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Dynamic Consumption-Portfolio Choice and Asset Pricing
with Non-Price-Taking Agents

Abstract

This paper develops a continuous-time pure exchange model to theoretically study the dynamic
consumption-portfolio problem of an agent who acts as a non-price-taker, and to analyze the
implications of his behavior on the security prices and their dynamics. The non-price-taking
behavior is modeled by allowing the non-price-taker’s consumption stream to affect Arrow-
Debreu prices. This allows us to employ martingale methods in a natural way, making the
analysis highly tractable. We define non-price-taking equilibrium in an economy of N price-
takers and one non-price-taker, and show the existence and uniqueness of this equilibrium
under common assumptions about the agents’ utility functions and dividend streams. Solving
for the equilibrium consumption allocations reveals the existence of another driving factor apart
from the aggregate consumption stream, the endowment stream of the non-price-taker, which
leads to modified formulae for the interest rate and the consumption CAPM. We characterize
the equilibrium consumption-portfolio allocations, and the Arrow-Debreu and security prices
and their dynamics, i.e., the interest rate, market prices of risk, asset price volatility and risk
premium. A variety of comparisons of equilibria between a price-taking and a non-price-taking
economy are carried out, in some cases for general utility functions and in some cases for CARA
utility of all agents. Intuition for the results is offered.



1 Introduction

Central to the equilibrium-based asset pricing models in finance is the competitive agents
paradigm: each agent is atomistic relative to the market, and hence takes prices to be unaflected
by his or her actions. For example, in the intertemporal asset pricing models, for given price
processes each agent maximizes his expected lifetime utility through his choice of consumption
and trading strategies. Aggregating all agents’ demands for consumption and securities, the
market clearing condition in all markets is imposed to arrive at characterizations of the equi-
librium state and security price processes, and the agents’ equilibrium consumption-portfolio
policies.

An observation of today’s security markets (and especially government bond markets) re-
veals the ever-increasing importance of large pension funds and financial institutions in the
marketplace. “Large” investors are particularly prevalent in smaller security markets outside
the U.S.A. (e.g., Belgium, France, Hong Kong, Singapore, Sweden). Such a “large” investor
may have a significant effect on prices, and hence may prefer to choose a strategy taking the
price impact of his own behavior into account. It is well-known that large trades do have a
permanent price impact. This is attributable partially to the information a large trade reveals
about future cash flows (Kraus and Stell (1972), Holthausen, Leftwich, and Mayers (1987,1990),
Seppi (1992)), but conceivably also to the effect of such a large position on security supply and
demand. Internationally, there is certainly widespread anectodal evidence that large trades can
affect prices independently of any information they may contain. It would be of interest to
re-investigate the traditional equilibrium-based asset pricing models in the presence of “non-
price-taking” investors, who take account of the price impact of the positions they take on
(independent of any information revealed by their trading}.

To our knowledge, the only work carried out towards this end has been by Lindenberg (1979).
He works in a single-period mean-variance framework, with an exogeneous interest rate. Some
of the agents in his model recognize that security prices depend on their demand and formulate
their optimization problems accordingly. He finds that the non-price-taking investors hold an
optimal portfolio that is unbalanced (i.e., contains differing percentages of the supply of shares
of each security). A two-factor CAPM results, in which an asset’s risk premium is driven by the
covariance of its return with the market return and with the return on the aggregate portfolio
of the price-affecting investors.

The objective of our paper is to study the effect of the presence of non-price-taking agents
on dynamic market equilibrium. In contrast to Lindenberg’s work, we focus on the dynamic
aspects of consumption-portfolio choice and on the stochastic evolution of the asset and Arrow-
Debreu prices, i.e., the interest rate, market price of risk and the security price volatilities and
risk premia. Our emphasis is on carrying out comparisons between equilibria in price-taking
economies (in which all agents are price-takers) and non-price-taking economies. We postulate
as our starting point that one agent in the economy is a non-price-taker; we do not attempt to
endogeneously justify his non-price-taking nature. In a frictionless economy such as ours, the
size of agents’ security holdings is rot restricted by their wealth, so it should not be argued
that an investor with large net wealth can affect prices more than a small investor; however, in
practice given the presence of short sales constraints and transaction costs in the marketplace.



it is plausible that some investors are able to make larger trades and hence affect prices more
than others.

We develop a continuous-time model of a pure-exchange economy consisting of N price-
taking agents and one non-price-taking agent. We model non-price-taking behavior in the se-
curities markets by letting the non-price-taker take into account that the Arrow-Debreu prices
are affected by his consumption choice. Since an agent finances his consumption choice through
trading dynamically in the securities, he is effectively a non-price-taker in the security markets.
This “consumption-based” formulation of the problem allows us to adapt the standard mar-
tingale optimization approach {Cox and Huang (1989, 1991), Karatzas, Lehoczky and Shreve
{1987) and Pliska (1986)) in a natural way to incorporate non-price-taking behavior. This
convenient choice of modeling method makes the analysis highly tractable as will be seen.

Our notion of equilibrium is in the spirit of the price leadership model in the oligopoly
literature (e.g., Varian (1992, Chapter 16)). Accordingly, the non-price-taker chooses his con-
sumption process, aware that prices will adjust so that the remaining (price-taking) agents’
demands clear the consumption good market. The non-price-taking strategy we solve for can
be thought of as a ~'self-commitment” strategy in which the non-price-taker chooses a plan at
the beginning and then does not deviate from that plan. (We address this issue in Remark 1 of
Section 3.1.) If the preferences of the price-takers are such that their representative agent’s util-
ity does not depend on their individual wealth allocations, the nen-price-taker’s consumption
at any given time and state only affects the state price (the price of one unit of consumption)
at that same time and state. This is the case we focus on for most of the paper. However, when
the wealth allocation amongst the price-taking agents does affect their representative agent’s
preferences, the non-price-taker’s consumption at any given time and state affects the whole
state price process {at all times and states). We consider this case only briefly. We derive
necessary and sufficient conditions for equilibrium and show the existence and uniqueness of
equilibrium for HARA utility of the representative price-taker, under mild assumptions on the
non-price-taker’s preferences.

Solving for the equilibrium consumption allocations reveals that the non-price-taking agent
deviates from his price-taking behavior by tending to move his consumption towards his en-
dowment stream. We note that in the special case when his price-taking equilibrium behavior
is to always consume exactly his endowment stream, and hence to not trade in the securities
at all, the non-price-taker does not deviate from his price-taking strategy. In this case his
non-price-taking nature has no effect on state or security prices, which is consistent with our
earlier notion that the less an agent trades the less he may act as a non-price-taker. When the
non-price-taker does trade, his endowment stream also appears as an extra factor, in addition to
the aggregate consumption stream, in explaining the equilibrium interest rate, asset prices, and
their volatilities and risk premia. We derive a two-factor consumption-based CAPM, stating
that an asset’s risk premium depends on the covariance of its return with changes in the non-
price-taking agent’s endowment stream as well as with changes in the aggregate consumption.
(Detailed intuition follows within the body of the paper.)

To derive further implications of non-price-taking behavior, we specialize to the case of
all agents’ preferences exhibiting constant absolute risk aversion (CARA) and one risky asset.



When the non-price-taker is initially relatively wealthy compared to the rest of the market,
he is found to react more to changes in the aggregate dividend than when he is a price-taker,
and as a result his consumption drift and volatility increase. As a further consequence, if the
economy is expanding, the non-price-taker on average postpones consumption compared with
when he is a price-taker. The reverse is true when the non-price-taker has a relatively low
endowment compared with the rest of the market; he reacts less to changes in the aggregate
dividend meaning he reduces the volatility and drift of his consumption stream and, in an
expanding economy, consumes on average more impatiently. This consumption behavior for
the CARA utility leads to an increase in the volatility of the Arrow-Debreu price return (i.e.,
the market price of risk) when the non-price-taker is relatively wealthy, and a decrease when
he is not so wealthy.

To analyze the effect of the non-price-taker on the agents’ portfolio strategies and the market
volatility, we derive representations of these quantities using tools from Malliavin calculus, in
particular the Clark-Ocone formula. (For related applications of Malliavin calculus in finance,
see Detemple and Zapatero (1991) - interest rate and risk premium formulae - and Ocone and
Karatzas {1991) - optimal portfolio representations.} The optimal portfolio representations
reveal that the CARA utility non-price-taker no longer holds half of the market in equilibrium.
Additional terms in his optimal portfolio process suggest that {in an expanding economy ) if he
is relatively wealthy compared with the rest of the market he demands more of the risky asset
and if he is less wealthy he demands less. An implication is that there will be less riskless lending
and borrowing in the presence of the non-price-taker. A further consequence is that the market
volatility appears to be increased by the presence of a relatively wealthy non-price-taking agent
and decreased by the presence of a less wealthy non-price-taker.

The remainder of the paper is organized as follows. Section 2 outlines the pure-exchange
continuous-time framework of our model. In Section 3 we present the martingale formulation
of the non-price-taking equilibrium and characterize the agents’ equilibrium consumption allo-
cations. Section 4 derives the modified consumption-based CAPM and interest rate formulae.
In Section 5 we specialize to the CARA utility and one risky asset to derive further results for
the equilibrium consumption-portfolio processes and the market and state prices and their dy-
namics. In Section 6 we summarize our conclusions and propose further work. The Appendices
provide the proofs of all propositions and corollaries.

2 General Formulation

This section describes a continuous-time variation of the Lucas (1978) pure-exchange economy.
The formulation follows along the lines of the continuous-time pure exchange general equilibrium
models recently developed by Duffie and Huang (1985), Duffie (1986), Huang (1987), Duffie and
Zame (1989) and Karatzas, Lehoczky and Shreve (1990, 1991).

We consider a finite horizon [0, T] economy in which there is a single consumption good.
All quantities (prices, endowments etc.) are expressed in units of this consumption good. We
let W = (Wq,..., WL)-r be an L-dimensional Brownian motion on a complete probability space



(Q, F.P) and let {Fy;t € [0, 7]} be the augmentation by null sets of the filtration generated by
W. All the uncertainty in the economy is represented by this L-dimensional Brownian motion.
« € 2 describes a state of nature in [0, T].

2.1 Securities

We assume there are L + 1 securities. One of them is an instantaneously riskless bond in zero
net supply at all times; the remaining L securities are risky stocks, each in constant net supply
of 1 and each paying out a dividend stream at rate &t} in [0,T]. We assume the following
dynamics for the aggregate dividend process 6{t) = Ef’zl 6;(t) :

L

d6(t) = ps(t)dt + ) os(t)dW;(1), t€{0,T],
=1

where ps(-) and os,(-) are Fy-measurable processes.

The price of each security is modeled as a diffusion process relative to the Brownian filtration.
The bond price dynamics are

dPo(t) = Po(t)r(t)dt, te[0,T]

1
and the risky stock price dynamics are given by

L
dPi(t) + 6i(t)dt = Pi(t) [ma(tydt + 3 opltydW;(ty| . i=1..L tec[0,T]
i=1
Since these prices are ex-dividend we have Pi(I') = 0, ¢ = 1,..., L. Here, the interest rate
r(-) of the bond, the vector of drifts x(-) = (p1(-), . pr()7 and the volatility matrix o() =
{c4;(-)} are Fi-measurable processes, and in particular are allowed to be path dependent. The
coefficients g;(t) and o4;(t) are interpreted as the instantaneous expected return of the ith
security and the instantaneous covariance of the ith security’s return with the jth Brownian
motion at time .

Note that, the market in this set-up is dynamically complete (assuming a(-) is invertible).
since the number of risky securities is equal to the number of dimensions of uncertainty (L).

In our analysis, we use the martingale representation technology, which requires the con-
struction of certain processes, related to the price dynamics. The details are given in Cox and
Huang (1989, 1991), Karatzas, Lehoczky and Shreve (1987} and Pliska (1986). We will only
present the required notions for our set-up and not concern ourselves with the details.

We define the state price density process £(t) as a process with dynamics
dg(t) = ~€(1) [r(t)ar + o)) Taw (1)] (1)
where 6(¢) is the L-dimensional F;-measurable market price of risk process defined by

6(t) = o(t) Hp(t) - (D)1},



where 1 is an L-dimensional vector with every component equal to 1. £(t, ) is interpreted
as the Arrow-Debreu price (per unit of probability) of one unit of consumption good in state
w € (1 at time .

The above construction of asset prices and the state price density process provides the
following relationship between the asset prices and their future dividends, a result which follows
from no arbitrage.

Lemma 1:

P;(t):%{)E [A[Tﬁ(s)éi(s)dslftl . t=1,...,L, t¢& {O,T}. (2}

2.2 Agents’ Preferences and Endowments

We assume there are N + 1 agents, m and n = 1,..., N, in the economy. Agent m is a non-
price-taker in the sense that he takes into account the fact that his consumption process ¢,,(#),
t € {0,T], affects the state price density process £(t), ¢t € [0, 7]. We will discuss the way agent
m affects prices in Section 3. The other agents n are price-takers. Each agent, k, is endowed
at time zero with eg; shares of risky security ¢, such that

i.e., the initial supply of each security is one share. Then, define the initial wealth of agent k as

P;(0)ex

L
The =
=1

g
£(0)

T
fo g(t)ﬁk(t)dr], k=mn

where 6(t) = ZiL=1 ekifi(t) and the second equality follows from Lemma 1. &(7) can be
interpreted as the endowment stream of agent k since it is the sum of dividend streams from
the initial endowments of the agent. We assume that no further net shares of securities are
issued after time zero, so that the total supply of each risky security is one share at all times.

For each agent %, we define a consumption process cg(¢), and an L-dimensional portfolio
process mi(t) = {mp1(t)....,, mkr.())T, where 7;;(t) denotes the amount {in units of the con-
sumption good) invested in the ith risky security by the kth agent at timne t. We can express
each component of an agent’s portfolio process as mi;(t) = ak;(¢)P;(t), where a;(t) is the num-
ber of shares of asset ¢ held by agent k at time ¢. Denoting X(t) to be the wealth of the kth
agent, Xi(t) — frk(t)Tl is the amount invested in the bond. We can write the dynamics of the
kth agent’s wealth process as

dX (1) = r(1) X (t)dt — ci(t)dt + wk(t)T{p.(t} —r()1])dt + mk(t) Lo (t)dW (1), {3}



In this economy, each agent is assumed to derive time-additive, state-independent utility
ugl{cg(t)) from consumption at all times in [0. T]. We will assume the utility functions are
strictly increasing and strictly concave. The agents trade in the securities in order to hedge
the risk associated with the dividend streams of their initial endowments and to finance their
optimal (expected utility maximizing) consumption ¢x(f). Throughout the paper, a symbol
with a~ will denote the optimal quantity corresponding to &(t) and its associated portfolio
process 7x(t). A symbol with a * will denote equilibrium in a non-price-taking economy, a
symbol with a ~ equilibrium in a price-taking economy (where all agents are price-takers).

3 Agents’ Optimization and Equilibrium

This section presents the agents’ optimization problems and defines equilibrium in a multi-agent
economy consisting of one non-price-taking agent and N price-taking agents. Conditions under
which the equilibrium allocations and Arrow-Debreu prices deviate from those in a price-taking
economy are sammarized and general statements made about how they deviate.

We use the martingale representation approach to solve the agents’ optimization problems.

Under this approach each agent &’s (k = m, n) dynamic optimization problem is converted into
the following static variational problem:

max F

T
o) /0 ”’“(Ck(t))dt}

T T
f E(r)ck(t)dt] <E {/ §(t)6k(t)dt} .
0 0

The price-takers solve their optimization problem taking the state price density process £(-)
as given. Using the Lagrangian method, the first order conditions of the price-takers n are

subject to F

u;(én(t)) =yf(t), tel0,T], n=1,.,N,

where each yn, is the Lagrange multiplier associated with agent n’s static budget constraint. For
a price-taker, the incremental satisfaction obtained from an extra unit of consumption at time
¢ and state w is proportional to the cost £(¢,w) of that extra unit of consumption; otherwise
the price-taker could make himself better off by shifting consumption to or from this state and
time. Hence their optimal consumptions are given by

on(t) = In(yn€(8), t€[0.T), n=1,.N, (4)

where I,(-) is the inverse of n’s marginal utility, and the constants yn are such that the budget
constraints hold with equality, i.e., the y, satisfy

T
EUO () {yng(t))dt| = E

T
fog(t)én(t)df}, n=1 N (5)



For notational and analytical convenience we introduce a representative agent formulation
for the price-takers (following, for example, Huang (1987)). We defire the price-taker represen-
tative agent’s utility function by

N
Ul A) =  max Z Antin(cn)
wen e

subject to Erf:{:l cn = ¢, where A = (Ay,..,2n) € (0,)¥. It can be shown that the inverse
of U'(c; A) is given by J(hyAY = Zi\;l In(h/Xpn). Hence, from (4), the aggregate optimal con-
sumption over all price-takers is given by

N

> én(t) = J(e(thi 1y, 1/yn). (6)

n=1

In contrast to the price-takers, the non-price-taker solves his optimization problem taking
into account the effect of his consumption process c,,(t) on the state price process E(t). In
subsection 3.1 we consider cases for which the non-price-taker’s time t, state consumption
em(t,w) affects only the state price density at that time and state, i.e., there is a mapping
£(t.w) = Z(em(t,w);t,«). In Subsection 3.2 we consider the more general case of his consump-
tion ¢ (t,w) affecting the whole process £(1).

3.1 The Case of Price-Taker Representative Agent Independent of Individ-
ual Weights

In this subsection and throughout most of the paper we take the case where the representative
agent’s utility function can be written as

Ule; A) = h(A)U (o).

Examples of this include the case of only one price-taker, or all price-takers having the same log
or power or negative exponential utility function. In general, it can be shown that in equilibrium
the vector (y1,...,u~} is only determined up to a multiplicative constant, so without loss of
generality we can let h(A) = 1, ie,, U{c;A) = U(c), and J(h;A) = J(h). We will see that in
this case the non-price-taker’s time t, state w consumption ¢, (t,w) only affects the state price
at that time and state £(t,w), and hence the analysis and interpretation are much simplified.
We may define a mapping
£(t.w) = Eom(t, w)it,w),

to represent the effect of agent m’s consumption on the state price at a time and state. Then
the first order conditions of the non-price-taker, m, are

U (Em(8)) = ym [£(8) + = (Emlt)i t, ) (Em(t) ~ fm(t))], telo,T), (7)

where the constant y,, is such that the solution é,,(t) satisfies

E { fo Tamam(t)df} - { [0 T&(f}am(w} . (8)



For the non- price-taker, the incremental satisfaction from an extra unit of consumption at
time ¢ and state w is proportional to the cost £(¢, ») of that extra unit of consumption, plus an
additional “cost™ term due to the direct effect of this incremental change in ¢(¢,«w) on the price
of consumption £(t,w).

Due to the fact that he affects prices the non-price-taker has an extra term on the right-
hand side of his first order condition. Inspection of equation (7) provides some clues about the
non-price-taking agent’s behavior. It seems reasonable to assume that the state price density at
time t, state « Is increasing in his consumption in that state (i.e., Z'(én{t.w);t,w) > 0}, since
the state price represents the price of a unit of consumption at that time in that state. (We
will see later that this is consistent with prices adjusting to clear the market, for concave utility
functions.) So when (&, (1) — 8,,(t)) is positive the additional term in m’s first order condition
is positive implying u,(ém(t)) is higher, or én(t) is lower, than if the additional term were
not present; and vice versa when (é,{t) — 6,{t)) is negative. So the presence of the additional
term always causes the non-price-taker to deviate towards his “own” dividend, én,(t). The
intuition for this behavior is that when ¢én,(t) is greater than 6,,(t) the non-price-taker is a net
“buyer” of consumption in that state: he is consuming more than he is entitled to from his
initial endowment. So it is in his interest to reduce £{t}, the price of consumption in that state,
and he believes he can do this by decreasing his consumption. Similarly, when ¢,,(#) is less than
§m(t) he is a net seller of consumption. Note also that the extent of his deviation towards his
dividend depends on the magnitude of Z'(¢p,(t,w); ¢, w). This term is a measure of how much
the non-price-taker is able to affect prices and so how much it is worthwhile for him to deviate
from his price-taking behavior.

Equilibrium in an economy with one non-price-taker and N price-takers is defined as a set of
prices and consumption-portfolio processes (¢, (t), 7 (t). cp{t}, 71 (¢)} such that the price-takers
choose their optimal consumption and portfolio strategy at the given prices, the non-price-taker
chooses his optimal consumption and portfolio strategy taking account of the fact that prices
respond to clear the market, and the prices are such that the good and the security markets do

clear, ie.,

e

e+ S = (1), 1e0.7], (9)
?;:1

Tai(t) + > Tty = P(), te[0.T], i=1..1L, (10)
n;l .

Xnty+ > X2 = D P, te0,T) (11)
n=1 =1

The non-price-taker determines his equilibrium allocations recognizing the fact that his
dynamic consumption-portfolio choice affects the Arrow-Debreu prices. Let us now determine
the dependence of the state prices on his choice of consumption. Recalling equation (6}, clearing
in the consumption good (9) implies

em(t) = 6{t) — J(&(t))- (12)

This expression can be interpreted as the “residual supply curve”, analogous to the notion of



residual demand in the price leadership model of oligopoly theory {e.g., Varian (1992, Chap-
ter 16}). So we have the following behavior for £(t) as a function of the non-price-taker's
consumption:

E(t) = E(ém(t)it,w) = U'(8(t) ~ em(t)). (13)
Hence
2 Em(t)it,w) = U (6(1) — em(t)),

which is positive for concave utility functions, as posited earlier. We can substitute this inte
the non-price-taker’s first order condition to obtain equation {14).

Proposition 1: The necessary and sufficient condition for equilibrium is that there exists a
process cr.(t) and a nonnegative number yn, satisfying

umn{em(t)) = ym [U'(6(t) = e (6))U"(8(2) = e (1)) (e (t) = m(t))] . t € [0,7], (14)

T
E [/0 U(8(t) — ey (t))er, ()dE

=E UT U's(t) — c,*n(t))ém(t)df} , (15)
0

given that agents n follow their optimal consumption determined from equation ({) and that
£*(t) clears the consumption good market, i.e., satisfies (12).

Assume the non-price-taker’s utility function is defined over some domain {ca, 00), where

Coc = —00, and satisfies limo—ooul,(c) = 0 and limeee ul (¢) = oo. Assume the representative
- ¥

price-taking agent’s utility function is of the HARA form, i.e, U(c) = 1% (I‘% + 'r;) , where

1_
agents’ “own” dividend processes, &n, (1) and Zﬁ;l 8n(t) within the domains of their respective

Noogait
utility functions, i.e., §{t) > oo and (Q‘{E_}:r—-——(-l + 7}) >0, te€l0.T], a.s., the equilibrium

in the non-price-taking economy exists and is unique.

B3>0,n>0,v# 1, 5n=1ify=—no, defined over the domain where (E—C_Y + n) > 0. Then, for

We will assume from now on that equilibrium exists. As seen in Proposition 1 this is indeed
the case for the HARA family of utility functions. The HARA family includes power utility
(B=1,n=0,v < 1}, log utility ( 5 =1, n = 0, v = 0} and negative exponential utility
{v = —oo, n = 1), some of the most commonly used utility functions in finance. Note also that
for um(c) and U(c) both negative exponential {as in Section 5), since coc = —oc and negative
exponential is defined over all ¢ € {(—o0, oc), there are no restrictions on é,,(¢) and ZHN:I &n(t).
For power or log utility, the stated restrictions on §,,{t) and EnNzl 8, (t) correspond to requiring
both to be positive.

If it exists, the solution to equation {14) will be of the form ¢}, {t,w) = o), (6(t,w), m(t, w); ym).
In a price-taking economy with heterogeneous agents, the equilibrium consumption allocations,
cmft) and cp(t), are only a function of the aggregate dividend §(¢). In the non-price-taking
economy we have an additional state variable: é,,(t), the dividend stream from m’s initial asset
endowments. An immediate consequence is that, unlike in a price-taking economy (Breeden
(1979)), the equilibrium consumption streams of the N + 1 agents, ¢, (t),c(¢), are no longer
(instantaneously) perfectly correlated with each other and with the aggregate dividend, (1).



This in turn leads to a modified two-factor consumption CAPM, as will be demonstrated in
Section 4.

As was posited earlier from equation (7), equation {14) reveals that the non-price-taker’s
consumption tends to move towards &m(t) compared with his price-taking equilibrium consump-
tion. {Since ym, and £(t) differ across economies we cannot say that em(t) is always closer to
6m(t) than is m's consumption in the price-taking economy, but it is reasonable to assume that
this will be the case when agent m is enough of a net buyer or seller of consumption good.) This
behavior leads us to the intuition that the instantaneous volatility of the difference between
e (t) and 8y, (t) is lower in the non-price-taking economy. We formalize this idea in Section 5
when we put more structure into the model. Rewriting equation (14) as

IR ()
N *
U (Zn:l Cn(t))

we see that the extent of agent m’s deviation towards é,(t) depends on the absolute risk
aversion, -U"/U’, of the representative price-taker. The more risk averse the price-takers, the
less their consumption reacts to changes in the state price or, conversely, the more the state
price reacts to their (and hence also the non-price-taker’s) consumption and so the more it is
in the non-price-taker’s interest to deviate. In the limit of risk neutral price-takers, the non-
price-taker cannot affect the state price at all and so he will not deviate from his price-taking
behavior.

(e (8)) = ymU ' (6(8) — (1)) (em(t) = 8m(t))| . t€[0,T],  (16)

By substituting (13) inte (14), we see that equilibrium implies the following condition on

£7(t):
W (6(1) — T(EH(EN) = ym [EOU(T(E())(6(t) - bm(t) — J(€7(1)))], te(0.T]

If this equation has a solution it will be of the form £*(t,w) = £*(8(t,w), ém(t, w);ym). Unlike
in the price-taking case, £*(t) is also driven by the extra factor 6m(t). Compared with the
analogous equation in the price-taking economy, equation (15) has an additional term om its right
hand side. Whenever J(£*(t)) deviates from 6(t)—&m(t), i.e., £*(t) deviates from U6(t)—6m(t)),
the additional term is non-zero, and so the equilibrium state price is affected by the presence
of the non-price-taking agent. Since U”(-) < 0, when £*(f) > U'(6(t) — &m(t)), the extra term
is positive and so tends to decrease ¢*{t}, since the left hand side is decreasing in £*(t). When
£*(t) < U'(8(t) — 6m(t)), the extra term increases ¢*(t). Hence the extra term always causes
£(t) to move closer to U'(6(t) — ém(t)). This arises from the consumption behavior of the
non-price-taking agent discussed earlier.

Equation (16) suggests that, in addition to the risk aversion of the representative price-
taker, the extent of the non-price-taker’s effect on the economy is also driven by (6(t) — X, ()],
or how much of a trader he is. The following proposition establishes formally that in the
limit when agent m does not trade then there is no effect on the equilibrium of making him a
non-price-taker,

10



Proposition 2:

(a) Suppose the agents’ initial endowments are such that agent m does not trade in equilibrium
in the economy where all are price-takers. Then in equilibrium in the economy where agent m
is a non-price-taker, he will not deviate from his price-taking consumption-portfolio strategy.

(b} Similarly, if equilibrium in the non-price-taking economy is such that agent m does not
trade, then he must not be deviating from his equilibrium price-taking strategy.

(c) If the initial endowments are such that agent m does trade in equilibrium in the economy
where all are price-takers. in the non-price-taking equilibrium the non-price-taker m will deviate
from his price-taking strategy.

Earlier we discussed the intuition for the non-price-taking agent’s consumption behavior
compared with the price-taking case. So why does he not deviate to exercise his price-affecting
power in the case where his price-taking optimal behavior was to not trade and consume his
“own” dividend? We will argue that he always makes himself worse off by deviating. Suppose
in some state he increases his consumption a little so that em{t) > ém(t). Now he is a net
buyer of consumption good in that state. Unfortunately, by increasing em(t) he simultaneously
increases £(t), i.e., raises the price of consumption in that state, which will affect him adversely.
If he decreases ¢y, (t), he will be a net seller of consumption but at the same time reduce its
price; deviation in either direction has an adverse effect. Part (c) of Proposition 2 states that
generically the non-price-taking equilibrium will differ from the price-taking equilibrium.

Note that, although seemingly intuitive, the condition e, = 0 does not always imply that
the non-price-taker does not deviate from his price-taking behavior. So, even if he has no initial
wealth it may still be the case that he changes the equilibrium by being a non-price-taker.
For example, for the CARA utility and one risky asset case considered in Section 3, it is not
¢m = 0 but e, = 1/2 for which there is no deviation from the price-taking equilibrium. Both
Proposition 2 and this example illustrate that the non-price-taker’s influence on the equilibrium
does not depend on how wealthy he is, but on how much of a trader he is. For the case of
two CARA utility agents where one has no initial wealth, the agents do still trade in the price-
taking equilibrium and so the condition for Proposition 2 part {a) does not hold. In the case of
CRRA (constant relative risk aversion) utility agents, however, if agent m has no initial wealth
(e = 0) he will never consume and never trade in the price-taking economy and so, as stated
by Proposition 2 part (a), his non-price-taking strategy will not deviate from his price-taking
one. The same is true for any other utility function satisfying lim.—gu’(c) = oo because then
the consumption can never go negative and so an agent with no wealth can never afford to
consume or trade. The reader should keep in mind, though, that the reason he has no effect is
not that he has no wealth, but that he does not trade at all.

An appropriate question is whether the non-price-taker gains any advantage through taking
into account his effect on prices. Can he do better than if he were a price-taker? Proposition
3 states that indeed the non-price-taker will be at least as well off as if he were a price-taker.
This is because when solving his optimization problem the non-price-taking agent always has
the option of choosing his price-taking equilibrium consumption.

11



Proposition 3: In equilibrium, in the non-price-taking economy, agent m’s expected lifetime
utility from consumption is greater then or equal to that in equilibrium in the price-taking

ECONOMY, L.€.,
T
/0 wm(Em(O)dt| .

We have seen in this section that, unlike for the price-takers, the non-price-taker’s equi-
librium consumption is not simply proportional to the state price. Hence his marginal rate
of substitution between consumption in different states and times is not necessarily equal to
the ratio of the state prices, whereas each agent n's is. As stated below in Proposition 4, this
discrepancy between agents’ marginal rates of substitution, implies that the non-price-taking
equilibrium consumption allocations are not pareto optimal.

T
E fo (et (1))t 2 B

Proposition 4: If the non-price-taking equilibrium differs (with probability greater than zero)
from the price-taking equilibrium, them the non-price-taking equiltbrium allocations are not
pareto optimal.

Remark 1: In this paper we solve the problem where the agents choose their plans at time 0
and do not subsequently deviate from these plans, i.e., we have characterized a self-commitment
solution. A natural question to ask in this setting is whether the agents have any incentive to
deviate at a later date, in other words, whether their strategies are time-inconsistent {Sargent
(1987, p.11), Merton(1990, p.177)).

To address this issue, we look at each agent’s optimization problem from some intermediate
time s € (0,7T) onwards, for given asset holdings at s, i.e.,

2?;){E [j;TUk(Ck(t))dt | ]—“3]

T T
subject to E {/ E(t)e(t)dt | .ﬂ] < &(s)are(s)Po(s) + E [L E(t)6g{t)dt | .7-"3] .

where 67(t) = YL, ar;(s)6:(1). Tt is well-known that the standard price-taking (i.e. agent n’s)
strategy is time-consistent. This can be seen by noting that his first order conditions of the
above problem again lead to equation (4), where y, must be the same number as before since
his commitment solution must solve his budget constraint from time s onwards.

On the other hand the non-price-taker’s strategy is not time-consistent. For simplicity, take
a time and state where a,,0(s) = 0. This assumption allows us not to concern ourselves with
the bond price but does not affect any of our conclusions. The first order conditions of the
above problem become

i (Cm (1)) = v [U'(6(8) = em(8)) = U (6(1) = em(t))(em(t) = 60(1))], 1 € [5,T],

where y5 is such that the non-price-taker’s budget constraint at time s holds with equality.
Generically the solution will differ from the commitment solution, since 82 (¢} differs from 6,,(¢).

12



Note that this solution of the problem from time s onwards has some of the familiar features
associated with our commitment solution. Now the non-price-taker deviates towards 62 (¢), the
dividend stream from his time s asset holdings, and we may think of ¢, (t)— 62 (t) as representing
how much of a net buyer or seller of consumption good he is. Much of our intuition can be
reapplied to this solution.

Since the non-price-taker has an incentive to deviate from his commitment strategy as time
unfolds, it would be valuable for comparison to also solve for his subgame perfect strategy, by
backward induction. Our preliminary analysis suggests that this problem is intractable in our
framework for the type of non-price-taking agents we are considering. So the commitment solu-
tion may be considered as a tractable benchmark solution to a problem that is more generally
intractable. One comparison that can be made is that the non-price-taker is better off to follow
his commitment strategy than his subgame perfect strategy. This is clear because the subgame
perfect strategy must satisfy his [0, T] budget constraint with £(t) always satisfying equation
(13), and by definition, the commitment strategy maximizes his expected lifetime utility over all
strategies which satisfy these two conditions. When looking for the subgame perfect strategy we
are restricting the non-price-taker to only follow strategies which are optimal in all subgames.

Given this discussion, one interpretation of our solution in this paper is that we are ex-
panding the strategy space of the agents, from the space of only subgame perfect strategies.
to include commitment strategies. Given the non-price-taker is better off by following a self-
commitment strategy, it is reasonable to assume that he will create some mechanism to force
himself to commit, and so it is not unreasonable to include these types of strategies. In this
paper we do not attempt to discuss the means by which the non-price-taker might force himself
to commit, instead we focus on the dynamic consumption and price behavior.

Remark 2: Instead of the agents being initially endowed with units of positive net supply assets
paying dividend streams &,,(t) and 6,(t), we could have modeled them as having continuous
endowment streams ex(f) in the consumption good. The agents would then create zero net
supply securities to complete the market and the economy would be effectively the same as we
have here. The extra state variable would then be ,,(t) instead of &,,(t).

3.2 Extension to Representative Price-Taking Agent Not Independent of
Individual Weights

Here we extend the analysis of the previous subsection to the case of one non-price-taker and
multiple price-takers whose representative agent utility function is not independent of the in-
dividual price-takers’ weights. Recalling equation (6) clearing in the consumption good (9)
implies £(¢) and ¢, (t) are related by

em(t) = 8(t) — J(£(t); A),

or

£(t) = U'(6(t) — emfty; A). (17)
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The significant difference between these expressions and equations (12}-(13) is that now agent
m’s consumption at time ¢ in state w, depends not only on £(t,w) but also on the weights
A. Since these weights are determined from the budget constraints of the price-taking agents
(equation (5)) and since the budget constraints are in terms of present values, driven by the
whole process of £(-), em(t,») depends on the whole process £(-}. Alternatively, we may state
that em(t,«) affects the whole state price density process £(-); there is no longer a mapping
from cp(t,w) to £(t,w). Now, when the non-price-taker chooses his optimal consumption he
has to worry about the wealth effects of this choice, since the other agents’ weights now appear
in equation (17). He has to be concerned about the externalities he is imposing on the other
agents by his choice of consumption {and hence state price process), which will determine the
distribution of wealth across these agents. As a result the analysis of his optimization problem
becomes much more complicated, as can be seen from his first order condition, presented in
Proposition 3.

Proposition 5: The necessary and sufficient condition for equilibrium is that there exists a
process i (1) and N + 1 nonnegative numbers (ym, y1, - yn ) satisfying

(e (1)) = v [U(8(8) = e (1) A) = U"(6(t) = cin(1)s A) (e (1) = 6m (2))]

al U"(6(t) = ch (1) A)
- ;K”u;’.un(yma(t) —en AN

[nU (8t} = (801 A) + un{Tn(yml (8(t) = e (1); M) Unlynl ' (6(t) — cmn(1); A)) = bm(1))] .
(18)

T T
E U U(s(t) - C:n(t);/l)(':n(t)dt} =E U U'(t) - c;(t);A)ém(r)dt} : (19)
0 0

and

E

/OT U'(8() = eq{t); AV In{ynl ' (6(t) — C;(t);A))df} =E

/OT U'ts(t) — c;l(t);A)én(t)dth , n=1,...N,

(20)
given that agents n follow their optimal consumption determined from equation {4} and that
£*(t) clears the consumption good market, i.e., satisfies (17). The constants Kn are given in
the proof in Appendixz B.

IfU(c;A) = R(A)U (¢), then Kp =10 for all n.

Equation {18) is similar to equation (14) but with N extra terms on the right hand side.
Again, the incremental satisfaction the non-price-taker gets from an extra unit of consumption
at time ¢ and state w must be equal to the total “costliness” to him of that extra unit of
consumption. As in Section 3.1, the first and second terms on the right hand side of (18) are
the cost £(t,w) of that extra unit of consumption and the costliness to him due to the direct
effect of cm(t;w) on £(t,«). Note that the second term will again have the effect of making
¢t (t) tend towards §y,(t) as compared with a price-taking economy.
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In this case, however, an extra unit of consumption is costly to agent m in a third wav.
represented by the extra N terms in (18). The non-price-taker also realizes now that an extra
unit of ¢, (t;w) can affect the effective wealths of the other agents which in turn affect the whole
state price process £(-), and hence his satisfaction at all other times and states. In determining
his optimal consumption process c,, () he must also take this into account. For example, it may
turn out that it is in his interests to make price-taker 3 more wealthy relative to price-taker 1,
and these extra terms capture this awareness. We argue in the proof of Proposition 5 that the
extra terms in (18) are indeed the indirect incremental change in agent m’s expected lifetime

utility £ [fOT u,’,n(cm(t)dt] via the effect of an extra unit of ¢,,(t; w) on each of the other agent’s
budget constraints.

As a final note, the last statement of Proposition 5 shows that expression (18) indeed
collapses to our previous expression (14) in the case when the price-taker representative agent
utility function is independent of the individual weights.

4 The Equilibrium Interest Rate and the Consumption-Based
CAPM

Here we look more closely at the effect of the presence of a non-price-taking agent on equilib-
rium asset and state prices. and on the consumption-based CAPM. We will discuss only the
simpler case of representative price-taking agent’s utility independent of individual weights, as
in Subsection 3.1.

It is well-known that in an economy with N + 1 price-taking agents with (possibly hetero-
geneous) time-additive, state-separable preferences, the equilibrium interest rate 7 (t} is given
by

() = Mot pa(t) + 76(t) os(t)]%; As(t) > 0

where As(t) = —V"(6(t); ¥ )/V'(6(t); V), 7s(t) = —V"(8(t); ¥ )/ (2V'(6(t}; ¥ ) and ¥ = (§im. i1,
Here V (-, Y) is the utility function of the representative agent of all agents {(including m ). (This
representation is just the pure-exchange, multi-agent version of Cox, Ingersoll and Ross (1985).)
The interest rate depends only on the aggregate dividend and its moments. Since As(t) > 0
for concave utility functions, the interest rate is positively related to pg(t). Furthermore, if
V"(5(t};Y) > 0 then the interest rate process is negatively related to the variance of the
aggregate dividend |lo4(t)]2.

The pure exchange version of Breeden’s CCAPM (1979, 1986) with two price-taking agents
is (see Duffie and Zame (1989) or Karatzas, Lehoczky and Shreve (1990))

() ~ #(6)1 = As(t)cov (‘f ((tt)),dé(t)) L Rs(t) > 0,

The stocks’ risk premia are driven by a single factor §(t). The risk premium of an asset is
positively related to the (instantaneous, conditional) covariance of its return with dé(t), the
change in the aggregate consumption.
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In our economy with N price-taking agents and one non-price-taking agent, the interest rate
and the risk premia are now driven by two factors, 6(¢) and 6, (¢), as summarized in Proposition
6.

Proposition 6: In an economy with N price-taking and one non-price-taking agent the equi-
Librium interest rate is given by:

P () = (1 s(t) + ng (D, (1) + v Ollos (O + vi, (Dos, (DI + x*(Dos(t) o5, (1), (21)
and the risk premia of risky securities are given by:

dP(t)
P(t)

where pg, (t) and ||as,, (t)|| are the drift and volatility of 6m(t), and

ptt) - r* )1 = )\g(t)cov( ,dé(t)) + A, {t)eov (w,dém(t)) , (22)

P{t)

As(t) = -

U(6(1) = clylt) { W (5 (0)) + ymU " (E (1) = e (2))
U78(0) — ealD)

pnll " (8(2) — eBul8))
W (et + 5l (8(8) — cm())

It

A (t) AZ(2).

The interest rate now depends on both 6(t) and 6,,(t). The coefficients (5, v, x) in the interest
rate formula for general utility functions are rather complicated, with ambiguous signs, and so
not especially illuminating. Hence we do not present them here. For general utility functions
the signs of the dependence of r*(t) on ps(t), ps, (1), os(D|2, lios,, (t)]|% and as(t) T as,.(t) are
not clear.

The CCAPM is now a two-beta CCAPM, driven by the covariance of the price return with
both dé(t) and dé,(t). When U(-) is strictly concave, both A’s are nonzero and have the
same sign, so the dependences of an asset’s risk premium on the covariance of its return with
the non-price-taker’s dividend and with the aggregate consumption are of the same sign. At
the equilibrium, As and Xs,, are positive for price-taker representative agent with HARA utility
under the conditions required for the existence in Proposition 1.1 It is an open question whether
for other utility functions the A's can go negative, depending on the signs (and sizes) of I7"(:)
and (¢, () — 8m(t)). If so, the usual implication of the consumption CAPM would fail; the
risk premium would be negatively related to the covariance of the asset return with changes
in the aggregate consumption. A traditional one-factor consumption CAPM arises when §(t)
and 6,,(¢) are (instantaneously) perfectly correlated, collapsing the two terms together. For the
case of one risky asset, for example, 6(t) and &y, (t) are perfectly correlated.

I A sufficient condition for the A’s to be positive is that
U (bm(t) — e ()€ (t) = 8m (1)) — 2U" (Em(t) — em(t)) 2 0.

This term is R'(c%(t); ym)/ym in the proof of Proposition 1 (Appendix B) where it is shown to always be
nonnegative for HARA representative price-taker at the equilibrium.
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5 The CARA Utility and One Risky Asset Case

In order to derive further results, we now put more structure into our general set-up by spe-
cializing to the case of one risky asset (and one dimension of uncertainty) and to a specific
utility function for both agent n and the price-taker representative agent. From now on, we
will talk of the price-takers as one agent, although this could be a representative agent over
multiple price-takers. There is still a risk-free bond in addition to the one risky asset. With
power or log utility, in the price-taking equilibrium (when m is also a price-taker) with one
risky asset each agent holds on to his initial endowment of the risky asset and no trading oc-
curs. Hence, according to Proposition 2, a power or log utility non-price-taking agent does
not deviate from his price-taking behavior and there is no effect on the optimal strategies or
equilibrium prices. So we choose the case of exponential utility in which trading does take place
in the price-taking equilibrium even in one risky asset. The utility function of both agents is
of the form u(c) = —exp{—ac}/a; a > 0. The agents are initially endowed with e,, and e,
units of the risky asset; then &x(t) = eré(t).

. For some of the results in this section we will make the following assumption on the dividend

process.?

Assumption Al: us(t) = ps, os(t) = o5 are constants, i.e., the dividend process is driven by
an arithmetic Brownian motion.

We will generally assume that u4(t) is positive, i.e., that the economy is expanding.

We specified an economy with one representative price-taker and one non-price-taker in
Section 3. Let us here define a benchmark “price-taking” economy as one with two exponential
utility price-taking agents. Each agent m,n solves his optimization problem at given prices.
The equilibrium price processes are such that all markets clear. It can be shown that the
equilibrium state price density process in this price-taking economy is

- 1 1
&(T) = T/Z exp {—E‘aé(f)} s (23)
Ym
and the equilibrium consumption processes are
_ 1 1 _
Crm(t) = -Q—é(t) -~ — In(¥m), (24)
2a
_ 1 1 _ -
Cn(t) = _6(t) + = ln(ym): (23)
2 2a

where ,, is given by

2

- (1) EE 0 e {desto)
50 = (37 ) = o L] o]

2a
*This process has the undesirable feature that the dividend can go negative since it is normally distributed

at each point in time. However, the probability of this happening can be made arbitrarity small, and hence we
will not concern ourselves with this inconvenience.

(26)
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When ey, > 1/2, agent m consumes more than half of the dividend é{t}, and when e, < 1/2 he
consumes less than half of 6(¢). We will use the notation ~ to denote equilibrium quantities
in the benchmark economy and the notation * to denote equilibrium quantities in the non-price-
taking economy. In this section we compare the equilibrium consumption allocations and their
dynamics in the two economies. We then compare state and market price dynamics, as well as
the equilibrium portfolio strategies and wealths of the agents. The results for the benchmark
economy are straightforward to derive and will often be quoted without proof.

5.1 The Equilibrium Consumption Allocations

In the non-price-taking economy the equilibrium consumptions of the two agents are given by
(14) and by (6) where ¢ satisfies (13). Hence for exponential utility c;,(t) and ¢} () solve

nlt) = 56(0) — -1 1+ a(ef(8) = Bm(®)] = 5= ). (2)
- 1 1 « 1
n(t) = 56(t) + 5-1n 1+ alen(t) = m(t))] + 5= In{ym), (28)

where y,,, is such that the process ¢, (t} satisfies

T
E f 5(t) exp {—a(6(t) — e&(8))} dt |
0

T
/(; em(t)exp{—a(é(t) — c:n(t))}dt] =emnE

In Proposition 1 we established the existence of equilibrium for this case.

In the benchmark economy the agents consumed half each of the dividend plus or minus
a constant depending on their initial endowments. In the non-price-taking economy there are
additional terms which are not constants. As discussed in Section 3, the agents’ consumption
streams depend on 6,,(¢t) as well as §(¢t), although in this case of one asset 6,(t) is perfectly
correlated with 6{t).

The following proposition compares the levels of consumption of agent m across economies,
and the levels of consumption of agent m and n within economies,

Proposition 7:
(e} Forem > 1/2:

1. When 6(t) > 8crit, e (t) > Em(t); when §(1) < bcrir, o, (t) < Em(t); and when
E(t) = berit, Cp(t) = Em(t), where beriy 15 the constant given by

5cr'it= TS I—-=— - ’ln(?jm)
ale 2

2. Although &y(t) > &,{t) almost surely in the benchmark economy, in the non-price-taking
economy we may have ¢, (t) < en{t).
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(b} For ey < 1/2:

1. When 8(t) > bepit, e, (t) < Trp(t); when 6(t) < bepip. € (1) > Em(t); and when
6(t) = berit, o (t) = em(t).

2. Although ¢m(t) < en(t) a.s. in the benchmark economy, in the non-price-taking economy
we may have c;,(t) > ch(t).

(c) For e = 1/2: ¢} (t) = T (t), ¥V 6(t) .

From part (a}l. of Proposition 7 we see that when the non-price-taking agent initially
owns more than half of the market, as the aggregate dividend increases above a critical level
he tends to consume more than when he is a price-taker and as it decreases below the critical
level he tends to consume less; in a sense he is reacting more to changes in aggregate dividend.
The intuition for this can be seen by considering n:’s consumption behavior in the price-taking
economy. It is straightforward to show that in the price-taking economy, for e,, > 1/2, when
the aggregate dividend is relatively high, agent m consumes less than his endowment, i.e., in
that state, he is a net seller of consumption, and so would like the price of consumption to
be high. Hence when we move to the economy in which agent m is a non-price-taker, we see
agent m increasing his consumption, and thereby increasing the price of consumption in that
state. He does the opposite when the aggregate dividend is low. For the case when the non-
price-taker is initially less wealthy, the opposite happens, as stated in part {b)1. Part {c) of
the proposition illustrates a special case of Proposition 2. When e, = 1/2, in the benchmark
economy 1u(gm) = 0 and so &, (t) = 6(t)/2 = é,,(t) and no trade takes place. Then there is no
effect of the presence of one non-price-taking agent.

In the case of § growing over time on average, Proposition 7 implies that, when initially
endowed with more than half of the market, the non-price-taker on average postpones con-
sumption to later in his lifetime relative to if he were a price-taker. When initially endowed
with less than half of the market, he on average consumes more towards the beginning of his
lifetime, i.e., is more impatient, than if he were a price-taker. It should be emphasized that
bcrit depends on the yy,.’s, which in turn depend on the distribution of the whole §{¢) process.
So if we exogeneously increase the overall level of the §(¢) process, 6. increases too. It seems
intuitive that no matter how we choose our exogeneous § process there will always be both
states in which 8(t) > 8.4 and states in which 8(t) < ez,

Parts 2. of Proposition 7 compare agents m and n within economies; note that in case (a),
even though the non-price-taker initially owns more than half of the market, there will be states
in which he chooses to consume less than the less-endowed price-taker.

Next we compare the dynamics of the agents’ consumption streams across economies. We
define the drift u., (¢) and volatility o, (t) of agent k’s consumption by

dep(t) = peg(t)dt + oc, () dW (t), k =m, n.

In the benchmark economy the equilibrium drift and volatility of agent m’s (and agent n's)
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consumption are given by

fen8) = S18(1). Fen(t) = 35l0).

Proposition 8: In the non-price-taking economy, the equilibrium drift and volatility of the
non-price-taking cgent’s consumpiion are given by

pEa €)= ae)t) + T [0+ 910 - 3] (o (29)
and
72, (8) = 9()s(t), (30)
where I ]
10 = —exp {~2alenln) = 380|510 >0 (31)
and

L em+ flt,w)  Bep(tw) '
g(ta““) = l+2f(t.w) = Bé(t,w) : g(t:W) & (Oal) (32)

As a consequence, for ey > 1/2, we have |og (t)] > |G, (t)] and p; {t) > f,.(t); and for
em < 1/2, we have |o; (t)] < |7c, (t)] end pl (1) < [ic,,(t).

The comparative statics results of Proposition 8 are derived from the properties of the
process ¢(t), which captures how the non-price-taker reacts to changes in the aggregate dividend.
For example, for e, > 1/2, g{t) > 1/2 since the non-price-taker reacts more to changes in 8(f).
We see that if the non-price-taking agent initially owns more than half of the market, he
increases the drift and volatility of his consumption compared with the price-taking case. In
other words, his consumption stream is riskier than when he is a price-taker. On the other hand,
if he initially owns less than half of the market his consumption stream is less risky when he
is a non-price-taker than when he is a price-taker. To see why these results hold, suppose that
the non-price-taker initially owns 3/4 of the market and consider two consumption strategies:
(1) he holds on to his initial endowment at all times (absorbing 3/4 of the dividend risk and
growth), or (2) he follows his price-taking strategy (sharing the dividend risk and growth equally
with the other agent). Recall from Section 3 that the non-price-taker deviates from his price-
taking consumption (strategy 2) towards his endowment (strategy 1), and hence in this case he
increases his consumption drift and volatility.

The following corollary captures the anticipated result that the non-price-taker tends to

move his consumption closer to &,,(¢).

Corollary 1: The instantaneous volatility of the difference between cp,(t) and §,(t), ie.,
| e, (8) — o5, (t) |, is lower in the economy where m is a non-price-taker than in the benchmark
economy.

Since agents derive utility from consumption, an interesting question is whether the non-
price-taker is able to consume more on average than when he is a price-taker. Proposition 7
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revealed that his consumption is sometimes lower and sometimes higher depending on the level
of 6(t). Nevertheless, as a corollary to Proposition 8, we can compare expectations of future
consumption by appealing to results for mean comparison of solutions to stochastic differential
equations (Ikeda and Watanabe (1989}, Hajek (1985)). Existing mean comparison theorems
do not accommodate comparisons between two processes both of whose drifts and volatilities
are stochastic (unless one process is Markov), so we make assumption Al in order to appeal
to existing mean comparison theorems. The mean comparison theorem we use is valid for
comparison between processes of which one has a dominating constant drift and volatility. This
theorem proves Corollaries 2 and 3 which is for the case of e, < 1/2; I anticipate that the
analogous theorem is true to prove the corresponding cases for ¢, > 1/2, but to my knowledge
no such theorem exists.

Corollary 2: Assume Al. Then for ey, < 1/2, when 5{t) > Sorit
Elen(s)| Fil S Elem(s) | Fe], s>,

fam(s)ds | J—}} |

end s0

T
E / em(s)ds | Ft| < E
t

If 6() drifts upwards on average, once 6(t) has passed &4 it will on average be above &apy
in the future. For ¢y, < 1/2, ¢, will be expected to be lower than &, on average in the future.

Note that the results of Corollary 2 do not necessarily hold at the beginning of the period,
since 6(0) may not satisfy the required condition. In fact, since & drifts upwards, §(0} will be
relatively low compared with the average level of the process, so it is unlikely that §(0) will be
higher than é.. Hence the comparisons will not tend to hold for the expected consumption
integrated over the agent’s lifetime.

5.2 The Equilibrium State Prices, Interest Rate and Market Price of Risk

We now begin to investigate the effect of the presence of the non-price-taker on the equilibrium
prices. In the benchmark economy, £(¢) is given by (23) and an application of 1t&’s Lemma
yields the coefficients of its dynamics, the interest rate and the market price of risk, as

2

2#6&) - %aa(t)z,

o(t) = %ag(t).

a

()

In the non-price-taker economy, £7(t) satisfies equation (13). By applying It6’s Lemma for
the case of exponential utility to (13) and making use of (29)-(30), we derive the following
results,

*1 thank Steve Shreve for bringing to my attention these mean comparison theorems of solutions to stochastic
differential equations.
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Figure 1: Normalized difference between interest rate in non-price-taking and price-taking
economies, r*(f) — #(t). r*(t) — 7{t) must lie between the dotted lines. Plotted for various
choices of the exogeneous parameter 2us/act (A) 0.5, (B) 1, (C) 2, (D) 5.

Proposition 9: In the non-price-taking economy, the equilibrium interest rate and market
price of risk are given by

(1.2
(1) = a1 = a(nel0) ~ T [s0 = ot = | s = F 1 aoel® (39
9°(t) = a1 — (1)l (34

where f(t) and g(t) are defined as in equations (31) and (32).
As a consequence, if em > 1/2, [8%(1)] > 8(t)!; if em < 1/2, 107(t)] < |6()!.

Proposition 9 reveals that, when the non-price-taker initially owns more than half of the
market, he causes the market price of risk to be higher. In other words he makes the Arrow-
Debreu state prices (the price of consumption) riskier. This follows from a result of previous
section that he chooses a riskier consumption stream. If he initially owns less than half of the
market he causes the Arrow-Debreu state prices to be less risky.

The interest rate is driven by both the drift and the volatility of agent m’s consumption.
Since an increase or a decrease in these two quantities affect the interest rate in opposite
directions, comparisons between r*(t) and 7(t) are not unambiguous as they are for #(t). In
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Figure 1 we plot ranges within which [r*(t) — 7(t)]/a must fall as a function of ¢(¢), for a series
of choices of the exogeneous parameter 2u; /aof. For example, in the price-taking economy, this
exogeneous parameter is given by Zpg/aog =ro?/(u — )% + 1/2. Matching “normal” market
conditions of r = 8%,¢ = 20%, x = 15%, to the exogeneous parameters of the price-taking
economy yields 2,(15/0,0% = 1.15. In general, the higher the interest rate or the volatility of
the market, the higher this parameter. From the definition of ¢(t) we have that g(¢) > 1/2
corresponds to e, > 1/2 and g{t} < 1/2 corresponds to e, < 1/2. So from the graphs it
appears that for most market conditions, for e,, > 1/2 the interest rate in the non-price-taking
economy is lower than in the benchmark economy. For large enough 2us/ac?, r*(t) < 7(t) for
em > 1/2 and 7*(t) > 7(t) for em < 1/2.

Using the mean comparison theorems we can deduce conclusions about the expected growth
of state prices across economies. We will see later that this comparison is relevant for asset
price volatility and portfolio strategy comparisons across economies,

Corollary 3: Assume Al. Then for em < 1/2

E[f*(t)ift]SE[g(t) ft:ls > t,

Ters) T¢(s)
E|:-/t 5*(t)dbi}_{tSE[/; g(t)dslft}.

Note that the first terms compared correspond to the price at time ¢ of a bond paying a
certain payout of one unit at time s; the second terms compared correspond to the price at time
t of an annuity paying a certain payout of one unit at all timmes until the end of the horizon.

and so

We mentioned before that, with #{¢) drifting upwards, when e, < 1/2 the non-price-taker on
average consumes more earlier on in his lifetime compared with when he is a price-taker. Hence
he puts a lower value on a bond providing sure future consumption than if he were a price-taker.
Although we cannot yet verify mathematically since the required mean comparison theorem does
not exist, we anticipate that the opposite result holds for the reverse case: when e,, > 1/2 the
non-price-taker on average postpones consumption to later in his lifetime compared with when
he is a price-taker, hence valuing a bond that pays him sure future consumption more highly
than if he were a price-taker.

5.3 Agents’ Wealths and Portfolio Strategies

It is well-known (e.g., Cox and Huang (1989)) that, by the construction of the state price
density process, the equilibrium optimally invested wealths (satisfying (3)) of the agents in
either economy are given in terms of their equilibrium consumptions by

T
Xilt) = E(lt—)f: [ f £(s)ex(s)ds | f}} .
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We can draw some conclusions about the agents’ wealth from our discussions of their consump-
tions in Section 5.1. We have said in general that the non-price-taker's consumption tends to
deviate towards his endowment, é,,(¢). From the above equation this might suggest that the
non-price-taking agent’s wealth tends to deviate towards the value of “his” dividend stream,

emP(t). This in turn suggests that the non-price-taker deviates his portfolio strategy towards
not trading at all.

In the benchmark economy, the equilibrium portfolio strategies are

1 1
Gm(t) = 35 an(t) = 5
Regardless of their initial endowments, identical CARA utility agents share the risk equally in
the economy, and hence each agent holds half of the risky asset. As long as ¢,, # 1/2 there is
net riskless lending and borrowing in equilibrium in the benchmark economy. If e,, > 1/2, the
initially wealthier agent m is a lender; if e, < 1/2, agent m is a borrower.

Propoesition 10 presents the trading strategies of the agents in the non-price-taking econ-
omy. These expressions are derived by appealing to the Clark formula and some properties
of Malliavin derivatives. This use of Malliavin calculus has also been employed by Ocone and
Karatzas (1991). We say more about Malliavin calculus in the next subsection.

Proposition 10: Assume A1. The equilibrium portfolio strategies in the non-price-taking
economy can be erpressed as

f)

am(t) = ";' :T{t £ [ S) (s) —1/2]ds | ft]
£
£

o T g*fg \
+P*(f‘.)2E [/t *Et))[ (5) — g{t)](cpm(s) — 8(s)/2)ds | _7-}] ,
T *s
an(®) :% g ]t s*t s ﬂ]
a8 Tﬁ*(e

There are additional terms in the agents’ portfolio strategies in the non-price-taking econ-
omy. Agents do not simply hold half each of the risky asset as they do in the benchmark
economy.

Recall that ¢(-) captures how the non-price-taker reacts to changes in the dividend stream.
If esn > 1/2, we always have g{s) > 1/2, so the second term in the non-price-taker’s portfolio
strategy is positive. The presence of this term tends to make the non-price-taker hold more
than half of the risky asset and the price-taker hold less than half of the risky asset in the
non-price-taking economy. For ey < 1/2, we have g{s) < 1/2, and hence the second term is
negative, tending to make the non-price-taker hold less than half of the risky asset and the
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price-taker holds more than half. The sign of this term is independent of the assumptions made
on the aggregate dividend process; its effect does not depend on the dividend drifting upwards.
The sign of the third term on the other hand is not unambiguous and does depend on the
drift of 6 because of the ¢g(s) — g(t) term. This term measures the changes in the non-price-
taker’s reaction to dividend stream changes. It can be shown that the mapping g(6(¢,w),t,w)
is increasing (decreasing) in 6(t,w) if ep, > 1/2 (if ey, < 1/2). So, if the economy is expanding,
one would expect the quantity g(s) — g(t) to be positive (negative) on average. The other
quantity appearing in the third term, c;,(s) — §(s)/2, measures how much the non-price-taker is
deviating from one half of the aggregate dividend. Since this is a highly state-dependent term,
its sign is ambiguous.

In summary, without the contribution of this third term, we would conclude that if the non-
price-taker is initially wealthier, he holds more of the risky asset than when he is a price-taker.
For e, < 1/2 he holds less than when he is a price-taker. Qur intuition also suggests this
result. Suppose the non-price-taker’s initial endowment is 3/4 of the market. Since he tends to
deviate from his price-taking strategy towards holding his initial endowment in the non-price-
taking economy, his non-price-taking portfolio process will tend to deviate from 1/2 towards
3/4 suggesting he tends to increase his holding of the market. Further, since it appears that
the non-price-taker deviates towards holding onto his endowment and not trading, there will
be less net riskless lending and borrowing in a non-price-taking economy than in a price-taking
economy.

5.4 Market Price, Volatility and Risk Premium in Equilibrium

We have so far discussed how the non-price-taker affects state prices. As for the value of the
market, when agent m, the non-price-taker, initially owns (sufficiently) more than half of the
market, he will be a net seller of the market, and so we would expect him to raise the market
level in the non-price-taking economy as compared with the price-taking economy. The reverse
situation would be expected when he initially owns less than half of the market. In summary,
we would expect P*(t) > P(t) for e > 1/2, and P*(t) < P(t) for e, < 1/2. A modified mean
comparison theorem applied to the price formula of Lemma 1, might prove applicable to this
comparison, but the intuition has still to be formally proved.

To compare market volatility across economies, we make use of some techniques of Malliavin
calculus (Ikeda and Watanabe (1989), Ocone (1988)), in particular the Clark-Ocone formula.
These techniques can be used to write representations of, and in some cases evaluate, the
dynamics of conditional expectations. In particular we may derive the following representation
for the market volatility when £(¢) and é(¢) are driven by general Itd processes.

Lemma 2: When £(1) and 8(¢) follow the processes

dg(t) = ~£(t) [r(t)dt + 8{t)dW (1)],

and
db(t) = pe(t)dt + os(t)dW (t),
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the market price volatility in a one risky asset economy may be expressed as

[T_ ﬂrﬁ j {/ Dypes{u)du +] Dyos u)dW(u)} | ft]
F U o' {/:Dtr(u)du +/:'Dt9(u)dW(u)+%ftsDtH(u)zdu} 1 ﬂ} (35)

where Dy F is the Malliavin derivative of the functional F, as described in the Appendix.

P(t)o(t) = os()E +E

The Malliavin derivative of a Brownian functional represents the change in that functional
due to a perturbation in the path of W (t). Now, o(t) is the volatility of the conditional
expectation given in Lemma 1. Equation (35) shows that in an arbitrage-free economy, the
market price (rather than return) volatility, P(t)o(t), is equal to the aggregate dividend risk
times the price of an annuity paying one unit of sure consumption till the terminal date, plus
two additional terms arising from the stochastic nature of the coefficients of the processes in
the conditional expectation. Individual contributions arise due to shocks in the market price of
risk, the interest rate, and the drift and volatility of the aggregate dividend process.

We now apply Lemma 2 to our two economies, for the case when §(f) is driven by an

arithmetic Brownian motion.

Proposition 11: Assume AI. The equilibrium market volatility and risk premia in the two

economies arve given by
T
£(s)
ds | Fi|, 36
J Hoh t] %)

8]

P(t)a(t) = osE

B(t)(a(t) = 7) = ao3E

and
YR Tg(s) Ters) ., B
PO = ot | [ G| Rl vaosk | [ e el —o0las | 7| (37)
* * * T{(S) T&-*(s)
PO (0)-r"(1) = a(1-g(1))odE U s | Fo| +a%(1=a(0)o w[t S S lats) — g(0]as | 7

There are extra terms in the volatility of the non-price-taking economy introduced because
£*(t) is no longer driven by a geometric Brownian motion. The volatility has an extra contri-
bution due to the stochastic nature of the market price of risk, 8*(¢) = a(1 — g(¢))os, and of
the interest rate, in the non-price-taking economy.

We argued previously from Corollary 3 that if e,, > 1/2 (e, < 1/2) the price of the annuity
given in the first term of the market volatility expressions will be higher (lower} in a non-price-
taking economy than in a price-taking economy. The second term in equation (37) does not
have an unambiguous sign. However, in the previous subsection we argued that in an expanding
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economy, on average the quantity ¢(s) — g(#) is positive (negative) for e, > 1/2 (e < 1/2).
In conclusion, the market price volatility appears to be higher in the non-price-taking economy
than in the price-taking, when the non-price-taker initially owns more than half of the market,
and lower when the non-price-taker initially owns less than half of the market. The intuition
for this result is as follows. Suppose e,, > 1/2. If the non-price-taker holds more than half of
the wealth initially, from the results of the previous subsection, he will tend to hold more than
half of the market (his price-taking portfolio strategy). Hence, moving from a price-taking to a
non-price-taking economy, to clear the markets, the non-price-taker has to make the risky asset
less attractive for the other agent, i.e., he has to persuade the other agent to hold less than half
of the market. A way for the non-price-taker to achieve this “less attractiveness” in this set-up
is to increase the market price volatility.

As the market price volatility and the market price of risk {as defined by 8 = (x — r)/e)
are both higher in the non-price-taking economy with e, > 1/2, the excess drift of the market
price, (z — 7} P is also higher in the non-price-taking economy than in the benchmark economy.
Correspondingly, (¢ — r)P is lower in the non-price-taking economy when e, < 1/2.

6 Summary

In this paper we have included a non-price-taking agent into a continuous-time, pure-exchange,
general equilibrium model. We have analyzed the equilibrium consumption-portfolio choice of
the non-price-taking agent for general utility functions and in more detail for the special case
of CARA utility. In addition we have studied the effect of the presence of the non-price-taker
on the asset, market and state price dynamics.

We have formulated the problem by positing that the consumption choice of the non-price-
taker affects the state price density process. The advantage of this method is that the problem
can be analyzed using martingale techniques, which makes the problem highly tractable in
continuous time. A drawback is that we can only mode] agents who are non-price-taking in the

market as a whole (represented by the state prices), and not agents who are non-price-taking
in individual risky assets.

A main conclusion of this work is that an extra factor, the non-price-taking-taker’s endow-
ment stream, drives the equilibrium allocations and prices in the non-price-taking economy.
Compared with a price-taking equilibrium in which the equilibrium consumptions of the agents
depend only on the aggregate consumption process, the equilibrium consumptions of the two
agents now also depend on this extra factor. We have observed that, relative to when he is a
price-taker, the consumption of the non-price-taker tends to deviate towards his endowment.
The non-price-taker’s endowment process also appears in the determination of the equilibrium
interest rate process and as an extra factor in the consumption CAPM, which becomes a two-
beta consumption CAPM. We have explored the consequences of these main results on the
consumption behavior and asset prices in the non-price-taking economy.

Further work related to this paper may include the following. We have only described
an economy in which there is one non-price-taking agent; an extension to multiple non-price-
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taking agents would be of further interest. One could initially formulate this extension as a
one-shot Cournot game played in the Arrow-Debreu securities market. The main results of the
single non-price-taker economy would extend qualitatively to this case, with multiple additional
factors now driving the economy, the endowment streams of each non-price-taking agent.

One could extend the results of Section 5 as a starting point towards investigating the
case when there are multiple risky assets. More than one risky asset is needed for the non-
price-taker’s endowment to not be perfectly correlated with the aggregate dividend, and for
the two-beta consumption CAPM to apply. This general case would be expected to yield
further results, such as comparisons of the correlations between state prices, consumptions and
dividends across economies. Studying the effect of the non-price-taker on individual asset prices
would then also appear to be possible.
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APPENDICES

A General Formulation

Proof of Lemma 1: Define

— 1 t ,
Pty = Pit) + @fo E(s)8i(s)ds, i=1...dite0,T]

i.e, Pi(t) is the current price plus the current value of accumulated dividends.
Ité’'s Lemma implies:
d(§(t)Pi(t)) = e(t)Pu(t) (os(t) = (1) )aw (1),

where () denotes the ith row of o (). Hence £(£)P;(¢) is a P-martingale, that is

Bi(t) = %E[é(T)f‘z(T)ftL

which, using the fact that P;(T) = 0, implies the desired result. Q.E.D.

B Agents’ Optimization and Equilibrium

Proof of Proposition 1:

Necessity: The optimality of c; (t) given by (7) and (8} and the relationship between £(t)
and ¢p (1) in (13) imply (14) and (15).

Sufficiency: (4) and (12) imply (9). The proof that the optimally invested wealths and port-
folio strategies associated with these consumptions automatically clear the securities markets
is a variation on Karatzas, Lehoczky and Shreve (1990) to include non-redundant positive net
supply securities, and appears in Basak (1993, Proposition 1).

To prove the existence and uniqueness of equilibrium for HARA utility we first show that
for any given time t and state w, for any y, € (0, 00) there exists a unique solution er (ymit,w)
to equation (14). Secondly, we show that there exists a unique y”*, so that the process c (Yo )
solves (13).

At each time and state define the mappings
L{c)= u:_n(c)

and
R(iym) = g [U'(6(6,0) = ) = U”(6(t, ) — e)(e ~ ()]
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(In this proof from now on we will use the shorthand & for 6(t,.) and 6, for 8m(t,w).) By the
assumption on um(-), L{c) > 0, L'(¢) < 0 and L(e) is continuous in (€00, 00), the domain over
which L is defined, and limg o L{c) = oo, limc—so L(c) = 0.

We now determine the domain over which R is defined. The HARA family includes the

- ¥

negative exponential utility function (y = -, 7 = 1), since lim,,,_.—ool—f (TQ—_C—,; + 1) =
-

— lime —oe (% + 1) = — exp{—4Ac}, by the property of exponential. It is convenient to con-

sider this case somewhat separately. Substituting for U/ {c) into R we obtain

R{ciym) = ymB27(1-7) (ﬂlé—;% +n)?_2 [5m+ l;; ('B(i:im) + ”) - C] » 7€ (=00, 00),
(38)

R(c;ym) = —ymf” exp{~8(6 — )} [&m -~ Zla" - c] ;o oy=-—oo,n =1 (39)

Because of the restricted domain of U{c), R is only defined for (ﬂl—é_;,:l + n) >0 . Fory<1AH

is defined and contimious in (—o0, cerit); for ¥ > 1 R is defined and continuous in (cerit, 00),
where cerie = 6 + (1 — )1/ 5. (For negative exponential cerig = 00, 80 R is defined everywhere.)

We now determine the domain over which R is greater than zero. (38) and (39) show that

— - —_2 —
R(c;ym) crosses zero at cg = fm + 1_},—5'1 (g—('i—-_%ﬂ“—l + n) = Copit + Q_Y—g}— (ﬂ%‘l + TI) . Since

§— bm = 23’;1 &n, by the assumptions on dividends we have (ﬁ%ﬂl + n) > 0 and 6y < coc
For 4 < 0 {including v = —oc), within the allowed domain of R, R(c;ym) > 0 if and only
if ¢ > cp. Since cg < cerit, we have R{ciym) > 0 for ¢ € (co, cerit). For v = 0, we have
R(ciym) = ymB{B(6 —¢) + 7) 2(8(6 ~ 6m) + 1), which is greater than zero for the whole of
the allowed domain, {—00, ceit). For 0 < 5 < 1, within the allowed domain, Riciym) > 0 if
and only if ¢ < ¢g, but ¢g > cerit 50 R{c;ym) > 0 in the whole allowed domain, {~ 20, cerit).
For v > 1, R(¢;ym) > 0 if and only if ¢ > ¢q, and cp > cerit 50 R{c;ym) > 0 for the restricted
domain ¢ € (cg, 20).

We now determine the domain over which R(e;ym) and R’(c;ym) are both greater than
zero. We have

R'(c;ym) = ym [U"(6 — ¢)(c — 6m) — 207(6 — )],
and substituting for HARA,

R'(c;ym) = ymB>7(1-7) (ﬂli_:fl + n)rs [6m + 2(1%; 1) (6(6 ~ bm) + n) - c] ;v € {=oc,00),
(40)

—c]; v=—oc,p=1 (41)

(40) and (41) show that R'(c;ym) crosses zero at cer = bm + z }r_‘f (ﬂ%‘l + TJ) = Cerit +
Az (ﬂ%:%")' +n) =ep+ 17_7 (Eﬁi:_im_l + n). For v < 0, for allowed e, R'(c;ym) > 0

13
if and only if ¢ > ¢g;. But since cey < cg, we have R'(c;ym) > 0 in (cp.cerit). For v = 0,
R'(c:ym) = 2ymB3(8(6—¢) +1) 3(8(6 —8m)+n), which is greater than zero for all of (=00, Cerit)
For0 < v < 1, ' (c;ym) > Oif and only if ¢ < ¢gy, and cez > cerit 80 R'(c; ym) > 01in (=00, cerit).

R'(ciym) = —ymf" exp{-8(6 - ¢)} [6111 -

| o

]
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For 4 > 1, R'(e; qm)>01fand0n1\ if ¢ > cer, and cex < co s0 R'(¢; ym) > 0in ¢ € {co, o).
Hence in all cases R'(c;ym) > 0 over the whole domain for which R{ciym) > 0.

Let us compare the values of L(c) and R(c;yy,) at the lower and upper bounds of these
domains. For v < 1, inspection of (38) and (39) reveals that lime—e_.,, R{c; ym) = oo. Now for
¥ < lcmt-é-{—iTm = §py + 820 (%ﬁ-n) > 8 > Coo. SINCE Corit > Con, L{cerit) < 0.
For v > 1, inspection of (38) reveals that lim.—oo R(c; ym) = 00, and we know lime s L{c) = 0.
So if we let ¢y, = cerit for v < 1 and ¢, = 0o for v > 1, we have L{cy) < R(cu;ym) for all ~.
For the lower bounds of these domains, L{c) may not be defined if co is larger than the
lower bound. So instead we define ¢; = max{co, coo} for v < 0 or v > 1, and ¢f = ¢y for
0 < v < 1. Then L{c;) = L(co}) > 0 = R(co;ym) or L(cy) = L{cee) = 00 > R{cs). So there
exists —00 < ¢ < ¢y £ o¢ (independent of yy,) such that £ and I are continuous, R(c; y,m) > 0,
R'(ciym) > 0, L(c) > 0, L'{c) < 0 in (cr,eu), and R{ci;ym) < L{c;) and R(cu,ym) > Lcy).
Hence by the intermediate value theorem, there exists a unique ¢, {ym) € (c1,¢y) such that
Lem{ym)) = R{cqp(ym)iym), i-e. cqp{ym) is a solution to (14) for a given y,,. Since the domain
of (¢, ¢y) is the whole domain for which L(c) is defined and for which R(c;ym) > 0 there cannot
be another solution to (14) outside (¢}, cy,).

We now show that ¢y, () is strictly decreasing in y.,, for ym € (0, o) and that lim,, g (ym) =
cy and limy, —occr(ym) = ¢;. We have L(cy(ym}) = R{ck(ym);ym). Taking derivatives with
FSPECt 0 tm W O0ain L(5(y) = ' cnml ) om) R (m) ) s, pling

cralym) = R(eqn(im) ym)/{ym L (5 (ym)) = R (epmlym)ivm)]} < O for ey € (c1, cu) (and hence
for ym € (0,00)), since R > 0, L' < 0, R > 0. So ey {ym) is strictly decreasmg in ym.

For ¢y < oo, take any € > 0 and any jm € (0,50). Let 6, = gL (cy—€/2)/R{cy — €/2 Jm) >
0, since L{c) > 0, R(c;¥m) > 0 in (e, ¢y). Then R{cy — €/2;6n) = byR(cy — €/2; Gm)/Hm. since
R is linear in y,m, and hence R{c, — 5/2 b6y) = L{cy — €/2), implying ¢*,(6,) = ¢y — ¢/2. Then
since ¢y, (yr) is decreasing in ym, cu > iy (ym) > cy — €/2 for all ym < 6,,. Hence for every ¢ > 0
there exists &, > 0 such that ym, < 6, implies |}, (ym) — cy| < €. Hence limg,, —o el {ym) = cu.
Similarly, for ¢, = o0, take any & < co and any g, € (0,00). Let 6, = UmL(E)/R(&; 4m) > 0.
Then R(¢;6y) = L(), and so ¢} (6,) = ¢ and ¢}, (ym) > ¢ for all ym < &,. Hence for every ¢ < oo
there exists 6, > 0 such that y,, < &, implies ¢}y, (ym} > & Hence lim,,_—g ¢’ (ym) = 00 = ¢, For
1 > —oo, take any € > 0 and any jm € (0, 0). Let &; = §mL(c;+¢/2)/ R(ey +€/2;9m) € (0, 00).
Then R(c; +€/2;6;) = L(ci + €/2), and 50 c5,(6;) = ¢; + €/2. Then, since c? (3.} is decreasing
N ym, ¢ < cp(ym) < o1+ €/2 for all y,, > 6. Hence for every € > 0 there exists & > 0 such
that ym > 6 implies |7, (ym) — ] < ¢ Hence limy, oo (ym) = ¢;. Similarly, for ¢ = —o0,
take any ¢ > —oo and any g, € (0,00). Let §; = §mL(¢)/R(E: §m). Then R{é;6;) = L(&), and
80 ¢, (61) = ¢ and ¢}y, (ym) < € for all y,, < & Hence for every ¢ > —oo there exists é; < oo such
that ym > & implies ¢, (ym) < ¢ Hence limy,, —op e, (ym) = ~00 = €.

Now, for v < 1, cu=cmt=6m+(17_ﬁ(-ﬁ-%i:%“-l+n) > bm, and for vy > 1, ¢y, = 20 > 6,
So, since U'(-) > 0

llm E [/ U'6(1) — et (yms ) embymit) — 8m(t))dt

f Ul — cy)(en — 5m(t})dt} > 0.
Similarly, either ¢; = co < 6y, 01 (for vy < Oor v > Dea=cy=bm—+ 17—7 (g%%ﬁ + ?7) < b,
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Hence

lim F

T
Yo =50 fo U'(8(t) — oqlymi t) (en,(ymi 1) — &m(t))dt| = E

T
A U — e)(e 6m(1‘))dl‘:l < 0.

Therefore by the intermediate value theorem, there exists y,,, € (0, oo) such that (15) is satisfied,
ie.

T
£ [ | U0 - el el - am(t))dr} = 0.
1]

Now,
a
a— [
Fym

T
/0 U'(6(t) — e (um; ) (er(ymi t) — 5m({))dt:|

= FE

T '
fo {U'(8(8) — cq(ymit)) — U"(6(t) = eqp(ymi Y Hem(ymit) — Em(2)) } e (ym; t)dt}

il

E VOT Ri{cpy(ymi ) ma ) (yms t)dt] :

Since R(c;ym) > 0 for ¢ € (¢, ¢y) and c;:(ym; t) < 0 for ym € (0, 00), the expectation is strictly
decreasing in y.,, so the solution y,, is unique. Q. E.D.

Proof of Proposition 2:

{a) By assumption, &, (t) = é,(t) is a solution to equilibrium in the price taking economy.
This implies there exists a constant ., such that

1, (6 (1)) = Gmé(t) = GmU ' {6(t) ~ 6m(t)), as.
We can add a term equaling zero to the right hand side of this equation, as follows:
(B () = Gm [U'(8(t) = &m(t)) — UT(8(t) = 6m(8))(6mlt) — Sm(t))] . ass.

This equation corresponds to the sufficient condition for equilibrium in the non-price-taking
economy, equation (14), for ¢ (t) = &m(t) and ym = 7m. Clearly agent m’s budget constraint
holds with equality for e} (t) = &m(t). So ¢} (t) = ém(t) t € [0,T], as., is also an equilibrium
in the non-price-taking economy.

(b) By assumption, ¢},(t) = 6m(t) is a solution to equilibrium in the non-price-taking
economy. So, there exists y, such that

why (8m (1)) = g [U'(6(t) = 6 (1)) = U"(6(8) = 6m(D))(6m(t) = Em(t))] = ymU (6(t)=bm(1)), 2ss.
Together with m's budget constraint (which must obviously hold at ¢,,(t) = é,(t)), this con-

dition is sufficient for én(t) = 6,(t) = ch(t), t € [0,T], a.s., to be an equilibrium in the
price-taking economy.
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{(c) By assumption, ¢,(#) is a solution to equilibrium in the price-taking economy, where
emft) # 6;»(t) for some interval of ¢, with probability > 0. Hence there exists a %, such that

U (Em(t)) = Gml ' (6(t) = Em(t)), as.

Assume &p,(t) is also a solution to equilibrium in the non-price taking economy. Then there
exists a constant y., such that

U (Em(t)) = ym [U'(6(8) = &m(t)) ~ U"(8(t) — Em(0))(Em(t) — 6m(1))], as. t€[0,T]

and ¢, (t) satisfies m’s budget constraint with equality. The above expressions imply
Gl (8(t)=m(t)) = ym [U'(6(t) = Gm (1)) = U"(6(t) = &m())(Em(t) — 6m(1))], as.  te€[0.7]
or "

I ym _ U(8(1) = (D) (Em(t) — (1))

Tm U'(8(¢) ~ em(t))

Since U”(:) < 0 and U'(*} > 0, and &m(t) — ém(t) # 0 for some interval of ¢t with probability
> 0, for the right hand side of the above expression to be a constant, we must have either (i)
Em{t)—bm(t) > 0as.,t € [0,7T]or (ii) &m{t)—ém(t) < Oas., t € [0,7], either of which contradicts
m's budget constraint holding with equality. So we get a contradiction to the assumption that
¢m(t) is also a solution to equilibrium in the non-price taking economy. @.E.D.

te0,T)]

Proof of Proposition 3: We may define A4,,, the set of price-taking equilibrium agent-m
consumption processes, as follows:

Am = {em(-);  there exists #m, 71,..., yn, and £(-) such that

N+1 _
Y I{iké(t) = 6(1), te[0,T]as, (42)
k=1
T _ _
E A (Ik(gkg(t)) *'Sk(t))f(t)dt] =0, k=m,1 . N, (43)
and  cm(t) = In(gmé (1)), t€[0,T]}). (44)

In a non-price-taking economy, agent m solves

T
f um(cm(t))dt] ,
0

where 3, is the set of all agent-m consumption precesses such that the consumption good
market clears with all price-taking agents n following their optimal consumption processes at
some state price process and all budget constraints are satisfied, i.e.,

max F
Cm( ) EBm

By = {em(); there exists §m, 1,....4n, and 5() such that

N
Cm(t) = 6(” - Z In(gné(t))v te [O,T],
n=1

E

T - -
/0 (In(gng(t)) - 5n(t))5(3)dt} =0, n=1..,N,

and FE

T -
fo {em(t) — 6m(t))6(t)df] =0}.
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To prove the proposition we need to show that A, is a subset of By, so that the non-price-
taker could always have chosen any price-taking equilibrium consumption and hence must do
at least this well in the non-price-taking equilibrium. Take any ¢y, () € Am. Then there exists
Gome T - NS £(+) such that &m () satisfies (from (42) and (44))

N
Emlt) = 6(t) = Y In(in€(t)) t€[0,T] as.
n=1

and (from (43) and (44))
T
E U (Gm(t) = 6m(1))E(t)dt | = 0.
0

So clearly ém(-) € Bm With §m = Um. 71 = 71, .. YN = gN,é(-) = £(.). S0 Am C Bm.

Proof of Proposition 4: We first argue that if the non-price-taking equilibrium differs with
probability > 0 from the price-taking equilibrium, then there exist subsets A, B C {1 and time
intervals (t41,te2), (tp1, ts2) C [0, T] such that

en (tw) > Em(t,w), te (tal,taz); w€ A
and
er(tw) < §m(t,w), te (ty,tee), weB.

Assume this is not the case and that ¢X (t) = (1) as., t € [0,T]. Then, from (14) we have
ul (Bm(t)) = ymU ' (8(t) = 6(t)), as., t€[0,T],

and ¢, (t) clearly satisfies m’s budget constraint, implying that co (t) is also the solution to
equilibrium in the price-taking economy. Hence, by the contrapositive to this argument there
must exist a finite time and probability interval such that ¢}, () # 6m(t). Furthermore, by
the continuity of X (f) and é,(t) and since the budget constraint must hold with equality,
there must exist finite time and probability intervals in which ¢}, (t) > 6&m(t) and in which
e () < 8m(t).

From equations (13) and (14) we have then

I * t w
() eny oy = U8 w) — ch(tw)) 1€ (tantaz)i w € A
Ym
and

! J* t .
umem(t@)) £t w) = U6t w) = el(t,w)), te (i, ts); w € B.
Ym

Define a process ¢(t) by
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Then by concavity of u,,(-) and U (-). and continuity of u},(-) and U'{-), there exists T » 0 such
that, for all v € (0.T),

Uil () | (et w) + v)

> ¢(f-w) > U’(é(trw)_c:n(txw)_“) = U’(ﬁ(t,w)wc:n(t,w)),t € (f'aletcﬂ)s

, Ym ’ Ym (45)
“m(cz("”)) < ‘*m(cm(;’w) —v) 3t w) < U6t w)—c (t,w)+v) < U'(6(t, ) ~ch(t, )t € (a1 taz):
o " (46)

Now, let us perturb ¢ (t} to ép(t) = ef () + e (t), where ¢(t,w) > 0 for ¢ € (ta1,142) and
w€ Ay w(t,w) < 0forte (ty,tye) and w € B; ¢{t,w) = 0 otherwise; and v (t} satisfies

T
| qa(t)w(t)dt] =
Since 3 (t,w) = 0 elsewhere we have
tpa taz
£a | [ " otroe] = 4| [ o0t (47)
bl al

where E 4 and Epg denote expectations over the subsets A and B, respectively. Then we choose
¢ > 0 such that ej(t)j < T, as, t € [0,T)].

We finally show that both the non-price-taker and the price-taker representative agent are
better off when we perturb ¢, (t) to &m(t) and ¢ (¢) to 6(t) — ¢m(t), which is clearly feasible.
Agent m’s expected lifetime utility becomes

T . T . c"‘,‘n(t)-b—ﬂ,b{t)l .
E {f() um (Em (t))dt /{; {nm(cm(t))-i- - um(c)dc}dt]

T taz () +ed(t) th2 e (f)
f um((::n(t))dt} +E4 |:f {/ u;n((‘)dc} dt] +Ep I:/ {—/ u;n((:)dc} dt]
0 tar | Jen(2) 161 Cmlt)reu(t)

T ta2 taz T
> E U (e ()t | +E 4 U egb(t)w(t)dt]EB U m(t}w(t)dt] > E ] um(c:n(t}}dt} |
0 tal te1 0
where we have made use of (45)-(47). Similarly, the price-taker representative agent’s expected
lifetime utility is

T ) - T . (O)+ev(t) .
E [/0 U - cm(t))dt:\ = F UO {u (5 — et (1)) - fcmm U(s(t) — )dc}dt]
taz  pop, (H)+eb(t) fhe  pera(t) ,
= {/0 U(6(t) — e, (t))dt f / U'(8(t) — c)dedt |+ Ep [ /c“ U(&(t) — c)dcdt:l

m(t) to1 {t)+e(t)
T ta2 toz
/‘; U(S{t) — e ())dt| —E 4 M ed)(t)w(t)dt]-f-EB u e¢(t)¢(t)dt] > E [/0 U(8{t) — r.-;‘n(t))dt] .
al b1
Hence there exists some feasible consumption allocation such that both m and the price-taker
representative agent are better off than at the non-price-taking equilibrium allocation. Hence
the non-price-taking equilibrium is not pareto optimal. @.E.D.

=F

= F

—Ea4

> F
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Proof of Proposition 5:

Sufficiency: As in the proof of Proposition 1, with (6) and (17) now implying (9).

Necessity: The optimality of c;(t) given by (4), the expression for £{t} in (17), and the N + 1
agents’ budget constraints holding with equality imply (19)-(20).

Substituting for £(t) using (17). agent m solves

irrlna{.)_gE [/(;T um(cm(t})dt}

T
/g(t)dt}=0 and F
0

where the processes g(t) and hn(t) are defined by

g(t) = U’(é(t) - Cm(f}'aA)(Cm(t) - 6m(t))

subject to F

T
/hn(t)dt =0, n=1,..,N,
0

and
hn(t) = U,{é(t) - Cn‘L(t);A)(In(ynU’(é(t) - Cm(t);A)) - 6n(t))

and represent, respectively, the cost of m’s and of n's “net” consumption (his consumption
minus the dividend from his initial endowment) at time ¢.

We may define the mappings ¢, G ! and H,, between the time ¢, state w costs of net
consumption, agent m’s consumption and the price-takers' weights, as follows:

Ge,y1, - ynitow) = U'(B(,w) = ¢; (1/y1, -, 1/yn))e = &mlt,w)),

g=U"' (é(t,u:) — G_l(g,yl, s UNGE W) Ly, e l/yN) (G_l(g,yl, o YN E W) — 6m(t,w))
and
Hn(g,y1, - ynit,w) = U’ (5(t,w) G g y1,uni W) (/1 e l/yN)) *

(In (ynU’(é(t,w) — G Hay1, o ynit W) (L/y, ooy 1/yN))) - En(t,w)) :

We will use the notation G, Gk_l and H,. to denote the derivatives of these mappings with
respect to their kth argument. Then agent m’s optimization problem can be written as

max F
g}

T
Ag(t}dt]=0 and E

/(]Tum (67 o), 31 unitw) dt}

subject to F

T
/ Hﬂ(g(t)'ylaayNat-W)dt} =0, Tl=1,...,‘-‘7\f.
0

Now, let us suppose that c,(-) is an equilibrium agent-m consumption process with associ-
ated weights y{, ...,y and that

*

g*(t) = Glem(t)vl, o yhitiw), € [0,T]
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Then perturb the process ¢*(-) to g*(t) = g™(t} +en(t}. Since by assumption g*(.) is the solution
to the above optimization problem we must have

oood
lim —F
e—0 de

/OTum (676 @, me)s o un (i 1.w)) dt}

= F

T
A u:‘n(c:n(t‘))Glil (_q*(t), y;‘ ey yRT; t, ‘-‘")Tf(t)df‘l

N
+ > 0B
j=1

T
fo wm(er()G 1 (0" (0), w1, -.v,y}ir;t:w)df} =0 (48)

for all processes 7(t) satisfying E [_[OT 13(t)dt] = 0, and where the functions y;(¢) are determined
from

T
E U Hn(.r;r‘(t)«m(f),---,yN(e);t,w)dt] =0, n=1.,N.
0
We can take derivatives and evaluate at «¢ = ¢ to derive

N
+3 F

=1

E

T T
/0Hnl(y*(t),yf,~~-,yk;t=w')71(t)df /0Hn(jﬂ)(g*(t),yi',---,yﬁ;t,w)dt y;(0) = 0.

If we define a matrix X by

Hpj = E

T
[0 Hjn(g*(t).yf, ...,er; .,w)dt] y n,i=1..,N,

then we solve for the y_';(O) as

N
5(0) =~ Z (H_l)an

J=i

T
fo Hnl(g*(t).yf,...,y};t,w)n(t)dt} ., n=1,..,N.

Substituting into (48) we obtain the condition

T N
B | [ unlen)6T 6 0,08, viit) - Yo
0 i=1

T
foU:T;(C;(-?))Gjﬁl(g*(s),y{’,-.-,yir;s,ﬁ)dsl

*Z (Hﬁl)jn Hnl(g*(t)sy{,---,y;\r;t,w)}n(t)dt] =0,

n=1

for all n(.) satisfying E [fDT n(t)dt] = (. Hence we must have

N N
Ul (NG (g () vl vhitw) = 3 S E

n=1j=1

T
[Q “ﬁn(C;(S))Gjil(g*(S)»yT,---1y?§r;s,@)d$}

(M) Hale™(0 w8 it ) = Y,
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where y,, 13 some constant. Evaluating the Gl_1 and H,, terms and rearranging we arrive at
the condition in the proposition with

N T
Kn=3 B [[0 u;(c;(s))cjil(g*(s),yr,....ya;s,a)ds] (),
1=1 '

The extra terms in equation (18) compared with equation (14) are —Kanl/Gl_l. We here
argue that each term represents the indirect marginal disutility to m of an extra unit of e, (¢, w)
via agent n's budget constraint. Each expectation term in the K, expression is the marginal
(expected, lifetime} utility to m due to a change in agent j's weight ;. The elements H,; of the
matrix H represent the sensitivity of agent n’s budget constraint to agent j's weight ;. Hence
Kn is the sensitivity of agent m’s expected lifetime utility to agent n’s budget constraint (via
the weights y). Then H,; is the sensitivity of agent n’s budget constraint to agent m’s cost of
“net” consumption, and G'l_l is the sensitivity of agent m’s current consumption to his cost of
net consumption. Hence Hp1/Gq Tis the sensitivity of agent »’s budget constraint to agent m’s
time ¢, state . consumption. therefore we conclude that each extra term —Kanl/Gfl is the
sensitivity of agent m’s expected lifetime utility to time ¢, state w consumption, via agent n's
budget constraint.

Finally, we need to show that this collapses to the simpler expression (14) when U{c;A) =
R(AYU (c). We do this by showing

E

T
/0 u;q(c:n(t))Gjil(y*(?). Uls s YN t,w)dt} =0, 4=1,..,N,
and hence K, =0, n = 1,..., N. Evaluating the Gj_jl term yields the term

E

1) — () A) = U7(8(1) — cmlt); A)(emlt) — bt

/T U (e (D) U5 (8(t) — em(t); A)(em(t) — 8m(t)) o
o U'(6( Nl

where U;j(c; A= a;ﬁgé\) = aggj\) [''(¢). Using this fact and supposing that the simpler result
(14) does hold we simplify to

dh(A)
Oy

Ym E

T
fo U'(8(t) = em(t); A} (em(t) = ém(t))dt:\ :

which must equal zero from m’s budget constraint. @.E.D.

C The Equilibrium Interest Rate and the Consumption-Based
CAPM

Proof of Proposition 6: We apply 1t6’s Lemma to both sides of (13), and make use of the
dynamics of £(¢) in (1) to derive

—£(t)r(t)at — £(1)6(t) Taw (1) =
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(8(6) = 12, (1) U(8(0) = ) + (i8I + o2 () = 2ms(0) Trg 1)) Sl = Cinl )

(81 = (1) (o5(t) T = 02 ()T ) W (1),
where p; {(t) and |lo; ()| denote respectively the drift and volatility of e (t). Equating terms
we obtain
U — b))
U7(5(1) = ep,(1)

UM6() — em())

r(t) = et = 1 (O) ~ oy ae gy 16 — @l (OIF (49)

and s N
! t) ¢
0(0) = ~ = o) - o, (1) (50)

Next we would like to replace the endogeneous parameters pe,.(t) and o (t) by the exoge-

neous parameters of 6(¢) and 6,(t). To do this we apply It6’s Lemma to both sides of equation
(14) and equate terms, yielding

ymU"(60) — (1)) =yl "(0(0) — c(ten) ~60)
(1))~ ymU 7 (E(E) = (0} (G (8) = Bml0)) + ZymU 7 (E(0) — (D)) 21
yml"(5() e, (1)) oo ()
U (8) = (1) = ymu () (m®) — 6enl0)) + 25U (6(0) — () o

Do
3
—
[
e

The corresponding expression for te, (1) in terms of pg(t), ws,, (1), |los(t)fi?, ltos, (1]|* and
os(t)T s, (t) is unweildy and will not be written out here.

Substitution of the above expression for o _(¢) into the expression for 8(t) in (50) and recall-
ing that 4 (t) — r(#)1 = o(#)8(¢) yields the desired result for the risk premia. We have rewritten
a(t)os(t) and o(t)os,, (t) as cov(dP(t)/P(t),dé(t)) and cov(dP(t)/P(t),dén(t)), respectively.
Similar substitution into (49) would yield an expression for r(t) in terms of ps(t), us, (1), as(t),
and o4, (t) as shown. Q.E.D.

D The CARA Utility and One Risky Asset Case

Proof of Proposition 7: From (24) we conclude that &,(¢)— §(t)/2 is a constant, independent
of 6(¢). Equation (27} can be rearranged as

exp{—2a(cp,(t) = 6(t}/2}} = ym [1 + alep,(t) — 6(1)/2) — ab(t)(em — 1/2)] (51)
and differentiated implicitly (state by state) with respect to 6(¢,w) to give

Aein(t.) = 8(1.0)/2) _ i -
06(t,w) " 0Ym + 2a exp{—2a(cy,(t,w) — 6(t,w)/2)} (em — 1/2).

We conclude that (eg,{t,w)—6(t,w)/2) is strictly monotonically increasing in §(tw)ifem > 1/2
and strictly monotonically decreasing in 6{t,.) if e, < 1/2 .
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Let us now show there exists a fcrit such that ¢, (t) — £(1)/2 = Em(t) - E(1)1/2. At bprir we
have ¢ (t} = #m(t), so we substitute (24) into {27) to obtain

1 1 1 1 1 1 1
—olt) — — ym) = = - —Oerit — T im) — Om - 1
25(1) % 1n(.‘jm) 25“) 5 In [1 +a (aﬁc t %2 ln(y ) (t))] 74 ln(ym)

yielding

1 T
bopit = ————————= —— =1 m)]| -
it = (em — 1/2) [1 T )]

Ym

In case {a), since {¢m(t)—6(t)/2) is a constant and (¢, {t)—8(t)/2) is monotonically increasing
in 6(t). we conclude that, for &(t) > fcrit

() = 6(1)/2 > Tm(t) — 8(2)/2

and for 8(t) < ferit
cr () — 6(t)/2 < Tm(t) — 6(£)/2,

providing the required result in part 1. Similarly in case (b), since (¢}, (t) — 6(¢)/2) is monoton-
ically decreasing in 6(t), we derive part 1.

For the proof of parts 2 of the proposition, again we use the fact that (¢}, {t) — 8(t)/2) is

monotonically increasing (for eq, > 1/2) or decreasing (for e, < 1/2). First let us define 4 to
be such that X (t) — 8(t)/2 = 0, ie, from (51),

1=1ym [l—ug(em’ 1/2)]’

or
Ym — 1
aym(em - 1/2)'

Since & exists and (¢, (t) — 6(t)/2) is monotonic, we conclude that for 6(t) < & we have c;,(t) <
6(t)/2 for ey > 1/2, and cg(t) > 5(£)/2 for em < 1/2. Since ¢p(t) = 6(t) — ey, (t), we deduce
parts (a) 2. and (b) 2.

5=

Proof of Proposition 8:

Equation (27) can be rewritten as

LGXP{AZG(::“(t)} exp{ab{t}} = [1 + alepm(t) = dm(t))] = Flt) (52}

Ym
Applying Ité's Lemma to both sides vields
a
af(t) [us(t) —2ul (1) + 2a0) ()% + 506(’5)2 - QGUEm(t}oa(t)] dt+af(t) [os(t) = 202, (£)] dW (1)
=a|u, (1) — emps(t)jdt + a [o (#) — emas(t)] dW (1),
Matching coefficients yields the required expressions for pi (t) and o) (t). Taking the implicit

derivative (state by state) of (17) shows that g(t.w) = dek (t,w)/08(t,w).
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When em > 1/2, g(t) > (1/2+ f{t))/(1 + 2f(t)) > 1/2, and when em < 1/2, g(t) < 1/2,
yielding the comparisons between 7., (¢) and o] (t).

When g(t) > 1/2, g(t)? + g(t) — 3/4 > 0; when g(t) < 1/2, g(t)® + g(t) — 3/4 < 0, vielding
the required comparisons between i, (t) and p; (t). Q.E.D.

Proof of Corollary 1: In the benchmark economy,

| Bep (1) = 75, () |=11/2 — emllos(t)],
and in the non-price-taking economy,

| 0o (t) = a6, (1) |= 1g(t) — emllos(t)],

which is always lower by the conclusions about ¢(7) in the proof of Proposition 8.

Proof of Corollary 2:

We will need the following Lemma.

Lemma (Hajek 1985)

Let © and y be semimartingeles with representations
dr{s) = u(s)ds + a(s)dw(s),

dy(s) = mds + pdu{s),

where w and v are Wiener processes and m and p are constants. Suppose that pu{s) < m and
lo(s)| < p and that z{0) < y(0). Then for any nondecreasing conver function ¢ on R

Eg¢(z(s)) < Egly(s)).

We let «(s) = ef(s +t) and y(s) = Epnls +t). Then z(0) = c(t) and y(0) = &n,(2).
We have by Proposition 7, m(t) > ¢}, (t). By Proposition 8 and assumption Al we also have
pe () < fic,, = pns/2 and o (t) < 6., = 04/2. So we can apply Hajek’s Lemma with ¢ as the
identity function and derive

Elems+t) | Ft] < Efem{s+t) | Fe], s>0,

yielding the desired results.

Hajek’s Lemma cannot be used for proving the reverse case for e, > 1/2 since the domi-
nating drift and volatility are not constants, and to our knowledge the necessary comparison
theorem does not exist in the current literature. Nevertheless, we anticipate this reverse case
to hold since our earlier results seem to suggest opposite effects for the cases e, < 1/2 and
em > 1/2, although mathematically it still needs to be verified. flushright Q.E.D.
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Proof of Proposition 9: Substituting for U (¢) = — exp{—ac}/a into equations (49) and (50)
in the proof of Proposition 6, we obtain

2
* * a *
ri(t) =a hté(t} - ucm(t}] - ?]U(s(t) - o'Cm(ﬁ)|2
and
87(t) = a (os(t) — o) (1)).
Then substitute for u) (t) and o) () from equations (29} and (30) to obtain the required

results.

The properties of g(¢) mentioned in the proof of Proposition 8 imply the comparisons be-
tween #*(t) and 6(¢). Q. E.D.

Proof of Corollary 3: Applying Ité’s Lemma at s to the process In(£(s)/£(t)), s > ¢, yields

d [m (i((ji)] = d(In(e(s))) = — (f-(s) + %9(3)2) ds - 0(s)AW (s), s>t

From Proposition 9 we have

L1, 2 (: 3
(o) 207 = el gtee - T[40 < 0t0) = 3 o
Further we have .
rylgpo g
TR T ok

So if e, < 1/2, g(t) < 1/2, g(t)* + g(t) — 3/4 < 0 implying — (T*(s)+ %9*(5)2) <
- (ff + %52) . We also have | — 8%(s)| < | — 8] = ags/2.

We apply Hajek’s Lemma to the processes x(s) = In (£*(s + t)/¢7(t)) and y(s) = In (E(s +1)/€(1)).
We have z(0) = y(0) = 0. Now define the function ¢(z) = exp(z) and we conclude

obtaining the desired result. @.E.D.

Proof of Proposition 10: Before proving the proposition, we will briefly state the required
potions and results form Malliavin calculus, For more details see Ikeda and Watanabe (1989)
or Ocone {1988).
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Malliavin Calculus of Smooth Brownian Functionals

Suppose F is a smooth Brownian functional, i.e., a functional of a finite dimensional Brow-
nian motion W at a number of points in time:

F = F(W(t1),...W(tn)),

such that the function F is bounded and has bounded derivaives of all orders. Then the
Malliavin derivative of the functional F is defined by

DiF=Y" %F(uf'(tl), W () Lo (6, = 1,.,d,

and can be interpreted as the change in F due to a perturbation in the path of Wi(t).

The Malliavin derivative of a continuously differentiable function ¢ (Fl, FM) of a finite
number of Brownian functionals, with bounded partial derivatives is given by

D¢ (FI, ...,FM) = f: %QDF#

=1

‘The Malliavin derivative defined above is a special case of the more general Malliavin derivative
defined on Brownian functionals satisfying certain smoothness and integrability conditions.

The Malliavin derivative of an integral is given by

Dt/OTw(s)ds - /;Dm(s)ds.

The Malliavin derivative of a stochastic integral is given by

T T
D, fo B(s)dW (s) = f Do (s)dW (s) + ¥ (1),

The Clark-Ocone Formula: A Brownian functional F can be represented by

T
F = B[F] +/0 E[DSF | Fo dW (s),

and hence
E[F |7 =E[F]+f0 E [DF | .l dw (s),

or

dE[F | Fi) = E [D¢F | Fi) dW (1) (53)

We rearrange the wealth expression stated in this subsection to give

T t
E(t)Xk(t)=E '[0 E(s)cr{s)ds | .7-}} -/0 E(s)cr(s)ds,
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or equivalently

d(£(t) Xi(t)) = dE

] E(s)e(s)ds | ft} — E(t)er(t)dt.

Then by the Clark-Ocone formula, equation (53), we have

4 (§(1)Xr(1)) =

th €(s)cr{s)ds | ft] dW (t) — &(t)ek(f)dt.
We can also apply Ité’s Lemma directly to £(t}X(#) and use the dynamics of £(¢) in (1}
and X (t) in (3) to obtain
d(E(t) X k(1)) = &(t) [or(t) P(1)o(t) — Xi(t)0(t)] dW {t) — £(t)cr(t)dt.
Equating the dW (¢) terms on the right hand sides of the two last equations yields

a(t) . 1
Pt)o(t)  P(t)o()é(r)

Using the above stated properties of Malliavin derivatives of integrals we may expand this as

ar(t) = );’253279(( ))+ Pl)o [f E(s)op(s { f De{r{u) + = 9( )du - /S D8 (u)dW {u) - H(t)} ds | .

+m5 [_/tT {f Dipicy (u)du +f Dioe, (u)dW (u) + o (¢ )}ds 1 J—“t] .

Now, from Proposition 8 and 9, we have

ap(t) = Xi(t)

T
E Dt,[t E(s)eg(s)ds | ff] .

r¥(u) + %9*@)2 =a(ps — pg, (1)),

and
0% (u) = a(os— o, (u)),

50

/:Dt ( Mu) + ;9 (u) )du+/ D0 (u)dW (u) = {f Dypg, {u)du +/ Dioy (u)dW (T,)}_

Now let us look at the Malliavin derivative of ¢, (s). Note from equation (27) that ¢, (s,w) =
c:n(é(s, w)i€m, Ym), S0

dep (s, w)
a8(s, w)

et (s,w)

Diel,(s,w) = Dib(s,w) = W §=g(s,w) =0l (s,w).

Also s s
) = / Dypl (uw)du + f Dio, {u)dW (u) + o (1),
t t
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implying
fs Df_p:m(u)du +f Dtozm(u)le(u) = U:m(s) — U:m(T)
t i
= [g(s) — g())os.

Using these results the above expression for o k{t} becomes, for the non-price-taker

e | [ € ) u+m;mxﬁm—ﬂwnwﬂ}

Anticipating and rearranging the result of Proposition 11 {equation 37) yields

Pty = —2% *( )5 [/5 ds]f{l o" f{ 16 (s) )—g(t)}ds|ftj!,

which when substituted into with the previous expression and rearranged gives the required
result for a7 (t). Then ay(t) is found from a*(t) = 1/2 — o mit). QE.D.

Proof of Lemma 2: From Lemma 1, we have

/e( derff}
E (/0 £(s)8:(s)ds I-Ft:I —ftﬁ("»*)t?i(s)ds
E /OT:E(S)é )ds / /5u (w)du | F de )—fg $)6:(s)d

where the last equality follows from the Clark-Ocone formula.

£(1) Py

Then

d(&(t)Py(t})

il

T
E Dt/o E(s)8;(s)ds | ft} dW (t) — £{t)6;(¢)dt

T
= F []t Di(e(s)8i(s))ds | ft} AW (t) — €(t)6;(t)dt.

Now, applying Ité’s Lemma directly to £(t)P;(t) we obtain
dE(OP(N) = EWP1) [ou() — 6())T] W (1) — ()8 (2)dt,

and equating coefficients with the Clark-Ocone representation yields the ith row of the volatility
matrix () as

P(t

/ De(E(s)5,(s))ds | ftJ . (54)
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By the properties of the Malliavin derivatives (stated earlier), we have

De(&(s)6:(s)) = £(5)Debi(s) + 6:(s)De& (5),

DI6i(s)

D‘z {61(0) + /05 e, (u)du + ]05 o, (u)dW (u)}
fs Dfu§1('u.)du + /SZDEU@I(u)dW’I(u) + os{t)
t t 1

and

. . 8 5 B 1 &
Die(s) = D {5(0)exp{~[) T(u)du—-/o Zl:g’(u)dwl(”)_ﬁfo Hﬁ(u)”zriu}}

£{s) {— ]: fo'(u)du — 0;{u) ~ /HQ.S;D;:B[(M)(EW’;(U) - %\/j 'D{HQ(U)HQdu} .

Substituting into (54) yields the desired result. ¢.E.D.

Proof of Proposition 11: We make use of Lemma 2. By assumption Al, Dyus{u) =
Dias{u) = 0 so the second term in (35) is zero in both economies. In the price-taking economy,
7(t) and 6(t) are constants as given in Section 5.2, so DiF(u) = Dif(u) = DyA{u)? = 0. Hence
the third term in (35) is zero and the volatility is as quoted. In the proof of Proposition 10,
we evaluated the {} term in the third term of equation (35) for the non-price-taking economy.
Substitution of that expression into Lemma 2 gives the required result for the market volatility.
To find the risk premia we use

u(t) = r(t) = 6(1)a (1)

and substitute for #{¢) from Section 5.2. @ E.D.
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