LIMITING DIFFERENCES BETWEEN
FORWARD AND FUTURES PRICES
IN A LUCAS CONSUMPTION MODEL

by

Zvi Wiener
Simon Benninga
Aris Protopapadakis

17-94

RODNEY L. WHITE CENTER FOR FINANCIAL RESEARCH
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6367

The contents of this paper are the sole responsibility of the authors.
Copyright © 1994 by Z. Wiener, S. Benninga and A. Protopapadakis.



LIMITING DIFFERENCES BETWEEN FORWARD AND FUTURES
PRICES IN A LUCAS CONSUMPTION MODEL

Zvi Wiener
The Wharton School
University of Pennsylvania
WIENER@WHARTON.UPENN.EDU

Simon Benninga
School of Business
Hebrew University of Jernsalem
MSSIMON@PLUTO.MSCC.HUJL.AC.IL

Aris Protopapadakis
Sechool of Business
University of Southern California
APROTOPAPADAKIS@SBA.USC.EDU

July 1994

ABSTRACT

A recent paper {Benninga-Protopapadakis 1994) considered a Lucas asset pricing model and showed
that the pricing of forward and futures contracts was expressible as a simple matrix function. In this paper
we derive limiting conditions for these differences and relate them to the eigenvectors of the state price
matrix. We show that except for a zero-measure set of state price matrices, the differences are always small.
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LIMITING DIFFERENCES BETWEEN FORWARD AND FUTURES PRICES
IN A LUCAS CONSUMPTION MODEL

1. Introduction

Since the publication of three papers by Cox, Ingersoll, Ross (1981), Jarrow and Oldfield (1981), and
Richard and Sundaresan (1981), it has been understood that the difference between forward and futures
prices is a function of the covariance between the futures prices and the term structure of interest rates. The
empirical question of whether futures prices are indeed different from equivalent forward prices (where by
"equivalent” we mean a forward price for the same commodity deliverable at the same delivery date as the
futures contract) has been more vexations. Empirical research seems to give contradictory answers, but this
research has been hampered by limited sample size, its dependence on constructed forward prices, and the
specificity of the time periods covered.

In a recent paper, Benninga and Protopapadakis (1994-henceforth BP) take a different approach to the
determination of the difference between forward and futures prices. BP construct a simple Markovian model
of the term structure of interest rates; the model is based on the well-known Lucas {1978) equilibrium model.
The BP model has the advantage that the term structure of interest rates is a function of the the matrix
of nominal state prices. Given this matrix, forward and futures prices are easily calculated. The model can
also accomodate various degrees of risk aversion.

Within the framework of this model, BP conduct two kinds of "tests” to guage the difference between
forward and futures prices: First, they construct a model of state prices based on historic Treasury-Bill
data. Using this empirical state price matrix, they construct forward and futures prices for contracts on
short-term interest rate instruments.! This test of the difference between forward and futures prices results
in only minor differences between the two.

The second test constructed by Benninga and Protopapadakis involves the calculation of the difference
between forward and futures prices using simulated state price matrices, For most simulated state price
matrices, the differences between forward and futures prices are negligible, although BP do report that for
highly diagonal state price matrices it is possible to simulate significant differences between forward and
futures prices.

In this paper we extend the BP results by proving a result about the limiting difference between forward
and futures prices. We show that this limiting difference is a function of the eigenvectors of the state price
matrix. We further show that — except for a zero-measure set of state price matrices — these differences

are always small. The importance of this result is that it shows that in the limit, the difference between

1 BP report equivalent results for longer-term interest rate instruments.
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forward and futures prices is almost surely bounded and small. We thus provide a theoretical basis for the
”empirical” results of BP.

The structure of the paper is as follows: Section 2 reviews the BP model and notation. Section 3 proves
our main result on the limiting differences between forward and futures prices. Section 4 discusses two

examples which illustrate the result.

2. The model

In a Lucas model consumption over time {which may be stochastic) is given exogeneously and is con-
sumed by a single, representative consumer. All assets are priced by this consumer’s state prices, which are
the probability and time-preference adjusted first-order consumption conditions. The usual version of the
model focusses on real state prices; we employ a version of the model which has state-dependent inflation and
which allows us (by means of the nominal state prices) to price nominal assets. Although the model includes
neither production nor investment, these can easily be added by specifying appropriate linear production

technologies. We follow the notation of Benninga and Protopapadakis:

mi;  probability of going to state j, given that the system is currently in state i,
¢ is stochastic consumption at time ¢,

o; 14 the consumption growth rate in state j,

wj  is the inverse of 1 + the inflation rate in state j,

¥ is the relative risk aversion of the representative consumer,
) is the representative consumer’s pure-time preference factor,

S is the number of states of the world at any date,

We suppose that the representative consumer maximizes a time-separable expected utility function,
and we let & denote the lifetime, state-dependent, consumption stream. Then we may write the consumer’s

expected lifetime utility as:

oo -
EUGE) = ;a* Eu(&,), where u(z) = ""111—;1

Uncertainty in the model is generated by the random consumption endowments and inflation. If time
t, state 1 consumption is ¢y, then time ¢ + 1, state j (j = 1,..., S) consumption will given by ¢4, = o;jCy;
furthermore, the inflation rate in state j at time ¢ is denoted by 1/w; — 1. The probability of the transition
from state i at time ¢ to state j at time { + 1 is time-independent and is denoted by mi;. We assume
no transactions costs or trading restrictions. This means that asset markets are complete, and that the
representative consumer’s probability-adjusted marginal rates of substitution are the real state prices which

determine the prices of all real assets in the economy. If we assume that in addition to consumption growth,

mflation is also Markovian, the state prices are time-independent, and can be denoted by an § x S matrix
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B = [bi;]. Benninga and Protopapadakis (1983) show that in an economy of this type, nominal state prices

can be defined by, y
Here ¢ denotes the consumption at any state ¢ at date ¢.
Let B be denote the matrix of nominal state prices. The vector of (state-dependent) period-n nominal

discount factors is given by,

I(n) = B"1(0).

where I{0) is an S-dimensional unit column vector.
For future reference we note the following properties of B:
1. Each entry of B is non-negative.
2. The row-sum of each line is the inverse of one-plus the one period interest rate. It follows that
when one-period interest rates are finite and positive, no line of B is zero.
3. Although not stricily necessary for the subsequent results, it is convenient to assume that B is

sub-stochastic: Each entry is non-negative, and each row sum is less than or equal to 1.2

3. The prices of forward and futures contracts

In this section we introduce a normalization procedure on the state price matrix which allows us to
calculate both forward and futures prices. We shall restate the Benninga-Protopapadakis results in terms of
this normalization procedure and then go on to prove our main result.

We define the following normalization procedure for any matrix A with non-negative elements in which

there 1s no zero line:

n(d) = N, - A,

where N4 is a diagonal matrix, each entry of which is the inverse of the row-sum of the corresponding line
of A. The function n(A) transforms any non-negative matrix into a stochastic matrix: A stochastic matrix
is a matrix with non-negative entries cach of whose rows sum to 1. Another way of viewing n{A) is that the
procedure n{A) transforms any positive state-price matrix into its equivalent Harrison-Kreps (1978) risk-
neutral valuation matriz. The economic interpretation of the procedure n(A4) is that n{A) -V first discounts
the vector V' by multiplying it times the state-price matrix A and then gresses up this discounted valuation
by the accumulation factors appropriate to the matrix A.

Let Vi(s) be the time-f price in state s of the world of a specific fixed income security, and let V; =
Vi(1), ..., Vi{S). When the term structure is determined by a Lucas asset pricing model of the type described

in the previous section, it is easily shown that any vector of prices for interest-hearing securities (for example,

2 If the state price matrix is not sub-stochastic, then there will necessarily be some state of the world for

which the one-period real interest rate is negative.



a bond with coupon payments, or a certificate of deposit with add-on interest is time-independent. In what
follows we shall denote such a vector by V. Benninga-Protopapadakis (1994) prove the three following

propositions.

Proposition 1 (Determination of forward prices): Let V be a vector of time-independent commodity

prices. Then the vector of forward prices at date t for assels deliverable at date t + m is given by:
G{t,t+m)=n(B™)-V.

The intuition of Proposition 1 is that a forward price for delivery m periods hence is simply the discounted
asset price grossed up by the appropriate accumulation factors. V is the vector of asset prices at date ¢t + m;
n(B™) -V first discounts the vector V to the present at the appropriate m-period discount factors and then

applies the m-period accumulation factors to these discounted prices to find the appropriate forward prices.

Proposition 2 (Determination of futures prices): Let V be ¢ veclor of time-independent commodity

prices. Then the veclor of fulures prices at date t for assels deliverable at date t + m is given by:
H(t,t+m)=n(B)"-V.

The interpretation of Proposition 2 has to do with marking-to-market in futures markets. Because of
marking-to-market, a futures contract is priced as if it were a sequence of rolled-over one-period forward
contracts. Thus a one-period futures contract is priced as H(t,¢ + 1} = n(B) - V (the same as a one-period
forward contract), and a two-period futures contract is priced as H(t,t+2) = n(B)- H(t,t +1) = n(B)? -V,

etc. It follows from these two propositions that the difference between forward and futures prices is given by
G(t,t+m)— H(t,t + m) = [n(B™) - n(B)"]-V.
Furthermore, it is readily proven:

Proposition 3 (Sufficient conditions for equality of futures and forward prices): The following
conditions are sufficient for the equality of forward and fulures prices:

3.1 The matriz B of state prices is diagonal.

3.2 The row-sums of B are equal.

3.3 Asset prices V(s), s = 1,...,5 are equal across states.
Proof:

We prove this proposition to show the simplification achieved by our new notation.

3.1. If the matrix B is diagonal, then both n(B™) and n(B)™ are the unit matrix, and hence the
difference between forward and futures prices is zero.

3.2. To prove this property we first note that the product of two matrices with constant row sums is a

matrix with constant row sum equal to the product of the row sums of the multipliers. Using this fact we
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obtain immediately that if B has a constant row sum p then N(B) = % and N(B)™ = -f-,—r,':-. On the other
hand, B™ has constant row sum equal to p™. Thus N{B™) = N(B)™.

3.3. If asset prices V' are equal across states, then since the normalizing procedure leads to a stochastic
matrix, it follows that both n(B)™ -V =V and n(B™) -V = V.

This proves Proposition 3.

It follows from Proposition 3 that for a flat term stucture there is no difference between futures and
forward prices. By continuity, as the variation in one-period interest rates becomes small (and consequently
the term structure becomes flatter), the difference between futures and forward prices becomes smaller.

We shall establish a formula for the limiting value of the difference between the forward and futures

pricing matrices n{B™) — n(B)™. Our results depend on the following Lemma:

Lemma. Let (' be an n x n matrix with nonnegative elements, such that there exists a real positive
eigenvalue A which is strictly bigger in modulus than the rest of spectrum. We assume that this eigenvalue is

m

simple; i.e., 1t has a unique eigenvector and there is no Jordan block which corresponds to it. Then lim f—m
m—0oo

is equal to the tensor product of the right and left (normalized) eigenvectors corresponding to .
Proof: Denote the eigenvectors by z,y € IR", so that Cz = Az, and yTC' = )\yT. The Jordan form of

Cis C = PJP~1, where columns of P form a system of eigenvectors. Without loss of generality we assume

that A corresponds to the first element of J. Then

Am On-11 Ch-1n-1

Here ' stands for some matrix whose spectrum is strictly less than 1 in absolute value. This yields that

where a is the first column of P and b" is the first row of P~1 (cf. Gantmacher 1964, p. 53). This means
that a and b are the right and left principal eigenvectors of € corresponding to A and normalized by the

condition b’ @ = 1, since P - P~ = id, where id is the identity matrix. This finishes the proof.

The conditions of the Lemma are very general and not restrictive.® In the remainder of this section we
show how the Lemma can be applied to find the limiting difference between futures and forward prices.
Let A be the principal - maximal in modulus - eigenvalue of B and let z and y be the corresponding

right and left eigenvectors, respectively. By the Lemma we see that the difference B™ - A" yT, tends to

3 Matrices with a multiple principle eigenvalue constitute a set of measure zero. In the neighborhood of
this set, our Lemma will still hold, but convergence to the limit will be slow. The rate of convergence will

depend on the distance between the principle (Perron) eigenvalue and the next-closest eigenvalue.
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zero as m increases. The block-form of this limit is:

T
Y
T
B oaam | 7Y
‘T
oY
This difference is very small for big m. The normalization procedure for forward prices, n(B5™) may be

written as

n(B™)= N, - B™ |

where N,, is a diagonal matrix which can be approximated by

Thus the forward pricing matrix n(B™)} will be arbitrarily {for big m) close to the following matrix of rank

1 written in block-form:

yT

[ v
2 Ui "

i=1 y

n
Since an eigenvector is defined up to multiplication by a constant we can normalize it by > y; = 1.
i=1
We now consider the futures pricing matrix n(B)™. Denote by u,v” the eigenvectors of n(B) corre-

sponding to its principal eigenvalue u. In analogous way one can show that

T
w1 v
T
n{B)™ Uz v
|
H :
T
iy U

Since the matrix n(B) is stochastic its principal eigenvalue is equal to 1 and its right eigenvector is
T n T
u=(1, 1,---,1) and 3" v; = 1. Thus n(B)™ — (v,v,--+,v) .
i=1
Combining the results for the forward and futures pricing matrices, we obtain an explicit formula for

the limiting difference:

T T
v —Y
vT _ yT
lim [n(B)™ -~ n(B™)] = . : (1)
ror
v o-¥

Both vectors are normalized, so the difference between forward and future contracts can be easily
estimated (in the general case) by the angle between the principal left eigenvectors of B before and after

normalization. Thus the angle between y and v determines the limiting difference between the forward and

futures prices.



4. Examples
In this section we discuss two examples. The first example implements the Lemma and shows how the
limiting difference between forward and futures prices can be approximated by our procedure,

Example 1: The first examples uses the empirical nominal state price matrix derived by Benninga and

Protopapadakis {1994) from Treasury bill data:

0.895 0099 O 0 0 0 0
0.11 0441 022 0.109 0.111 0 0
0 0.099 059 0197 0.1 0 0

oo oo
oo o o o

CcC oo o OO
oo oo o oo
I

0

0

0

0 011 022 0328 0221 0109 0 0
0 009 0 0269 0271 0179 0.179 0
s<| © 0 0 0 o021 0447 0179 0089 o 0
6 0 0 0 011l 0 0328 0437 0.109 0
6 0 0 0 0 0179 0179 0268 0358 0 0 0

6 0 0 0 0 009 0 0197 0197 0293 0197 0
0 © 0 0 0 0 0 0089 0269 0532 009 0
6 o0 0 0 ©0 0 0 0 0 0108 0540 0.3
\o 6 0 0 0 0 0 0 0123 0122 0123 06

By our Lemma, the limiting difference between forward and futures prices for this matrix should equal
the difference between the principal left eigenvector yT of the matrix B (for the forward prices) and the

principal left eigenvector v of the matrix n(B) (for the futures prices). These vectors are given by:4

yT = {0.0602,0.0485,0.0619, 0.0609, 0.0834,0.0953,0.0773, 0.104,0.111,0.118, 0.0979, 0.0816} ,

v = {0.0467, 0.0419, 0.0538, 0.0548,0.0782,0.094, 0.0759, 0.107, 0.118, 0.129, 0.108, 0.0931} .
The eigenvalues of B are given by:
{0.984,0.936, 0.871,0.745,0.5,0.412,0.359+0.023 4,0.359—0.023{,0.224+0.1124,0.224~0.112 4, —0.143, —0.019},

and the eigenvalues of n(B) are given by:
{1.,0.948,0.881,0.757,0.510,0.424,0.363+0.023 ,0.363—0.023 ,0.227+0.114 4, 0.227-0.114 4, —0.146, —0.019}

The vectors yT and v correspond to the largest eigenvalues of these systems (respectively). The speed
of convergence is a function of the distance between the principal eigenvalue and the eigenvalue closest to
the principal for each of the systems. After 100 iterations, the difference between the forward and futures

prices is given by the matrix:

4 All calculations reported were done in Mathematica.
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forward — futures = n(B'%%) — n(B)1% =

0.0143 0.0068 0.00833 0.00622 0.00523 0.0012 0.00129 —0.00248 -0.00715 -0.0116 -0.0105
0.0139 0.00667 0.00821 0.00616 0.0052 0.00125 0.00133 —0.00238 -0.00701 -0.0114 -~0.0103
0.0137 0.00662 0.00816 0.00612 0.005i8 0.00126 0.00135 —0.00234 -0.00696 —0.0113 -0.0103
0.0137 0.00661 0.00814 0.00611 0.00518 0.00127 0.00135 -0.00233 -0.00694 -0.0113 -0.0103
0.0136 0.00657 0.0081%1 0.00609 0.00517 0.00128 000136 -0.0023 -0.0089 -0.0113 -0.0102
0.0134 0.00653 0.00806 0.00606 0.00515 0.00129 0.00137 -0.00227 -0.00685 -0.0112 -0.0102
0.0133 0.00647 0.00801 0.00603 0.00514 0.0013 0.00138 -0.00223 -0.00679 —0.0111 -—0.0101
0.0132 0.00646 0.00799 0.00602 0.00513 0.00131 0.00138 -0.00222 -0.00678 -0.0111 -0.0101

0.0131 0.00643 0.00796 0.006 0.00512 0.00131 0.00139 -0.0022 -0.00674 -0.011 —0.01
0.0131 0.00641 0.00794 0.00598 0.00511 0.00132 0.00139 -0.00219 -0.00672 —0.011 —-0.01

Each line of this difference should be compared to the predicted limiting difference (1):

0013 0.00637 0.0079 0.00596 0.00509 0.00133 0.0014 -0.00216 -0.00668 —0.011 —0.00996
\0.013 0.00638 0.00791 0.00597 0.0051 0.00132 0.0014 -0.00217 -0.00669 -0.011 —0.00998

—0.0117
—0.0116
—0.0115
—0.0115
—0.0115
—-(.0114
—0.0113
—-0.0113
=0.0113
—0.0113
—0.0112
—0.0112}

vT —yT = {0.0135,0.00658,0.00812, 0.0061,0.00519,0.00129, 0.00137, —0.00229, —0.0069, —0.011, —0.0102, —0.0115} .

The speed of convergence is shown in the following graph. The y-axis shows the maximal absolute entry

in the matrix of the difference between the right and left-hand sides of equation (1) for mn iterations.

ACTUAL VERSUS PREDICTED LIMITING DIFFERENCES
OF FORWARD MINUS FUTURES PRICES

0.012

0.008
0.006
0.004 _
0.002} KN

.
.
.
.
+
AAAAAAAA

50 100 150 200

Example 2: In the second example we show a case where the conditions of the Lemma do not hold and
where, consequently, the limiting difference of the forward and futures prices is not given by the procedure

we describe in the Lemma. Consider the case where the matrix B is given by:

0.8 0.1
B‘(o ad‘
Since this matrix has a Jordan block, it violates the conditions of the Lemma.®* The eigenvectors v and

y are equal. However, the limiting difference between the forward and futures prices for this case is not zero.

% As noted in footnote 3, such matrices are a set of zero measure.
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For example after 100 iterations, the difference is given by the matrix:

forward — futures = n(B'"’) — n(B)!°* = (0'0741 _0'0741) .

0 0

5. Conclusions

A recent paper by Benninga and Protopapadakis (1994) uses the term structure derived from a standard
Lucas (1978) model of capital market equilibrium under uncertainty to price forward and futures contracts on
interest-rate dependent securities. In this paper we extend the BP results. We derive the limiting differences
between forward and futures prices as the contract maturity date m — oo.

The main application of cur result is for the case of interest-rate futures contracts. The spot prices
of the assets underlying these contracts are determined by the term structure; when the term structure is
time-independent (as it is in the Lucas model), the distribution of these spot prices will, as a result, also
be time- independent. For this case of time-independent spot prices, our result shows that the limiting
difference between the forward and futures prices is a function of the eigenvectors of the state price matrix,
and that - except for a zero-measure set of state price matrices — these differences are always small. We thus

provide a theoretical basis for the results reported by Benninga and Protopapadakis.
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