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Abstract

This paper examines the effects of portfolio insurance on market and asset price dynamics
in a general equilibrium continuous-time model. Portfolio insurers are modeled as expected
utility maximizing agents in two alternative ways. Martingale methods are employed in
solving the individual agents’ dynamic consumption-portfolio problems. Comparisons are
made between the optimal consumption processes, optimally invested wealth and portfolio
strategies of the portfolio insurers and “normal agents”. At a general equilibrium level, com-
parisons across economies reveal that the market volatility and risk premium are decreased,
and the asset and market price levels increased, by the presence of portfolio insurance.
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Amongst both academicians and practitioners, there has recently been a surge in interest in
the intertemporal behavior of market volatility (standard deviation of price return).! Since the
market crash of October 1987, at which time market volatility was very high, much attention
has focused on the factors which affect volatility. Of particular interest is the influence of (i)
the rate of information fow into the market, (ii} various security trading practices and (1ii)
macroeconomic variables. The efficient markets hypothesis would claim that the volatility of a
stock’s return is solely due to the rate of arrival of new information about that stock’s future
payoff. However, the popular press, regulators, and numerous researchers suggest that certain
types of dynamic trading stratesies tend to increase stock market volatility. In particular,
portfolio insurance and program trading have been accused of contributing to the stock market
crash by increasing volatility (for exampie, the Brady Report {1988)) and in general having a
destabilizing effect on the market (for example, Hull (1993, p. 332)).

A portfolio insurer is broadly defined as someone who follows a trading strategy so that at
some horizon, he or she is guaranteed a minimum level of wealth (the “Hoor”} yet is able to
participate in the potential gains of some reference portfolio, e.g., S&P 500. This definition
of portfolio insurance, the one adopted in this paper, agrees with the description of portfolio
msurance given in both the academic literature (Grossman and Vila ( 1989)) and the professional
literature (Luskin (1988, p.77)).

The primary objective of this paper is to study the effects of portfolio insurance on the
market price level, volatility and risk premium. Our approach is to take a very standard
environment (Lucas (1978)) in asset pricing theory, that is well understood and extensively
studied, and introduce portfolio insurance into it. To this end we develop a continuous-time
consumption-based general equilibrium model of a multi-agent pure-exchange economy. Our
main tool of analysis is the martingale representation technology of Cox and Huang (1989,
1991), Karatzas, Lehoczky and Shreve (1987) and Pliska (1986).

To include portfolio insurance in the economy we postulate that trade takes place between
two types of traders, “portfolio insurers” and “normal agents”. We model the portfolio insur-
ers as expected utility maximizers, in two different ways according to the above definition of
portfolio insurance. We must model the portfolio insurers in ways to assure them of a wealth
above the floor at the portfolio insurance horizon. In the first formulation, we explicitly apply
to their expected utility maximization problem an additional constraint that the horizon wealth
be above the floor. Qur second method of modeling the portfolio insurers is to let them derive
utility from wealth at the portfolio insurance horizon, where the utility function is chosen to
implicitly inherit the condition of wealth above the floor. Specifically, we let the marginal util-
ity go to infinity at the floor so that the optimal wealth at the horizon will automatically lie
above the floor. The advantage of this second approach is that, through an appropriate choice

of the utility function, the general equilibrium analysis of a multi-agent economy becomes more
tractable.

A comparison of the optimal consumption processes reveals that, before the portfolio in-

'Although there is now a large empirical literature on price volatility (for example, Black {1976), Merton
(1980), French, Schwert and Stambaugh (1987), Schwert (1989, 1990), Stoll and Whaley {1950)), theoretical

work in this area is limited. Apart from this paper, recent theoretical work includes Hindy (1992}, Basak (1993,
§5.3).



the opposite to ours; they find the market volatility to be increased by the presence of portfolio
insurance. Donaldson and Uhlig develop a single-period model in which trading decisions are
made and equilibrium defined at only one point in time. They model their portfolio insurers
by exogeneously specifying their demands for a risky and a riskless security, They show the
existence of two equilibria and find that increasing the level of portfolio insurance in the economy
increases the separation between the two equilibrium prices, which they interpret as an increase
in volatility. In the continuous-time model of Brennan and Schwartz, the portfolio insurers are
also not expected utility maximizers; equilibrium prices are set by the remaining normal agents
and the portfolio insurers demand a convex function of the market (aggregate wealth) at the
portfolio insurance horizon, which coincides with the final date. The closest model to ours
is the paper by Grossman and Zhou, They expand upon the Brennan and Schwartz work
by modeling portfolio insurers as expected utility maximizers, as in our first formulation of
portfolio insurance. The pertinent modeling difference between the Grossman and Zhou paper
and ours is that, as in the Brennan and Schwartz paper, their agents only consume at one point
in time, the portfolio insurance horizon, whereas our agents consume continuously throughout
their lifetime. In Section 3, we briefly discuss the implications of this difference on the results.

Other papers that have looked at the effect of portfolio insurance on market price and
volatility have done so in the context of asymmetric information. Grossman (1988) argues
that market volatility may increase in an economy in which the extent of portfolio insurance
dynamic trading strategies is not perfectly known prior to trading, due to illiquidity problems
caused by unexpected coordinated selling by the insurers. The primary objective of Jacklin,
Kleidon and Pfleiderer (1992) and Gennotte and Leland (1990) is to explain the market crash of
1987 in the presence of portfolio insurance, Gennotte and Leland {in a one-period model) and
Jacklin, Kleidon and Pfleiderer (in a multi-period model) posit that the extent of uninformed
portfolio insurance motivated trade in the market is unknown and hence can be mmisinterpreted
as informed trading; then when the extent of portfolio insurance gets completely revealed the
market price experiences a large drop. They attribute thig price drop not to portfolio insurance
itself, but rather to imperfect information about the portfolio insurance based trades.

The remainder of our paper is organized as follows. Section 1 presents the multi-agent
pure-exchange continuous-time formulation to be used in our models. Section 2 describes the
two ways in which portfolio insurance is to be modeled in an expected utility maximizing
framework. Section 3 solves the agents’ optimization problems and for general equilibrium
when the portfolio insurers are modeled as constrained expected utility maximizers, and Section
4 when the portfolio insurers are specified in terms of their utility function of wealth at the
portfolio insurance horizon. In Section 5, we study how close our portfolio insurers’ behavior is
to the general description of portfolio insurance given earlier, and to portfolio insurance trading

strategies employed in practice. Section 6 concludes. The Appendix provides the proofs of all
lemmas and propositions.
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Since these prices are ex-dividend we have P{(T) = 0, i = 1, .., L. Here, the interest rate
r(-) of the bond, the vector of drifts #() = (p1() -, 22()7T and the volatility matrix o(.)} =
{7i;(-)} are Fi-measurable processes, and in particular are allowed to be path dependent. The
coefficients qq, g1, ...,qs, are Fp-measurable random variables, and the process A(t) is the right-
continuous step function defined by Aft) = Lisry so that dA(t) is a measure assigning unit
mass to time T and zero mass to all t £ 7.3 The coefficients #i(t) and ¢;;(t) are interpreted as
the instantaneous expected return of the ith security and the instantaneous covariance of the
1th security’s return with the Jth Brownian motion at time ¢. The coefficients ¢; are related to
the size of the price jumps at time T by

9i = In (Py(T)/P;(T-)),

where P;(T-) is the left limit of Pi(-) at T. Since the q; are predictable at time T (i.e., Fp_-
measurable), the jumps are not a surprise in the sense that their sizes are revealed immediately
before the jumps occur. Hence by no arbitrage we must have 4; = qo = q, for all i; otherwise
buying a security with a larger relative jump and short-selling another with a smaller jump just
before time T" would constitute an arbitrage opportunity.4

In our analysis, we use the martingale representation technology, which requires the con-
struction of the following processes, related to the price dynamics. The details are given in Cox
and Huang (1989, 1991), Harrison and Kreps (1979), Karatzas, Lehoczky and Shreve (1987)
and Pliska (1986). We will briefly present the required notions for our set-up and not concern
ourseives with stating the regularity conditions.

Given the above prices, market completeness (assuming the volatility matrix o(-) is non-
singular) and the absence of arbitrage opportunities allow us to construct a unique system of
Arrow-Debreu securities. Accordingly we define the state price density process as

11 11 1 £
£(t) = Hl(aem {—fo r(s)ds —fo 0(s)Taw (s) — §f0 18(s)[|2ds — qA(t)},
where 0(-) is the unique Z-dimensional Fi-measurable market price of risk process, given by
8(t) = U(t)—l{,u(t) - r(t)l],

where 1 is an L-dimensional vector with every component equal to 1. £(¢t,w) is interpreted as
the Arrow-Debreu price per unit probability P of one unit of consumption good in state w € Q

3The posited stock prices are discontinuous, positive semimartingales, whose bounded variation parts contain
an Fr-measurable jump, but whose local martingale parts are continuous. In particular, we are not allowing the
stock prices to have discontinuous local martingale parts, as, for example, in the asset pricing models of Back
{1991} or of Dothan (1990, chapter 12).

“The jump in a security price i is often defined as AP(T) = Pi(T} — Pi(T-) and is related to ¢i in our set-up
by AR{T) = Py(T-)[exp(g:) — 1]. Note that this absolute jump is not necessarily the same for each security, only
the relative jump (i.e., jump “return”},



the paper, a symbol with a " will denote the optimal quantity corresponding to ¢é,(t) and its
associated portfolio process f,(¢).

The following lemma provides a result which we will need in Sections 3 and 4 in deriving
explicit expressions for the market and its dynamics. It simply states that the (optimally
invested) wealth at time ¢ equals the cost of the future (optimal) consumption stream.

Lemma 2: The optimally invested wealth of agent n at time t is given by

. 1 T ,
Xanl(t) = " { | $(s)én(s)ds | ft:! , teloT], (4)

or alternatively, fort < T, by

Xn(t) = E(lt_)E [

t

T .
f €(s)én(s)ds + £(T-)Xn(T-) | ftJ , tel0, 7). (3)

1.3 Equilibrium

In this paper, we characterize security prices by appealing to general equilibrium restrictions.
The following definition enforces market clearing in the consumption good, the risky securities
and the bond, respectively. Recall that the net supply of each risky asset is one unit of share
at all times and the net supply of the riskless security is zero.

Definition: An equilibrium is o collection of én(’), #nl-), r(-}, t(), a(-} and q such that the
(¢n(-), #n(-)) are optimal and

N
Do énlt)=6(t), telo,T, (6)
n=1
N
D dnilt) = Pi(t), te 0,7, i=1,..,L, (7)
n=1
N . L
Z Xaft) = ZPi(t), te[0,7). (8)
n=1 i=1

1.4 Representative Agent

We introduce a representative agent formulation (following, for example, Huang (1987)) since

it will be useful for the equilibrium analyses in Sections 3 and 4. We define the representative
agent’s utility of consumption by

N
Ul(e;A) = max Antin(cp)

Clye,CAT
¥ r n=1



this paper, instead of restricting the portfolio insurers to possibly sub-optimal strategies we
model portfolio insurers as expected utility maximizers, and simultaneously derive their optimal
trading strategies.

In accordance with the above description of portfolio insurance, in Section 3 we formu-
late a portfolio insurer’s (mth agent’s) consumption-portfolio problem by adding the following
additional constraint on the time T (< T’) wealth to his original [0, T ] optimization problem:

Xm(T) > K.

Grossman and Vila (1989) analyze portfolio insurance behavior in this way in a one period
partial equilibrium framework. In Section J we present the solution to this problem and then
derive explicitly the equilibrium market price and volatility in the presence of portfolio insurers
of this type.

One possible criticism of the above formulation is that when the portfolio insurer’s horizon
wealth hits the floor, his marginal indirect utility of wealth suddenly jumps to infinity. It
might seem more reasonable for an investor to become gradually rather than suddenly unhappy
as his wealth approaches the floor. This leads us to the alternative formulation of portfolio
insurance adopted in Section 4. There we model the portfolio insurers instead as unconstrained
expected utility maximizers who have a modified power or log utility function of time T wealth,
which implicitly inherits the condition X m{T) > K with the marginal utility going smoothly
to infinity at the floor. These utility functions are:

Um(XT) = (X1 - K)’Y’
Y

and vy (X7) = log(Xp — ),

with the required property that limy, _x v;'n(XT) = oco. Both utility functions of time 7
wealth exhibit decreasing relative risk aversion, and are more risk averse than their standard
counterparts X%/’y and log(X7) over the region X7 > K. An advantage of this formulation is
that this form of utility function allows simple aggregation across multiple agents and hence
heterogeneous-agent general equilibrium analysis becomes a lot more tractable. These pref-
erences are of course distinctly different from those of the constrained agents. However, we
will see that the two types of preferences lead to equilibria with similar qualitative properties.
Note that the utility of time T wealth must be consistent with the utility functions of future
(Le. [T,7T7]) consumption, so in effect choosing a specific utility function of time T wealth
corresponds to restricting the [T, T') utility functions of consumption.

In both Sections 3 and 4 we model the portfolio insurers as agents who maximize their ex-
pected utility from consumption in [0, 7'] and let the portiolio insurance horizon, T, be before
the end of period 7’. In our formulation of the model we must have T < T/ because the portfo-
lio insurers require X m{(T) > K and since all end of period security prices P; (T') are zero, this
wealth condition could not be attained in equilibrium if 7 = T/, An alternative formulation of
the model might be to define the portfolio insurers as agents who have a floor on a lump sum
consumption rather than their wealth at time T=T" However, this formulation is less appeal-
ing both from an economic and a modeling point of view. Economically, investors in portfolio



T
subject to EM E(t)em(t)dt + E(T-)Xm(T-)| < £(0)2rmy,

T.'
E

£(t)em(t)dt | ]-'TJ < &(T-)Xm(T-), almost surely,

Xm(T-) > K almost surely.

Recall that the wealth is allowed to have an Fr-measurable jump at 7; X m{T-) denotes the
left limit of X,,(-) at 7. We apply the constraint to the left limit simply to preserve the
standard convention of right continuity of the price and wealth processes. We will often refer
to this left limit at 7 as “time T". In order to ensure the existence of a solution to this
optimization problem, we need to impose the condition that X < T exp{ fOTr(s)ds} almost
surely. In equilibrium this imposes a condition on Tmo, as will be seen later. The following
lemma presents the optimal solutions to the above static problems.

Lemma 3: The optimal consumption processes and the optimal time T wealths of the N agents
are given by:

én(t) I(yn&(t)), te[0,T), n=Mm+ 1,...,N, (9)
em(t) = Iymé(t)), te 0,T), m=1,.,M, (10)
ém(t) = I(ymot(t)), te[T,T), m=1, oM, (11)
- 1 T
Xn(T-) = E_(E"—)E [ A (N (yn&(t))dt | FT} n=M+1,.,N, (12)

A 1 i
Xm(T-) = max{K,g—@_—)E[T g(t)I(ymlf(t))dtlfTJ}, m=1..,M  (13)

where I{-) is the inverse ofu'(-), and where the y, and Ym1 are the unique nonnegative numbers
and the y,n the unique nonnegative Fr-measurable random variables, such that the budget
constraints hold with equality at the optimal consumption end weelth, i.e., yn, ym and ¥m2
satisfy

TI
E [ A e(t)r(yne(t»dt} = £(0)2no. (14)
[ T 1 i
E /0 E()M (ym1€(t))dt + £(T-) max {K, mE [ - E() (ym1€(t))dt | FTJ H = £(0)zmeo,
' (15)
( T Ym2 1 T
E M (ymab (t))dt | Fp| = ET-)max{K, ‘7 ___— g E() T (ymat(t))dt | Fp ,
L Yml ‘E(T‘)
(16)

We have the following properties: (1) if 2o = xng then Ym1 2 Yn; and (i) when m’s portfolio
insurance constraint is binding ym1 = yma, and when not binding ymi > ymo.

The optimal consumption processes are given by the inverse marginal utility evaluated at
the properly normalized state price density process ¢ (-), where the normalization factors, ys,

11



(1/9115 “'l/yM]_v 1/yM+1, "'1/yN) and Ay = (’\12s AN?) = (1/y12’ "'l/yMQv lfyM+1’ ---l/yN)x
conditions (17} and (18) are equivalent to the familiar condition that the state prices are given
by the margiral utility of the representative agent:

§(t) =U'(s(t); A1), te0,T), (19)

§t) =U'(8(t);A2), te T, 7', (20)

where (A1, Ay) is determined up to a multiplicative constant from (14) - (16) with the equilib-
rium ¢(¢) substituted in. £(¢), t ¢ [0, T’] is determined up to a multiplicative constant from (19)

and (20). The existence of equilibrium is established by showing the existence of the weights
(A],Az) SOIViIlg (14)-(16).

The interest rate process r(t), the market price of risk process () and the jump parameter
q can be derived in equilibrium from (17)-(18) or (19)-(20). The parameter q is given by

¢ =1In(§(T-)/&(T)) = In (U'(8(T); A1) /U"(5(T); Ag)) .

We see that whenever A1 # Ag, ie., at least one of the Ym2 is greater than y,,; (at least one of
the portfolio insurers’ wealth constraints is binding), there is a discontinuous (upwards) jump
in the state price density at T. The intuition for this is as follows. If ¢ were continuous at the
horizon T, the normal agents’ consumption demands would be continuous whereas the demands
of the portfolio insurers with their constraints binding would jump upwards, giving rise to a
discontinuous aggregate consumption demand. This is not possible since the aggregate supply
&(t) is continuous. Hence the price of consumption, §, jumps up at T to counteract the upward
jump in aggregate consumption demand. This in turn leads to discontinuous (downwards)
jumps in the asset prices at 7.

Remark 1: As an aside we now mention the case of power utility of consumption and derive 2
result which will be important for the remainder of Section 3. This result is also true for log and
negative exponential utilities of consumption. For power utility (u{c) = ¢7/v) the equilibrium
state price density is given from (19) and (20) by
1 1 \1y
M = N = —
€0 = (DHauT + Seasd™) 6077, ce o),

1

. i 1 N1y
£(t) = (Z%:l Yma + Z§=M+l yf?q) s e [T, T,

with the individual agents’ weights only appearing in a multiplying factor. This is the well-

known situation for power utility that the representative agent’s utility function is essentially

not affected by the weights assigned to each agent. Since £ follows the multiplicative dynamics

in equation (1), we conclude that r(t) and 4(t) are unaffected by these weights, and hence by

portiolio insurance since it is these weights that capture the effects of portfolio insurance.

3.3 Equilibrium Asset and Market Prices, Market Volatility and Risk Pre-
mium ’

To analyze the asset and market prices in a heterogeneous multi-agent economy containing more
than one constrained portfolio insurer at the present level of generality is rather complicated

13



Proposition 2: The eguilibrium market and asset prices in economy 1 are

(1) 1 r ! r
Xom(t) = WE [ft u(8(s)/N)8(s)ds | ]—}] , te (0,7, (24)
PRy = L/ .’(5 YN)8i(s)ds | Fe|, te[0,T), i=1,..1

; = Veom /tu (s)/N)8:i(s)ds | 7|, te [0, T, i=1,..,L,

and before the portfolio insurance horizon in economy 2 are

{2) w 1 ' @

Xem(t) = x200) + T [/ (8(1) /) max (VK - x5 m), 0} 7, (25)
PPW = PP+ = 5 Loy P e Ik Xom(T),0} | 7| (26
O = PO+ B | 6(r) 30y N K = x0(),0} | 7| (26)

After the portfolio insurance horizon the prices in both economies are identical,

Equation (24) simply states that the market price in the normal agent economy is the
bresent value of the future aggregate consumption with the discount factor as the marginal
rate of substitution evaluated at equilibrium allocations. Moving to economy 2, equation (25)
reveals that, before the portfolio insurance horizon, the market price in the portfolio insurance
economy is equal to that in the normal agent economy plus the value of a European put option,
with exercise price N &K and maturity T, on the market in the normal agent economy. (This
result relates to the partial equilibrium resuit in subsection 3.1, that a portfolio insurer’s time T
wealth is equal to that of a normal agent plus a put option on the normal agent’s time T wealth.)
An important implication is that before the portfolio insurance horizon, the level of the market
in economy 2 is always higher than in economy 1. The higher market value arises from the
different valuation of dividend streams by the portfolio insurers as compared with the normal
agents. The portfolio insurance constraint is on time T" wealth which is equal to the present
value of consumption after 7. Hence, consumption after time T not only provides the portfolio
insurer with utility, but also helps him meet his time T wealth constraint. Consumption before
time T, however, hinders him from meeting his constraint. As a result, relative to current
consumption, the portfolic insurers value consumption (dividends) before time T the same,
but consumption (dividends) after time T more highly, than the normal agents do. Thus the
before-horizon value of the equity market, which is a claim against all the dividend streams
after the horizon, is higher in the presence of portfolio insurance.

Proposition 2 also allows us to address how individual asset prices are affected by portfolio
insurance. Equation (26) reveals that, as with the equity market, before the portfolio insurance
horizon the price of each asset is higher in the presence of portfolio insurance, for the reason
discussed above, We can rearrange {26) as

(2 e} 1 ) ‘ NK
Pi(t) =P (t) + WE I:Pi (T) | ft} E [ﬂ (6(7)/N ) max {m - 1,0} | ft}
1 (1) / NK
'f‘WCOV: (Pi (T),u (6(T)/N)max {m — 1,0}) .

15



where

“t) = el - 0} =1 a2 o0,

o

Pannt
L

e

> lexp{n(’ - 1)} - Yewin(T - 0} b > 0

o (5(®6(0)/NE) + (7 + bjosl2) (7 1)

d y
loslivT ¢

d2 = d1 — fos]| VT -4,

N () is the distribution function for a standerd normal random variable, and r and n are as

given in Lemma 4. After the portfolio insurance horizon, the equilibria in both economies are
identical.

We see that the portfolio insurance market price is equal to the normal agent market price
plus the value (adjusted for dividends) of a Black-Scholes put option with maturity T on the
normal agent market. Moving from the bage economy 1, where the market volatility and risk
premium are constants, in the portfolio insurance economy the market risk premium and volatil-
ity are stochastically time-varying, The volatility and risk premium are seen to be driven by the
level of the market and by the additional amount of wealth invested in the bond to synthetically
create the Black-Scholes put option. The explicit analytical expressions in Proposition 3 lead
to the following comparative statics.

Cor(()l)lary 1 Bef(o;"e the portfolio %'gsumnce h(()r)izon we have
(2 ? 1
(?') ruem{t) —r = ”em(t)gh r and ”Uem(t)” = “O'em(t)”;
it p() t)—r and ||l )|l are decreasing in K ;
s K I : 1
191) 1 ) (1 —r and ||e2 (2 are increasing in X (¢ while u() t) —r and |6 (¢t are
em 1 Emn g em em €
independent of Xén)l(t);
(iv) #ﬁ;(t) ~r end ”o‘(;)l(t)H are decreasing in N while ,u;,)l(t)—'r and ||0$1Jl(t)” are independent
of N.

The most important comparisons are the first two, stating that the market volatility and
tisk premium are lower in the presence of portfolio insurance and are decreasing in the level of
the floor. We provide detailed intuition for these results in subsection 3.3.3. The third resuit
of Corollary 1 shows that the effect of portfolio insurance in decreasing the volatility and risk
premium is less pronounced in states where the market is high. These are the “good” states in
which the portfolio insurers have to strive less to meet their wealth constraint and hence their
effect on prices is less. Item (iv) further reveals that the more portfolio insurers there are in
economy 2, the greater the effect on price dynamics. This number of agents effect is special
to this economy of identical agents. More generally, this result represents that the “poorer” a

portfolio insurer is relative to the whole economy, the greater his effect, since he must strive all
the harder to meet his constraint.®

6Comparing the volatility of the individual asset returns across economies has proved to be a hard exercise
since we can only consistently assume that either the 8:(t) or é(t) follows geometric Brownian motion. Without the
assumption of geometric Brownian motion of all these processes, the analysis of the condijtional expectation terms
in the price formula leads to multiple terms whose signs cannot be compared unambiguously across economies,

17



where

_ {1 - 1)) /ymiK) + (r + Hllos]?) (7 - ¢

1 = ool VT =

and N (-) is the distribution function for a standard normal random variable. After the portfolio
insurance horizon, the presence of portfolio insurance does not affect the equilibrium.

dmy = di=[l0s|VT ~ 1, = pg—|os||2,

Remark 2 (Extensions):

(i} In this heterogeneous-agent economy, we could easily allow portfolio insurers to have differing
floors Ko, and differing portfolio insurance horizons T,,. Then in each of the M put options
in the above expressions K and T would be replaced by their respective K, and T,,. The
prices could now exhibit M possible jumps, one at each horizon T,,,. Market volatility and risk
premium would still be decreased by the presence of portfolio insurance.

(ii) Further extension to portfolio insurers with repeated portfolio insurance horizons would
lead to a nesting of put options on put options; in this case the effect on market and asset
prices is the same, but we do not obtain explicit formulae for the market dynamics.

3.3.3 Discussion of Main Results

To provide some intuition for the decrease in market volatility and risk premium in the presence
of porfolic insurers, we consider the optimal portfolio strategies of the log utility normal agents
and portfolio insurers of subsection 3.3.2, where r and 8 are constants.

Proposition 5: Assume r and § are constants. Before the portfolio insurance horizon, the
fractions of wealth ¢(t) optimally invested in the risky assets by a normal agent (n) and a
portfolio insurer (m) with log utility of consumption are

) = [00)7] o)™ (u(e) - r1), (29)

1 K exp{—r(T — t)}N — dma)
Xom(t)

dm(t) = [ } @7 e -, (s0)

where
o (7" 7) fymi (1K) + (» - Y (7 - 1)
iollvVT—¢ |

Hence, $mift) < gni(t), t€[0,T), i=1,.. L.

dma =

The above two demand functions differ only by a multiplying factor less than 1. Hence,
at the same prices a portfolio insurer demands less in the risky assets and more in the bond
than a normal agent; in a sense the portfolio insurer behaves as more risk averse. This is
because, the distinguishing characteristic of a portfolio insurer’s portfolio strategy, a synthetic
put option, consists of a short position in the risky securities and a long position in the bond.

19



4 An Economy with Portfolio Insurers Modeled in Terms of
a Specific Utility Function of Time T Wealth

In this section we model the agents as ones who maximize their expected utility from consump-
tion in [0,7) and from wealth at time T, subject to their budget constraints. The portfolio
insurers and the normal agents have the same utility function of consumption, but the port-
folio insurers’ utility function of time T wealth is chosen to implicitly inherit the condition
Xm(T-) > K. Although the world goes on beyond T until 77, most of our discussion will focus
on [0,T) since the time T wealth and agents’ utility for that wealth summarize the consump-
tion and agents’ utility for consumption beyond time 7. We again assume that the first A7
agents are portfolio insurers and the remaining N — M are “normal” agents. We first solve
the individual agents’ optimization problems, then characterize equilibrium in a heterogeneous
multi-agent economy.

4.1 Individual Agents’ Preferences and Optimization Problems

We assume that all agents have power utility of consumption in [0, T),ie, up(e) = ¥/, v < 1,
¥#0forn=1,...,N. The utilities of time T wealth are assumed to be
_ (X — Ky

vm(X) = —— m=1..,M,

X7
'Un(X)z—’y-—, ﬂ:M+1,...,N,

where v < 1, v £ 0, and m = 1,.... M refer to the portfolio insurers. Note that the normal
agents here are also modeled differently from those in Section 3, to make them comparable with
the portfolio insurers and to be able to aggregate over all agents.

Each agent n = 1,..., ¥ solves the following optimization problem

T

T
subject to & Uﬂ é(t)cn(t)dtJrf(T-)Xn(T-)} < £{0)zno.

Lemma 5 presents the solution to these problems.

Lemma 5: The optimal [0,T) consumption processes and optimal time T wealths of the N
agents are given by

() = [mM]7T, te[0,T), n=M+1... N,
in(t) = €T, tc[0,T), m=1. . M,
Xnll-) = [&(T)NTT, n=1+1,.,N,
Xm(T-) = {ymf(T-)]"f_i—l +K, m=1,.,M,
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and if

Ult,e)= —lc— MK.(1)]7, te [T, 1,

<2 |

where D= gy (B [ 607 7))

. T
and K.(t) is such that K = R%TE [fT E(t)Ko(t)dt | ]:T] , then

(Xp- — MK)Y
" .

V{Xr.) =

The utilities of consumption are such that the representative agent wants to consume at
least a subsistence level of M K c(t) at all timest € [T,T']. MK is exactly the amount of wealth
he needs at time T to be able to afford MK.(t) at all future times ¢t [T,T'] so he wants at
least this much wealth at time 7. The future utilities of consumption for the individual agents
are given analogously by u,(c) = %(ﬁ’ and umpm(c) = %[r — K (t)]7.

Using the representative agent constructed above, analogously to equations (19) and (20)
we obtain the following equilibrium expressions for the state price density process and establish
the existence of equilibrium:

&) = s, telo,1), (31)
E(T)’Y -1 /

) = - 5(t) = MKt)]"™, ter, T (32)
[ (6(s) = MK(s))ds | Fr] | } 7l

Again a discontinuity in ¢ (-) occurs at time T in equilibrium, which in turn leads to discontinu-
ities in the asset prices. The interest rate process r(t) and the market price of risk process 6(t)
can be derived by applying It6’s Lemma to (31) and (32). Before T, 7(t) and 9(t) are the same
across economies (i.e., are independent of M) because of the power utility of consumption, as
explained in Remark 2 of Section 3. However, after T' r(t) and 6(¢) differ across economies, in
contrast to the result in Section 3.

4.3 Equilibrium Market Price, Volatility and Risk Premium

In this case we are able to calculate the market and its dynamics in a power utility heterogeneous
multi-agent economy. As in Section 3 we assume that the aggregate dividend process follows
geometric Brownian motion. Then, £(-) in equilibrium follows & geometric Brownian motion
until time T when it jumps, as summarized by Lemma 6.

Lemma 6: Under assumption Al, before the portfolio insurance horizon, T, the equilibrium r
and 8 are constants given by

1—~}(2 -
r={1-y)us— (——7—)2(——7)-”05]12 and 0;=(1-~)og;, j=1,..1,
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Results (ii) and (iii) are comparable with those of Section 3 with similar intuition. In this case
when v > 0, the effect of portfolio insurance on the market volatility and risk premium becomes
monotonically more pronounced as the time approaches the portfolio insurance horizon, as
stated in item (iv). After the portfolio insurance horizon, unlike in Section 4, the market
price and its dynamics are stil] affected by the presence of portfolio insurance. However, the
particular dependence will be sensitive to the choice of future utility of consumption functions,
and hence not due to the presence of portfolio insurance per se.

Remark 3:

(i) If agents had log utility of consumption and final wealth, wmp,(c) = un(e) = log(e), vmlc) =
log(X — K') and v, (X) = log(X) we would get the results of this Section 4 with ~ = 0.

(ii) In this Section 4, we could easily allow portfolio insurers to have differing floors, K,,. Then
M K would simply be replaced by Zf‘,f:l K.

To provide the intuition for the volatility and risk premium results, in Proposition 8 we
compare the agents’ asset demands as we did in subsection 3.3.3. We assume that &(+) follows
geometric Brownian motion up to time T, which anticipates the equilibrium result.

Proposition 8: Assumer and ¢ are constants in [0,T). Before the portfolio insurance horizon,

the fractions of wealth optimally invested in the risky assets by a normal agent (n) and a portfolio
insurer (i) are

bnlt) = 7= @] o0 () - 1), (35)
bmit) = ﬁ {1 - = expiz:g - t)}} [T o) (o) - r1). (36)

Hence, dmi(t) < nilt), te [0,7), i=1,.. L.

Again, the portfolio insurers invest a smaller fraction in each risky asset than the normal
agents. Hence to clear the markets, the risky assets must become more favorable as we increase
the fraction of portfolio insurers across economies. Since the interest rate and the market
price of risk are unchanged, the only way to make the risky assets more favorable is for their
volatility to decrease. Hence the market volatility, and in turn the market risk premium, must
also decrease. This intuition is identical to that in Section 3 except that the extra demand for
bond by the portfolio insurers now arises due to a riskless term in their wealth rather than a
put option.

9 A Closer _Look at the Behavior of the Portfolio Insurers

In this section we question whether the ways we model portfolio insurance in Sections 3 and 4
are a satisfactory choice from two viewpoints. Firstly, we ask whether our optimizing portfolio
insurers do fit the definition of portfolio insurance described in Section 2; we already know
that they achieve a minimum level of wealth, but do they really participate in the gains of
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Kn(T-), X (T-)
A

n (normal agent)

m (portfolio insurer)

0 y € X om(T-)

region incopsistent
with equilibrium

Figure 2. Agents’ horizon wealths in the specific utility function portfolio insurance
economy. The solid lines are the agents' time T wealths (Lemma 5) plotted against the time

T level of the equity market of a two-agent economy. The dotted lines are extrapolations into
the region inconsistent with equilibrium.

Figure 3 reveals that there is a probability mass build-up at the floor and that the density loses
its left tail. The higher the floor the more pronounced the build-up. In Figure 4, the probability
density of the portfolio insurer with a specific utility of horizon wealth is shifted to the right of
that of the normal agent. The probability mass build-up is broader and lies above the floor K.

5.2 Comparison with Portfolio Insurance Employed in Practice

We now briefly compare the portfolio insurance trading strategies of Sections 3 and 4 to those
followed in practice. It is clear that the behavior of the portfolio insurers with the explicit
horizon wealth constraint is very similar to the synthetic put approach to portfolio insurance,
since their strategy involves replicating synthetic put options to meet the wealth constraint.

As for the portfolio insurers of Section 4 with a specific utility of horizon wealth, we may com-
pare their optimal portfolio strategy with the constant proportion portfolio insurance (CPPY)
trading strategy. This strategy invests in the risky asset a constant “multiple” of the the dif-
ference between the agent’s wealth and some specified “floor”, and the remainder in the bond.

(The floor is typically not a constant but grows at the risk-free rate.) Hence the proportion of
wealth invested under the CPPI trading strategy is given by

Smi(t) = v (1 - kexp{;;g - t)}) ,

102.2 units of consumption in Figure 3 and 143 in Figure 4, and for K = 75 it was 112.9 and 135. We simulated
random realizations of the aggregate dividend process at T, computed the equilibrium time T weaiths for each

realization and nonparametrically estimated the probability density function of each agent’s time T weaith using
a Gaussian kernel.
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where 4 is the multiple which must satisfy ¢ > 1, and kexp{-r(T — t)} is the “floor”. There
1s a close resemblance between the optimal portfolio strategy, for the case of one risky asset, of
our optimizing portfolio insurers of Section 4 (Proposition 8) and the CPPI strategy; the main
difference is that in our formulation the cXogencous parameter v gets replaced by ¢ /(1= 7)o,

An issue related to portfolio insurance strategies employed in practice, which we do not
pursue here, is the fact that these strategies typically involve the transfer of funds to the risky
assets as their prices go up and away from the risky assets as their prices go down. It is this
type of “trend-chasing” behavior that is often argued to increase market volatility. However,
Basak (1993, Chapter 1, §6.2) finds that in our type of general equilibrium model, there is no
clear-cut relationship between the effect of the presence of a portfolio insurer on the market
volatility and the extent of his trend-chasing behavior.

6 Summary and Conclusion

Attention has recently focused on market volatility as a measure of market instability, partic-
ularly since the volatility was ohserved to be high during the stock market crash of 1987. This
paper focuses on the effects of portfolio insurance trading strategies on the market dynamics.
We construct a consumption-based general equilibrium model of a continuous-time economy
that does capture the effects of portiolio insurance. These effects are represented by explicit
formulae for the quantities of interest, derived under common assumptions made in finance.

One major result we find is that the market price before the portfolio insurance horizon is
increased by the presence of portfolio insurance. Then at the portfolio insurance horizon the
price jumps down discontinuously. This is an important point in the paper that, because of the
effective discontinuity of portfolio insurers’ consumption preferences, the market, security and
state prices may all jump discontinuously at the horizon in order to attain equilibrium.

Our main conclusion is that the market volatility and risk premium before the portfolio
insurance horizon are decreased in the presence of portfolio insurance. The intuition for these
results is that the portfolio insurers in striving to meet their objectives demand less than the
normal agents in the risky assets and more in the bond. The constrained portfolio insurers
behave like the normal agents but purchase an additional synthetic put option, consisting of
a long position in the bond and a short position in the risky assets. The portfolio insurers
described by a specific utility of time T wealth function behave like the normal agents but
purchase an additional amount of certain wealth by buying extra bond. Since the supply of each
asset is unchanged across economies, to achieve equilibrium in a portfolio insurance economy,
the risky assets must become more favorable and the riskless asset less favorable than in an
economy with no portfolio insurers. With preferences over continuous consumption exhibiting
CRRA, the interest rate and the market price of risk are the same across economies. Hence we
find that the only way to make the equity market more favorable is to decrease its volatility,
and that the risk premium must decrease simultaneously. OQur result is in sharp contrast to
the popular belief that portfolio insurance increases market volatility. The striking point about
our conclusions is that this popular belief breaks down even in one of the most standard well
understood set-ups in finance (Lucas (1978) and CRRA preferences),
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APPENDIX: Proofs

Proof of Lemma 1: Define
_ 1 t
Pi(t) = Pi{t) + ———/ £(s)Si(s)ds, te0,T, =1, L,
£(t) Jo

i.e., P;(t) is the current price plus the current value of accumulated dividends. For all ¢ # T,
dA(t) = 0, and Tté's Lemma implies

HEOP) = EOP()(oi(t) ~ 00))aw (1), Wt £ T
where o;(¢) denotes the ith row of (t). The above result implies that

Pi(t) = —LE{ (TYE(T") | 7y = Lp T (s)6:i(s)ds | Fi té[T T
‘L)_‘E(t) 3 1.( | t_f(t) /Ofs i\s)as Ll ) 3

using the fact that P,(T') =0, giving the desired result for ¢ [T, T'] . Similarly

- 1 _
Pi(t = gt—)-E[E(T-)Pi(T-) I .Ft], t € [O,T).

From the dynamics of P; and § we have exp(q) = Bi(T)/Pi(T-) = £(T-)/¢(T), and so
~ 1 = 1 N et
Pi(t) = < E[(T)P{T) | Fi] = — E[¢(T"\Py(T Fil, telo,T),
= F PP | 7l = 2o BT | i, te o)
which provides the desired result for ¢ €[0,7). Q.E.D.

Proof of Lemma 2: See, for example, Lemma 2.4, Cox and Huang (1989). Q.E.D.

Proof of Lemma 3: We solve both types of agent’s optimization problems (heuristically) by
the Lagrangian method. Letting yn, ¥m1, ymo and ¥m3 be the Lagrange muitipliers associated,
respectively, with the normal agent’s budget constraint, the portfolio insurer’s budget constraint
for [0, T), the portfolio insurer’s budget constraint for [T, T, and the portfolio insurer’s wealth
constraint, and given that all budget constraints will hold with equality since agents prefer
more to less, we obtain the following Kuhn-Tucker conditions:

W(n(t)) = yné(t), te 0,1 (37)
Tf
E{O 5(t)én(t)dtJ = £{0)zno (38)
W' (@m(t)) = ymi1é(t), t<[0,T) (39)
W (Em(t) = ymt(t), te[r,T1 (40)
0 = ym1€(T-) — yma — ymo€(T-) (41)
E[/Tf(t)am(t)dﬁ+5(T')Xm{T‘):, = £0)zmo (42)
0
T, ~
E[ i f(t)ém(t)dtlfTJ = §(T)Zm(T-) (43)
Yn, Ymls Ym2, Ym3 = 0 (44)
Y3 [)Z’m(T-)—K] = 0. (45)
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Sufficiency: ém(t) and é,(t) given by (9)-(11) together with (17) and (18) imply (6). Using
Lemma 2, we obtain (8) as follows:

N R 1 T N ) 1 T L L
RZ::IXn(t) = @E [/t 5(5);%(8)0'5 | ftJ = 6_(-5]5 M 5(5)251'(3)48 | ft] = ;Pﬂs(t}'

where we have used (6) and Lemma 1.

Applying It6’s Lemma to f(t)}f'n(t), using {3) and summing over all agents, we obtain

N N N N
d (f(t) > Xn(t)) = £(t) [Z in(t) oty = 3 Xn(t)ﬁ(t)T} AW (2) — £(2) Y én(t)ds,
n=1 n=] n=1 n=1
which using (6) and (8) can be written as
: L N L
d (E(t) > Pz'(f)) =&(t) [Z n(t) o (t) - ZPi(t)f’(f)T} AW () = £(t) 3 6(t)dt.
i=1 n=1 =1 i=1

Applying Ité’s Lemma to £(t)P;(t) and summing over all risky securities i we obtain
L L L L
d (em Za-(a)) = (1) { Pi(t)ai(t) - Pi(t)e(t)TJ W (1) - £(t) S 6(t)at.
i=1 i=1 i=1 i=1
Equating the coefficients of the dW;(t) terms in the above two dynamics of O P;(t) yields

N

PW)To(t) =Y #n(t)To(t),

n=1

which using the nonsingularity of () implies (7). Q.E.D.

Proof of Proposition 2: For cconomy 1, substituting (21) into (9) and (12), each normal
agent’s equilibrium consumption and time T wealth are

ety =6(t)/N te o,

. 1 -, 8(s)
. X(T—):WE [L u(é(s)/N) 1% dSIfT .

In this identical-agent economy, Xem{t) = NX (¢), so the equity market in economy 1 is given,
using Lemma 2, by equation (24). Substituting (21) into Lemma 1 we also obtain the expression
for PV(T),

For economy 2, substituting (22), (23) into (20), (11), (46) each portfolio insurer’s equilib-
rium consumption and time T wealth are

&t)=6(t)/N teo,T

1 r ’ 6(s}
X(T—)=max{K,WE [/]; (72 (5(.5‘)/N)—A?—d8|f:r‘J}
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Since §(t) is geometric Brownian motion (for 5 > ¢, Iné(s) is normally distributed with

2
mean Ind(t} + ps(s — t) — ﬂa__gﬂ_(g — t) and variance ||o4)|%(s — t)) the conditional expectations
can be evaluated to derive

Xom(t) = % lexp{n(T — )} — 1] 6(z) + % [exp{n(T’ = T)} - 1] exp{n(T - }}s(e)

and

Xem(t) = % [exp{n(T — )} — 1] 6(t) + % [exp{n(T" ~ T)} = 1] exp{n(T - 1)}6(z)

+ §TE [5(1’)*‘1 max {NK - % [exp{n(T' - T)} - 1] 6(T), 0} | ﬂJ \

wheren = Yrs—y(1—7)log||?/2. Substituting back for the equilibrium 5(2) () = (6(t)/N YY1 /g,
t € [0,T) (from (22)), the third term in the portfolio insurance economy market can be Wwritten
as )

E(IT)E [g(T-) max {NK - % [exp{n(1’' - T)} - 1] 6(T),0} | ﬂ}
We define the unique equivalent martingale measure P, given by
P(A) = E[(T")14], A€ Fp,
“where , 1t
0= {- [0 aw - L [ lo(li%as b = () ot
Changing the measure to the equivalent measure P, the conditional expectation becomes

P]:Eg)ﬁ [max {NK - % [exp{n(1" = 7)} - 1] exp{n(T — t)}é(T)’O} | ﬂ} '

This can be integrated out explicitly yielding
—b(t)6()N(-d1) + NK exp{-r(T-t)} N (-d2)

where dy, do and b(t) are as given in the proposition. Hence we derive the required expressions
for X éi,)z(t) and X g,)l (t). We observe that the defined (deterministic) processes a(t) and b(t}) are

nonnegative since [exp{n(T — t)} — 1] and lexp{n(T' — T)} — 1] have the same sign as 7,
Finally applying Ité’s Lemma to X éz(t) and X ;f,’t (t) leads to the market volatilities and risk
premia as presented. Q.E.D.

Proof of Corollary 1: By taking derivatives of (27) and (28) and straightforward algebraic
manipulations. Q.E.D.

Proof of Proposition 4: Since the ys are only determined up to a multiplicative constant
from (14)-(16), we can set (Z;’:{:] 1/ 41 + E,ILM_H l/yn) = 1in the expression for ¢ in [0,T).
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where

_ (@ - 1)y )K) + (- + Y (7 )
|

dm] = o] I v dma = dip — “9]|VT — t.
Applying Ité’s Lemma, to the products f(t)X’n(t) and g(t))z'm(t), we get
R 1
d ({(t)Xn(t)) = —Edt
Hexn®) = = |~ N ) 1 e XP(r(T-IN ()] o) aw (1)
- LT;—_le\f(-afml)e&?(f:)TdW(t) + dt terms
ml

= —C(OK exp{-r(I-t)}N (-dm3)8(t) TdW (£) + d¢ terms,

where for the first equality we used the fact that

-7 T - T

d [(———ZN'(—dml) +K exp{—r(T—t)}N(—dmg)J /0 [-(——-l:l = ~N{-dm1).

ym1€(t) ym1§(t)
Equating these coefficients of dW (t) with those of equation (50) yields the optimal portfolio
strategies ,(t) and #n,(t), which upon dividing by X,(t) X,,(t) leads to (29) and (30).

To show that q@mi(t) < qgm-(t) it is sufficient to show that

0< [1 3 Kexp{—r(ﬂT—t)}N(—dmg)} <1

Xom(t)
The second equality is obvious since both the numerator and the denominator of the second term

in the square brackets are nonnegative. Using the above expressions for X m(t) we rearrange to
give

_Keplr (TN (dm)] 1 [('-1) (- 1) o
: }Em(t) J - Xm(t) [ymlg(t) * ymlf(t) (1 N( dml))J

which is nonnegative as required. Q.E.D.

Proof of Lemma 5: The optimal consumption and wealth expressions are derived by standard
static optimization techniques. To prove (i) we compare the behavior of a portfolio insurer and
a normal agent with identical initial wealths, Ym must be greater than y, in order to satisfy the
budget constraints since there is an extra £ [£(T-}K] term on the left hand side of the portfolio

insurer’s budget constraint, and since the left hand sides are decreasing in their respectice ys.
R.E.D.

Proof of Proposition 6: It is straightforward to show that é(t) = J(yé&(t)) where J(+) is the
mverse of U’(-). Hence we have

L

. T
V(IXr Fry=E [f:r U (J(yE(r))dt | Fr
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Proof of Corollary 2: By taking derivatives of (33) and (34) and straightforward algebraic
manipulations. @.F.D.

Proof of Proposition 8: From Lemma 2 and the optimal consumptions and horizon wealths
in Lemma 5, evaluating expectations as in the proof of Proposition 5, the optimally invested
wealths of the agents are

Xn(t) = an(E@)TT + ba(E()TT, n= M +1,.. N,

Km(t) = am(OETT + bn()E()TT + K exp{—r(T - 1)}, m — 1., M,
where

1

=1
i

ag(t) = y

Applying 1t8’s Lemma to £(t)X,(t) and £(t) X m(t), then yields

4(60E0) = ant

= £()Xn(t)8(t)TdW (t) + dt terms,

—
Y-14

7§(t)~71—19(t)TdW (t) + bp(t) N _1 7{(:&) (£)TdW (¢) + dt terms

d (¢ Xm(t)) = ammﬁe(tﬁ—%a

K exp{~7(T — t)}¢(1)8(t) TdW (¢} + dt terms

=€) [1—-}?)%,,1(@ - 1:,

(074 (0) + ()T €& T0(0) Taw (1

!

K exp{-r(T — t)}] o(¢)T dw {t) + dt terms,

Equating the dW (¢) terms with those of equation (50) yields the portfolio strategies 7,(¢) and
Tm(t). Then dividing by the optimal wealths gives (35) and (36). Furthermore, we have

1> [1 _ Kexp{=r(T - t)}} ) {am(tmt)l—% + bmme(t)ﬂ >0,
Xm(t) Xm(t)

since the numerators and denominators of both fractions are positive. Hence (;Sm,-(t) < qf»m;(t).
Q.E.D.
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exp{n(T =)} = 1], &(6) = 57" exp{n(T—1)}, I=m,n, p= 1—1—7r+§(1i—7)2

el



REFERENCES

Back, K., 1991, “Asset Pricing for General Processes”, Journal of Mathematical Economics, 20, 371-
395.

Basak, S., 1993, “Dynamic Consumption-Portfolio Choice and Asset Pricing with Non-Price-Taking
Agents”, Working Paper, The Wharton School, University of Pennsylvania.

Basak, S., 1993, Ph.D. Thesis, Carnegie Mellon University.

Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities”, Journal of
Political Economy, 81, 637-654.

Black, F., 1976, “Studies of Stock Price Volatility Changes”, in Proceedings of the 1976 Meetings of
the Business and Economics Section, American Statistical Association, pp177-181.

Black, F. and R. Jones, 1987, “Simplifying Portfolio Insurance”, Journal of Portfolio Management,
14, 48-51.

Brady, Nicholas et al., 1988, Report of the Presidential Task Force on Market Mechansims, 1.8,
Government Printing Office.

Brennan, M. J. and E. S. Schwartz, 1989, “Portfolio Insurance and Financial Market Equilibrium?”,
Journal of Business, 62, 455-472.

Cox, J. C. and C. F. Huang, 1989, “Optimal Consumption and Portfolio Policies when Asset Prices
Follow a Diffusion Process”, Journal of Economic Theory, 49, 33-83.

Cox, J. C.and C. F. Huang, 1991, “A Variational Problem Arising in Financial Economics”, Journal
od Mathemeatical Economics, 20, 465-487,

Donaldson, R. G. and H. Uhlig, 1993, “The Impact of Large Portfolio Insurers on Asset Prices”,
Journel of Finance, forthcoming.

Dothan, M. U., 1990, Prices in Financial Markets, Oxford University Press, New York.

Duffie, D., and C. F. Huang, 1985, “Implementing Arrow-Debreu Equilibria by Continuous Trading
of a Few Long-Lived Securities”, Econometrica, 53, 1337-1356.

Duffie, D., 1986, “Stochastic Equilibria: Existence, Spanning Number, and the ‘No Expected Finan-
cial Gain from Trade’ Hypothesis”, Econometrica, 54, 1161-1383.

Duffie, D., and W. Zame, 1989, “The Consumption-Based Capital Asset Pricing Model”, Economet-
rice, 57, 1279-1297,

French, K. R., G. W. Schwert and R. F. Stambaugh, 1987, “Expected Stock Returns and Volatility”,
Journal of Financial Economics, 19, 3-29,

Genotte, G. and H. Leland, 1990, “Market Liquidity, Hedging and Crashes”, American Economic
Review, 80, 999-1021.

39



Merton, R. C., 1980, “On Estimating the Expected Return on the Market”, Journal of Financial
Economics, 8, 323-361.

Merton, R. C., 1989, Continuous- Time Finance, Blackwell, Oxford.
Perold, A. F., 1986, “Constant Proportion Portfolio Insurance”, Manuscript, Harvard University.

Pliska, S. R., 1986, “ A Stochastic Calculus Model of of Continuous Trading: Optimal Portfolios”,
Mathematics of Operations Research, 11, 371-382.

Rubinstein, M. and H. E. Leland, 1981, “Replicating Options with Positions in Stock and Cash”,
Financial Analysts Journal, 37, 63-72.

Schwert, G. W., 1989, “Why Does Market Volatility Change over Time?, Journal of Finance, 44,
1115-1155,

Schwert, G. W., 1990, “Stock Market Volatility and the Crash of ‘87", Review of Financigl Studies,
3, 77-102.

Stoll, H. R. and R. E. Whaley, 1990, “Stock Market Structure and Volatility ', Review of Financial
Studies, 3, 37-71.

4]



