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NUMERICAL EVALUATION OF THE
CRITICAL PRICE AND AMERICAN OPTIONS

Abstract

An approximate solution to the American put value is proposed and implemented
numerically. Relaxation techniques enable the critical price to be determined with
high accuracy. The method uses a modification of the quadratic approximation of
MacMillan and Barone-Adesi and Whaley which gives an expression for the critical
price. Numerical experimentation and iterative methods quickly provide highly

accurate solutions.
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1. Introduction

The valuation of American options has challenged financial economists for many
years. Mathematically the problem is related to optional stopping and free bound-
ary problems, situations which rarely have explicit, closed form solutions. Ear-
lier theoretical work on American options includes the articles by McKean (1965),
van Moerbeke (1976), Bensoussan (1984), and Karatzas (1988). Papers discussing
numerical solutions include Brennan and Schwartz (1977) and Jaillet, Lamberton
and Lapeyre (1990). In this paper we initially propose a solution to the American
put which is a modification of the approximations of MacMillan (1986) and Barone-
Adesi and Whaley (1987). The proposed solution is itself only an approximation
but relaxation techniques and numerical methods enable the critical price, or free
boundary, to be determined relatively quickly and to a high degree of accuracy.
This is the paper’s contribution. Knowledge of the critical price enables the option
values to be determined, as well as related hedging strategies. Related results for

bond options will be presented in a later article.

2. American Put Options

For discussions of the American put see the articles by Carr, Jarrow and Myneni
(1992), Jacka (1991) and Kim (1990). The usual assumptions and analysis lead to
the situation where, under an equivalent probability measure, the asset price is a

process described by the equation

dS = S(t)(bdt + odw(t)). (2.1)

Here b and o are constants and w(t) is a standard Brownian motion

on (2,F,P), 0<¢<t* where # is the expiration time. The value at time
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t <t* of the American put option is the Snell envelope

Va(S,t) = S Ele™ (X - 5(r)t19). (2.2)

Here we use the notation

-+

z =z if >0

={ otherwise,

Here S(t) is the asset price at time t, X s the strike price and the
supremum is taken over all stopping times r which take values in 2, t*].

Associated with V4 is the continuation region
Ci={(5t) : Va($,t) > (X - §)*}. (2.3)

Within the continuation region it is better not to exercise the put option immedi-
ately because it is possible, on average, to obtain a greater amount by exercising

the option at a later time. For a fixed # write

S*t)=sup{S: 5 ¢ C'}. (2.4)

Definition 2.1. $*(#) is the critical price.

It is shown in Jacka that if S > 5*(t) then (5,t) € C, while if
S <S5*(t) then (S,t) ¢ C.

Define the stopping time 7* for (S,t) e C by

7" = inf {s: S(s) < $*(s)} A t*. (2.5)
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Then 7* is the optimal stopping time, that is, it achieves the supremum in (2.2).

Va and S* are the unique solutions of the free boundary problem:

v V 1 ,.,0%V
=97 _ — 4= — = 2.
LV = — rV +8S oo+ 5 o%S 557 =0 (2.6)
V(5,t") = (X - 5)*, V{oo,t} =0,
* * & aV
V(S§*,7*) = (X - §*)*, 35 lgege = —1. (2.7)

Now, the European put can be exercised only at the expiration time #* and

has a value
Ve(S,t) = Ele™" =9 (X — s(t*))F|9]. (2.8)

Ve is a solution of the parabolic equation LV =0 and has a final boundary
condition Vig(S,t*) = (X — S(t*))*.
Write

di(S,t) = {¢n (%) +(b+ 92—)(15* — )} o tr —¢ (2.9)

and  dy(S,t) = di(S,t) — o VT =1 . N(-) will denote the standard normal

distribution. The Black-Scholes formula gives
VB(S,t) = Xe ™" ON( — dy(5,2)) - Se'IIN(—dy(S,0). (2.10)

Clearly the American put value is greater than the corresponding European

put value. The early exercise premium is

€(S,t) i=Va(S,¢) — Vg($,1). (2.11)
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It is shown in Jacka that, with S*(s) the critical price defined by
(2.4),

(S, t) = / i (rXe_’(*'“)N(—-hg)—(r-b)Se‘(’"‘b)("_‘)N(—hl))ds (2.12)

where hl={€n(s—§(7))+(b+%i)(s——t)}/a\/s—t and hy =h;i~o+s—7.

The boundary conditions (2.7) imply
Ve(S™,t) +e(5*,t) = X — §* (2.13)

Vg

3}
(—63*_)S=S" + (52,)5:5. = —1. (2.14)

3. An approximation for the Early Exercise Premium

Equations (2.5) and (2.6) provide an integral equation for $*(t) which could
be solved backwards in time from #*. This procedure is, however, exceptionally
involved with the value § *(t) being given in terms of an integral involving all
later values $*(s), t < s <t*. We initially suggest instead an approximate form
for ¢(S,t), namely:

E(S,t) = A(t) (5,{%)9“). (3.1)

Here A(t) and g(t) arefunctionsof ¢ and areto be determined. Substituting

€ for e in(2.6) and (2.7) we require

VE(S*(t),1)) + A(t) = X — §*(t) (3.2)
~1= 0N (_ 41(57(), 1)) + %ﬂ%ﬂ : (3.3)



However, we would also like L& =0, that is

57720 (4(t) — 1) (0 S,S(t))“" A0 S,,(t))*’“’

+ AN (g5 LU 2 (g 5*(15))“”) =0. (34
Now
W6 dS*(t) A S wom
( (t)(.S'*(t) )q(t)) df;:) (S*(t ) ON dt(t)( (t,?(t)(S*(t)) B+ )

dg(t)
dt A (S*(t)

+ )Q(f)

2 (37 (35

Substituting (3.5) into (3.4) and dividing by A(t)(S_S('t))q(t) this would imply
1, 1 dA(t)  q(t) 4S*(t)
3 7 OO = 1) —r+bg(t) + [A(t) i 50 a )

dg(t)
) dt

+¢n ( (3.6)

s "‘(t)
This equation implies that ¢ is not independent of S, so e(S,t) is not

of the form (3.1). However, a useful approximation is obtained by neglecting the

last term of (3.6). That is, we consider g(t) to be a solution of

1 dA(t)  q(t) dS*(2)

%a%(t)(q(t) —1) —r+bg+ G ~a - 5w @ =0 67

This approximation is reasonable when /n ( S_S( ) dqm is small. This is the case

when %;1 is small, (at long maturities) or in a neighborhood of $*(2).

From (3.2) we see

dA(t) | ey . dS*(t)  OVE(S*(t),t)
_&T‘[e(b YE=-ON(_dy(S (t),1)) — 1] prans 5 .
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Using (3.3)

1 dA() _ g(t) dS*(t) 1 aVe(S*(t),¢)
A(t) dt  SHt) dt T AQ) ot '
Wiite g(t) = 2 BVE(-::(t),t),
2r 2b 2¢(t)

so that (3.7) becomes

q()® + (N — Lg(t) — (M + G(t)) = 0.

(3.8)

(3.9)

(3.10)

To satisfy the boundary conditions at infinity for puts we consider the qua-

dratic root

o) =5 (1= N~ I=NF 00 T 00

4. Numerical Experimentation

(3.11)

By attempting to find an expression for the early exercise premium of the form

(S, 1) = A(t) (-S—:S('T)) q(t), and by dropping the last term of (3.6), we have obtained

three equations, (3.2), (3.3) and (3.10), in the three unknowns: A(), q(2), S*(¢).

Write these in the form

(X = VB (5*(%)))g(2)

S*(t) = ~1+q(t) + e(b—"')(t"'t)N( - dl(S*(t)st))

Alt) = -Ve($"(t)) - $*(t) + X

q(8)* + (N = 1)q(t) ~ (M + G(¥)) = 0.
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For a fixed value of ¢ these equations can be solved using the following procedure:

1) give a trial value of S*(¢)

2) calculate the new A(t) from (4.2)
3) calculate the new ¢(¢) from (4.3)
4) calculate the new S*(¢) from (4.1).

Using the new value for § *(t) the procedure is repeated, generating at the nth

iteration values (S*(),, A(£)n, q(t)n). If for some n
I15*(B)n = ™ (a1l + 14t} — At | + Ja(t)n — g(t)ns| < 10~

the procedure stops and  §*(),,, A(t)n,q(t)n are taken to be the values of S*(t), A(2), q(t).
(Originally the procedure was stopped when the difference was less than 10—% , but

the increased accuracy of the final result was negligible. An error message was to

be printed if the cut-off criterion was not met after 10* iterations.) Once the
iteration is stopped for some value of ¢ the procedure begins at the next time

value. The investigation was empirical. The variation between iterations quickly
became small.

This procedure, therefore, provides us with values of S*(t), 0 <t < ¢t*.
These, however, can only be approximate values because they are calculated using
the approximation E(S,t) for the early exercise premium.

As a measure of accuracy of the approximation the integral expression ( 2.IQ)for
5(5*(t),t) can be calculated and compared with the value of 'E"(S*(t),t) = A(?)
given by the iterative scheme. (All integrals were evaluated using Bode’s rule, cf,
Dahlquist and Bjorck ( 1974).) For the scheme described above e(S *(¢),t) was
not equal to  A(t), though the percentage error
(e(S*(t),8) — A(t))/A(t) was small, of the order of 2%. It was clear that, with
values of S*(t), A(t),q(t) determined by the iterative scheme, £(S,t) is only
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an approximate solution; the question was, how might this approximate solution
be improved? In the above development the final term of (3.6) was dropped; con-
sequently the function G(t) in the quadratic equation (3.9) is only an approx-
imation. Rather than adding a correction term a factor A\ was introduced, a

‘relaxation constant,’ so that (3.9) was replaced by

a(t)* + (N = 1)q(t) — (M + AG(t)) = 0. (4.4)

The iterative scheme, using steps 1) to 4), was then followed for equations (4.1),
(4.2) and (4.4) with different values of A € (1,2]. The value of A was chosen
so that e(S5*(t),t) = A(2).

b

Three cases were considered: r = by r = 3 and &=0. In each case o

varied in the range 0.2 to 0.4 and r from 0.04 to  0.20.

In the first case, when r =25\ was determined empirically by

A = 1.2952 + 4.3338 x 10™2M — 4.6591 x 10~2As2 +2.1452 x 10~ 4 A13.

Here again M = 2r/c%. It appeared that (e(5*(t), ) — A(t))JA(t) was ex-
tremely sensitive to changesin . The error dropped to well below 1% except
for very short times to expiration, for example when only 3 months remained ofab
year option. This was probably due to computational problems near t =0 rather
than problems in the method, because for short times, using the same A, finer

grids reduced the error.

In the second case, when b = 0, the following empirical formula for A\

gave good results:

A =1.2495 — (4.15)10" 2. (4.5)
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In the third case the formula chosen was:
A = 1.227 + 0.12066M — 4.2737 - 10722 1 5.453 - 103 M43, (4.6)

Taking A = 1 we found that S$*(t) crossed its asymptotic value. A
conjecture is that the correct value of A is the smallest value such that S*(t)
is indeed monotone.

We illustrate explictly the above procedures by considering two typical cases.
We first consider the case with o = .3, b=.08. Our approximating cubic polyno-
mial expression then yields ) = 1.3587. Figure 1 shows the plot of S* against
time for a period of 20 years. Observe that S* is monotonically decreasing to its
asymptotic value at t = oo. More detailed calculations are shown for the period
up to t =5 years in Table 1. The second column clearly shows once again the
monotonicity of S*. The third and fourth columns show the values of ¢ (de-
noted by E here) and A respectively. The last column shows the percentage
errorof (E—A)/A, and we note that for periods longer than 6 months, this error
1s less than 1%. Indeed for periods longer than 2 years, the percentage error is
less than one per thousand. Table 2 is similar to Table 1, except that now b= 0.0,
and A s calculated by the analytical formula suggested above. In this case the
percentage error of (e — A)/A are again smaller than 1%. The case b=r/2,
in Table 3, shows again very small errors.

We remark that the above calculations were performed on an IBM 320H RISC
workstation and typically required just a few minutes to complete. This shows that
our procedure may be carried out if access to relatively modest computing facilities

is ensured,

5. Conclusions

We proposed a new approximate solution to the American put value, and imple-
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mented this procedure numerically. Our approach involved the introduction of a new
(relaxation) parameter A in a modification of the approximations of MacMillan
and Barone-Adesi and Whaley. This parameter is chosen by requiring the addi-
tional condition €(S*(t),¢) = A(f) hold. We illustrated these ideas by explicitly
considering two typical situations, and found that the error of (¢ - A)/A was
considerably smaller than was the case for the case /\. = 1. We also found that
S* was montone in ¢, unlike the situation when A =1. Finally, rapid imple-

mentation of the calculations only required access to a work station.
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SIGMA =

LAMBD2 =

m.b;h.h.{\mwb)b_)r\)t\)[\)wl—)l—'l—’?—‘

TIME

.2500
.5000
.75G0
.0000
.2500
.5000
.7500
.0000
.2500
.5000
.7500
L0000
L2500
.5000
.7500
0000
L2500
.5000
.7500
L0000

.3000

1.

81.
77.
.3826
73.
72.
.7099

75

71

70.
.3032
69.
.2829
£8.
68.
68.
67.
67.
.3852

70

69

67

67.
.8705
.7889

66
&6

€6.

3587
S*

3583
€120

8§237
6448

S445
7561
8689
5033
17739
8862
6234

1685

£21¢

B

TABLE

= .0800 R=

E(T*) A{T*)

1.2791 1.2925
2.3972 2.4182
3.4310 3.4574
4.4257 4.4328
5.34498 5.3564
6.2209 6.2359
7.0588 7.0766
7.8818 7.8827
8.6531 8.6572
9,39554 9.4027
10.1118 10.1215
10.8198 16.6152
11.4867 11.4854
12.1317 12.1336
12.7555% 12.7608
12.3754 13.3683
13.9604 13.¢5¢8
14.5275 14 .5275
15.077%8 15.080¢
15.624% 15.681¢80

1

.0B800Q

VALUE

18.
22.
24 .
26.
27.
.2751

28

29.
2G.
30.
.7100

30

31.
31.
31.
3Z.
L3717

32

32.
32,
33.
33.
.3848

33

6283
3670
5909
1682
3438

0374
6960
2398

1212
5013
8234
i11s

6219
8350
02%6
2078



SIGMA =,
LAMBDA =
TIME
L2500
.5000
L7500
.000¢0
L2500
L5000
.7500
L0000
.2500
.5000
7500
.0000
L2500
.5000
7500
0000
L2500
.5000
L7500
0000

el e W N SN SR O TN [

SIGMA =
LAMBDA =
TIM=E
-2500
.5000
73060
-0000
L2500
-5000
.7500
L0000
L2500
-5000
L7500
L0000
-2500
.5000
L7500
-000¢
.2500
L5000
L7500
.0000

el S Y T N O TN =

-40p0

1
o

68.

62

59.
56.
55.
-8408
52.

53

51

49
45
48
43
438

47

73

68.

65,

63.
61.
60.
55.
589.
58.
57.
57.
56.
56.
56.
55.
55.
55.
35.
55.
54.

.232%

0897
.3248
0236
7810
1256

80351

9607,
51.
50.
50.
.6566
.2684
L9165
L6037
.3241
48.
47,
47.

2482
6423
1205

0729
8464

6213

.4545

TABLE 2

B = .0000 R =
E(T*}) A{T*)
.7738 .7764
1.7808 1.7851
2.8815 2.8563
3.9474 3.9521
5.0517 5.0558
6.1551 6.1582
7.2519 7.2539
8.3385 8.3391
9.4122 9.4116
10.4714 10.4695¢
11.5147 11.5117
12.5413 12.5373
13.550¢ 13.545¢
14.5420 14.5362
15.5152 15.5089
16.4701 16.4633
17.4065 17.3594
18.3244 18.3172
15.2238 19.2167
20.1048 20.0979

TABLE 3

B = L0600 R =

E(T*}) A(T™)
1.3277 1.3348
2.6388 2.6477
3.9131 3.9218
5.1494 5.15&69
6.3488 6.3544
7.5123 7.5156
8.6414 8.6423
2.7373 9.7359%
10.8012 10.7975
11.8343 11.8286
12.8377 12.8301
13.8123 13.8031
14.7591 14.748¢
15.8790 15.6674
16.572¢9 16.56058
17.4415 17.4286
18.285¢6 18.2725
19.1059 19.0928
19.9032 19.8904
20.6782 20.6659

L1200

VALUE

31

37.

40
43

44.
46.
47,
48.
.7524
.3595
.8825
L3375
-7366
-0892
.4026
.6827
51.
52.
52.
.5520

43
45
49
50
50
51
51
51

52

L8075
6708
L9716

-2144

8704
1561
1890
0392

9342
le0sg
3658

.1200

VALUE

26

31.
.5275

34

36.
.0285

38

39.
40,
.9147
41,
.132¢

40

42

42,
L0422
.4158
L7472

43
43
43

44,
.3080

44

44,
L7629
.9590

44
44

45,

.5371

5363

5357

1543
1358

5711

6180

0428

5468

1377

t(E-A) /A
-.3710
~.2415
-.1690
-.1180
-.0797
-.0500
-.0266
-.0082

.G062
0174
.0259
.0322
.036s8
.039¢
.0409
-0413
.0406
.0391
L0370
-0342

3(E-A) /A
-.5402
-.3386
-.224¢
-.1453
-.0876
-.0441
~-.0108

L0147
.0342
.0488
.05%4
.0668
L0718
.0741
.0748
L0740
.0718
.0686
.0645%
.055¢



Captions

FIGURE 1. S* as a function of ¢ for o = 3
A = 1.3587.

, b= .08 r 08, and

i

TABLE 1. Detailed analyses of results for o — 3, b=.08, r=.08 and X =13587
for a five year period.

TABLE 2. Detailed analvses of results for o — 4
period.

o
Il
=
=
-
fi
—
[Sr]

for a five year

TABLE 3. Detailed analyses of results for o = A, b=0.06, r=.12 fora five year
period.
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