < g+ E/O (- (8), £) dt| < oo,

where the last inequality follows from the fact that |J(y*,v*)| < oc and y/B is bounded. O
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