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Abstract

The Capital Asset Pricing Model implies (i) the market portfolio is efficient and (i1) expected
returns are linearly related to betas. Many do not view these implications as separate, since
either implies the other, but we demonstrate that either can hold nearly perfectly while the
other fails grossly. If the index portolio is inefficient, then the coefficients and R-squared
from an ordinary-least-squares regression of expected returns on betas can equal essentially
any values and bear no relation to the index portfolio’s mean-variance location. That location

does determine the outcome of a mean beta regression fitted by generalized least squares.



Introduction

Expected returns on a set of risky assets obey an exact linear relation to betas computed
agammst an index portfolio that lies on the minimum-variance boundary of those assets, If the
betas are computed instead agamnst an index portfolio that lies inside the minimum-variance
boundary, then expected returns must deviate to some degree from any fitted cross-secttonal
linear relation.!  Thege properties are well known, but they leave open the question of
whether, in the latter case, the extent to which expected returns are approximated by a
linear function of beta is at all related to the mean-variance location of the index portfolio.
For example, one might ask whether, with only negligible inefficiency in the index portfolio,

a plot of expected returns versus betas would display a near-perfect linear relation.

In fact, the mean-variance location of an inefficient index portfolio bears essentially no
relation to the plot of expected returns versus betas. For example, expected returns can
display essentially no correlation with betas computed against an index portfolio that has
an expected return arbitrarily close to that of the efficient portfolio with the same variance.
Alternatively, expected returns can display a nearly perfect linear relation to betas computed
against an index portfolio that is grossly inefficient. Such plots of expected returns versus
betas can be summarized by ordinary least squares (OLS) regression. We show that, if the
index portfolio is ineflicient, the QLS regression coefficients and R-squared can equal essen-
tially any values desired. This general result, as well as the two examples noted above, can
be demonstrated by repackaging a given set of risky assets into alternative sets that generate
the same portfolio opportunities. Such repackagings change neither the index portfolio nor
the minimum-variance boundary, but they can change the cross-sectional mean-beta relation

in virtually any manner desired.

This study shows that generalized-least-squares (GLS) regression provides a framework
wherein the eraet linear mean-beta relation implied by strict efficiency of the index portfolio
can be generalized to an approzimate linear relation when the index js inefficient. The GLS
regression uses the covariance matrix of the asset returns, and much of the information
in that matrix is omitted in a plot of expected return versus beta. An index portfolio’s
location in mean-variance space is unaffected by repackaging the individual assets, and we
define a measure of relative efficiency that is determined by a portfolio’s mean-variance
location. This relative-efliciency measure approaches its maximum value of unity as the
index portfolio moves closer to the upper portion of the minimum-variance boundary. We
find that this measure provides a simple link between the index portfolio’s mean-variance

location and the properties of the fitted GLS mean-beta relation. As the index portfolio’s
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relative efficiency moves closer to unity, the fitted GLS mean-beta relation moves closer to
the exact linear relation corresponding to an efficient portfolio with the same variance as the
index. A slope coefficient of zero occurs only when the mean return on the index is equal to
that of the global minimum-variance portfolio. Moreover, the goodness-of-fit measure for the

GLS cross-sectional regression is simply the squared relative efficiency of the index portfolio.

In the absence of an exact linear relation between expected returns and betas, a variety
of criteria could be used to fit a line and judge 1ts goodness-of-fit. Developing such criteria
is difficult without an economic context in which to view a fitted linear mean-beta relation.
We consider a context in which such a relation is judged by its ability to provide fitted
expected returns that are useful substitutes for true expected returns as inputs to a standard
one-period portfolio optimization. For a given set of cross-sectional independent variables,
including but not limited to beta, using the expected returns fitted from a GLS regression
produces a portfolio with a higher expected return than using any other linear function of
the independent variables. The squared relative efficiency of that portfolio is simply the
goodness-of-fit for the QLS regression.

The remainder of the paper is organized as follows. Section I shows that the cross-
sectional mean-beta relation fitted by OLS bears essentially no relation to the mean-variance
location of an inefficient index portfolio. Section II defines a portiolio’s relative efficiency,
using a measure that can be stated in terrs of either expected returns or variances. Section
HI provides simple relations between the index portfolio’s relative efficiency and a GLS
regression of expected returns on betas. Section IV offers a portfolio-optimization setting in
which to compare GLS to other methods for fitting and judging cross-sectional relations for
expected returns. Although this study deals almost exclusively with population moments,
section V presents a brief discussion of issues related to estimation and inference. Conclusions

are then presented in section VI. The Appendix contains proofs of all propositions.

I. Inefficiency and Deviations from Mean-Beta Linearity

For a universe of n risky assets, define

R: n-vector of returns realized in a given period

E: n-vector of expected returns,

Vi n x n covariance matrix of returns, assumed to be nonsingular.

For a given portfolio p, a combination of the n assets, define



p: N-vector of weights in portfolio p,
Hp: mean return on portfolio p (= w] ),

o5+ variance of return on portfolio p (= w, Vw,),

B: n-vector of betas with respect to p = (1/e})Vw,).

Let ¢ denote an n-vector of ones, and define

X=0[4| (1)

Assume that neither F nor 3 are proportional to :.

The mean-variance location of portiolio p has virtually no bearing on the degree to which
the elements of £ and 4 conform to a linear relation, when goodness-of-fit is measured by
the standard Euclidean norm. That is, portfolio p can lie arbitrarily close to the minimum-
variance boundary and yet produce an OLS slope and R-squared that are arbitrarily close
to zero. Similarly, portfolio p can lie far from the minimum-variance boundary (by whatever
metric desired) and yet still produce an OLS fit between expected returns and betas that is

arbitrarily close to exact linearity.

We verify the above statements by considering “repackagings” of assets. The portfolio
opportunities generated by one set of n assets are identical to those generated by an alter-
native set of n assets that simply repackage the original set, provided that returns on the
new assets also have a nonsingular covariance matrix. Such a repackaging does not change
the minimum-variance boundary or the location of portfolio p in mean-variance space, but it
can change the relation between the n assets’ expected returns and their betas with respect

to portfolio p.

A given repackaging of assets can be represented by a nonsingular n x n matrix A, where
Ac = ¢. The returns on the repackaged assets are constructed as R* = AR, so the means and
betas of the repackaged assets are given by E* = AF and 8* = A8, For a given repackaging
of the n assets, let v* denote the vector of coefficients in an ordinary-least-squares (QOLS)

regression of expected returns on betas with respect to portfolio p. That is,
Y = (XT X)X B (2)
where
X" =[] = AX. (3)
The goodness of fit in this regression is given hy
) _ 1 B (E* _ _‘X'x,y*)l(Ex _ X*"‘;’x) (4)
ors (B — 22y (e — LBy

L

4



If portfolio p is inefficient. the following proposition states that one can always find a
repackaging such that expected returns on the pew set of n assets obey essentially any

desired OLS regression outcome.

Proposition 1. If portfolio p is inefficient, then for anyw € (0,1), ¢ > 0, and two-element

vector 8, there exists a nonsingular n x n matri A, with Av = 1, such that?

7" =8| < ¢, and (5)
RéLS = W (6)

The results of an OLS regression correspond closely, of course, to what one would infer
visually from a simple plot of expected returns versus betas. Proposition 1 implies that such
a plot could in fact appear to contradict standard theory, since small degrees of portfolio
inefficiency or deviations from perfect mean-beta linearity may not be visible in a plot. Two
such examples are presented in F igure 1. The minimum-variance boundaries in figures la
and lc are identical, and they are generated using sample means and covariances of monthly

returns on ten portfolios of common stocks sorted by equity capitalization (firm size) for the
period from 1926-1992.3

The ten points plotted in figure la as solid dots represent means and variances on ten
assets that simply repackage the ten size portfolios. Portfolio p, shown as a small circle, is
inefficient, having a monthly expected return that is 88 basis points less than the expected
return on the efficient portfolio with the same variance. F igure 1b plots the expected returns
o1 the ten assets versus the assets’ betas with respect to portfolio p. The mean-beta relation
1s not exactly linear, although the violations of exact linearity are too slight to be visible on
the graph. The OLS regression line on which all of the points appear to lie has an intercept
of 30 basis points, close to the average monthly interest rate for the 1926-92 period, and the
slope of the line is 76 basis points, the average excess return on portfolio p. In other words,
shown only figure b, one would be inclined to conclude that portfolio p is the Sharpe-Lintner

tangent portfolio of the ten assets.

The ten assets whose means and variances are plotted in figure lc are obtained as a
different repackaging of the ten size portfolios. Portfolio ¢ is inefficient, although it lies
too close to the minimum-variance boundary for the inefficiency to be visible on the graph.
For the ten assets, a least-squares regression of expected returns on betas with respect to
portfolio ¢ produces an R} s less than .0001, and the corresponding plot is shown in figure

1d. Shown only that plot, one would be inclined to conclude that portfolio ¢ is inefficient.
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Such a conclusion must be correct, of course, but the degree of inefficiency can be of no

economic significance.,

Although we focus in this study on the cross-sectional relation between expected returns
and betas with respect to a single portfolio, we should note that an extension of proposition
1 to multifactor models is straightforward. That is, suppose X has instead & + 1 columns,
where columns 2 through & + 1 contain the assets’ sensitivities to a set of & factors—or betas
with respect to & portfolios that mimic the factors. Then, unless expected returns conform
exactly to some linear combination of the columns of X, the n assets can agamn be repackaged
to produce essentially any desired QLS coeffients and R2,. In other words, if no portfolio

of the mimicking portfolios is exactly mean-variance efficient, then a multifactor model faces

the same problems associated with the single-beta model.4

Issues related to QLS regressions of expected returns on betas are discussed in several
recent studies. Roll and Ross (1994) derive the region in mean-variance space containing
the portfolios that produce a mean-beta relation whose OLS slope is exactly zero (and thus
R%, ¢ is zero). Our observation that inefficient portfolios can also give arbitrarily good fits
to any given linear mean-beta relation goes beyond the analysis of Roll and Ross, who do
not consider goodness-of-fit measures.” Jagannathan and Wang (1993) construct a four-
asset example in which repackaging changes R}, ¢ from 0.95 to 0.0, although those authors
do not address the generality of the example or its relation to the mean-variance location
of the index portfolio. Grauer (1994) constructs a number of examples illustrating that
the difference between the OLS intercept and the riskless rate does not correspond to the

proximity of the index portfolio to the Sharpe-Linter tangent portfolio,

Roll and Ross (1994) show that the distance between the minimum-variance boundary
and the zero-slope-producing region is increasing in the cross-sectional variance of expected
returns on the n assets, holding constant the product of the cross-sectional mean of the
expected returns and the variance of the payoff on a specific zero-investment position.® As
shown here, repackaging the n assets allows the goodness of fit to become arbitrarily close
to zero for any inefficient index portfolio. Moreover, the following proposition states that
such a repackaging can be constructed to produce expected returns and betas exhibiting any

desired cross-sectional means and variances.”

Proposition 2. If portfolio p is inefficient, then for any scalars B, E*, o5 > 0, ope > 0,
and w € (0,1), there exists q nonsingular n X n matriz A, with A, — t, such that

Loag = g (1)
n
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1 _

~'AE = E*, (8)
n
1 ; - ,
E(Aﬂ—;:’i*a)’(Aﬂ—ﬁ*L) = o4, (9)
1 _ _ .
~(AE - E*)'(AE -~ E*) = Ope, and (10)
1
RéLS = W (11)

Numerous empirical investigations of asset pricing have tested the hypothesis that the
OLS slope in the cross-sectional mean-beta relation is equal to zero. (A recent example
can be found in Fama and French (1992).) Failure to reject this null hypothesis with a
finite number of time-series observations does not, of course, translate into a rejection of the
hypothesis of mean-variance efficiency. In an infinite sample, failure to reject a zero QLS
slope must reject ezact efliciency of the index. Roll and Ross show that such a result could
occur with an index portfolio that is close to efficient, so, following Roll (1977), inferences

about the pricing theory could be sensitive to construction of the index.

Some readers might interpret the Roll-Ross analysis as implying that the outcome of a
zero slope with a near-efficient index portfolio requires low dispersion in expected returns.
If that were indeed the case, then the above criticism might not be very relevant to many
empirical studies. That is, such investigations often select assets so as to create substantial
dispersion in expected returns, (Given proposition 2, however, an outcome of a near-zero
slope with a near-efficient index portfolio can occur with large dispersions in both expected
returns and betas. In other words, it seems difficult to argue that simply selecting assets
with disperse expected returns or betas necessarily endows the zero-slope test with power

against an alternative hypothesis of near-efficiency in the index portfolio.

A reasonable reaction to the examples in figure 1 could be that the sets of ten assets are
unusual, so that, although these special cases illustrate theoretical possibilities, one could
simply avoid using such assets in empirical investigations. Although the assets selected in
the examples are no doubt unusual by some criteria, the relevant question is how one would
develop such criteria. We employ repackaging as an expositional and analytical device. Qur
use of this device might lead one to suggest that assets constructed using extreme values
n the matrix 4 could be ruled out, but such a suggestion misses the point. Any given set
of assets can be viewed as an extreme repackaging of one set but a modest repackaging of
another. In other words, the assets selected by an empirical researcher do not come with
a well defined A matrix. So if one seeks to admit only modest repackagings, or even no

repackagings, the question arises, “repackagings of what?”.

-r



One source of information about how “unusual” set of assets might be is the covariance
matrix of their returns. The plots in figure 1 omit much information about the covariance
matrix. For example, the covariance matrix of the assets plotted in figure 1la, although
nonsingular, has one very small cigenvalue. We consider below a framework that, uses this

additional information to measure the relation between expected returns and betas with
quantities that correspond directly to portfolio p's position in mean-variance space. A port-

folio’s position in mean-variance space will be characterized by a simple measure of relative

mean-variance efficiency.

II. A Measure of Relative Portfolio Efficiency

For a given portfolio p, let & denote the eflicient portfolio with the same variance as p, and

let y denote the minimum-variance portfolio with the same mean as p. Define

#zi mean return on portfolio z,

fzo: mean return on portfolios uncorrelated with portfolio z,
o, variance of portfolio y.

#g: mean of the global minimum-variance portfolio,

o, global minimum variance.

The relative efficiency of portfolio p is defined as

by, = Er — Ky (12)
Hz — Hg

The relative efficiency measure defined in (12) has a range from -1 to 1, with the latter value
corresponding to exact efficiency. Relative efficiency is undefined for the global minimum-
variance portfolio. When portfolio p lies on the minimum-variance boundary but has the
lowest expected return for its variance, then ¥, = —1. The square of this efficiency measure

can also be expressed in terms of variances, as given by the following proposition.

Proposition 3.

2 2

2 _ Ty — 0,

w:g - 0_2 2 (]‘3)
P g

Both (12) and (13) are represented graphically in figure 2. Figure 3 displays the loca-
tions in mean-variance space of portfolios with given values of Y. The minimum-variance

boundary is the same as that constructed in figures la and lc.
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A portfolio’s inefficiency can also be characterized in terms of correlation. Kandel and
Stambaugh (1987) and Shanken (1987) show that p,, the maximum correlation between the

return on portfolio p and the return on any minimum-variance portfolio, is given by

Pp = (14)

Q]q
e

p

This measure, like ¥y, approaches unity as portfolio p approaches the minimum-variance
boundary, but it is bounded below by zero. Combining (13) and (14) gives

2 o, 2
_ 9
1 —p, = ( —;3') (1 =7, (15)
which implies that

Py < pp (16)

if portfolio p is inefficient.

ITI. The Mean-Beta Relation and the Covariance Matrix

Consider a cross-sectiona) regression of E on 3, where the covariance matrix V is used to
perform Generalized Least Squares (GLS). That is, the coefficient vector in the regression is
given by '

¢ = [Zl } = (X'V X)XV, - (17)

Proposition 4. The slope coefficient ¢y is given by

G2 = ty(py — o) (18)

and the intercept ¢, is given by 1 = p, — ¢y or

¢1 = Izp + (1 — Qr/)p)(ﬂg - U:UO) . (19)

If p is efficient, so t, = 1, then ¢, must equal g5 and ¢, must be the portfolio’s premium
over that zero-beta rate, y, — #z0. The above proposition reveals that, if p is inefficient, then
1 > Uz and ¢y < iz — firo. As 1P, gets closer to L, #1 approaches g and ¢ approaches

its maximum value, Mz~ fizo. A negative slope occurs for Hy < pg, and a zero slope occurs
if and only if ¥, = 0, or when Hy = p,.°



The standard measure for the GLS regression’s goodness-of-fit is

(L= Xe)VE - X¢)

2
=1-
fors (E - ea)V-YE — )’

(20)

where
B = BV, (21)

which is the coefficient in a GLS regression of E on ;. Note that exact linearity gives

REps = 1, a slope of zero gives Rirs=0,and 0 < R%, . < 1.

Proposition 5.

?}LS = 7»/),3 . (22)

We see that, unlike the QLS regression, the outcome of a GLS regression of expected
returns on betas is determined cornpletely by portfolio p’s location in mean-variance space,
as summarized by ¢,. In figure la, ¥, = 0.3, so the goodness of fit in a GLS regression of
means on betas with respect to portfolio p is 0.09. In figure Ic, ¥, is nearly 1, and so is the
goodness of fit in the GLS mean-beta regression. Although it can be shown algebraically that
the coefficient vector ¢ and the goodness-of-fit measure R%ps are invariant to repackaging
the n assets, this result follows immediately from the fact that portfolio p’s location in mean-

variance space is unaffected by repackaging the assets used to generate the set of portfolio
opportunities,

The GLS regression constructs a least-squares fit between means and betas that are
transformed using the factored inverse of the covariance matrix, and, as is obvious from
figure 1, the outcome of that regression need bear no resemblance to a plot of the “raw”
expected returns versus betas. To decide whether fitted lines and goodness-of-fit measures are
more relevant when computed with the raw means and betas than with their transformed
counterparts, it may be useful to have a context in which fitted cross-sectional relations
for expected returns would be used. The next section considers the use of such relations
in providing expected returns as inputs to portfolio optimization. It is shown that the
fitted GLS regression provides the optimal inputs for the optimization, and the regression’s
goodness-of-fit provides the squared relative efficiency of the resulting portfolio. If, in other
contexts, the goodness-of-fit of the raw means and betas is a more relevant metric, however,

then one must simply recognize that such a metric need bear no relation to the relative

mean-variance efficiency of portfolio p.
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IV. Using Fitted Mean Returns: An Optimization Setting

In the absence of an exact linear relation between expected returns and betas. it seems
useful to have an economic context in which one might, at a theoretical level, fit a linear
relation and judge its goodness-of-fit. We consider here the simple context of mean-vartance
portfolio optimization, where the expected returns fitted from a linear cross-sectional relation
are used as inputs to the problem of maximizing a portfolio’s expected return for a given
variance. The extent to which the portfolio constructed in the optimization differs from the

efficient portfolio depends only on the differences hetween true and fitted expected returns.

Because the cross section of mean returns can possibly be explained better by variables
used in addition to, or even in place of, betas computed against an inefficient portfolio, we
allow such variables to be included in the analysis. For k& < n, let Z denote an n x k matrix
of full column rank, where one column is «. The matrix Z can simply be the n x 2 matrix
X defined previously, so that the results below include fitting the mean-beta relation as a

special case. We consider linear cross-sectional relations that fit expected returns as
E = Za. (23)
for some k x 1 vector a.

The quality of the approximation to expected returns in (23) is characterized by the
results of a portfolio optimization that uses £ instead of E as inputs. Let w(E; o?) denote

the solution to the portfolio maximization problem.

max w' E (24)

subject to the constraints
wVw = ¢ and (25)
w'e = 1, (26)

for a given o? > 03.
Let & denote the coefficient vector in a GLS regression of E on Z,
b= (Z'VIIH ' ZVE. (27)
The fitted mean returns from the GLS regression are given by
El = 78, (28)

11



Note that ET is a special case of £ in (23) with a = 6. We see that this choice of a 1s best
in the following sense.

Proposition 6.
[w(ET;JQ)}'E > [w(E;az)]'E (29)
for all a.

In other words, the true expected return of the portfolio constructed using the GLS inputs is

greater than or equal to the true expected return of a portfolio constructed using any other
inputs of the form in (23).

As before, the goodness of-fit for the GLS regression is given by
(£ = Z8)V-HE — z6)
E—iyVIE — )
where i is defined as in (21). This goodness-of-fit is also the squared relative efficiency of

the portfolio constructed using GLS inputs.

R?}'LS =1-

(30)

Proposition 7. for any o? > a5, let q denote the portfolio with weights w(ET; o%). Then

Reys = U (31)

In other words, the portfolio constructed using the fitted expected returns from the GLS
regression has a squared relative efficiency equal to that regression’s goodness of fit. Note that
R%; s, and thus 12, do not depend on the value for o2 specified in the portfolio optimization.
[n the special case where 7 = X, it follows from propositions 5 and 7 that the portfolio
constructed with the GLS inputs has the same (squared) relative efficiency as portfolio p. In

fact, it can also be shown in that case that the weights in portfolio p are equal to w(ET; o7).

V. Estimation and Inference

In many empirical investigations of asset pricing, cross-sectional regressions are typically
estimated using sample estimates of expected returns, betas, and, in the case of GLS, the
covariance matrix. Recent examples include Fama and French (1992) in the case of OLS and
Amihud, Christensen, and Mendelson (1992) in the case of GLS. It is straightforward to show
that the probability limits of these regression estimators equal their population counterparts,
7" in the case of OLS (equation (2)) and ¢ in the case of GLS (equation (17)).

12



When portfolio p is exactly mean-variance efficient, then v* = ¢ for any repackaging
of the assets. so the OLS and GLS estimators then have the same probability limits. In
that case, Shanken (1992) shows that the GLS estimator is asymptotically efficient, even
though the betas used as independent variables are first estimated in OLS regressions.”
As Shanken cautions, however. one might be concerned about the GLS estimator in finite
samples. Amsler and Schmidt {1985) conduct a Monte Carlo investigation and find that,
with six years of monthly returns on fifteen or fewer assets, the GLS estimator of the zero-
beta rate generally outperforms the OLS estimator in terms of variance, mean square error,

and mean absolute error, but not in terms of bias.

When portfolio p is inefficient, there can be substantial divergence between the probability
limits of the OLS and GLS estimators, given the possible differences between v* and o
demonstrated in this study. This potential divergence in probability limits complicates a
comparison of these estimators in small samples. On one hand, OLS may very weil perform
better as an estimator of ~* than does (LS as an estimator of ¢. On the other hand, v*
may be a less interesting quantity to estimate, since it need bear essentially no relation to

the degree of inefficiency in portfolio p.

Propositions 4 and 5 also hold with the population moments replaced by their sample
counterparts, which implies that the outcome of the GLS estimation is determined by the
location of the index portfolio in sample mean-variance space. In other words, the GLS esti-
mation summarizes the information in the sample covariance matrix by the index portfolio’s
sample mean-variance location. A portfolio’s sample mean-variance location has been used in
a variety of approaches to estimation and inference. Shanken (1985) shows that the outcome
of a cross-sectional GLS regression of means on betas can be used to test mean-variance effi-
ciency in the absence of a riskless asset, and Roll (1985) provides a geometric mean-variance
interpretation of this test. Kandel and Stambaugh (1989) show that likelihood-ratio tests of
mean-variance efficiency, with or without a riskless asset, can also be computed using the in-
dex portfolio’s sample mean-variance location.% Inferences about the degree of inefficiency
in a portfolio, formulated as a composite hypothesis instead of a point hypothesis of exact
efficiency, have also been based on a portfolio’s sample mean-variance location. Kandel and
Stambaugh (1987) and Shanken (1987) conduct such tests in a frequentist setting, while

Kandel, McCulloch, and Stambaugh (1994) investigate a portfolio’s degree of inefficiency in
a Bayesian setting.

In contrast to all of the alternative approaches noted above, the outcome of an OLS

regression of sample means on betas is essentially unrelated to the index portfolio’s sample

13



mean-variance location. This statement follows from the observation that propositions 1
and 2 also hold with sample moments in place of population moments. Although it seems
sensible that inferences about a portfolio’s population mean-variance location shouid be based
on its semple mean-variance location, perhaps finite-sample statistical considerations should

temper such logic. Further investigation of these issues would no doubt be useful.

VI. Conclusions

As is well known, an exact linear relation between expected returns and hetas with respect
to a given portfolio p occurs if and only if portfolio p lies exactly on the minimum-variance
boundary. If portfolio p is at all inefficient, however, a plot of expected returns versus hetas
bears essentially no relation to the position of portfolio p In mean-variance space. An QLS
slope and R-squared arbitrarily close to zero can occur when portfolio p 1s arbitrarily close to
the minumum-variance boundary. A near-perfect linear relation can occur, with any desired

intercept and slope, if portfolio p is grossly inefficient.

Although OLS is inadequate to the task, the ezact linear mean-beta relation implied by
the efficiency of portfolio p can indeed be generalized to an approrimate linear relation in
the presence of inefficiency in portfolio p. [f the linear relation is fitted as a GLS regression
of expected returns on betas, using the variance-covariance matrix of returns, then that
relation’s coefficients and goodness-of-fit measure bear simple relations to the location of
portfolio p in mean-variance space. If portfolio p 1s close to efficient, based on a relative
efficiency measure that can be stated in terms of either means or variances, then the fitted

relation will be close to the exact linear relation corresponding to an efficient portfolio whose

mean and variance are close to those of portfolio p.

When portfolio p is inefficient, it may be useful to adopt an economic context in which
to fit a linear relation between expected return and beta and characterize, at a theoretical
level, that relation’s goodness-of-fit. We consider a context in which the quality of the linear
relation is judged by its ability to provide fitted expected returns that are useful substitutes
for true expected returns as inputs to a standard one-period portfolio optimization. For a
given set of cross-sectional independent variables, including but not limited to beta. using the
expected returns fitted from a GLS regression produces a portfolio with a higher expected
return than using any other linear combination of the independent variables. The (squared)

relative efficiency of that portfolio is simply the goodness-of-fit for the GLS regression.

‘The absence of a relation between the index portfolio’s relative efficiency and a plot

14



of expected returns versus betas illustrates the difficulty in using and assessing any model
that delivers multiple implications. For example, the Capital Asset Pricing Model of Sharpe
(1964), Lintner (1965), and Black (1972) delivers two major implications: (i) the market
portfolio is mean-variance efficient and (ii) the relation between expected returns and betas
is linear. Many finance academics prefer not to view these implications as separate, since
either one impiies the other, but such a strict view does not easily accommodate the fact
that any financial model is at best a convenient and useful abstraction rather than an exact
representation of reality.! That is, the strict view does not easily entertain the possibility
that, for practical purposes, one implication can hold while the other fails. This study

demonstrates that either implication can hold nearly perfectly while the other is grossly
violated.

In some applications, the implication of interest may be that the market portfolio is
mean-variance efficient or, in practical terms, very nearly so. This implication might lead,
for example, to an “index fund” portfolio strategy or to the use of a market index as a
performance benchmark against which to compare other portfolios of similar volatility. If
the model’s implication of interest is instead the cross-sectional mean-beta relation, then we
see that the relative efficiency of the index portiolia offers little guidance as to the properties
of such a relation. An additional problem with the mean-beta implication arises, however.
Even if a linear mean-beta relation fits arbitrarily well (but not perfectly) for a given set
of n assets that generate all portfolio opportunities, the same relation can still provide a
poor approximation for the expected return on another asset (a repackaging of the n assets).
Many applications of the model are likely to use a relation fitted with one set of assets to
approximate the expected return on another asset, such as a project in a capital budgeting
problem or a managed portfolio in a performance evaluation. Thus, unless one takes seriously
the possibility that the linear mean-beta relation holds perfectly, this implication of the model
seems to offer limited applicability.
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Appendix

Proof of Proposition 1: Let F be a nonsingular n x n matrix whose first three columns are

fi=1, (A.1)
fo=3, (A.2)

and
fz=E£ - X0, (A.3)

respectively. Note that when portfolio p is inefficient, the above three vectors are linearly

independent. Define the OLS coefficient vector
¥=(X'X)'X'E. (A.4)

Let @ be an n x n diagonal matrix whose diagonal elements are all ones except for the (3,3)

element, which satisfies
€

(fs' X (X' X)2X' f3)7
when 6 # 5 and ¢33, = 1 when 8 = ~. In the latter case, note that fiX = 0. Define the
nonsingular matrix B = FQF~!. It is easy to verify that the columns of F are eigenvectors

of B, and that the diagonal elements of () are the corresponding eigenvalues. Hence,

q(3,3) < (A.5)

BL - Bfl = fIQ‘(l,l} = I, (Aﬁ)
Bﬁ = sz = f2Q(2,2) = ;31 (A-7)

and
Bfs = f3q3.3). (A.8)

Equations (A.6) and (A.7) can be rewritten as:
BX = X. (A.9)

Let GG be a nonsingular n x n matrix whose columns are orthogonal to each other and whose

first three columns are

9=t (A.10)
g = 3 - “B)L, (A.11)
7
and
g3 =BE - X{(X'X) 'X'BE. (A.12)
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Note that g3 is the vector of residuals from the regression of BE on BX (= X). When
portfolio p is inefficient, the vector £ is not spanned by the columns of X, and, therefore,
the above three columns of ' are linearly independent and orthogonal to each other. Let
A ={G'G)"". Since the columns of ¢ are orthogonal to each other, A is a diagonal matrix.

Let #{ be an n x n diagonal matrix whose diagonal elements are all ones except for the (3,3)

_ (Vo)1 —w) 7
h(3’3)ﬁ<—_—(gg'gg)w ) , (A.13)

element, which is given by

where
({BE)

n

v= X(X'X)'X'BE ' (A.14)

Define the nonsingular matrix ¢ = GHAG'. Tt is easy to verify that the columns of &

are etgenvectors of ' as well as ¢, and the diagonal elements of H are the corresponding
eigenvalues of both C' and €. Hence,

C,i- = Ol'/ = Og]'_ = h(l,]) =i, (A.15)
C'5 = 8= Clan+ Ly = 5, (4.16)
C'X =X = X, {A.1T)
and
ng = h(3.3)gl3' (AlS)

Now let A = C'B, which is nonsingular. Equations (A.9) and (A.17) imply that
AX=CBX =CX = X, (A.19)

so Ac = (. Substituting (A.19) into the definition of 7" in (2) and simplifying by using
equations (A.3), (A.8), (A.9), and (A.17) gives:

¥ = (X'AAX)'X'AAE = (X'X) ' X'CBE
= (X'X)'X'BE = (X'X)"'X'B(X0 + [,)
= 0+ (X'X) X'Bfy
= 9+ qas( X' X)X . (A.20)

lf v =@, then v* = @, since in that case 933 =1 and X'f; = 0. When v # 8, inequality (5)
is obtained by combining (A.20) with (A.5):

177 = 0l = (g5 5 X (X' X) 72X f3)7 < e. (A.21)
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Using (2}, (3), (A.17), and (A.19) we get:

(E* = X'y} = AE— AX(X'A'AX)'X'AAE
= AE - X(X'X)'X'BE
= C(BE—-X(X'X)"'X'BE)
= Cg3 = gshs), (A.22)
which implies that
AE = g3hga) + X(X'X)' X' BE. (A.23)
Using (A.17), (A.23) and the definition of v in (A.14) we get:

I A AR
E*_(L_El_.lé — AE—(LA )L
" -
'BE
= gsh@a + X(X'X)'X'BE — (L;L——)c
= ¢3h(a) +v. (A.24)

Equation (6) is obtained by substituting (A.22) and (A.24) into (4), observing that
(v'ga) = 0, and using the definition of h(zz3) in (A.13):

(B = X"y )(E" = X*y7)

R2 = 1~ 0 TR
OLS (E** (‘f )L)I(E* _ (Lf )L)
~ (galga)h?s,s)

(93"93)]1?3,3) + 'y

v’y

(93’93)"1?3,3) +v'e

= w. (A.25)

Proof of Proposition 2: In this proof we use matrix notation similar to that employed
in the proof of proposition 1, although the matrices are redefined here and may be different
from those in that proof. Proposition 1 implies that there exists a nonsingular n x n matrix
C', with Cv =+, such that R%, ; = w in the regression of C'E on C'3. Here we construct an

additional repackaging, using a non-singular matrix B, and then consider the regression of
BCFE on BCJ. Define

. 1,

,8 = ;’L—L Of}’, (A26)
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1

E = —/CE. (A.27)
n

; 1 _ ~

op = —(CB-3Y(C8—-3), and (A.28)

' n

op = l(CE—E.L)'(CE—E.r,). (A.29)

n

The following construction of the matrix B applies to the case where
oh # o5 and ok # k. (A.30)

The special cases where one of these inequalities does not hold will be discussed later. Define

_ gg*arﬁ - 3(75*

kg = ——— "2 (A.31)
O-[J‘ - O"ﬁu
and - B
hy = —2F 598+ (A.32)
O — Og»

Let #' be a nonsingular n x n matrix whose first three columns are

fl =t (A33)
fa=CB—kge (A.34)

and
[s=CE ~ kg . (A.35)

Note that when portfolio p is inefficient. the above three vectors are linearly independent.
Let () be an n x n diagonal matrix whose diagonal elements are all ones except for the (2, 2)

and (3,3) elements, which are given by

T3

9(22) = — and (A.36)
o
T s
=3 = Ui} . (A.37)
Define the nonsingular matrix B,
B=FQF 1, (A.38)

It is easy to verify that the columns of F are eigenvectors of B and that the diagonal elements

of ) are the corresponding eigenvalues. Hence,
Be=, (A.39)
Bfy = f2£](2,2) ’ (A.40)
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and

st = fSQ(3,3> - (A-4l)
Equations {A.40) and (A.41) can be rewritten as:

BCB = quanCB+ks(l — g
1 .
= —[o5CB+ (8%0s — Bog )], (A.42)

Op

and

BCE = Q(3,3)CE + ;CE(I — Q‘(geg])ll

= i‘[JE'tCE-l-(E*G'E—EJE')L] . (A43)
oE

Now let A = BC', which is nonsingular. Using (A.31), (A.32), (A.36), (A.37), (A.42), and
(A.43), we can verify (7) and (8):

lL’AJB = lL'BC'ﬁ

; n

T
1 _ )
= —lognB4 (805 — Bogen]
o4
- (A.44)
1
—'AE = lL’BC’E‘
n

1 _ _
= —lopnE + (E o5 — Eog.)n]

CZE
= B (A.45)
From (A.42) and (A.43) observe that
BCB—ji = Z—f;(c;a—,at) and (A.46)
BCE - Eu — %Z-‘(CE C R (A.47)

which, combined with (A.28) and (A.29), can be used to verify (9) and (10):

S4B =45~ ) = L(BOB- Y (BCE -

10123‘ 2.\ )
= —Z2CB-BY(C8 - By
= 05, (A.48)
%(AE ~EYY(AE - B") = L(BCE - E*)(BCE — B)
n

- Lo op EN(CE — Eu)
= nop (OB B

= Op.. {A.49)
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To prove (11), note from (A.42) and (A.43) that the vector BC'E is obtained from the vector
C'E by adding a constant to each element of the product of C'F and a constant. Similarly,
the vector BC3 is obtained from the vector C 3 by adding a constant to each element of the
product of ' and a constant. The value of R}, ¢ is invariant with respect to such linear
transformations of the dependent and independent regression variables, so we conclude that
the value of R23); 5 in the regression of BCE on BC 8 is w, the same as the value of R% s in
the regression of CE on C3.

In the special case where one of the inequalities in (A.30) does not hold, one can construct
the matrix B as a product of two repackaging matrices, B = B,B,. Consider, for example,
the case where o3. = 5. Construct By using (A.31)-(A.38) but with og. changed to o5 ¢
for some ¢ > 1. The resulting vector of betas, B3, will have the desired mean 3*. For
the construction of the second matrix, By, use the vector B;C'3 instead of '3 in (A.26)
and (A.28), change og. to o5+ (1/c), and then again follow (A.31)-(A.38). After this second
repackaging, the cross-sectional variance of the betas is the desired value og+. The value of

B3, s does not change in either of these repackagings.

Proof of Proposition 3: We first define the 2 x 2 matrix,

L M SV VIR
[ M N ] B [ JVTIE E'VIE (A-50)
and its determinant.,
D=LN - M. (A.51)
As is well known (Roll (1977)),
M
Moo= T (A.52)
: 1
and if (4, 0%) is a point on the minimum variance boundary, then
2
: - N
o2 = Lt 21‘;/[” +N) (A.54)
Equation (A.54) can be rewritten as then:
1 L My?
LR e B A.55
“TITD ( L ) (4.55)

By construction, {uy, o) and (u,, ?) are on the minimum variance boundary. Using (A.52),

{A.53), and (A.55) we get

. L
o] -0l = B(HP — ;) and (A.56)
L
03 - G-j = 5(!“%‘ - Jug)z' (A57)

21



Dividing equation (A.56) by (A.57) gives

2 2 2
(“_Pl‘iﬂ_) = (ay _ 09) _ (A.58)
Hz = [y o5 — o]

Equation {13) follows from (A.58) and the definition of Y in (12).

Proof of Proposition /: The geometric analysis of the GLS coefficients in Roll (1985) may
be used as a starting point for this proof. For the sake of clarity, we provide a complete
proof. Observe that

X= [ L mva J , (A.59)
S0
[ T FR— 2
xvoix=| T E | L [ Loy 1 J , (A.60)
wpVwy  whVwp Iy L 1
(VX [ 1 - (A.61)
ST o e | |
and -
JVoLE M
le_lE = w! E = [ Ep ] (A62)
wpVwp | o}
Multiplying {A.61) and (A.62) gives
ol { M-2 J
= 2P % . (A.63)
Lo} —1| Lyp, - M
Using (A.52) and (A.53), the second element of ¢ in (A.63) can be written as
o2
b2 = (0'2 jgz) (£ — 1ty)- (A.64)
r~9g

This expression for ¢, is presented also by Roll (1985). The expression in (18) is obtained

by observing that, since portfolio  is on the minimum-variance boundary, we can write thg
as
cov{r,,r.}
By = oo+ (pp — .u'x())_'T__

I

0.2
= fzo + (Jux - ;uxO)O__ga (A65)
P

where the second line follows by substituting o2 for o2 (equal by construction) and from

the property that every asset has covariance arg2 with the global minimurm variance portfolio
(Roll (1977)). Equation (A.65) can be rewritten as

o = 02(”‘“’_‘.@ A.66
P (g — pige) (4.66)
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Substituting (A.66) for O’; in (A.64), simplifying, and using the definition of 4, in (12) gives
(18). The expression for ¢, in (19) follows directly by substituting (A.52), (A.53) and (A.65)
into the first element of ¢ in (A.63) and simplifying.

Proof of Proposition 5: Equation (20) can be rewritten as:

| (B Xe)VHE - Xg)
T E - @ VIE =)

(A.67)

Through straightforward algebra, using (A.50)~(A.63), one can express the numerator of
(1 - RE&Ls) in (A67) as

Lyt —2M N — Dg?
(B~ Xgyvi(r—xg) = o= 2Mits ¥ N = Do,

1 — La2?
D org — 0_3

where the second line makes use of the equation for the minimum-variance boundary (A.54),

ol = (L,u,g —2Mup, + N)/D. (A.69)

The denominator of (1 — R%, ) can be expressed, using (21), (A.50), and (A.51), as
D

(£~ @) VTHE — i) = 7 (A.70)
Taking 1 minus the ratio of (A.68) to (A.70) gives
2 _ 2
2 o= 77 %) ATl
RGLS - (o_g _ 0_92)5 ( . )

which is equal to ¥?2 using proposition 3.

Proof of Proposition 6: Since w( £ ¢?) is the solution to the portfolioc maximization

problem (24)-(26), there exist scalars {1 > 0 and {, such that the following first order
condition is satisfied:

2U(E;0‘2) = (IV_IE—i-(:zV_lL
= GV ' Za+ GVl (A.72)

where the second line uses (23). The maximization problem’s constraints imply that

1

(2 = —E(l—Cla’V"lZa), and (A.73)

Lo B

_— Lot —1
U T N\ aV Ze v zap

(A.74)
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Using (A.30), (A.73), and (A.74),, the expected return [w(E;UZ)]’E can be written as

[w( £ o 'E = —g +GEV ™ Za) — %[-(L’V‘IZGH. (A.75)

Recall that 6 = (Z'V-1Z)"12'V-1E. Let dy be an n-vector with 1 in the first element and

0 elsewhere. Noting that the first column of Z is t, 1t is easily verified that

Zdy =, (A.76)
dy=(Z'V'Z)"\Z'v T, (A.T7)
FZVN =BV Zdy = E'VTY = M, and (A.78)
YV Zd = d\ 2V Zdy = VY = ] (A.79)
Define
K=LVZ6=(EV'Z)(Z'V™'2)" 2V E), (A.80)

and note that K > (M?/L), using (A.76)(A.79) and the Cauchy-Schwarz inequality. For

any n-vector a there exist scalars ¢; and ¢, and an n-vector u stich that

a = C](S + C2d1 + U, (ASI)
W(Z'VTZ)d, = 2’V =0, and (A.82)
uW(Z'VIZY = WZ'V-LE = 9. (A.83)

Maximizing the expected return [W(E;o*)'E with respect to a is, therefore, equivalent to
maximizing the expected return with respect to ¢y, ¢z, and an n-vector u that satisfies (A.82)
and (A.83). Using (A.78), (A.79), (A.82), and (A.83), we get

YV Za = (VT Z8) 4 (VT Zdy) + (V! Zu)

= oM+ ey f, (A.84)

E'V-lZa = cI(E'V"lZ6)+cz(E'V_lZd1)+(E'V_lZu)
= o + e, M, and (A.85)
//Z'V1Za = 'K + ¢,°L + 2c0eoM + 0 Z'V T 2w, (A.86)

Substituting (A.84)-(A.86) into (A.74) and (A.75) gives

M (Lo? — 1)ze (KL — M?)

w E’ 0_2 IE + 1 .
[w(E;NE = 7 KL = M?) + (W' 2'V = Zu))5 L

(A.87)

Let ¢; = 0, since (A.87) does not depend on ¢;. The maximum must occur with ¢; > 0,

since the denominator and the other factors in the numerator are positive. For any ¢; > 0,
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the maximum occurs at © = 0 and does not depend on ¢;. Thus, let ¢; = 1, which implies

the maximum occurs at ¢ = § or £ = 26 = ET.

Proof of Proposition 7: We first observe that (E — Z§) can be written as
(B=26)=I-2(ZV-' 2y 7'V, (A.88)
which, when substituted into the numerator of (1 — R%) in (A.67), provides
(E - 28)V~1(E - 76) (A.89)
= B =22V 27 2V - 22V 2 2y E
= E'VIE—EVIZ(ZV2) g
= N-K (A.90)

where the last line uses (A.50} and (A.80). The denominator of 1 — R%, s can be expressed
using (21), (A.50), and (A.51), as

5

(B =YV (B~ = 2. (A1)
Taking 1 minus the ratio of (A.90) to (A.91) and using (A.51) gives
KL — M?
RL .= (—T__)' (A.92)

Let p, and cr denote the mean and variance of the return on the portfolio ¢, respectively.

By Proposmon L,

2 2
2:%_09 A.93
= (A.93)

where ¢ denotes here the variance of the minimum variance portfolio with mean return Hq.
Equation (A.56) implies that the numerator of (A.93) can be written as

7= 0t = ity — ) (A94)
Substituting u,, o, and g, into (A.87) gives:
(02 —02) (KL — M?)

(kg = 11q)* = —2 7 , (A.95)
which implies that the denominator of (A.93) can be written as:
- L{pg — py)?
2_ 2
Uq—ag:__[;hiz— (A96)
Dividing (A.94) by (A.96) vields
- KL - JMZ)
Py = ( o REps, (A.97)

where the second equality is based on (A.92).
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Figure 1. Examples of mean-beta relations for different mean-variance lo-
cations of the index portfolio. Figure 1a plots ten assets (solid dots), their minimum-
variance boundary, and a portfolio p of those ten assets (circle). Figure 1b plots the expected
returns and betas of those assets with respect to portfolio p as well as the OLS regression
line through those points. Figures lc and 1d display a similar case, except that the ten assets
are a “repackaging” of those in the first case. The points in figure 1b do not lie exactly on
the regression line, and portfolio ¢ in figure 1c does not lie ezactly on the minimum-variance
boundary.
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Expected Return

Variance of Return

Figure 2. The relative efficiency measure 4 in mean-variance space. The solid
curve represents the minimum-variance boundary of portfolio opportunities. The relative
efficiencies of portfolios p and g are denoted by ¢, and g
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Figure 3. Mean-variance locations of portfolios with various levels of relative
efficiency Each curve displays the locus of portfolios with a given measure of relative effi-

ciency, ¢. Relative efficiency is undefined for the global minimum-variance portfolio (denoted
by the small circle).
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Footnotes

'See Fama (1976), Roll (1977) and Ross (1977).

: . , 1
*The Euclidean norm of an n-vector p is defined as [|vf| = (v'v)3.

*The portfolios inciude all stocks on the New York Stock Iixchange, and the returns
within a portfolio are value weighted. Portfolio returns were obtained from the Index File

supplied by the Center for Research in Securtty Prices.

*Huberman, Kandel, and Stambaugh (1987) define muimicking portfolios and analyze their

relation to the minimum-variance boundary under exact k-factor pricing.

°Roll and Ross derive mean-variance regions for portfolios that produce a given positive
OLS slope for the mean-beta relation, but, other than in the case where the slope is zero,

the value for the slope does not provide information about the goodness of fit.

®The zero-investment position goes long $1 in the portfolio with weights - £ and short

$1 in the equally welghted portfolio of the n assets.

"This repackaging would not necessarily satisfy additional constraints involving the co-
variance matrix of returns, such as an upper bound on the variance of the zero-investment
position defined by Roll and Ross (1994).

*This last point is made independently by Roll and Ross (1994), who attribute private
correspondence with Simon Wheatley.

“Shanken’s GLS estimator is defined using the covariance matrix of the residuals from the
first-pass market-model regressions, but he shows in earlier work (Shanken (1985, footnote

16)) that the same estimator is obtained using the covariance matrix of returns.

WThe mean-variance characterization for the likelihood-ratio test in the riskless-asset
case 1s due to Gibhons, Ross, and Shanken (1989)

"Such a view of modeling is advanced, for example, by Fama (1976).
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