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Abstract

In the presence of transactions cosls, no matter how small, arbitrage activity
does not necessarily render equal all riskless rates of Teturn. When two such
rates follow stochastic processes, it is not optimal immediately to arbitrage
out any discrepancy that arises between them. The reason is that immediate
arbitrage would induce a definite expenditure of transactions costs whereas,
without arbitrage intervention, there exists some, perhaps sufficient,
probability that these two interest rates will come back together without any
costs having been incurred. Hence, one can surmise that at equilibrium the
financial market will permit the coexistence of two riskless rates which are
not equal to each other. For analogous reasons, randomly fluctuating expected
rates of return on risky assets will be allowed to differ even after
correction for risk, leading to important viclations of the Capital Asset
Pricing Model. The combination of randomness in expected rates of return and
pProportional transactions costs is a serious blow to existing frictionless

pricing models,



Investors, who have to Pay transactions costs, optimally rebalance their

The financial econometrician, instead, measures rates of return on financial
assets.over regular, fixed intervals in time. Investors compare the rates of
feturn on assets over the forthcoming holding periods while the
econometrician testing the validity of an asset pricing model, arbitrarily
attempts to compare them over successive weeks, months or years.,.

We would like to know whether it ig possible meaningfully to compare the
rates of return on two otherwise similar assets when the rates are measured at
regular intervals, while investors trade at random times. The.questioﬁ cannot
be adressed without a model of the way in which investﬁrs choose to rebalance
or mot to rebalance their portfolios. We first consider the case of two
riskless assets in a portfolio. Then we extend the analysis to risky, long-
lived assets such as equities.

If two interest rates on deppsits Were to remain unequal forever, it
would pay to arbitrage out their difference immediately, even if transactions
costs must be incurred in so doing. In the absence of discounting, and in the
absence of any costs for rolling over the deposits, the interest differential
earned by the arbitrage would eventually outweigh any finite transactions
costs incurred at the outset of the arbitrage operation.

If, however, the spread between the two rates fluctuates randomly, it may
ne longer pay to start an arbitrage. The interest differential may not last
long enough to cover profitably the transactions costs. This basic idea was
put forth originally in Baldwin (1990) who also showed that the problem
gmathematicaily resembles Dixit’s (1989) problem of stochastic entry and exit.

The purpose of the present paper is to re-formulate it and exploit it in the



context of an optimal portfolio choice problem with transactions costs.

We examine the portfolio choice of an investor with given relative risk
aversion who has access to two riskless investments with instantaneous returns
(Infinitesimal maturity). One of these brings a rate of interest which is
constant over time while the other yields a rate which varies according to a
stochastic process. The process incorporates a reversion force which, in the
long run, pulls the second rate towards the first one. We approach this
problem of portfolio choice in the manner of Dumas and Luciano (1991). For a
given portfolio imbalance, the investors allow some gap between the two rates
to survive; this gap is called "the hysteresis band". We are interested in the
size of this gap. We intend to show that the gap is of a different order of
magnitude than the transactions costs.

Because deposits are not forcibly refunded and can be rolled over
costlessly, the period over which a given investor holds the deposit -- the
"holding period" -- is a decision variable.1 As smaller and smaller
transactions costs are considered, the allowable spread measured over the
holding period is gradually compressed but the anticipated optimal holding
period also shrinks because smaller transactions make it less costly to switch
from one asset to other. Depending on the rates at which these two variables
approach zero, the allowable annualized quoted spread may become small slowly
or quickly. We show that it becomes small at a cubic-root rate.

Later on, we consider an arbitrage between a riskless asset with a

lThe analysis is not limited to bank deposits. In fact, it applies to all
long lasting assets. Shares of stock that pay no dividend are automatically
"rolled over" until the investor explicitly sells them. Section 3 will be
devoted to the analysis of rates of returns on equities. The analysis could,
but will not, be generalized to shares that pPay a partial dividend. Bonds
would require a separate study because they are 100% refunded at the maturity
date. That is one "transaction" that is forced on the bondholder.
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constant rate and a risky asset with a stochastic, mean-reverting
conditionally expected rate of return. We conclude that the CAPM must be badly
violated because of the existence of transactions costs. This conclusion
contrasts with the final observations of Constantinides (1986) who holds the
view that small transactions costs only produce small deviations from the
CAPM. The difference in the results is traceable to the difference in the
assumed behavior of the conditionally expected return on the risky asset.
Constantinides considers an expected return which is constant; we consider a
stochastic, mean reverting one.

Mean reversion in expected returns on stocks has been studied empirically
by Fama and French (1988) among others.2

The paper is organized as follows. In Section 1 we solve the basic
portfolio problem considered by Baldwin (1990) in which investors are
constrained to investing their entire wealth in one riskless asset or the
other; we measure the resulting gap in interest rates. In Section 2, we allow
continuous adjustment of the portfolio while still considering only two
riskless assets. In Section 3, we optimize a portfolio made up of one riskless
asset with a constant rate and one risky asset with a mean reverting expected
return; we evaluate the deviation from the costless CAPM. Section 4 Presents a

calibrated numerical illustration.

mean reversion. The behavior of long-period returns is the combined result of
short-period mean behavior and volatility behavior. In our model, short-period
volatility is assumed constant.



1. THE CASE OF TWO RISKLESS ASSETS AND ALL

OR NOTHING PORTFOLIO HOLDINGS

1.1 Problem formulation

Consider two assets. One of them has a constant riskless rate of return,
which, without loss of generality in our context, we can set equal to zero.
The other brings, over a small, fixed period of time, a rate of return, a,

which is also riskless but which follows a mean-reverting stochastic process:

da = -ladt + odz, (1.1)

At any given time t, the dollar value of an investor’s holding of the first
asset is denoted x and the dollar value of his holding of the second asset is
denoted y. Proportional transactions costs at the rate 1 - s are incurred when
exchanging one asset into the other; these costs are proportional to the
dollar value of the trade.

We seek an optimal portfolio pelicy in which the objective is to maximize
the utility of terminal consumption at some later date T. The utility of

terminal consumption is logarithmic so that the objective is stated as:

L(x, y, t; T) = Max Et[i’n(cr)]. (1.2)

where: Sp = Xq.
In an attempt to discover a stationary optimal policy, we take T to
infinity. Furthermore, we assume that the function L asymptotically exhibits

linear growth, at some rate, A, to be determined:



L(x! Y, @, L= T) = ﬁ(T = t) --> J(xv Y. a)' (1-3)
T -->

In this section, we restrict the investor to holding all his wealth in
the form of one asset or the other. Hence, the portfolio, apart from its size,
can only be in one of two states. The only decision to be made at ény given
time is whether or not to switch the entife portfolio from one asset to the
other. The investor will make that switch when a and the fixed rate are
sufficiently far apart from each other. We seek the optimal cﬁdice of the
trigger values g and a on each side of the constant value, 0, of the fixed
rate of interest.

Exploiting the obvious homogeneity of the problem, define:

J(x, vy, a) = In(x + y) + I(6, a), where: # = y/(x + v). (1.4)

In light of the restrictions imposed on the portfolio, 4 is a binary variable
which takes the value 0 or the value 1. For the remainder of this section we
denote: Io(a) = [(0, a) and Il(a) = I(1, a).'I1 is the discounted utility
functiﬁn for a unit wealth that obtains when the investor is invested in the
variable-rate asset; IO is the discounted utility for a unit of wealth that

obtains when he is invested in the fixed interest-rate asset.

1.2 Probabilistic approach: backward induction

The relationship between the two functions Il and 1, is given by
equations (1.5) and (1.6) below. In equation (1.3), a backward, probabilistic
reasoning gives the current value, Il(a), of Il' It is equal to:
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. the value, Io(g), of utility when the next switch out of the variable-rate
asset will occur,

. plus the logarithm of the per unit loss in wealth produced by the
transactions costs,

. plus the expected extra log-earnings, E[fgatdt | @], produced by the
variable-rate asset during the time until the switch,

. minus the effect of discounting over the expected time till the switch:
I,(a) = fns + I(a) + E{fQa dt | a] - E[r | a]; a>a. (1.5)

Here, r is the first-passage time of a to a. A similar backward reasoning, in
(1.6), gives the current value, Io(a), of the utility function IO when not

invested:
Ip(@) = ns + I;(a) - BE[r | a}; a<a. (1.6)
In (1.6), r is the first-passage time of a to a.

1.3 Equivalent analytical approach

Parenthetically, equations (1.3) and (1.6) can equivalently be obtained
by imposing the condition that the value of the function L, defined in (1.2),
executes a martingale process and subsequently introducing the changes of
unknown function (1.3) and (1.4).

Hence, L has zero growth; J grows linmearly at the unknown rate §; I1

grows at the rate f - a because £ny grows at the rate a when the portfolio is

entirely made up of the variable-rate asset; similarly I0 grows at the rate f.



These restrictions are written successively as follows:

- el + (1/2)021ha -0, (1.7)
B - dal_+ (1/2)02Jaa -0, (1.8)
-6+ a - dalj + (1/2)021i -0, (1.9)
-8 - lalj + (1/2)0218 - 0. (1.10)

Equations (1.9) and (1.10), plus Value-matching boundary conditions, are
equivalent to (1.5) and (1.6) by virtue of the Feynman-Kac formula, but they
are more easily generalizable to the cases of sections 2 and 3 below than the

probabilitic approach would be.

1.4 Solution

Returning to the backward, probabilistic approach, we first calculate the
expected-earnings integral, E[faatdt | @], which appears in equation (1.5). An
analogous calculation is performed in Karlin and Taylor (1981).3 The answer in

our case is:

E[ISatdt | a] = (e - @)/A; a >

R

(1.11)

For the purpose of interpretation, recall that the value of this integral is
the expected cumulative earnings on the variable-rate asset until the next

switch to the fixed-rate asset, which will occur at r, the first time that a

3pages 196-197.



reaches o from above.

These expected earnings are always non negative, which may be surprising.
In order to understand this result, it is important to keep in mind that the
event a = g stops the sample paths over the which the integral is calculated.
Hence, earnings that are below a are censored out, whereas excursions of large
positive earnings are included in the sum. It may also be surprising to the
reader that these expected earnings increase as g is set to a lower,
presumably negative value. The answer to this puzzle is again that setting a
lower takes the earnings into a somewhat lower negative zone but also allows
some additional, possibly long excursions into positive values that would
otherwise be censored out.5

The calculation of the expected first-passage time of an Ornstein-
Uhlenbeck process, E[r | a}, is performed in Ricciardi and Sato (1988). In
contrast to a standard Brownian motion, an Ornstein-Uhlenback process always
has a finite expected hitting time. Ricciardi and Sato define a function ¢1 as

follows:
8, (@) = (1/(20)) T, 1 [(2/3/0) a]" T(n/2)/nt, (1.12)

which is easily programmed on a computer. Depending on the situation, ¢1(a) or

4We expect that a < 0.

5'I‘he reader might also wonder why the investor would ever want to switch
to a zero-rate of return asset when the value of his earnings on the
variable-rate asset till the next switch is currently expected to be negative.
He will do it (see optimization below) when a is negative enough because that
will further enhance his expected earmings. Earnings of the near future are
negative; by switching he avoids those. The later switch back to the variable-
rate asset will occur only when a is positive and large enough again (a = a).

10



-¢1(-a) serves to compute expected hitting time.

In equation (1.11), the expected earnings and the expected hitting time

are inserted as follows:

I,(@) = fns + Ip@) + (@ - @)/3 - Bl-¢,(-a) + ¢, (-a)], (1.13)
while, in equation (1.6), the ‘correct expression is:

Iy(a) = fns + 1,(@) - Blé (a) - ¢ (a)]. (1.14)

The functions I0 and I1 given by (1.13). and (1.14) are solutions of the
differential equations (1.9) and (1.10}.
The values of I1 and I0 are easily eliminated between equations (1.13)

and (1.14) to get a single equation:
0 = 24ns + (a - @)/A - Blé;(-a) - $,(-a) + §,(a) - ¢, (@]. - (1.15)

This equation lends itself to a satisfactory interpretation. The sum of
the first two terms of the right-hand side, 2fns + (e - a)/)\, equals the
expected net log-earnings (per unit of wealth) from a round-trip between the
two assets: 2fns is the per unit log-transactions costs and (a - @)/A is the
expected log-earnings during the part of the round trip where the varibale-
rate asset is held. g is, of course, the expected rate of growth of wealth (or
the expected increment of log utility per unit of time). g is multiplied by
the term betﬁeen square brackets which is simply equal to the expected

o

duration of a round trip.
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Hence, Equation (1.15) serves to calculate the expected rate of growth of
wealth produced by a given (a, a) switching policy; it is equal to the
expected net earnings during a round trip divided by the expected time that

the round trip takes:

2ins + (a - a)/A

g - - . . (1.16)
¢1('g) - ¢1('(I) + ¢1(Q) = ¢l(g)
1.5 Optimization
We need to write that the choice of a and a is optimal. Two Smooth-

pasting conditions will accomplish that task. They are:

Ii(g) - Ib(t_:).
and:

1;(a) = Ij(a),
otherwise written (based on (1.13) and (1.14)):

/3 - B $1(-a) = B ¢1(2) (1.17a)
and:

/A - B ¢5(-a) = B $](a). (1.17b)

It is easy to check that equations (1.17) are the straightforward first-

order conditions of the maximization of the rate of growth, B, calculated as

12



in (1.16), with respect to the choice of a and a.

Because we have been able to express the functions I1 and IO explicitly
in (1.13) and (1.14), the difficult variational problem that we were facing
has been reduced to the solution of a system of three algebraic equations in
three real numbers (1.15, 1.17). Furthermore, in that system the unknown
number A8 appears linearly so that it can be easily eliminated, leaving two
equations in two unknowns. A further simplification is reached since one can

easily show symmetry: a = -a. Hence, we are left with just one equation in one

unknown number. That number must be found numerically.

1.6 The hysteresis band

FIGURE 1 GOES HERE

We have solved the system (1.15, 1.17) repeatedly for various values of
s, from the value 1 downward, corresponding to increasing rates of
transactions costs. Figure 1 shows the values of a and a against the value of
s (outer curves).6 The interesting result is that, as s --> 1, the slope of
these curves approaches infinity. As the rate of transactions costs goes to
zero, the spread that the investor allows to survive between the two riskless
rates, goes to zero at a slower pace.

In the absence of transactions costs, arbitrage would force a to be
pegged at the value 0. Transactions costs allow wide deviations from the

arbitrage result. We can quantify the rate at which the range of deviations

6We discuss the choice of parameter values in Section 4 below. For the
time being, we focus on the qualitative features of the solution,

13



approaches zero:

Statement l: As Pns approaches zero, the range of fluctuations of a, over

/3

which no transaction takes place, approaches zero like (£ns)1 .

Proof: Call z = a = - g the common unknown value of the interest rate bounds.
Eliminate 8 between (1.15) and (1.16) or (1.17), to get:
1 ¢1(Z) - ¢l('z)

-Ins = z/XA - = — 7
A 9,(2) + ¢,(-2)

(1.18)

The expansion of ¢1(z) was provided in (1.12). The expansion of ¢i(z) is:

n-

$1(z) = (/@) L @i/ 2 re/2) /w1t (1.19)

From these we can get the expansion of the right-hand side of (1.18). The

result is:7

2
A
-fns = —L- [QL] 23, (1.20)
12X g .
or:
z = (-3 2ns 02)1/3. (1.21)
Q.E.D.

Cubic rates of convergence for similar limit problems have been found in

different contexts by Dixit (1990), Fleming et al (1990) and Svensson (1991).

"ra1/2y/m(3/2) - 2.
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Equation (1.21) shows that, for small transactions costs, two parameters
only play a role in the determination of the hysteresis band, viz. o and s.
Mean reversion, A, is not present., For finite transactions costs, the band
remains.very insensitive to the value of A. Figure 1 displays the approximate
values of a and a as given by (1.21) (outer curves); they virtually identical

to the exact values over the range of transactions costs shown.

1.7 The expected rate of growth and the expected frequency of transactions

Equation (1.12) makes it plain that the expected time between two
transactions is of the same order of magnitude, i.e. 1/3, as thé barrier
position itself., From the identity (1.L5) and the leadiﬂg term in the
expansion (1.12) of the function ¢1, one can deduce that the limit of the
expected rate of growth as transactions costs are taken to zero is equal to

the following number ﬂ*:
* ' '-1 _
B = [2(Ja/a)T(1/2)] . (1.22)

Substituting (1.21) into the first terms of (1.12), the expected duration of a

round trip is approximately equal to:

2.1/3 3
(-6fnso) ", 1 [ zﬁ* ] LG/2) (.3 pns o2y, (1.23)
A

*
A B 6

Finally, the value of the expected growth rate in a neigborhood of s = 1 is
given by:

2,1/3

-8 -26 15 G 171 )23, (1.24)

15



As in the case of the boundary positions, these approximate expressions are
extremely accurate over a range of transactions costs from zero to several
percentage points, The assumption of "small®™ transactions costs allows the

derivation of accurate analytical expressions.

2. THE CASE OF TWO RISKLESS ASSETS AND CONTINUOUS

PORTFOLIO HOLDINGS

When the two asset holdings x and y are allowed to vary continuously, the

state transition equations are:

dx = sdf - du; (2.1a)
dy = aydt - df + sdu; (2.1b)
da = -iadt + gdz. (2.1c)

Here u, and £, are two nondecreasing stochastic processes which increase only
when (respectively) some amount of fixed-rate, or variable-rate asset is sold.
We call a(f) and a(d) the upper and lower trigger values of a which depend on
the current composition, # = y/(x + y), of the portfolio.

Between transactions, dx = 0 and dy = aydt so that the portfolio

composition, §, satisfies the following time-differential equation:

df = af(l - §)dt. (2.2)

Over the domain of no transactions, therefore, the value function, I(a,

16



#), satisfies the following partial differential equation:8
2
-8 + af —AaIa + (1/2)e0 Iaa + af(l - G)Ie = 0. (2.3)

We solve this partial differential equation by first discretizing it over
the values of #. We pick 4 « {91; i =0,...n). Then we need to find n+l
functions I(e, 91), analogous to the functions Io(a) and Il(a) in the previous

section. When a reaches 21" g(ﬂi), the portfolio proportion is dropped to

Gi 1’ when a reaches &i - &(ﬂi), the portfolio proportion is increased to

8. 5.
i+l
Given the existence of propertional transactions costs, the utility

impact of switching may be computed as follows. First, on the way down from Gi

to 91_1:

e 0, - — (2.4)
. X +y X + sAy + y - Ay

which implies:

o, - 8,
Ay = (x +y) ——1-1 (2.5)
g, (s-1) + 1

Matching the values of the indirect utility before and after the change in

portfolio composition, we have:

ni(x + y) + I(a, ﬂi) ~ In{x + sAy + ¥y - Ay) + I(a, Bi (2.6)

)

8This P.D.E. is analogous te the pair of equations (1.9) and (1.10)
above.
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From (2.5):

g. - 8
X + sAy + v - Ay -1+ (s - 1) i i-1 (2.7)

X+ y Gi_l(s-1)+l

Call x; the right-hand side of (2.7). Since (2.6) may be rewritten as:9

-1
I(a, |, 6 = In(x; 1) + Ley 1. 0, ), (2.8)

we conclude that the transaction-cost related utility loss on the way down is
ﬂn(gi 1). Equation (2.8) is a Value-matching condition.

The transition on the way up from ﬂi to § is handled in a similar way.

Let:10

i+l

&i-1+(s-1)—i——i—. i=0,...n1. (2.9)

Gi+l(s—1)—s

The transactions-cost related utility loss on the way up is En(ii), resulting
in a second set of Value-matching conditions.

Finally, we need to write that the choice of 2;

each i, Smooth-pasting necessary conditions accomplish that task:

and &i is optimal for

Iﬂ(gi-l’ ei) - Ia(gi-l’ 8]-__1): i=1,.. n; (2.10)
Ia(ai, 81) - Ia(ai, ﬂi+1)' i=20,...n-1, (2.11)
9
Assume 91-1 < 1/(1-s), so that I > 1.
10Assume 91 > -s5/(1l-s) so that x>1.
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FIGURE 2 GOES HERE
The sclution of the system (2.3, 2.8-2.11) is obtained numerically.ll
Under the assumption of no short-selling, 00 = 0 and On = 1. Furthermore, at 4
= 0 and § = 1, the P.D.E.K(Z.S) is locally and ordinary differential equation.

Hence, the functions I0 and Il’ already obtained in section 1, namely:
I(a, 1) = I, 4, 1) + (@ - g, /A - Bl-¢,(-a) + ¢, (-a_ )], (2.12)
I(a, 0) = I(ay, 0) - Alé)(ag) - 4, (a)]. | (2.13)
serve as boundary conditions at the extreme values of #. The resulting
portfolio-adjustment boundary is shown in Figure 2. Numerical experiments

indicate that the barrier has the following property:

Statement 2: The optimal barrier is a (steep) straight line whose middle point

is located at the optimal switching point ¢f the binary policy.

The location of the boundary implies that the "cubic" property (Statement 1)

applies equally to the width of the hysteresis band in this case.

ll'I'he desired degree of numerical accuracy was achieved by using the fact

that the differential equation (2.3) without the term in I, has an analytical
solution. Numerical errors in the solution of (2.3) were ail but eliminated by
comparing the numerical solution of the truncated equation with its analytical
solution. This is called the "control variate" technique; (See e.g. Hull and
White (1988)).
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3. THE CASE OF ONE RISKLESS AND ONE RISKY, MEAN-REVERTING ASSET

3.1 Optimal portfolio polie
When not only the expected rate of return on one of the two assets

follows a stochastic process but its rate of return is also risky, the state

transition equations are:

dx = sd? - du; (3.1a)
dy = pydt + aldz1 - d2 + sdu; (3.1b)
dy = A(y - wm)dt + od=z. (3.1c)

Here, 4 is the conditionally expected rate of return on the risky asset, o is
the conditional standard deviation of the rate of return on that asset. The
expected rate of return, p, is assumed to be mean reverting. We call ¥ the
center of reversion. The white noise shock, dzl, affecting the rate of return
on the asset is assumed independent of the white noise shock, dz, affecting

the expected rate of return.

Introduce a change of state variable:

a =BT (3.2)

and observe that the investor’s frictionless demand for the risky asset at any

given time would be given by:

2 2
Bt b ,Ut/al - (at + 7)/011

20



2 2
or: Bt - 1/01 - at/al, (3.3)

which means that the frictionless demand schedule is symmetric around the
point (a = 0, § = 1/a§). The portfolio demand with transactions costs will
inherit the same symmetry property.

Between transactions, the stochastic differential equation governing the

evolution of the portfolio composition, #, is:
2
dd = (1 - 8)(ex + v - ﬂal)dt + 018(1 - B)dzl. (3.4)

Over the domain of no transactions, the value function, I(a, 4),

satisfies the following partial differential equation:
“B + (a + 7)0 - (1/2)02a2 - dal + (1/2)021
1 a aa
+0(L - O)(a+ 7 - 80D, + (1/2)a26%1 - 0?1, -0 (3.5)
7 1778 1 80 ' :
The Value-matching and Smooth-pasting boundary conditions remain as in (2.8-

2.11). Under the assumption of no shortselling (60 =0, an =~ 1), the boundary

conditions corresponding to the extreme values of # are now:

Ia,1) = g, 1,1) + (@ - g )/A+ (B + 7 - 03/D[-6,(-a) + ¢, (-a__)],(3.6)

1(a,0) = 1(ay,0) - Al#)(ag) - ¢1(a)]. (3.7)
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FIGURE 3 GOES HERE

The optimal policy that solves this sytem has been obtained numerically
by the same method that has been outlined in Section 2. It is displayed in

Figure 3 and described by Statement 3.12

Statement #3: The optimal barrier is positioned slightly outside the
hysteresis band of the riskless case constructed around the frictionless

demand.

From Statement 3, it follows that the cubic property (Statement 1) is wvalid

again,

3.2 Equilibrium and deviations from the C,A.P.M.

We now briefly discuss the equilibrium of an economy with two preduction
techniques available in infinitely elastic supply. One is riskless and brings
a zero return; the other is risky and brings a mean-reverting expected return.
The economy is populated with identical logarithmic investors, each one of
whom chooses a portfolio of techniques in the manner that we have just
described. In this economy, let the variable # -- provided its value13 is
between 0 and 1 -- describe the composition of the aggregate, "market"

portfolio. This variable changes over time as the expected return, u, on the

12The parameter values underlying Figure 3 are discussed in Section 4.

13If § = 0 or 1, a switch in regime occurs: only one asset is available

to all investors and no portfolio decision has to be made by any of them.
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risky technology fluctuates. The classic Capital Asset Pricing Model would

require that:lh

] - al Btl . (3-8)

which is simply the inverse of the frictionless demand (3.2), and which is
shown as the solid line on'Figure 3.

.

In an economy with transactions costs, the expected return, B, =a_+ 7,
is allowed to fluctuate within a wide interval given horizontally by the
hysteresis band of Figure 3, without any adjustment in the aggrégate
portfolic. Any fluctuation within that band is interpretﬁble as a deviation
from the CAPM. This shows that deviations from the CAPM can be large, even

with small transactions costs, provided that expected returns fluctuate

randomly.
4., CALIBRATION

We now wish to quantify the gap in expected returns that can survive in
an economy with realistic parameter values. A calibration exercise was
conducted both for the problem with two riskless assets (as in Sections 1 and
2) and for the problem with one risky and one riskless asset (as in Section
3). Parameter values were obtained from the empirical literature on mean
reversion in interest rates and stock returns. Our principal sources were

Jegadeesh (1991) and Chan et al. (1992). The crucial parameters are the degree

€ laThe portfolio composition, , and the risk measurement, beta,
traditionally used in writing the GRPH would be equal to each other in our
case example,
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of mean reversion, A and the volatility, o, in expected returns.

For the case of two riskless assets, we have chosen the values: X =
1.25%/year and o = 2.6%/year. The value of X implies that it takes eighty
years on average for the interest rate to revert to its long-run value. This
is a very small value of the reversion parameter, which is equal to half of
the value of ) estimated by Chan et al..

Figures 1 and 2 were drawn for these parameter values. Consider the
situation where transactions costs are collected at the rate of 0.1%, s =
0.999, The figures indicate that the combined effect of such small
transactions costs and fluctuating expected returns is enough to produce a
dramatic hysteresis effect in the rebalancing of the portfolio. Specifically,
a gap of 1.005%/year in interest rates must exist before a decision is made to
switch from one asset tc the other.

The case of one risky and one riskless asset is calibrated in a like
manner. The evidence concerning mean reversion in stock returns is not as
conclusive as that concerning interest rates; nonetheless, we used the same
value of the mean reversion parameter, which was in any case a low one. The
parameter values chosen are: A = 1.25%/year, g, = 152/year, o = 2.6X/year, y =
(0.15)2/2 = 1.12%/year. Again, we use transactions costs of 0.1%.

With these values, at § = 1, some wealth is transfered from the risky
asset to the riskless as soon as the expected return on the risk asset falls
below 0.06%/year. It must be 2.19%2 before the investor wishes to transfer some
wealth from riskless to risky asset (but the constraint # < 1 prevents him.

from doing that).
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Conclusion

Hysteresis bands have not been discovered in this paper. Neither has been the
fact that hysteresis bands tend to remain comparatively large when the costs
that created them become small. The new result of this paper is that these
ideas apply to pricing models so that classic CAPMs are subject to wide
hysteresis-band violations when conditionally expected returns follow a
stochastic, mean reverting process. Our results also imply that arbitrage
models must be drastically revised to take into account the combined effect of
stochastic expected returns and transactions costs.

The qualitative point made by this paper regarding violations of
frictionless pricing models does not depend on our assumption that investors
have unit risk aversion. Regardless of his degree of risk aversion, a risk
averse investor would always chose hysteretic rebalancing decisions. The unit
risk aversion assumption has only simplified the calculations and allowed us

in the simplest cases to obtain closed-form solutions.
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