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On the Predictability of Stock Returns:
An Asset-Allocation Perspective

Abstract

Sample evidence about the predictability of monthly stock returns is considered from the
perspective of an investor allocating funds between stocks and cash. A regression of stock
returns on a set of predictive variables might seem weak when described by usual statistical
measures, but such measures can fail to convey the economic significance of the sample
evidence when it is used by a risk-averse Bayesian investor to update prior beliefs about
the regression relation and to compute an optimal asset allocation. Even when those prior
beliefs are weighted substantially against predictability, the current values of the predictive

variables can exert a strong influence on the portfolio decision.



1. Introduction

Investors 4n the stock market are interested in predicting future stock returns, and the
academic literature offers numerous empirical investigations of stock-return predictability.
Many of these investigations report the results of estimating linear time-series regressions of
stock returns on one or more predictive variables, and considerable effort has been devoted to
assessing the strength and reliability of this regression evidence from a statistical perspective.
Given that the regression coefficients are estimated with error, confronting the investor with
what is commonly termed “estimation risk,” to what extent might the regression evidence

influence a rational, risk-averse investor’s portfolio decision?

Consider an investor who, on December 31, 1993, must allocate funds between the value-
weighted portfolio of the New York Stock Exchange (NYSE) and one-month Treasury bills.
Suppose that this investor is given the results of running the following regression using
monthly data from January 1927 through December 1993,

Tt = m:ﬁ—lb + &, (1)

where r; is the continuously compounded NYSE return in month ¢, in excess of the continu-
ously compounded T-bill rate for that month, and z,_; is a vector of “predictive” variables
that are observed at the end of month ¢ — 1. The investor is provided with the OLS estimate
3, the regression’s R?, and any other desired statistics, including those often published in the
academic literature. Now suppose that the investor is also given the most recent vector of
the predictive variables, 7, where December 1993 is denoted as month 7. To what extent
will the investor’s asset allocation decision depend on z4? The average excess return for the
entire 804-month sample period is 49 basis points (bp). Suppose that the fitted regression
prediction for the excess return in January 1994, ;c’Tb, is equal to —30 bp. If the investor
would allocate about 75% to stocks if z/.b were equal to the average excess return of 49 bp,
how much less will the investor allocate to stocks when zfb is actually 79 bp lower than that
long-run average? How much does the investor value the ability to allocate less than 75% to

stocks in this case?

Answers to these questions could provide a metric by which to assess the economic sig-
nificance of the regression evidence on stock-return predictability. This study explores such
questions from the perspective of a Bayesian investor who uses the sample evidence to update
prior beliefs about the regression parameters. The investor then uses these revised beliefs
to compute the optimal asset allocation. Qur analytical framework, although simplified in

a number of respects, proves tractable in addressing the questions posed above and, we
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suggest, illustrates the potential insights offered by this type of approach.

We find that characterizations of sample evidence based on standard statistical measures
need not convey the economic significance of that evidence. Suppose, for example, that
the unadjusted sample R-squared for the regression in (1) is equal to R? = 0.02, which is
fairly typical of values reported in studies using monthly data beginning in 1927.' Based
on the standard F' statistic, an R* = 0.02 implies a small p-value for the hypothesis that
the true slope coefficients are jointly zero, provided that the number of regressors is small,
say three or four. Of course, if the small set of reported regressors 1s selected from a much
larger number of regressors, say 100, then R? = 0.02 implies a larger p-value computed
with appropriate recognition of the size of the larger set.? In the worst case, albeit unlikely,
the R? in the regression on all 100 variables might still be only 0.02, in which case the p-
value based on the standard F statistic with 100 regressors would be nearly 1. Even in that
extreme scenario, however, the sample evidence can exert an influence on the investor’s asset-
allocation decision. In fact, returning to the questions posed in the numerical example above,
we find that a log-utility investor with vague prior beliefs about the parameters in that 100-
variable regression would, after updating those beliefs using the regression evidence, allocate
only 35% to stocks with 3:}33 equal to —30 bp, whereas the same investor would indeed
allocate about 75% to stocks if a:}b were instead equal to the long-run average of 49 bp.
The ability to allocate 356% instead of 75% is worth about 15 bp to that investor, valued in
terms of differences in a certainty-equivalent monthly return. If that investor’s prior beliefs
are, instead of being vague, weighted against predictability to a degree equivalent to having
observed a century of prior data in which the sample R-squared is ezactly zero, then that
investor would still allocate about 30% less to stocks when the fitted value is -30 bp instead
of the long-run average 49 bp, and the ability to do so would still be worth about 4 bp to
the investor.

The paper proceeds as follows. Before turning to the Bayesian regression framework used
to obtain the type of results cited above, we first outline the basic principles of the conditional
Bayesian decision approach that we employ, and we highlight some differences between this
approach and others. Much of this discussion, contained in section 2, is organized around
an example of the asset-allocation decision within a simple two-state, two-outcome setting.
Section 3 then gives the details of our analysis of the asset-allocation problem within the

regression setting. Although the specification we adopt omits some potentially important

1For example, Campbell (1991) reports R? = 0.024 in a regression of the continuously compounded real
return to the value-weighted NYSE on the lagged return, the dividend-price ratio, and the one-month T-bill
rate minus its past twelve-month average.

2See Foster and Smith (1994).



features of the data, such as heteroskadasticity, which might be interesting to include in
future efforts, we find that using this fairly standard Bayesian regression model allows us
to analyze the asset-allocation decision for a wide variety of sample characteristics and
regression outcomes. In particular, we are able to compare the economic significance of
the regression evidence with standard characterizations of the evidence based on regression
statistics, and we find that the contrast is often a sharp one. Section 4 concludes the paper

and suggests directions for future research.

2. Analyzing the Asset-Allocation Decision: General Approach
2.1. The Investor’s Allocation Decision

We consider a risk-averse investor with a one-month investment horizon who must allocate
funds between stocks and riskless cash. Let w denote the fraction of the investor’s portfolio
allocated to stocks, where 0 < w < 1. For an allocation of w in stocks at the end of month
T, the investor’s wealth at the end of month T+ 1 is

Wrir = Wrlwexp{rry + v} + (1 — w)exp{izyi}], (2)

where Wy is the investor’s wealth at the end of month 7', 274, is the continuously com-
pounded riskless rate on cash for month T' 4 1, observed at the end of month 7', and r7, is
the stock’s continuously compounded return in month 7"+ 1 in excess of i741. The investor

chooses w so as to maximize the expected value of the utility function

W4 for A>0and A# 1.
— 1-A
v(W) = { In W for A =1, (3)

The parameter A in the iso-elastic utility function in (3) is comumonly referred to as the
investor’s coefficient of relative risk aversion. We entertain three values of A—one, two,
and five-which produce a wide range of optimal asset allocations in the results reported
later. We wish to stress, however, that our analysis does not address issues of market
equilibrium, and the investor in this asset-allocation setting should not necessarily be viewed

as a representative investor.

Let ®r denote the data set observed by the investor through the end of month T, and let

p(ryy1|®r) denote the density of ry; conditional on ®7. The investor is assumed to solve

max /U(WT+1)p(rT+1 |®7)drrya. (4)

0<w<1



Given the form of the utility function in (3), the solution for w does not depend on the value

of Wy, which we simply set to 1.0.

In assessing the conditional distribution of rr4q, the investor follows principles of condi-
tional Bayesian analysis.® In deriving p(rr4;|®7), known in this Bayesian framework as the
predictive probability density function (pdf), the investor updates beliefs about a vector of
parameters § € ©, where f is assumed to be random. After observing the data, the investor’s

beliefs about # are summarized by the posterior pdf of #, which can be written as*

p(8]| @) o< p(8)p(2116), (5)

where p(®r|f) is the pdf for the observations given the parameters, known also as the
likelihood function of 8, and p(@) denotes the prior pdf for #. The prior pdf represents the
investor’s knowledge about the parameter vector 8 before observing the sample information.
Since it is impossible to specify one prior that would be appropriate for all investors, in
this study we consider a number of prior distributions, including noninformative as well
as informative priors.® To obtain the predictive pdf for rryy, the posterior in (5) is first

multiplied by p(rr4118, 1) the likelthood function for the future observation, to obtain
p(rr+1,6|®1) = p(rr4dld, @1) - p(0|@7). (6)
Integration of this joint density in (6) with respect to 8 then gives the desired predictive pdf,

prraal@r) = | prris,8100)d0 = [ p(rraald, 02) - p(0]07)d0, (1)
which does not depend on 4.

The expected-utility maximization in (4) is a version of the general Bayesian one-period
control problem.® Beginning with Klein and Bawa (1976), a number of studies have computed
optimal portfolios in a one-period conditional Bayesian framework where the investor uses a
model (likelihood function) in which returns are assumed to be identically and independently
distributed (i.i.d.).” This study analyzes a portfolio decision where the investor instead uses

a model in which returns can possess predictability.

3This conditional Bayesian decision approach is discussed further in subsection 2.3.. See also Berger
(1985).

*See Zellner, 1971, p. 14.

®For a review of noninformative and informative priors see, for example, Judge et al. (1985).

5See Zellner (1971, pp. 320-327).

"See also Brown (1979), Jobson, Korkie, and Ratti (1979), Jobson and Korkie (1980), Jorion (1985, 1986,
1991), and Frost and Savarino (1986). Another approach is explored by Grauer and Hakansson (1992), who
maximize expected utility using a historical series of returns as the possible outcomes in a discrete predictive
distribution, where each historical outcome is mean-adjusted using a Bayesian estimator of expected returns.
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2.2. Economic Significance of Stock-Return Predictability: A Simple Example

In this subsection, we use a simple example to illustrate the manner in which the results of
the asset-allocation decision can reveal the economic significance of sample evidence about
return predictability. This example is also used in the next subsection in a discussion of the
differences between the conditional Bayesian decision approach and other approaches often

used to characterize the sample evidence.

Consider an investor with logarithmic utility (A = 1). Assume that the riskless rate is
zero and that the simple rate of return on the stock in any month £, R, is either 40% or
—40%. In addition to past stock returns, the investor’s sample contains realizations of a
random state variable, s,_y. We label the two possible realizations of this state variable as
si_1 = 1 (“state 17) and s;_; = 2 (“state 2”). The parameter vector is given by 8 = (64, 65),
where §; is the probability that, conditional on observing s;,_; = ¢ at the beginning of month
t, the subsequently observed stock return in month ¢ will be 40%. The investor assumes
that 8, and 6, are constant over time. The state variable s;_; is assumed to be identically
and independently distributed over time, independent of past returns, and drawn from a

binomial distribution whose parameter is independent of the ;’s.

The investor’s prior joint distribution assumes the parameters #; and #, are independent,

p(61,82) = p(8y) - p(6:), and the marginal prior distribution for each #; is given by

[6:(1 — 0"

p(8;) = Blaa) t=1, 2, (8)

where a > 1 and B(-) is the “Beta” function. The prior joint distribution for #; and 6,
implies a prior distribution for the difference (6, —#,), and the latter distribution reflects the
mvestor’s prior beliefs about the extent to which stock returns can be predicted using the
state variable. We consider three values of a for the prior distribution in (8): a = 1, a = 6,
and a = 21. When a = 1, the prior distribution for each of the 8;’s is the Bayes-Laplace
uniform prior on (0,1). As a increases, the prior distribution becomes more concentrated
around 0.5. The implied prior distributions of (6; — 8;), for the three values of a, are
numerically evaluated and displayed as dashed curves in Figure 1. The larger is a, the
more concentrated around zero is this prior distribution, and the more weighted against

predictability are the investor’s beliefs.

The investor’s data set @ consists of ¥z, a sample of T pairs of past realizations of the

state variable and the subsequent stock return, and sz, the state observed at the end of the



most recent month 7' ‘
O = {¥Ur, s7}. (9)

In our example, the sample W7 includes T" = 16 pairs with T; = 8 months for each state,

and this sample data can be represented by a 2 x 2 contingency table:

state 1 | state 2
R= 40% 6 4
R=-40% 2 4

Conditional on observing state 1 at the beginning of each of T; months, the probability
that the 40% stock return will be realized in M; of those months is given by the binomial
likelihood function,

P(Miw:';Ti) = ( ﬂi}i ) BiM.‘(l _ Gi)T,‘—M." 1= 1, 2. (10)

Combining the prior distribution in (8) with the likelihood function in (10) yields the

marginal posterior distribution for #;, a Beta distribution:®
9_M5+a—1(1 . 9_)T&-—Mg+a—1
95@ = 91' Mt‘,Ti = : : ,-:1, 2. 11

The investor’s posterior beliefs about the predictability of stock returns are reflected in the

implied posterior distributions for the difference (6, —62). These distributions are numerically
evaluated and displayed, for the three values of @, by the solid curves in Figure 1. All of
these posterior distributions center at positive values, but, the larger is a, the closer is the

posterior distribution of (8; — ;) to the prior distribution (which is centered at zero).

Conditional on observing state 7 at time T, the predictive distribution of the stock return
at time T'+ 1 is a binomial distribution, where 93- denotes the predictive probability that the
return will be 40%. To obtain éj, first recall that

p(Bri1 = 40%|07 = {¥r,s7 = 5},6;)} = 0;, (12)
and then substitute (12) into (7) to get
;= p(Rro = 40%|@r = (¥r,5r = j}) = [ p(Rrar = 40%|%1,8,) - p(6;11)db;
= /9;: - p(0;1 1) db;
(M; +a)

= T 12a) (13)

8Gee Zellner, 1971, p. 39



With the predictive distribution in (13), the investor’s optimization problem in (4) be-

comes
Jmax [051n(1 +0.4w;) + (1 — &) In(1 - 0.4wy)], (14)

and its solution is .
0 if (26;,-1)<0
26;—1

W = (_0:4—) it 0<(20;,—1) <04 (15)
1 if (26;,-1)>04.

The number of sample months where the 40% stock return follows state 2 is equal to
four, exactly half of the sample size for that state. Hence, the posterior distribution of 8,
is centered around 0.5, and 8, = 0.5 for all values of @ in the prior. Since the predictive
distribution of the stock return in this case is symmetric around zero, any risk-averse investor
will refrain from investing any money in stock when sz = 2. It can be verified easily from
(15) that w, =0 at 0, = 0.5. If sp = 1, however, then the predictive probability 4, is greater
than 0.5, and the optimal stock allocation w, is positive. These values are given below for

each value of a, in addition to the expected stock return
Rry1 = E{Rp|®7} = 0, - 40% + (1 — 6,) - (—10%), (16)
and the corresponding expected monthly return on the optimal portfolio,

Ep = RT+1. (17)

a| 6 |Rry| wi | R, |ACER
1 [0.70 [ 0.16 [ 1.00 | 0.16 | 0.0858
6 | 0.60 | 0.08 |0.50 | 0.04 | 0.0203
21 | 0.54 | 0.032 | 0.20 | 0.0064 | 0.0032

The values in the last column will be discussed later.

The above results demonstrate the potential economic significance of stock return pre-
dictability. Although the investor’s prior beliefs about the 8;’s are the same for the two states,
and although the sample contains only eight observations for each state, the investor’s opti-
mal portfolio differs significantly across the two states. For a prior with @ = 1, the sample
evidence leads the investor to choose a stock allocation of 100% if state 1 is observed but zero

if state 2 is observed. The stock allocation for state 1 is decreasing in @, but that allocation
is still 20% for a = 21.

Additional insight into the economic significance of the sample evidence on stock-return

predictability can be obtained by comparing the levels of the investor’s expected utility
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associated with optimal and suboptimal asset allocations. For a given state sy = 7, we
compare the investor’s certainty equivalent return (CER) for the optimal allocation to the
investor’s CER for a suboptimal allocation, where the latter allocation would have been
optimal had a different state 7 # j occurred.® The CER for both allocations is computed
under the same pdf, the predictive pdf for sy = j. Suppose we make this comparison,
for example, when state 1 is observed. We then compare the optimal allocation w; to
a suboptimal allocation of zero in stock (the optimal allocation if state 2 is observed).
The difference between the CER of the optimal allocation and the CER of the suboptimal
allocation is given above as ACER for each of the three values of @. This measure ranges
from 8.58% when a = 1 to 0.32% when a = 21. In all three cases, however, ACER is more
than half of the expected return on the optimal portfolio, providing an illustration of the

potential economic significance of sample evidence on stock-return predictability.

2.3. Economic Significance, Statistics, and Conditional Bayesian Decisions

- In academic research, empirical evidence about the predictability of stock returns is often
evaluated in terms of standard test statistics.!® In general, these test statistics are defined
with respect to the point null hypothesis that returns are unpredictable, and the strength
of the empirical evidence is often assessed by examining a test’s p-value. Some readers of
a published study might wish to make a formal accept/reject decision about a hypothesis,
but we suggest that the p-value is probably more often interpreted as a continuous measure

of the strength or reliability of the evidence.!*

Similarly, in our analysis, the investor’s
allocation decision does not involve accepting or rejecting a specific hypothesis or, more
generally, selecting a model from a set of possible models. The investor’s problem is to select
a portfolio, not a model. Moreover, we doubt that our approach would be very helpful to a
researcher whose goal is hypothesis testing or model selection, whether from a Bayesian or

frequentist perspective. Rather, our objective, as stated earlier, is simply to use the asset-

?A CER is interpreted as the monthly rate of return on wealth that, if earned with ceriainty, would
provide the investor with utility equal to the expected utility © for the given allocation. In general, the CER
is obtained by solving the equation

v(Wr(1 + CER)) =7,

where v is the utility function in (3). In the current example with the logarithmic utility function, the CER
is given by )
CER =¢" — 1.

10For a recent review of the literature on stock-return predictability, see Kaul (1995).

UReporting the p-value as a flexible measure of the evidence, as opposed to rejecting or accepting a null
versus an alternative, is generally associated with the views of R.A. Fisher, in contrast to the views of
Neyman and Pearson generally associated with the accept/reject decision. See Fisher (1973).
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allocation decision as a metric by which to assess the economic importance of the empirical
evidence on predictability, and we find that such an assessment often contrasts with those

based on p-values or other standard statistical measures.

Although interpretations of p-values no doubt differ across readers, with some readers
attaching more importance than others to reported p-values of, say 1%, we also suggest
that p-values of 30% or more, if published, would probably not be taken seriously by many
readers as evidence of stock-return predictability. The potential contrast between such a p-
value and an outcome of a conditional Bayesian asset-allocation decision is easily illustrated
in the context of the simple example presented above. Fisher’s exact test for the 2 x 2
contingency table is used to construct a p-value associated with the null hypothesis of no
predictability, §; = 8,.'2 This test is based on the conditional distribution of M; (the number
of periods with a 40% return following state 1) given the two-way table’s row and column
sums. A one-tailed p-value is computed as the probability of getting M; > 6, which equals
0.304 in the previous example. The typical interpretation of such a p-value contrasts sharply
with the economic significance of stock-return predictability as reflected in the investor’s

asset allocation decisions.

Another example of a contrast between a p-value and the economic significance of sample
evidence can be constructed using results reported by Brown (1979), who examines asset-
allocation n an i.1.d. setting. In a stocks-versus-cash allocation decision, Brown compares
wp, the optimal stock allocation chosen by a Bayesian investor with noninformative prior
beliefs, to we, the allocation that would be optimal if sample estimates were simply treated
as true parameters. For example, if the Sharpe ratio of stocks computed using a sample of 16
monthly (simple) returns is 0.2, Brown reports that wg/w, = 0.82.7% Although Brown does
not examine measures of statistical significance, it is easily seen that, with a sample Sharpe
ratio of 0.2 and 16 observations, the ¢-statistic for the hypothesis of a zero expected excess
stock return is equal to /16 - (0.2) = 0.8, and the one-sided p-value is 0.22. This p-value
contrasts sharply with the economic significance of the unconditional equity premium as
reflected in the investor’s asset allocation decision. That is, even though the sample evidence
for a non-zero unconditional equity premium seems weak, when judged by the p-value, the
investor, rather than allocating his entire portfolio to cash, chooses a stock allocation equal

to 82% of the allocation that would be chosen if the true Sharpe ratio were known to be 0.2.

In computing optimal asset allocations and comparing certainty equivalent returns, we

12Gee Kendall and Stuart (1979).
13This result obtains with both the quadratic and negative exponential preferences considered by Brown.
The Sharpe ratio is defined as the ratio of expected excess return to the standard deviation of the return.



compute expected utility with respect to the Bayesian investor’s predictive pdf. Thus, ex-
pected utility is as perceived by the investor, conditional on the observed data ®r, and the
relative desirability and optimality of an allocation is judged based on that conditional ex-
pected utility. Given the investor’s prior beliefs, the optimal allocation w is determined by
the data, and we can denote such a dependence as w(®7). Intentionally omitted from our in-
vestor’s asset-allocation decision, however, is a consideration of the “typical performance” of
w(®r) when applied to data sets other than the one observed. The performance in repeated
samples of the decision rule w(®7), where ®7 is viewed as random, invokes the frequentist
concept of “risk.” The risk function of a decision rule, defined on the parameter space ©,
is equal to the expected utility (or loss) with respect to the joint probability distribution of

&7 and rpyq, as determined by a given value of 6.

The frequentist risk function is often used to compare the performance of decision rules,
or to compare models that give rise to different rules. For some values of #, such as when 8,
and @5 in the previous example are sufficiently close to each other, an asset-allocation decision
rule based on an i.i.d. model, wherein the investor ignores the predictive state variable and
simply pools the returns data, might have lower frequentist risk than the decision rule in
(15) based on the two-state model. For other values of 8, where #; and 6, are sufficiently
far apart, the two-state decision rule might have lower frequentist risk. Of course, neither
we nor the investor know the true value of 8.'* More importantly, though, we suggest
that the typical investor making the asset-allocation decision observes a given sample of
returns and will probably not observe another non-overlapping sample of a similar size in
his or her lifetime. In other words, although performance in repeated samples might be
relevant for decision rules in other applications, perhaps even some in finance, it is difficult
to motivate such a consideration for the stocks-versus-cash asset-allocation decision. Thus,
we suggest that the conditional Bayesian approach is more relevant to our investigation of
the economic significance of the empirical evidence in a given sample. The next section

applies this approach using a linear regression model.

A previous application of the conditional Bayesian decision approach to investigating
the economic significance of empirical evidence is provided by McCulloch and Rossi (1990),
who use such a framework to assess the empirical evidence regarding departures from the
Arbitrage Pricing Theory (APT) of Ross (1976). They compare an investor’s certainty
equivalent for a portfolio that is optimal under beliefs that the APT holds exactly to the

Integrating the risk function over a prior pdf for § gives the Bayes risk of the decision rule, which can
often provide a link between conditional Bayesian decisions and frequentist-based decision rules (subject
to existence and regularity conditions). See Berger (1983) for extensive discussions and comparisons of
frequentist and Bayesian decision principles.
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certainty equivalent for a portfolio that is optimal under beliefs that allow for departures
from the exact pricing relation. In each case, the optimal portfolio and certainty equivalent
are computed with respect to the investor’s predictive pdf, conditional on the given sample.®
As in this study, the performance of a portfolio decision rule in repeated samples (frequentist

risk) is not addressed.

3. Asset Allocation Based on Regression Evidence

3.1. The Conditional Distribution of the Stock Return

The continuously compounded excess stock return r; is the dependent variable in the regres-
sion

re=ay b+ e, (18)

where zj_; = (1 y;_1), and the N x 1 vector y;., contains N “predictive” variables that are
observed at the end of month ¢ — 1. The disturbances ¢, t = 1,2,...,7T, are assumed to
be independent mean-zero draws from a normal distribution with variance ¢2. Although we
assume E{¢;|z;_1} = 0, the vector y;_; is in general stochastic, and some elements of 3,_; can
be correlated with past disturbances.’® Such correlation obviously arises when y,_; contains
lagged values of r¢, but it is likely to arise more generally for many variables commonly used
to predict stock returns. For example, numerous previous studies specify y;_; to include
the dividend yield at the end of month ¢ — 1, which is likely to be negatively correlated
with the unexpected return in that month, €_,.!" Thus, the regression in (18) departs
somewhat from the standard Bayesian regression framework, in which y,_ is assumed to be
either nonstochastic or stochastic but distributed independently of the disturbances with a

distribution involving neither b nor &,.18

Our approach to allowing for the stochastic properties of the regressors is to assume that
ry is the first element of y; and then to model y; as a first-order vector autoregression (VAR).

That is, we assume

yi =B+, (19)

15Qur approach differs from that of McCulloch and Rossi in one key respect. We compute certainty equiv-
alents for two alternative portfolio allocations using one common predictive pdf, rather than two predictive
pdf’s arising from different models (prior beliefs).

1See Stambaugh (1986) and Nelson and Kim (1993) for treatments of this problem in a frequentist setting.

1"The first study to investigate the ability of dividend yields to predict stock returns is, to our knowledge,
Rozeff (1984). Later studies include Fama and French (1988} and Goetzmann and Jorion {1994),

18See, for example, page 59 of Zellner (1971).
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where B is a (N + 1) X N matrix of regression coeflicients whose first column is b, and
u, is an N-vector of disturbances whose first element is ;. Such a VAR representation
was proposed previously by Kandel and Stambaugh (1987) to model the predictability of
stock returns.!® We assume that the vectors u;, ¢t = 1,...,7, are independent mean-zero
draws from a multivariate normal distribution with a covariance matrix equal to ¥. The T

observations for this VAR are represented in the matrix notation,

Y=XB+U, (20)
where )
¥ 1w u:::l
] 1 ! u
y=|" ], x=|. ¥ | adv=| 7| (21)
v 1 v, up

The joint probability density function for the elements of U is given by
1
p(U[E) o |B}~T/2 exp[—§trU'UE-1}, (22)

where “tr” denotes the trace operator. Following an approach common to many Bayesian
time-series models, our analysis takes the initial observation y as effectively nonstochastic.?
In other words, we essentially assume that the investor’s prior beliefs about the model’s
parameters do not depend on yp, even though the investor’s information set ® includes
both the ‘pre-sample” observation yg as well as the “sample” observations yy,...,yr. (Note
that, other than yo and a vector of ones, X simply contains the first T — 1 rows of Y.) A

change of variables from U to Y gives the likelihood function,
p(V1B, %, z0) o |S|-T/2 exp[—%tr(}" _ XBY(Y — XB)Z], (23)
since the Jacobian of the transformation from U to Y is equal to unity.?!

The following sample statistics for the above model are useful in the subsequent analysis:

1 T
__ 1 - 24
= L5 -7y, (25)
T t=1

19Gee also Campbell {(1991) and Hodrick (1992).

20Gee, for example, Hamilton (1994, p. 358).

MDefine the TN x 1 vectors @t = vec(!/) and § = vec(Y’), where vec( ) creates a column vector by stacking
the (transposed) rows of the matrix. It is then easily verified that the Jacobian of the transformation from
U/ to Y equals unity, since the TN x TN matrix 04'/0¥ is lower triangular with all diagonal elements equal
to unity.
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g = ,:—F— pard ¥e (26)
. 17Tl
Xy = T (y: — 9)ye — 7Y, (27)
t=0
b= (XX) Xy = | " “;'g } (28)
Rz—l—(y_X,}i(f_Xb), (29)

and y is the first column of Y.

The remaining assurnption necessary in obtaining the conditional distribution of the stock
return is the specification of the investor’s prior beliefs about the model’s parameter values.
We consider two alternative specifications. In the first, we assume that the investor’s beliefs

are given by the “diffuse” prior,
p(B, B o |B| 7+, (30)

which is intended to represent vague or noninformative prior beliefs about the parameters.?
With this prior distribution and the likelihood function in (23), the predictive pdf is easily
obtained from known results (see Appendix). The predictive pdf for »741, which is given by

a Student t distribution, can then be written in terms of y7 and the above sample statistics:

_ T{v+1)/2] 1L\ 1N (regs — 2] 70
reealen) = i (mmr) [ 2 2
where
ur = E{rep|®7} = 7 + Fyr — 7), (32)
03 = var{rrs1|®r} = T——%(l — R?) [1 + %(1 + Q)] a7, (33)
¢=(yr — 95 (yr — 7), and (34)
v=T-—-2N. (35)

In the second specification of the investor’s prior beliefs, we construct the prior distribu-

tion as a posterior distribution for the parameter values that would result from combining

22This prior specification for B and ¥ can be found, for example, in Zellner (1971, chapter 8), who
discusses its foundations in the invariance theory due to Jeffreys (1961). As Zellner also discusses, one result
often obtained using such priors is that confidence regions for parameter values obtained from the posterior
distribution correspond closely to frequentist confidence regions for parameter estimators.
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the diffuse prior in (30) with a hypothetical “prior” sample of size T in which the sample
R-squared is ezactly equal to zero. Except for this extreme no-predictability feature, the hy-
pothetical prior sample is assumed to be otherwise similar to the actual sample, in that the
prior sample is assumed to produce the same values as the actual sample for the statistics
corresponding to 7, 62, §, and 3,.2 With this “no-predictability” informative prior, the
predictive pdf for rr41 is, by basic principles of Bayesian analysis, the same as that obtained
using the diffuse prior and a sample of size T* = T 4 Tp that combines the actual sample
with the hypothetical prior sample. Thus, the predictive pdf is in precisely the same form as
(31), where g1, % and v, although redefined, are still written in terms of yr and the same
sample statistics in (24) through (27):

pr = E{rrys|®r} =7+ (;;) yr — ¥, (36)

0% = var{rr;.|®r} = oo ;;V ey [ (‘;—1") } [1 + %(1 + Q)] G7s (37)
v=T*—2N. (38)

Note that, since 7 and fly are assumed to be the same in the actual and hypothetical samples,
gis still defined as in (34). In all of the calculations reported below, we set Ty = 1200 months.
In other words, the informative prior distribution is equivalent to having observed 100 years

of data in which the estimated regression slopes on all predictive variables are equal to zero.

The predictive variance 0%, in both (33) and (37), incorporates uncertainty about param-
eter values, i.e., estimation risk.2* Suppose that we hold constant the values of the sample
statistics in (24) through (29). Given the number of predictive variables, IV, and their most
recent values, yr, the predictive variance o2 approaches (1 — R?)57 as T becomes large. In
a finite sample, the positive difference between ¢% and that limiting value reflects the pres-
ence of estimation risk. Uncertainty about the parameters also results in a positive relation
between o2 and the distance of g7 from the sample mean §, as measured by ¢. Finally, note
that, given T and yr, the predictive variance is increasing in IV, due to the presence of the
term —2(N 4 1) in the denominator of both (33) and (37). This effect is analogous to that

in the standard frequentist setting for a multiple regression with V41 regressors (including

23Using statistics from the actual sample to supply some of the parameters for the prior distribution can
be termed “empirical Bayes,” at least under the broad interpretation of that classification. See, for example,
Maritz and Lwin (1989, p. 14).

24A number of previous studies investigate the economic significance of stock-return predictability by
examining the performance of asset-allocation strategies constructed by essentially treating sample parameter
estimates as true values. See, for example, Breen, Glosten, and Jagannathan (1989), Solnik (1993), and Lo
and MacKinlay (1995).

14



the intercept), where the unbiased estimate of the residual variance is obtained by dividing
the sum of the squared fitted residuals by T' —~ N — 1.

3.2. Computing Optimal Asset Allocations

The predictive pdf in (31) is the conditional distribution used in computing expected utility,
E{v(Wr4,){®r}. To our knowledge, the present study is the first to report calculations
of optimal portfolio allocations in a non-i.i.d. setting using a regression-based predictive
pdf. Such a calculation was proposed much earlier, however. Zellner and Chetty (1965)
suggest using a regression-based predictive pdf to compute investment portfolio weights that
maximize expected utility, although they do not specify a utility function or perform such
calculations.?®> We discuss in this subsection a number of issues related to computing the

optimal asset allocations.

" Given the Student ¢ form for the conditional distribution p{(rry1|®r), the integration
in (4) extends from to —oo to co. As noted earlier, we restrict attention in this study
to asset allocations that do not involve short selling either the risky or riskless asset, i.e.,
the stock allocation w obeys 0 < w < 1. When A > 1, expected utility is equal to —co
when w = 1, although the optimal w can be very close 1. We simply restrict w < .99
throughout. The maximization problem is solved numerically, since we are unaware of an
exact analytic solution. 27 In virtually all cases, however, the optimal allocation to stocks is

well approximated by
o, 1
Ack 247

25In fact, Zellner and Chetty specify a multivariate regression model whose parameters are given a diffuse
prior identical to (30). In their framework, however, all regressors are assumed to be nonstochastic, and
the N equations in the multivariate regression result from the consideration of NV assets. In our single-asset
framework, the &V equations reflect the use of N stochastic regressors.

When w < 1, wealth is bounded above zero, so that utility, and thus expected utility, are bounded from
below. When w = 1, wealth can be arbitrarily close to zero, so that utility is unbounded from below. In
that case, the lower tail of the predictive pdf does not shrink rapidly enough as utility approaches —co, and
this property essentially reflects the leptokurtosis of the Student ¢ distribution. The integral exists in the
limit as T — oo, in which case the predictive Student ¢t pdf converges to its limiting normal distribution.
In a similar vein, although the moments of the simple rate of return Rry1 = exp(rr4+1) do not enter our
analysis, the conditional mean and variance of Rryy do not exist when T' is finite, which follows from a
similar observation about the moment-generating function of the Student ¢ distribution, as noted in Kendall
and Stuart (1977, p. 63). The nonexistence of certain integrals under the Student ¢ distribution enters more
directly in earlier studies that use simple returns. Brown (1979), for example, encounters the nonexistence
of expected utility for any nonzero allocation to stocks when utility is specified as negative exponential, so
he defines expected utility in that case using a normal approximation to the Student ¢ predictive pdf.

2TThe numerical solution is obtained using Brent’s method with parabolic interpolation for the maximiza-
tion and an adaptive recursive Newton-Cotes eight-panel rule to evaluate the integral. See Brent (1973),
Forsythe, Malcolm, and Moler (1977), and Press et. al. (1986).

W=

(39)
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subject to the {0, 1] bounds. Equation (39) gives the exact solution when the investor rebal-
ances continuously, the instantaneous interest rate is a constant ¢y, and the continuously
compounded stock return over the discrete period from T to T+ 1 has mean yr + ir4q,
variance o2, and is an infinitely divisible normal random variable.® If (39) is rewritten

slightly as _
ar — 741
Ack

where ar = pur + 20% + i741, the expected instantaneous rate of return on the stock, then

W=

(40)

(v 1s seen as a familiar mean-variance result.

As will be discussed in a later subsection, we analyze optimal asset allocations for a
variety of samples that differ with respect to sample size (T'), number of predictive variables
(N), and the regression R?. The remaining sample quantities required to construct the
predictive pdf are 7, &,, tr4; (the riskless interest rate for month 7' 4 1), B’(yT —y), and
q = (yr—y) fl; Y{yr—7). Thefirst three quantities, 7, &, and 1741, are held constant across all
samples. We set ¥ = 0.49% and &, = 5.60%, the sample estimates for the 804-month period
from January 1927 through December 1993 using the continuously compounded monthly
return on the value-weighted portfolio of the New York Stock Exchange in excess of the
continuously compounded one-month T-bill rate, and we set 1741 = 0.235%, the continuously

compounded monthly yield on the Treasury bill with 27 days to maturity as of 12/31/93.%°

In each sample considered, we wish to investigate the behavior of the optimal stock
allocation w over a range of values for the vector of predictive variables, yr, holding constant
the other characteristics of the sample. The value of yr enters g, as will be discussed below,
but the key role for yz is in determining the one-step-ahead fitted value from the regression,
F 4+ B’(yT — §). The difference between this fitted regression value and the sample average
return can be stated in units of the fitted values’ sample standard deviation. The series
of in-sample fitted regression values, ¥ + B'(yt — ), t =0,...,T — 1, has sample standard
deviation equal to v R?d,. Thus, if the fitted value of ry,; based on ¥z is § sample standard

deviations of the fitted values away from the overall sample mean, 7, then
Byr — §) = VR, (41)

As explained above, we specify 6% and R? for each sample, so a fitted value based on yr

28 A random variable is “infinitely divisible” if, for all n, the random variable can be expressed as a sum of
n independent and identically distributed random variables. See Ingersoll (1987, chapter 12). The derivation
of (39) is a straightforward application of results contained in Merton (1969), and an expression equivalent
to (39) also arises as a solution to a special case of the dynamic consumption-investment problem analyzed
in that study.

29The stock returns and T-bill rates are obtained from the CRSP files.
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is determined simply by specifying, in addition, a value for §. For each sample considered,
we compute the optimal allocation w for five realizations of & -1.0, -0.5, 0, 0.5, and 1.0.
An alternative approach would be to consider a fixed range of values for the fitted excess
return, say # plus or minus 100 basis points. but this approach gives a range of fitted values
that is too modest when R? is high and too extreme when R? is low. With R? = (.15, for
example, the in-sample standard deviation of the fitted values is 217 basis points, so a fitted
value for r74; might easily lie well outside the 100-basis-point range. On the other hand,
when R? = 0.002, the standard deviation of the fitted values is only 25 basis points, so it
would be quite unlikely that a fitted value would differ from £ by as much 100 basis points.
The samples we consider in the subsequent analysis include a broad range of R? values,
so calibrating a range for the current values of the predictive variables using ¢ produces a

plausible set of one-step-ahead fitted predictions that might arise from a given regression.

The quantity ¢ = (yr —g)’f:; 1(yr—7) summarizes the “standardized” differences between
the current values of the predictive variables and their sample means. We consider samples
where the number of observations (7') and the number of predictive variables (N} cover a
wide range. Since our analyses of these various cases do not employ actual data, our aim is
to specify a reasonable value of ¢ for a given combination of T' and N. If N =1, then ¢ is
determined uniquely by the deviation of the fitted one-step-ahead regression prediction from
the overall mean. Specifically, if N = 1 then g = &%, where § is defined as in (41). For NV > 2,
however, this simple correspondence between g and the fitted regression prediction no longer
exists. In general, for a given value of é, ¢ has a lower bound of 6% but no upper bound. We
consider only samples in which N > 2, so we simply specify, for a given T" and NV, a value of ¢
that is constant across different realizations of yz. If ¢ is held constant across realizations of
yr, then a larger value of ¢ produces smaller differences between optimal stock allocations at
different one-step-ahead fitted regression predictions. This effect can be seen most easily by
noting that o2 appears in the denominator of @ in (39), and 0% is increasing in ¢ (equation
(33) or (37)). Given this study‘s orientation, we wish to be conservative in representing the
differences in optimal allocations arising from different realizations of the fitted regression
prediction, so we wish to select a value for ¢ from the high end of its plausible range. The
sampling distribution for ¢ depends on the degree of serial dependence in the elements of
y:, with positive serial dependence leading to larger values for 9.3 Here again we follow a

conservative approach. For each T and N, we take g as the 99th percentile of 2 Monte Carlo

30This statement is based on our Monte Carlo evidence. If yg,y1,...,yr are serially independent draws
from a multivariate normal distribution, then (7' — N)/(N(T + 1)) ¢ is distributed as Fyr_y. See, for
example, chapters 5 and 7 of Anderson {1984). We are unaware of an analytic finite-sample result in the
presence of serial dependence.
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distribution for 5000 samples generated with each element of y; following an AR(1) process

with normal disturbances and autocorrelation coefficient equal to 0.99.3!

3.3. Results with T = 804 and N =100

Table 1 reports optimal asset allocations in samples with T' = 804 observations and N =
100 predictive variables. As noted in the introduction, although this number of predictive
variables is implausibly large by many standards, we analyze this case in order to provide
some perspective on the impact of potential data-mining concerns. Results are presented
under four different outcomes for the unadjusted sample R? (0.02, 0.06, 0.12, and 0.18),
and these R? values produce a wide range of p-values, shown in the second column. This
p-value is the probability of observing a sample with an R? greater than the value in the first

column when the true population R-squared is zero, computed using the result that, under

that hypothesis, '
T—-N-1 R?
F‘( N )(1—32) (42)

is distributed (central) F with N and T'— N — 1 degrees of freedom.®

With 100 predictive variables, obtaining an R? of only 0.02 is very unlikely, even if
returns are truly unpredictable, so the p-value in that case is nearly 1.0. (Of course, if
the F-statistic is computed using instead a small value for N, then an R* of 0.02 produces
a very small p-value.) We begin with R* = 0.02 because, as noted in the introduction,
a number of studies using data beginning in 1927 report an R? of about that magnitude
when regressing a monthly stock return on the lagged return and only a few other predictive
variables. If the small set of predictive variables is obtained by “mining” a much larger set
of 100 variables, then the sample R? produced by the larger set must, by construction, be at
least 0.02 and would most likely be considerably larger. (Recall that R*, defined in (29), is
the unadjusted R-squared.) Thus, we suggest that the asset allocations reported for N = 100
when R? = 0.02 provide a conservative “worst-case” characterization of the importance of
the reported regression evidence to a Bayesian investor who includes all 100 variables in the

regression model.

When R? = 0.02, the fitted regression values’ sample standard deviation, v R2?5,, 15 79

31We generate 1 with a zero mean vector and a scalar variance-covariance matrix, but this is without loss
of generality, since ¢ is invariant up to nonsingular linear transformations of y;.

32Gee, for example, Judge et al. (1985). This distributional result relies on the standard regression-
model assumptions and generally does not hold, for example, in the presence of lagged stochastic regressors
entertained by the regression framework used here.
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basis points per month, so the one-step-ahead fitted regression prediction for rri, ranges
from -30 basis points to 128 basis points as § ranges from -1 to 1 (recall equation (41)). As
reported in table 1, an investor with relative risk aversion (A) equal to 2 and diffuse prior
beliefs would choose a stock allocation of 18% at § = —1, whereas that same investor would
allocate 56% to stocks when é = 1, a threefold increase. If that investor’s prior beliefs are
given instead by the no-predictability informative prior, those allocations range from 35% to
70%. With the informative prior, the percentage allocations change slightly less in absolute
magnitude across values of §, but the stock allocations are higher in general. The latter
effect is due to the lower variance of the predictive distribution, 0%, that occurs with the
informative prior. In general, however, we see that even when the investor relies on a model
containing 100 possible predictive variables and the sample R? of that regression is only
0.02, the optimal asset allocation depends strongly on the current values of the predictive

variables.

The sensitivity of the optimal asset allocation to the current values of the predictive
variables provides a metric by which to characterize the economic significance of the sample
regression evidence. That is, the sample evidence is translated into implications about ac-
tions. Additional insight into the investor’s perceived importance of these actions is provided
by a related metric, introduced in the previous section, that compares expected utilities asso-
ciated with optimal and suboptimal allocations. Let wy denote the optimal allocation chosen
by the investor when § = 0. When § # 0, we compare the investor’s expected utility for the
portfolio formed using the optimal allocation wy, which is then suboptimal, to the investor’s
expected utility for the portfolio formed using the allocation w. The expected utilities for
both portfolios are computed under the same predictive pdf, i.e., based on the same given

value for §, and each expected utility is converted to a certainty equivalent return (CER).

For each of the four nonzero values of &, table 1 reports the “comparison of certainty
equivalents,” which is the CER for the portfolio formed using the optimal w minus the CER
for the portfolio formed using wy. In the case where B? = 0.02, A = 2, and the prior is
diffuse, for example, we see from table 1 that, when § = 1, the optimal allocation of 56% to
stocks produces a CER that is 7.7 basis points (per month) higher than an allocation of 37%
to stocks, the optimal allocation for § = 0. With the informative no-predictability prior,
again when 8 = 1, the CER for the optimal 70% stock allocation is 2.8 basis points higher
than the CER for a 52% allocation, the optimal allocation for § = 0.

In addition to the cases discussed above, in which A = 2 and R?® = 0.02, Table 1 also

reports results for investors with other coefficients of relative risk aversion (A =1 and A = 5)
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and for regressions with larger R? values. In general, as might be anticipated, higher risk
aversion is associated with lower stock allocations, less sensitivity of the optimal allocations
to the current value of the predictive variables, and smaller values for the comparisons of
certainty equivalents. The higher R? values provide some insight into the contrast between a
standard statistical characterization of the regression evidence and the economic significance
of the evidence, as characterized by the asset-allocation results. A further investigation of

this contrast is pursued in the next subsection.

As noted earlier, RZ = 0.02 is an unlikely sample outcome with 100 predictive variables.
Even if returns are truly unpredictable, a more typical outcome in that case is B = 0.12, as
indicated by the p-value of 0.595. With that higher but still “insignificant” value for R?, the
asset-allocation results are quite strong even under the informative no-predictability prior.
The A = 2 investor then invests only 9% in stocks at é = —1 but invests 96% in stocks at
& = 1, and the certainty-equivalent comparisons for both allocations are approximately 17
basis points. Recall that, following (41), with a given range for §, a higher R? leads to a
wider range for the one-step-ahead fitted regression prediction for rry,. With R? = 0.12,
that fitted monthly excess return ranges from -145 basis points to 243 basis points as é ranges

from -1 to 1.

As discussed earlier, data mining is probably the principal motivation for considering
cases with large numbers of predictive variables. To consider only such cases, however,
would almost surely assign the data-mining issue undue weight in our overall investigation
of the role of sample regression evidence in asset allocation. Far from clear is the extent to
which published regression results reflect the outcome of data mining, as either a conscious
perpetration or, as more commonly suggested, an unintended outcome of conducting research
with some knowledge of the past successes and failures of other studies. Indeed, some of the
early studies offer theoretical motivations, such as the argument by Keim and Stambaugh
(1986) that expected future returns should be positively related to current values of variables
that move inversely with levels of asset prices. In order to analyze more thoroughly the
potential role of regression evidence in the asset-allocation decision, the next subsection

considers a wide ranges for both the sample size (1) and the number of predictive variables

(N).

3.4. Economic Significance and Regression Statistics

The preceding analysis contains several illustrations of the potentially sharp contrast between

the economic significance of sample evidence and standard interpretations of statistical mea-
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sures commonly used to summarize that evidence. That contrast is investigated further in

this subsection.

We begin by selecting a set of (T, N) combinations designed to include both small and
large values for each quantity. Specifically, we let 7' = 7, 60, and 804, N = 2, 10, 25, 100,
and 200, and we consider all nine of the (7, N) combinations in which ¥ < T. In the VAR
framework, the lagged return always appears as one of the predictive variables, so when
N = 2 the predictive variables include the lagged return and one additional variable. We
include a sample size of T = 7 when N = 2 because it is the smallest sample for which
the predictive variance ¢% in (33) exists when the prior is diffuse. A five-year sample of
size " = 60 would no doubt be considered quite small for an empirical study. of stock-
return predictability, but we find that a sample of that size can still provide some interesting
contrasts between economic significance and various statistical measures. As noted earlier,
T = 804 is the number of months in the period from January 1927 through December 1993.

In the analysis here, rather than first specifying the statistical measures summarizing
a regression and then examining the implications of that regression evidence for asset al-
location, we proceed in the opposite direction. Since our ultimate interest centers on the
economic significance of the sample evidence, as characterized by the implications of that
evidence for the asset-allocation decision, we take a given degree of economic significance as
a starting point and then, for each (T, N) combination, we derive the statistical measures

for a sample that would produce that degree of economic significance.

The degree of economic significance is specified in terms of the sensitivity of the optimal
asset allocation w to the current values of the predictive variables. Specifically, we return to
the approximation in (39), which can be rewritten, using (36), (37), and (41), as

_[rtiod
W= |—=
Aol

] + 794, (43)

where

"Y:

T
LT ) ()
A A T

As defined earlier, T7* = T' 4 1, where Ty = 1200 with the informative no-predictability
prior and 7 = 0 with the diffuse prior. The first term on the right-hand side of (43) does
not depend on the current values of the predictive variables, yr.>®> Those values enter the

second term, where 7, which we interpret as the degree of economic significance, measures

*3Even though yr appears in ¢ in equation (34), recall from the previous discussion that we specify the
same (high) value for ¢ across different values of yr.
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the sensitivity of & to the current values of the predictive variables, summarized by § as
n (41). Specifically, v gives the (approximate) difference in optimal allocations when the
one-step-ahead fitted regression predictions differ by one sample standard deviation of the

fitted predictions (except when w is constrained by the [0, 1] bounds).

Once T' and N are specified, then R? is the only unknown quantity on the right-hand
side of (44). We specify a value for v and then solve (44) for R%. This R? value can be used,
along with T" and N, to compute an array of additional statistics that might be used either
in hypothesis testing and model selection or in more general descriptions of the strength
of the sample regression evidence. From this array we simply choose two that, in some
sense, illustrate the diversity of such statistics. The first is the p-value for the F statistic
n (42), the same statistic reported in table 1. The second statistic is based on the Schwarz
criterion. Schwarz (1978) develops this model-selection criterion in a large-sample setting,
but, as shown by Klein and Brown (1984}, the Schwarz criterion can also be used for model-
selection in a finite-sample Bayesian setting. Brown and Klein derive a posterior odds ratio
for the comparison of two models when the prior for the parameters in each model is intended
to be noninformative.* We use their result to construct the odds ratio that compares the
given regression model to a model in which returns are assumed to be i.i.d. Specifically,

In(07) = —% [Tln(1 - B2) - N1n (1), (45)
where O* gives the odds in favor of the regression model. That is, the odds ratio favors the
regression model if In (O*) > 0. The asset-allocation decision we analyze does not involve
model selection, as explained earlier, but we report In () here simply to broaden our choices

of statistics used in standard analyses of regression evidence.®

Table 2 reports results for v specified alternately as 20%, 30%, and 40%, and where the
investor has diffuse prior beliefs and relative risk aversion A = 2. As explained above, the
value of 7, combined with T" and N (columns 1 and 2), gives the B* (column 3) as well as
the p-value and In (O*) (columns 4 and 5). The K? is then used to compute the reported
allocations and certainty-equivalent comparisons by the numerical methods described earlier,
using the Student ¢ predictive pdf. The approximation in {39) is sufficiently accurate so that,
in most cases, the differences in allocations corresponding to unit differences in § are quite

close to v (except, of course, when the [0,1] range for w is binding).

*The model assumptions and noninformative prior specifications differ from those in the Bayesian frame-
work used here. :

35Statistics that can also be computed from 7', N, and R? include the adjusted R-squared, B2 = R? —
(T - 1)/(T - N - 1)](1 - R?), and statistics that compare the regression model to the i.i.d. model using
various other modei-selection criteria. See, for example, Sawa (1978) and Amemiya (1980) for discussions of
such criteria. B
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Civen the above discussion, the three values T, N, and R? jointly determine the statistical
measures as well as the asset-allocation results reported in a given row of table 2. This
functional dependence essentially implies that either the p-value or In (O*) could, in principle,
be used along with T and N to compute the asset-allocation results. As we see, though,
this mapping between the statistical measures and the asset-allocation results produces no
simple pattern in table 2. Most of the p-values are large—generally greater than 0.5 and
often nearly 1.0. Small p-values occur in cases where N is large relative 7', especially for the
higher values of 7, such as the cases (T' = 60, N = 25) and (T = 804, N = 200). All of
the values of In (O*) are negative, indicating that the odds ratio favors the i.i.d. model over
the regression model, and those values tend to become more extreme as N increases relative

to 7. For a given T and ~, the p-value is not monotonic in N, as demonstrated both when

T =60 and T' = 804.

It is interesting to compare the results when 7' = 7 to those of the simple two-state,
two-outcome example in the previous section, where the number of time-series observations
is also small (sixteen). The specifications of the models are quite different, but in both cases
a sample that produces a large p-value contains sufficient evidence of predictability to exert

a substantial influence on the asset-allocation decision.

Table 3 reports the same analysis as in table 2, except that the informative no-predictability
prior replaces the diffuse prior. The table omits all of the cases with T = 7 and some of the
cases with 7' = 60 when N = 10 or 25. In the omitted cases, the informative prior precludes
those effectively small samples from producing the given degree of economic significance (),
even with an outcome of R? = 1. With the larger values of T, however, it is still the case
that the given degree of economic significance is often accompanied by large p-values and
large negative values of In (O*). Note also that, as «y increases from 20% to 40%, the p-value
can decrease considerably. For example, in the case of (I' = 804, N = 2}, the p-value is
0.275 for v = 20% but 0.006 for v = 40%. In the case of (T' = 804, N = 200), in table 2
and table 3, the p-value goes from nearly 1.0 to 0.001 as  increases from 20% to 40%. As
in table 2, however, there appears to be no simple correspondence between the statistical

measures and the asset-allocation results.

4. Conclusions

We view this study as an initial attempt to assess the economic significance of empirical

evidence about stock-return predictability by examining an investor’s conditional Bayesian
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portfolio decision. The specific choices we make here in implementing this general approach,
such as the forms of the prior distribution and the likelihood function, are dictated in large
part by tractability. Extending the analysis to include richer specifications would be worth-
while, although probably not without computational challenges.

The research conducted here can also be extended along a number of other dimensions.
We confine our attention to a single stock portfolio, but additional risky assets could be
introduced into the allocation decision as well.®® A recent study by Lo and MacKinlay
(1995) uses a cross-section of assets to construct a portfolio that is “maximally predictable”
by a given set of predictive variables, and it would be interesting to investigate the desirability

of such a portfolio from the perspective of a Bayesian investor.

The regression framework we employ assumes that the regression disturbances are ho-
moskedastic. A number of studies have concluded, however, that stock returns exhibit con-
ditional heteroskedasticity [e.g., French, Schwert, and Stambaugh (1987)]. An interesting
extension of our framework would be to analyze the asset-allocation problem when condi-

tional heteroskedasticity is included in the regression model.

A number of possible extensions involve the length of the investment horizon. We es-
sentially assume that, given a current amount to be invested, the investor maximizes an
iso-elastic derived utility of wealth over the next month. We know, however, that in regres-
sions of stock returns on dividend yields and other predictive variables, the R-squared tends
to rise with the return horizon. This has been demonstrated empirically in long-horizon
regressions [e.g., Fama and French (1988)], it arises as an implication of the joint time-series
properties of the monthly return and dividend-yield series when estimated in a VAR [e.g.,
Kandel and Stambaugh (1987)}, and it arises as a theoretical implication in equilibrium mod-
els with time-varying moments of consumption growth {e.g., Kandel and Stambaugh (1991}].
It would be interesting to explore the role of the investment horizon in a buy-and-hold asset-
allocation problem. Such an investigation might reveal whether the differences in R-squared

values between short and long horizons are economically meaningful.

Related to the issue of the investment horizon is the role of dynamic rebalancing. One
might, for example, allow the portfolio to be rebalanced each month but assume that the
utility function in (3) applies instead to wealth realized at the end of twenty years. With

logarithmic utility, one of the preference specifications we consider, the solution to the one-

36The effects of estimation risk on asset allocation have been analyzed empirically for multiple risky assets
in an i.i.d. setting {e.g., Bawa, Brown, and Klein (1979}], but we are unaware of empirical studies that
extend the problem to consider predictable returns.
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month problem is still correct in such a setting. With other specifications of preferences,
however, the problem becomes more complicated. This type of problem has been investigated
empirically by Brennan, Schwartz, and Lagnado (1993), using a monthly approximation to
an analytic solution for continuous rebalancing, but they do not include estimation risk in
their analysis.’” Addressing the latter would require that each month the investor not only
incorporate a new observation of the predictive variables into the conditional mean but also
update his beliefs about all parameters of the predictive distribution. Of course, transaction

costs would present an additional challenge to any modeling effort with dynamic rebalancing.

#7Estimation risk in the case of continuous rebalancing has been addressed in a number of theoretical
studies. See, for example, Dothan and Feldman (1986), Gennotte (1986), Detemple (1986), Feldman (1989,
1992), and Karatzas and Xue (1991).

25



Appendix

Although the VAR model in (20) employs assumptions different from those in the tra-
ditional multivariate regression model (MVRM), the likelihood function in (23) is identical
to that obtained in the MVRM. Hence, we can simply follow the analysis of the MVRM
provided by Zellner (1971, pp. 233-236), who develops the predictive pdf using the same
diffuse prior as in (30). As Zellner shows, the predictive pdf for y7.; is in the multivariate
Student ¢ form,

p(yr41|®7) o 1+ 9(yr4 — 27B)S™ (g4 — 7 B)]"T-M12, (A.1)
where
zp=(1 g} ) (A.2)
B=(X'X)"'X', (A.3)
S=(Y-XBY(Y - XB), (A.4)
and
g=1- 2 (X'X + 2pal) 2y (A.5)

The predictive pdf in (A.1} can be rewritten as

yII (v + N /2] V|
(T(1/2))"T(v/2)

where V = gvS~! and v = T —~ 2N. The predictive distribution of r7,; (the first element of
YT+1) is a univariate Student ¢ (US ¢) pdf:®

T+ D2 g\ g e
prral®r) = 5 s (S—u) [1 + 5 (rria = ath) (AT

P(.TJT+1|‘I)T) = [V + (yir'+1 - x&'B)V(yé"ﬂ - :E%B)r]—(v%—N)ﬂ’ (A-6)

where Sy, the (1,1} element of S, is given by

A S

S1 = (y ~ Xb)'(y — Xb). (A.8)
Let
gv '
he 3V A9
S (A.9)

3See Zeliner (1971, page 387).
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and substitute (A.9) into (A.7) to get the form of the US ¢ pdf as in Zellner (1971), page
366,

v 1/2 —(v+1)/2
prralon) = ot B () 2| T, A
where
ET = E{TT+1|‘I’T} = xTB. (A.ll)

Substituting (A.2) and (28) into (A.11) yields (32). The second moment about the mean of
the US ¢ pdf is:

v

o

ok = var{rry;|®7} = (A.12)

Using (A.12), we obtain
h 1
e m. (A.13)
Substituting (A.11) and (A.13) into (A.10) yields (31). To obtain (33) we first rewrite (A.12)
using (A.9):
i

oF = : A.l4
T (v—2)yg (8-14)
Next, note that, since v =T — 2N,
v-2=T=2(N+1). (A.15)
Using (A.8) and the definition of R? in (29), we get
511 “—“T(].“RQ)O'E (A}.G)
To simplify the expression for g in {A.5), observe that®
1
=1-zp(X’ )z = . :
g rp(X'X + 2rep) 2y T o (0X) T2g (A.17)
Using (20), we get .
1 1 y'
(T) X'X = v (A.18)
7 (97 +35,)
Inverting (A.18) yields
1 1 + —Iﬁ—l = ....._'E“l
(X'X) = = ('Tj’ N ) . (A.19)
—E; y y

Using (A.17),(A.19), and (34), we obtain
1 1 n
phe L+ 2p(X'X) e =1+ T (1 + (yr — 927 (yr — ﬂ)) =14+ —=(1+9). (A.20)

Substituting (A.15), (A.16), and (A.20) into (A.14) yields (33).

|~

39See, for example, Zellner (1971, page 73).
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Figure 1. Prior and posterior distributions for (8, — 8,) . The plot displays, for
a=1,a =6, and a = 21, the prior distribution (dashed curve) and the posterior distribution
(solid curve) for the quantity (¢ — 62).
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Table 1

Optimal Stock Allocations and Comparisons of Certainty Equivalents
with 804 Observations and 100 Variables

Optimal Stock Comparison of Certainty
Allocation (percent) | Equivalents (basis pts.)
for § equal to for § equal to
R?* p-value A|-1 -05 0 05 1 -1 05 05 1.0
A. Diffuse prior
0.02 1000 135 55 74 93 99 154 39 3.9 135
006 1.000 115 40 75 99 991 479 12.0 109 275
012 0595 1[0 24 77 99 99| 944 257 17.2 39.2
0.18 0001 1760 9 79 99 991331 413 20.8 454
0.02 1.000 2|18 27 37 47 56| 1.9 1.9 19 7.9
0.06 1.000 2|2 20 37 55 73} 238 6.0 6.0 241
0.12 0595 210 12 38 65 91| 47.0 128 129 51.7
018 0001 2|0 5 39 74 99| 66.2 205 20.7 31.8
0.02 1000 5|7 11 15 19 22| 3.0 0.8 08 3.0
0.06 1000 5|1 8 15 22 29| 95 24 24 9.5
0.12 059 5|0 5 15 26 36| 187 51 5.1 203
018 0001 570 2 16 30 43| 264 82 82 329
B. No-predictability informative prior (100 years)

0.02 1000 1169 87 99 99 99| 4.0 0.7 0.0 0.1
006 1.000 1|43 74 99 99 99| 138 28 01 0.1
0.12 0595 1]18 61 99 99 991! 293 62 01 0.2
0.18 0001 170 52 99 99 99| 452 98 01 0.2
0.02 1.000 2|35 43 52 61 70| 2.3 0.7 07 238
0.06 1.000 222 37 52 68 83| 84 21 21 85
012 0595 219 31 53 75 96| 17.0 43 43 172
0.18 0001 2|0 26 53 8 99} 258 65 6.5 254
0.02 1.000 514 17 21 24 28§ 1.l 0.3 03 1.1
006 1.000 5|9 15 21 27 33| 34 08 08 34
012 059 5|4 12 21 30 39| 63 1.7 1.7 6.8
0.18 0001 5|0 10 21 32 43| 103 26 26 103

Optimal stock allocations and certainty equivalents are computed with respect to a Baysian investor’s predictive
pdf based on regression evidence in which the (unadjusted) sample R-squared is equal to R%. The fitted one-month-
ahead regression prediction of the excess stock return, rry1, 18 6 sample standard deviations of the fitted values away
from the sample average excess return 7. The investor’s relative risk aversion is equal to A. The “comparison of
certainty equivalents” gives the difference in certainty equivalent monthly returns between the optimal allocation and
the allocation that would have been chosen for § = 0. The p-value is computed for the hypothesis that the regression’s
slope coefficients are jointly equal to zero.
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Table 2

Samples Providing Given Degrees of Economic Significance for an Investor with
Diffuse Prior Beliefs and Relative Risk Aversion Equal to 2

Optimal Stock Comparison of Certainty
Allocation (percent) | Equivalents (basis pts.)
: for 6 equal to for é equal to
" N R* pwalue InO* [-1 05 0 05 1| -1 -05 05 1.0
v =20%

7 2 0.063 0.877 -1.72 |10 21 33 44 56 [16.3 4.2 4.1 16.6
60 2 0.001 0.968 -4.06 |57 67 77 87 97119 05 0.5 1.9
60 10 0.033 0998 -1945 |14 24 35 45 551102 26 2.6 103
60 25 0.618 0.016 -2229 | 7 17 27 37 471423 107 11.2 452
804 2 0.001 0.804 -6.47 |8 9 99 99 99 1.1 0.2 0.0 0.0
804 10 0.001 1.000 -33.02 |58 68 78 8 98| 1.8 0.5 0.5 1.8
804 25 0.002 1000 -8262 |40 50 60 70 80| 2.8 0.7 0.7 2.8
804 100 0.021 1.000 -325.84 |17 27 37 47 57| &1 20 20 8.2
804 200 0.129 1.000 -613.41 |10 20 30 40 50]199 50 50 201
v = 30%

7 2 0125 0.766 -148 2 16 33 51 67329 86 87 343
60 2 0.003 0.930 -4.02 |47 62 77T 92 99|42 1.1 1.1 3.9
60 10 0.070 0955 -1831 |5 20 35 50 665|220 55 55 223
60 25 0.725 0.000 -12.50 | 0 13 28 43 59684 17.4 18.3 73.6
804 2 0.001 0.613 -6.20 |70 85 99 99 99 2.7 0.6 0.0 0.0
804 10 0.002 0.997 -3248 |49 64 79 94 99| 41 1.0 1.0 3.7
804 25 0.006 1.000 -81.38 |30 45 60 75 90| 63 1.6 1.6 6.3
304 100 0.045 1060 -315.76 | 7 22 37 52 67 |17.8 45 45 18.0
804 200 0.228 0.834 -564.89 |0 15 30 45 611395 10.0 10.0 40.3
v = 40%

7 2 0.180 0.657 -1.21 10 11 34 57 76 |50.4 14.0 14.2 55.0
60 2 0.004 0.880 -3.96 |37 57 TT 98 93| 75 1.9 1.9 5.9
60 10 0.113 0.787 -16.89 [0 15 35 55 761368 94 94 379
60 25 0.785  0.000 507 |69 29 49 T01839 246 250 101.3
804 2 0.002 0.420 -5.82 |60 80 99 99 991 49 1.1 0.0 0.1
804 10 0.004 0970 -31.73 |39 59 79 99 99| 73 1.8 1.8 5.6
804 25 0.010 1.000 -79.66 [20 40 60 80 99 |11.1 28 28 11.1
804 100 0.076 1.000 -302.78 | 0 18 38 58 78305 7.7 7.7 310
804 200 0317 0.001 -51555| 0 1t 31 51 71589 15.6 157 63.6

Optimal stock allocations and certainty equivalents are compuied with respect to a Baysian investor’s predictive
pdf based on regression evidence with an (unadjusted) sample R-squared equal to R?, T observations, and N predictive
variables. The fitted one-month-ahead regression prediction of the excess stock return, rr+1, 1s & sample standard
deviations of the fitted values away from the sample average excess return 7. The value ¥, defined in equations (43)
and (44) and interpreted as the degree of economic significance, is the (approximate) difference in optimal allocations
corresponding to a unit difference in 8. For each T and N, we specify +, which then implies the remaining values in the
table. The “comparison of certainty equivalents” gives the difference in certainty equivalent monthly returns between
the optimal allocation and the allocation that would have been chosen for § = 0. The p-value is computed for the
hypothesis that the regression’s slope coefficients are jointly equal to zero, and O* is an odds ratio, defined in equation
(45) in the text, that compares the regression model to a model with no predictability.
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Table 3

Samples Providing Given Degrees of Economic Significance
for an Investor with Informative No-Predictability Prior Beliefs
and Relative Risk Aversion Equal to 2

Optimal Stock Comparison of Certainty
Allocation (percent) | Equivalents (basis pts.)
for 6 equal to for 6 equal to
T N R* pvalue InO* [-1 05 0 05 1| -1 -05 05 1.0
v = 20%

60 2 0231 0.001 3.77 |82 92 99 99 99| 1.0 0.2 0.0 0.0
60 10 0.333 0.018 -8.31 |69 79 89 99 99| 1.5 0.4 04 1.2
60 25 0.566 0.059 -26.10 |54 64 74 84 94| 20 0.5 0.5 2.0
804 2 0.003 0.275 -5.39 |8 92 99 99 69| 0.9 0.1 0.0 0.0
804 10 0.004 0968 -3169 |71 8 91 99 99|15 04 0.3 0.9
804 25 0.007 1.000 -80.80 |58 68 78 83 98| 1.9 0.5 0.5 1.9
804 100 0.026 1.000 -323.98 32 42 352 62 72| 36 0.9 09 3.6
804 200 0.087 1.000 -632.21}120 30 40 50 60} 6.6 1.7 1.7 6.7
~ = 30%
60 2 0518 0.000 17.80 (72 87 99 99 99| 24 0.5 0.0 0.0
60 10 0.748 0.000 2093 [59 74 89 99 99| 35 0.9 0.3 2.0
864 2 0.007 0.055 3.7 |72 87 99 99 99| 23 04 0.0 0.0
804 10 0.010 0645 -2950 |61 76 91 99 99| 34 09 06 1.5
804 25 0.015 0986 7747 |48 63 78 93 99| 42 1.0 1.0 3.8
804 100 0.057 1.000 -310.72 22 37 52 67 82{ 81 2.0 2.0 8.1
804 200 0.190 0998 -584.23 110 25 40 55 770|146 3.7 3.7 148
~ = 40%
60 2 0.919 0.000 71.36 |62 82 99 99 99| 44 0.9 0.0 0.1
804 2 0.013 0.006 -1.50 |62 82 99 99 99| 43 0.9 0.0 0.1
804 10 0.017 0175 -2641 |51 71 91 99 991 59 1.5 0.9 2.1
804 25 0.027 0.663 -72.66 |38 58 T8 98 99| 74 1.8 1.9 5.7
804 100 0.101 0.93¢ -291.85(12 32 5353 73 93[14.2 36 36 143
804 200 0.323 0.001 -512.0970 20 40 60 80|254 6.4 6.4 257

Optimal stock allocations and certainty equivalents are computed with respect to a Baysian investor’s predictive
pdf based on regression evidence with an (unadjusted) sample R-squared equal to R?, T observations, and N predictive
variables. The fitted one-month-ahead regression prediction of the excess stock return, rpy;, is § sample standard
deviations of the fitted values away from the sample average excess return #. The value v, defined in equations (43)
and (44} and interpreted as the degree of economic significance, is the (approximate) difference in optimal allocations
corresponding to a unit difference in §. For each 7" and N, we specify , which ther implies the remaining values in the
table. The “comparison of certainty equivalents” gives the difference in certainty equivalent monthly returns between
the optimal allocation and the allocation that would have been chosen for § = 0. The p-value is computed for the
hypothesis that the regression’s slope coefficients are jointly equal to zero, and O* is an odds ratio, defined in equation
(45) in the text, that compares the regression model to a model with no predictability. The no-predictability informative
prior is equivalent to a posterior that combines diffuse prior beliefs with a hypothetical 100-year sample in which all
estimated slopes are exactly zero.
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