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sults. It is found that the excess returns are both statistically and economically significant, even
when transaction costs are taken into account.
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1. Introduction

One aspect of stock markets that has intrigued investors for many ycars is whether there exist technical trading
rules based on patterns in prices which can be relied on to make money. Although technical analysis has been
widely used among practitioners for many years, academic opinion on this issue has traditionally been almost
unanimous that such rules did not exist and technical analysis was not useful. The available empirical evidence
strongly suggested markets were weak form efficient and reflected all the information in past prices. Tests of the
profitability of simple trading rules indicated these could not make money.

In a recent paper, Brock, Lakonishok and LeBaron (1992) (henceforth BLL) have provided evidence which sug-
gests that the traditional academic conclusions concerning technical analysis may be premature. They studied
some commonly used trading rules and found that these had significant forecasting ability for the Dow Jones
index from 1897 to 1986. The results were not consistent with some simple time series models and could not be
explained by conditional heteroskedasticity. LeBaron (1991) has replicated and extended these results in foreign
exchange markets.

How should BLL's results be interpreted? One issue in the debate on market efficiency is whether markets should
be expected to be efficient from a theoretical point of view. Grossman and Stiglitz (1980) have suggested that
the traditional interpretation of market efficiency is flawed. If prices fully reflect information then it cannot be
worthwhile for investors to expend resources to gather it; they are better off to simply deduce it from prices.
But if nobody gathers costly information it cannot be reflected in prices. Grossman and Stiglitz argued that, in
equilibrium, prices will reflect costly information imperfectly and this will enable investors to cover their costs
of gathering information. One interpretation of technical analysis is that it is a costly form of gathering informa-
tion. Grossman and Stiglitz’s argument suggests that it would not be surprising if tests which ignore such costs
found technical trading rules to be profitable. In this view, BLLs results are consistent with market efficiency.

BLL studied technical trading rules which practitioners have used for extensive periods of time. Rather than
taking such rules as given, we use a genetic algorithm (discussed in detail below) to develop them. The employed
algorithm provides a way to quickly search extremely large rule spaces, allowing a multitude of potential rules
to be tested in a practical way. The algorithm provides a way to formalize the trading rules in a symbolic form,
as opposed to techniques such as neural networks which are limited to a numerical representation.

The genetic algorithm is applied to the evolution of trading rules for Standard & Poor’s Composite Index (S&P
500) in 1963-89. The rules are tested out of sample and are evaluated similarly to BLL. They are compared to
a buy-and-hold strategy, as well as to benchmark models of a random walk, an autoregressive model, and a
GARCH-AR model. Conventional statistical tests and bootstrapping simulations are carried out to study the
robustness of the results. It is found that the excess returns are both statistically and economically significant,
even taking transaction costs into account. In addition to the techniques used by BLL, tests of market timing
ability developed by Henriksson and Merton (1981) and Cumby and Modest (1987) are also utilized. The results
are consistent with the rules having timing ability.

The paper is organized as follows. Section 2 describes technical analysis and previous trading rule tests. Section
3 discusses genetic algorithms. Section 4 shows how genetic algorithms can be used to find trading rules and eval-
uates the rules found in this way. Finally, Section 5 contains concluding remarks.



2. Technical Analysis

Technical analysis refers to the use of past prices, trading volume, and other variables to forecast future price
changes. Despite academic skepticism, technical analysis continues to be widely used in practicel. Examples of
technical trading rules can be readily found from a large number of textbooks targeted to traders in various asset
markets (see e.g. Edwards and Magee, 1992; Kaufman, 1978; Teweles, Harlow and Stone, 1974). In earlier days,
technical analysis was more Or less equated with “chartism”, practised with the aid of pencil and paper. During
the past decades, the practice of technical analysis has been transformed by the increasing use of computers both
to search for profitable trading rules and to implement trading strategies.

Typically, trading rules generate buying or selling signals on the basis of summary statistics computed from price
data and other publicly available information. For instance, a moving-average rule might direct an investor 10
buy a stock if the price rises above the 200-day moving average of past prices, and sell the stock when the price
drops back below the moving average. Other rules are based on the idea that asset prices have “support” or “resis-
tance” levels — once a price breaks through a previous local maximum, say, it continues to move in the same
direction. Still more elaborate rules are often devised, taking into account the open interest (for futures), recent
trading volume, etc.

Previous Trading Rule Tests

Mechanical trading rules have been used by investors at least since the turn of the century (BLL, footnote 6).
Academic interest in testing specific forms of technical analysis originated in the 1960’s. Early studies of technical
analysis focused on relatively simple trading rules. For instance, Alexander (1961) tested a number of “filter
rules”, which advise a trader to buy if the price rises by a fixed percentage (5%, say), and sell if the price declines
by the same percentage. Although such rules appeared to yield returns above the buy-and-hold strategy for Dow
Jones and Standard & Poor’s stock indices, Alexander (1964) later concluded that adjusting for transaction costs,
the filter rules would not have been profitable. These conclusions were supported by the results of Fama and
Blume (1966), who found no evidence of profitable filter rules for the 30 Dow Jones stocks. Cootner (1962), on
the other hand, found that some of the 40-week moving average rules that he tested were profitable and resulted
in a lower variance than the buy-and-hold strategy. On the whole, the studies during the 1960 provided little
evidence of profitable trading rules, and led Fama (1970) to dismiss technical analysis as a futile undertaking.
Subsequently, little academic effort was addressed to the topic, until a number of studies in late 1980’s and early
1990’s led to a revival of scholarly interest in technical analysis.

Sweeney (1988) re-examined the filter rules studied by Fama and Blume (1966), focusing on those of the 30 Dow-
Jones industrial stocks that looked most promising at the earlier study. Using similar filter rules (but avoiding
short positions that had performed poorly in the study of Fama and Blume), Sweeney (1988) found statistically
significant excess returns over a buy-and-hold strategy. The excess returns remained positive for transaction
costs obtainable by floor traders.

Lukac and Brorsen (1990) argued that there is no evidence of traders using the simple filter rules that were fa-
vored by researchers. They applied 23 technical trading systems that were being used in practice to contracts in
30 commodity futures markets. They found that most systems produced statistically significant excess returns

1. For instance, Taylor and Allen (1992) found that at least 90% of the chief foreign exchange dealers in London placed
some weight on technical analysis in forming their expectations. The reliance on technical analysis was pronounced for

short horizons, while the dealers paid more attention to fundamental analysis for the longer term (sce also Frankel and
Froot, 1990).



(returns for a filter rule of the type studied by Alexander (1961) were a little below the median). However, the
results were sensitive to transaction costs and were generally inconclusive.

BLL applied a number of simple technical trading rules to a 90-year long period of daily Dow Jones dataZ. The
rules they studied included moving-average rules and so—called trading range break rules (buy when the price
rises above a local maximum and sell when it dropsbelowa local minimum). They found significant excess returns
(before transaction costs) over the whole period and over non-overlapping subperiods. BLL also addressed the
question of whether the excess returns could be explained by plausible and popular models of equilibrium re-
turns. The models tested included the random walk, an autoregressive model, and two different GARCH-mod-
els accounting for heteroskedasticity of returns. The bootstrapping simulations indicated that none of the models
could explain the results. Furthermore, it appeared that the trading rules picked long positions when the volatility
of returns was lower than the average.

LeBaron (1991) applied similar trading rules to foreign exchange data, and found evidence of excess returns that
could not be explained by plausible null models. The excess returns also appeared to be economically significant.
For other evidence of profitable trading rules in foreign exchange markets, se¢ €.g. Dooley and Shafer (1983),
Sweeney (1986) and Taylor (1992); for evidence of unprofitable rutes, sce €.8. Diebold and Nason (1990), Meese
and Rogoff (1983) and Meese and Rose (1990).

Buikiey and Tonks (1989, 1992) tied the trading rule tests to the debate on the excess volatility of stock returns.
They addressed the question whether price fluctuations are large enough so that buying underpriced securities
and selling overpriced ones leads to an excess returm above the return from a buy-and-hold policy. Bulkley and
Tonks (1989) tested a rule that directed an investor to buy if the price wasa fixed percentage below a trend, and
sell otherwise (the percentage was optimized for the past data). Applied to U.K. stock market data for the period
of 1929-1985, such a trading strategy would have yielded an annual post-tax excess return of 1.5%. Bulkley and
Tonks (1992) conducted a similar test for over a century of Standard & Poor’s index data, and found annual excess
returns of 1.18%.

Theoretical Considerations

In the literature, two kinds of theoretical arguments have been put forth to explain why technical analysis might
potentially be useful. The arguments are related to the role of technical analysts in facilitating the spreading of
news in the market, and to the nonlinearity of many financial time series. These two issues are discussed in turn
below.

The transmission of information through prices in competitive markets gives risc to two separate but related
probiems: inferring (perhaps imperfectly) the private information of more knowledgeable investors, and estimat-
ing the time when news has been incorporated into prices. Brown and Jennings (1989) studied the former prob-
lem; Treynor and Ferguson (1985) addressed the latter. Technical analysis may be a useful tool in either case,
albeit for different reasons.

Brown and Jennings (1989) analyzed a three-period econoimy, where investors observe private information dur-
ing the first two periods about the payoff received in the last period. Each investor knows when the private infor-
mation is released, but they don’t know the realisation of the private signals. The first period price is useful for
2. See also Goldberg and Schulmeister (1988) for a study of a wide variety of trading rules for the &P 500 index.



inferences about the private signals because it is not perturbed by the random variation in the second period
supply. Therefore, a study of both the current and the past prices dominates using the most recent price only.
Technical analysis is useful in the setting of Brown and Jennings because it allows investors make a more accurate
assessment of other investors’ private information.

Treynor and Ferguson (1985) considered a situation where every investor eventually receives a new piece of infor-
mation and everybody agrees about the implications of the news. They argucd that technical analysis may be use-
ful because it allows investors to improve their assessment of the likelihood that they have received the informa-
tion before it is discounted in the market price.

At an intuitive level, technical trading rules will be profitable if they predict the movement of stock prices and
invest taking this into account. This suggests there is a connection between ability to forecast and the profitability
of technica! trading rules. The optimal method of forecasting stock returns depends on whether the return series
is linear or nonlinear. A return series is linear if the expected return can be expressed as a linear combination
of the (possibly infinite) sequence of past returns. One example of a linear return generating process is a random
walk where the returns are independent, though not necessarily identically distributed. The best forecasts for
linear processes are provided by vector autoregressive models. Neftci (1991) has shown that technical trading
rules are not useful in this context. LeBaron (1992b) has pointed out that this assumes the true parameters for
the model are known.

There is empirical evidence that many financial return series are nonlinear (see e.g. Akgiray, 1989; Hinich, 1985;
Hsieh, 1991; LeBaron, 1992; Scheinkman and LeBaron, 1989). Such nonlinear dependence may arise from the
complex dynamics of speculative markets. Neftci (1991) has argued that technical analysis may be an informal
attempt by practitioners to exploit nonlinearity of the return series. However, the link between nonlinearity and
trading rule returns is not well established. LeBaron (1992b) addressed the question of whether trend-following
rules based on moving averages of past prices exploit nonlinearity of returns in the foreign exchange markets.
Using the simulated method of moments, he showed that linear models matching the trading rule results and
exhibiting autocorrelations consistent with the data could be found. While these results may not generalize to
other markets and to other kinds of trading rules, they suggest that nonlinearity of returns is neither a necessary
nor a sufficient condition for profitable trading rules.

One important point is that trading rules may be profitable because the strategies involve bearing risk. The fact
that returns are above the market return may simply reflect a high level of risk. In principle, it is important to
try to measure the degree of risk borne and evaluate it. In practise, it is often difficult to do this because of the
lack of an applicable asset pricing theory. Besides the problems involved in measuring the risk of trading rules,
the problem of how to devise trading rules is a non-trivial one. Machine learning techniques such as geneticalgo-
rithms provide one practical way 10 develop rules for investment decisions.

3. Genetic Algorithms

Genetic algorithms comprise a class of search, adaptation, and optimization techniques based on the principles
of natural evolution3. Genetic algorithms were developed by John Holland (1962; 1975). Other evolutionary algo-
rithms include evolution strategies (Rechenberg, 1973; Schwefel, 1981), evolutionary programming (Fogel,
Owens and Walsh, 1966), classifier systems (Holland, 1976; 1980), and genetic programming (Koza, 1992).



In an evolutionary algorithm, a population of solution candidates is maintained. The quality of each solution can-
didate is evaluated according to a problem-specific fitness function, which defines the environment for the evolu-
tion. New solution candidates are created by selecting relatively fit members of the population and recombining
them through various operators. Specific evolutionary algorithms differ in the representation of solutions, the
selection mechanism, and the details of the recombination operators.

In a genetic algorithm, solution candidates are represented as character strings from a given (often binary) alpha-
bet. In a particular problem, a mapping between these genetic structures and the original solution space has to
be developed, and a fitness function has to be defined. The fitness function measures the quality of the solution
corresponding to a genetic structure. Inan optimization problem, the fitness function simply computes the value
of the objective function. In other problems, fitness may be determined by a co—evolutionary environment con-
sisting of other genetic structures.

A genetic algorithm# starts with a population of randomly generated solution candidates. The next generation
is created by recombining promising candidates. The recombination involves two parents, which are chosen at
random from the population, biasing the selection probabilities in favor of the relatively fit individuals. The par-
ents are recombined through a “crossover” operator, which splits the two genetic structures apart at randomly
chosen locations, and joins a piece from each parent to create a new genetic structure. The fitness of the “off-
spring” is evaluated, and the offspring replaces one of the relatively unfit members of the population. New genct-
ic structures are produced until the generation is completed. Successive generationsare created inthe same man-
ner until a well-defined termination criterion is satisfied. The final population provides a collection of solution
candidates, one or more of which can be applied to the original problem.

The theoretical foundation of genetic algorithms was layed out by Holland (1975). Maintaining a population of
solution candidates makes the search process parallel, allowing an efficient exploration of the solution space.
In addition to this explicit parallelism, genetic algorithms are implicitly parallel: The evaluation of the fitness
of a specific genetic structure yields information about the quality of a very large number o “schemata”, or build-
ing blocks. The algorithm automatically allocates an exponentially increasing number of trials to the best ob-
served schemata. This leads to a favorable tradeoff between exploitation of promising directions of the search
space and exploration of less frequented regions of the space. The stochastic nature of the selection and recombi-
nation operators is also important, ensuring that the algorithm is unlikely to become stuck at local optima®.

Many of the alternative machine learning methods focus on heuristic rules that reduce the complexity of the
search process. In contrast, genetic algorithms work by repeatedly generating and testing promising solution can-
didates. This parallel trial-and-error process is an efficient way to reduce the uncertainty about the search space

3. Although evolutionary algorithms have been inspired by natural evolution, there js little similarity between the computa-
tional algorithms and actual biological processes.

4. There are many variations of the basic genetic algorithm. The version described here employs continuous reproduction,
as opposed to a more conventional approach where the whole generation is replaced by a new one. The idea of continu-
ous reproduction was originally proposed by Holland (1975), and developed by Syswerda (1989) and Whitley (1989). Simi-
Tarly to Whitley (1989), we alsouse rank-based selection, instead of the more common method of computing the selection
probabilities on the basis of scaled fitness values.

5. Occasionally, random mutations are introduced to modify the genetic structure of the offspring. This is a further safe-
guard against the loss of genetic diversity and resulting premature convergence to suboptimal solutions. However, the

role of mutations is relatively minor; the power of genetic algorithms stems mainly from the recombination of relatively
fit solution candidates.



(Booker, Goldberg, and Holland, 1989). The parallelism is also the main difference between evolutionary algo-
rithms and other popular machine learning paradigms such as neural networks and simulated annealing (seee.g.
Koza, 1992, ch. 27). Of course, none of the alternative approaches is likely to dominate the others in all circum-
stances, and similar end results can often be obtained using different techniques. Using hybrids (such as using
a genetic algorithm to construct a neural network) often provides a convenient way to proceed.

Evolutionary algorithms are weak methods, embodying very little problem-specific knowledge. Consequently,
they are unlikely to perform better than special-purpose algorithms in well-understood domains. Evolutionary
algorithms are most useful in problems that are difficult or impractical to solve through traditional methods, due
to the size of the search space, non—differentiability of the objective function, the presence of multiple local opti-
ma, or non-stationarity of the environment.

Evolutionary algorithms have been applied to a large number of different problems in engineering, computer
science, cognitive science, conomics, management science, and other fields (for references, see Goldberg, 1989;
Booker, Goldberg, and Holland, 1989). The number of practical applications has been rising steadily, especially
since the late 1980’s. Typical business applications involve production planning, job-shop scheduling, and other
difficult combinatorial problems (for a recent list of applications, see Nissen, 1993). Genetic algorithms have also
been applied to theoretical questions in economic markets by Andreoni and Miller {1990), Arthur (1992), and
Rust, Palmer and Miller (1992), and to time series forecasting by Packard (1990) and Meyer and Packard (1992).

Genetic Programming

In traditional genetic algorithms, genetic structures are represented as character strings of fixed length. This
representation is quite adequate for many problems, but it is restrictive when the size or the form of the solution
cannot be assessed beforehand. Genetic programming developed by John Koza (1992) is an extension of genetic
algorithms which partly alleviates the restrictions of the fixed-length representation of genetic structures. As
it also provides a natural way to represent decision rules, it is used in this study to find technical trading rules.
However, the choice of genetic programming is a matter of convenience, and not crucial to the approach taken
in this paper.

In genetic programming, solution candidates are represented as hierarchical compositions of functions. In these
tree-like structures, the successors of each node provide the arguments for the function identified with the node.
The terminal nodes (i.e. nodes with no successors) correspond to the input data. The entire tree is also inter-
preted as a function, which is evaluated recursively by simply evaluating the root node of the tree. The structure
of the solution candidates is not specified a priori. Instead, a set of functions is defined as building blocks to be
recombined by the genetic algorithm.

The function set is chosen in a way appropriate to the particular problem under study. Much of the work of Koza
(1992) is focused on genetic structures that include only functions of a single type. However, genetic program-
ming possesses no inherent limitations about the types of functions, as long as a so—called “closure” property
is satisfied. This property holds if all possible combinations of subtrees result in syntactically valid composite func-
tions. Closure is needed to ensure that the recombination operator is well-defined.

As in genetic algorithms, a population of genetic structures is maintained. The initial population consists of ran-
dom trees. The root node of a tree is chosen at random among functions of the type of the desired composite
function. Each argument of that function is then selected among the functions of the appropriate type, proceed-



ing recursively down the tree untila function with no arguments (a terminal node) is reached. The evolution takes
place much as in the basic genetic algorithms, selecting relatively fit solution candidates 10 be recombined and
replacing unfit individuals by the offspring.

In genetic programming, the crossover operator recombines two solution candidates by replacing a randomly se-
lected subtree in the first parent by a subtree from the second parentS. If different types of functions are used
within a tree, the appropriate procedure involves choosing the crossover node at random within the first parent,
and then choosing the crossover node within the second parent among the nodes of the same type as the crossover
node in the first tree.

Genetic programming has been applied by Koza (1992) to a diverse array of problems, ranging from symbolic
integration to the evolution of ant colonies to the optimal control of a broom balanced on top of a moving cart.
As one specific example illustrating the effectiveness of the algorithm, Koza (1992, ch. 8) applied genetic pro-
gramming to learning the correct truth table for the so—called 6-multiplexer problem. In this problem, there are
six binary inputs and one binary output. The correct logical mapping must specify the correct output for each

of the 2¢ input combinations. Hence, the size of the search space is 2?% = 10" . Using genetic programming,
no more than 160 000 individual solution candidates needed to be generated in order to find the correct solution
with a 99% probability. For comparison, the best solution found in a random search over 10 million truth tables
produced the correct output for only 52 out of 64 possible input combinations.

4. Finding and Evaluating Trading Rules

In this paper, genetic programming is used to learn technical trading rules fora composite stock index. The goal
of the algorithm is to find decision rules that divide days into two disjoint categories, either “in” the market (earn-
ing the market rate of return) or “qut” of the market (earning a risk—free rate of return). The decisions are based
on past prices only. One way to apply genetic programming to finding trading rules is described below, followed

by a description of the composite stock index data used and the results obtained.

Applying Genetic Programming to Finding Trading Rules

Each genetic structure represents a particular technical trading rule. A trading rule is a function that returns
either a “buy” or a “sell” signal for any given price history. The trading strategy specifies the position to be taken
the following day, given the current position and the trading rule signal. The trading strategy is implemented
as a simple automaton, which works as follows: If the current state is “in” (a long position) and the trading rule
signals “sell”, switch to “out” (move out of the market). If the current state is “out”, and the trading rule signals
“buy”, switch back to “in”. In the other two cases, the current state is preserved (see Figure 1 for an illustration).
This kind of trading strategy is perhaps the simplest one that can be imagined; more sophisticated ways to allocate
funds between different asset classes could certainly be devised and learned using a genetic algorithm.

6. As in the basic genetic algorithms, mutations can also be used to introduce new genetic material to the population. In
this study, mutations are implemented by using a randomly generated tree in place of the second parent with a small
probability.



buy
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Figure 1. The trading strategy.

Building blocks for trading rules include simple functions of past price data, numerical and logical constants, and
logical functions that allow the combination of low-level building blocks to more complicated expressions. The
root node of each genetic structure corresponds to a boolean function; this restriction ensures that the trading
strategy is well-defined.

The function set includes two kinds of functions: real and boolean. The real-valued functions include a function
that computes a moving average of past prices ("average")ina time window specified by an argument. There
are also functions that return the local extrema of prices ("maximum" and "minimum") during a time window
of a given length?. Other real-valued functions include arithmetic operators (+ ., =, *, + ) and a function

returning the absolute value of the difference between two real numbers (*norm"). Boolean functions include
logica! functions ("if-then", nif-then-else", "and", "or", "not") and comparisons of two real
numbers (">", "<"). In addition, there are boolean constants ("true", "false") and real constants. The
boolean constants are initialized randomly to either of the two truth values, and the real constants are initialized
to values drawn from the uniform distribution between 0 and 2 when the initial population of genetic structures
is created (and fixed thereafter). There is also a real-valued function ("price") that returns the closing price
of the current day. Finally, there is a function (" 1ag") that causes its argument function to be applied to a price
series lagged by a number of days specified by another argument.

These functions can be used to implement many commonly used technical trading rules. For instance, Figure
2 shows a 50~day moving average rule (on the left) and a simple 30-day trading range break rule (on the right).
When the moving average rule is evaluated, the root node (*<") first evaluates its arguments. When the first
argument is evaluated, the corresponding node ("average") evaluates its own single argument to find out the
length of the moving average window. The corresponding terminal node ("50.0 ") simply returns a real constant.
The moving average function then computes the average of the past 50 days’ prices, and returns the result to
the root node. In the right-hand subtree corresponding to the second argument of the root node, the function
nprice" returns the closing price of the current day. The root node then compares the two arguments, returning

7. The choice of these building blocks is supported by the analysis of Neftci (1991), who showed that many trading rules
relying on specific patterns can be expressed in terms of local maxima and minima of past prices. Moving average rules
are useful as a way to model potential short-term of long-term trends. Real-valued arguments that specify the length
of the time window for these functions are rounded to integers when the rules are evaluated.



a “buy” signal if the first argument is smaller than the second, and a “sell” signal otherwise. The 30-day trading

range break rule is evaluated in the same recursive manner.

< >
average price price maximum

| |

50.0 30.0

Figure 2. Genetic structures corresponding to a 50-day moving average rule (left) and a 30-day trading range
break rule (right). The moving average rule returns a “buy” signal if the 50-day moving average of past prices
is greater than the closing price, and a “sell” signal otherwise. The trading range break rule returns a “buy” signal
if the price is greater than the local maximum of the past 30 days’ prices, “sel ” otherwise.
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Figure 3. Hlustration of the crossover operator that creates a new trading rule shown in the bottom by recombin-
ing the two rules shown in the top. In the crossover, the subtree designated by the dotted line in the first parent
is replaced by the subtree designated in the second parent.

An illustration of how the genetic algorithm combines simple rules to create more complicated ones is shown
in Figure 3. In this example, the two trading rules shown in the top of Figure 3 are used as the parents. In the
first parent, the crossover node chosen at random corresponds to the subtree ("true")designated by the dotted
line. In the second parent, the crossover node coincides with the root node (">"). When the subtree in the first
parent is replaced by the (subjtree of the second parent, the trading rule shown in the bottom of Figure 3 is ob-
tained. This new rule returns a “buy” signal if both the moving average rule and the trading range break rule

10



are satisfied, and a “sell” signal otherwise. Proceeding in the same way, complex and subtle nonlinear rules can
be created, although nothing precludes the discovery of quite elementary decision rules.

Fitness Measure

In this study, the fitness measure isbased on the excess return over a buy-and-hold strategy. While thisis perhaps
the most obvious choice, different alternatives would obviously be useful in other situations. For instance, the
fitness function might include a term that penalizes for large daily losses or for large drawdowns of wealth, ac-
cording to the risk attitude of a particular investor.

The fitness of a rule is computed as the excess return over a buy-and-hold strategy during a training period. To
evaluate the fitness of a trading rule, it is applied to each trading day to divide the days into periods “in” (earning
the market fetum) or “out” of the market (earning a risk-free return). The continuously compounded return
is then computed, and the buy-and-hold return and the transaction costs are subtracted to determine the fitness
of the rule. In more detail, the simple return from a single trade (buy at date b;, sell at s;) is

x =£x l-c
! I%i 1+¢
< 1-¢
= x -
P Z g 1+¢ !
tmbi+1
|
= exp ir,+1og1—c -1 (1)
L:-b,-ﬂ l+ec

where P, is the closing price (or level of the composite stock index) on day f,7 = log P, - log P.., is the daily
continuously compounded return, and ¢ denotes one-way transaction cost (expressed as a fraction of the price}.
Let T be the number of trading days, and let r{f) denote the riskfree rate on day ¢ . Define two indicator vari-

ables I,{f) and I,{f), equal to one if a rule signals “buy” and “sell”, respectively, zero otherwise {obviously, the

indicator variables satisfy the relationship L) x I{f) = 0 V¢ ). Lastly, let n denote the number of trades, i.e.
the number of buying signals followed by a subsequent selling signal (an open position in the last day is forcibly
closed). Then, the continuously compounded return for a trading rule can be computed as

T T
r= Zr, L+ ert) L) + n log 11 ;Cc 2)

t=1 =1

and the total (simple) return is 7 = €% - 1.The return for a buy-and-hold strategy (buy the first day, sell the
last day) is

r
= > n+log

=1

1-¢
l+¢ (3)

and the excess return — or the fitness — for a trading rule is given by

Ar =r-ry @)

As short sales can only be made on an up-tick, the implementation of simultaneous short sales for a composite
stock index is rather difficult. Consequently, no short positions are considered here. Results by Sweeney (1988)
suggest that large institutional investors can achieve one-way transaction costs in the range of 0.1to 0.2 percent

11



(at least after the middle of 1970’s), and floor traders can achieve considerably lower costs (lower transaction
costs could also be achieved in futures markets for the S&P 500 index). A one-way transaction cost of c =01
percent is used below.

One issue that needs to be addressed in the design of the genetic algorithm is the possibility of overfitting the
training data. The task of inferring technical trading rules relies on the assumption that there arc some underly-
ing regularities in the data (if the price changes truly are random, finding profitable technical trading rules is
of course impossible). However, there are going to be patterns arising from noise, and the trick is to find trading
rules that generalize beyond the training sample. The probiem is comimon to all methods of nonlinear statistical
inference, and several approaches have been proposed to avoid overfitting. These include reserving a part of the
data as a validation set to test the predictions on, increasing the amount of training data, penalizing for model
complexity, and minimizing the amount of information needed to describe both the model and the data (fora
discussion of overfitting, see Gershenfeld and Weigend, 1993).

Although the current task is different from time series prediction (the fitness function reflects excess returns,
not prediction error), the methods of avoiding overfitting nonlinear statistical models can be adapted to the cur-
rent study. Here, a selection period immediately following the training period is reserved for validation of the in-
ferred trading rules. Validation works as follows: After each generation, the fittest rule (based on the excess re-
turn in the training period) is applied to the selection period. If the excess returm in the selection period improves
upon the previously saved best rule, the new rule is saved.

Step 1

Create a random rule.
Compute the fitness of the rule as the excess return in the training period above the buy-and-hold strategy.
Do this 500 times (this is the initial population).

Step 2

Apply the fittest rule in the population to the selection period and compute the excess return.
Save this rule as the initial best rule.

Step3

Pick two parent rules at random, using a probability distribution skewed towards the best rule.

Create a new rule by breaking the parents apart randomly and recombining the picces (this is a crossover).
Compute the fitness of the rule as the excess return in the training period above the buy-and-hold strategy.
Replace one of the old rules by the new rule, using a probality distribution skewed towards the worst rule.
Do this 500 times (this is called one generation).

Step 4

Apply the fittest rule in the population to the selection period and compute the excess return.
If the excess return improves upon the previously best rule, save as the new best rule.
Stop if there is no improvement for 25 generations or after a total of 50 generations. Otherwise, go back to Step 3.

Table 1. One trial of the genetic algorithm used to find technical trading rules.
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To summarize, the algorithm used to find trading rules is the following (see Table 1): To start with, an initial popu-
lation of rules is created at random. The fitness of each trading rule is determined by applying it to the daily data
for the S&P 500 index in the training period. A new generation of rules is then created by recombining parts of
relatively fit rules in the population. After each generation, thebest rule in the population isappliedtoa selection
period. If the rule leads to a higher excess return than the best rule so far, the new rule is saved. The evolution
is terminated when there has been no improvement in the selection period for a predetermined number of gener-
ations, or when a maximum number of generations has been reached. The best rule is then applied to the out-of-
sample test period immediately following the selection period.

In this paper, a population size of 500 is used. The size of the genetic structures is limited to 100 nodes and to
a maximum of 10 levels of nodes. Evolution is allowed to continue for a maximum of 50 generations, of until
there is no improvement for 25 generations. One hundred independent trials are carried out with the same pa-
rameters, each trial starting from a different random population.

Data

The daily data for the Standard & Poor’s Composite Index (S&P 500) from January 2, 1963 to December 29, 1989
were obtained from Center for Research in Security Prices (CRSP). The one-month risk-free rates correspond-
ing to Treasury Bills were obtained from the same source.

Descriptive statistics indicate that the data consisting of the compounded daily returns are negatively skewed
and strongly leptokurtoticd. The first lag of the sample autocorrelation function is significantly different from
zero. Higher lags up to Sare marginally significant, as are again lags of an order around 15 (Figure 4). In addition,
the Ljung-Box-Pierce statisticsare highly significant (p-value = 0 for all lags up to 20), indicating that the auto-
correlations are generally too high to make the hypothesis of white noise tenable. This conclusion can be con-
firmed by studying the sample autocorrelations of the series obtained by taking the absolute value or the square
of the original returns. If the return series is a strict white noise process (i.e., subsequent daily price changes are
independent and identically distributed (ITD) with mean zero), then the absolute and the squared return series
are strict white noise, too (Taylor, 1986). As seen from Figure 4, however, autocorrelations in these series die
out very slowly. Although the customary confidence intervals may be too narrow because of non-normality, the
first few autocorrelations of the squared process are of a magnitude ten times larger than the 95% confidence

interval of + Z/E .

It is instructive to take a look at how a simple autoregressive model filters out linear dependence, but is unable
to convert the residuals to strict white noise. Figure 5shows the sample autocorrelation function for the residuals
from an AR(5) model. It can be seen that the autocorrelation structure of the residuals closely resembles strict
white noise, whereas the autocorrelations of the absolute and the squared residuals remain significantly different
from zero.

8. There are 6789 observations with mean = 0.0002538, standard deviation = 0.0089531, skewness = -2.4984 and kurtosis
— 71.34427. Skewness and kurtosis are highly influenced by a few outliers. If the seven observations with the absolute
value higher than 0.05 are excluded, skewness drops to 0.00825 and kurtosis to 5.712 (five out of the seven outliers occur
during October, 1987). Excluding the 87 observations with absolute value greater than 0.025 leads to kurtosis (3.704) even
closer to the normal distribution (3.0).
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These observations are consistent with the results of Hsieh (1991), who applied the statistical test developed by
Brock, Dechert, and Scheinkman (1987) (henceforth BDS) to several return series, including the daily S&P 500
from 1963 to 1987. The BDS test is meant to capture potential nonlinearity in the data. However, rejection of
IID hypothesis by BDS test is consistent with four explanations: linear dependence, non-stationarity, low-dimen-
sional chaos, and nonlinear stochastic processes. Hsieh (1991) strongly rejected the null model of IID returns
for the S&P 500, after removing the linear correlation structure. The rejection was not attributed to non-station-
arity, as the IID hypothesis was also rejected for high frequency data sampled at 15 minute intervals. A nonlinear
model using locally weighted regression (LWR, see Cleveland, 1979) was estimated to study the possibility of
low-order chaos, and no improvement in forecasting ability over the random walk was found. Hsieh (1991) con-
cluded that the nonlinearity in the data was due to conditional heteroskedasticity. As an exponential GARCH
model could not account for all nonlinearity, Hsieh (1991) standardized the S&P series (from April 1982 to Sep-
tember 1989) by dividing the daily returns by the one-step forecast of daily standard deviation from an AR(S)
model, estimated using the 15-minute returns data. A first-order autoregressive model was then estimated, and
the BDS test did not reject the IID hypothesis for the residuals.

Hence, the rejection of a random walk in the return series does not necessarily imply anything about market
efficiency. As the results of Hsieh (1991) show, any nonlinearity can potentially be explained by conditional heter-
oskedasticity. Moreover, the particular nonlinear model estimated by LWR method did not improve forecasts
obtained from the random walk. On the other hand, the failure to reject nonlinearity in the final heteroskedastic
model applies only to a subset of data (1982-89). Furthermore, BLL studied a much longer time series, and found
that models of conditional heteroskedasticity could not explain the trading rule returns.

The S&P data exclude dividends. Consequently, any seasonality in the dividends may potentially distort the re-
sults, if trading rules happen to pick periods to be out of the market when a disproportionate number of stocks
go ex—dividend. In such a case, of course, there would have to be characteristic patterns preceding clustered ex-
dividend days (dividend data is not part of the information set of the genetic algorithm).

Results may also be affected by infrequent trading, which may induce spurious serial correlation in stock index
returns (Fisher, 1966). Typically, low-order autoregressive models have been proposed to account for the effects
of nonsynchronous trading and lagged adjustment of prices (see e.g. Loand MacKinlay, 1990). On the other hand,
there is evidence that nonsynchronous trading can only explain a relatively minor part of the serial correlation
of stock market indices (Atchison, Butler and Simonds, 1987). Regardless of the source of the serial correlations,
however, bootstrapping simulations of low-order autoregressive models can be used to study the possibility that
results are an artifact of those aspects of the market microstructure that induce linear dependence in stock index
returns.

Results

To find trading rules for the daily S&P 500 index data®, 100 independent trials were conducted. Years 196467
were used for training and years 1968-69 for validation. From each trial, one rule wassaved and then tested during
the years 1970-89.
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In the 100 trials, 82 different rules were found1?. The mean cumulative excess return in the test period was
+0.9023, with a standard deviation of 0.1688. Put in another way, trading simultaneously with these 100 rules
would have yielded an average excess return of 4.51% above the annual buy-and-hold return of 6.72% during
the 20-year test period. Testing the hypothesis whether the population mean of the 100 rules is zero yields ap-va-
lue essentially equal to zero. These excess returms were computed on the basis of a one-way transaction cost
equal to 0.1%. On the average, the excess returns are positive as long as the transaction cost is below 0.18%.

As the stock market crash of October 1987 is included in the test period, it is possible that the excess returns
are largely due to a few winning trades. In the entire year of 1987, the average excess return of the 100 rules is
indeed high ( + 14.9%). However, the average excess return in the period 1970-86 is equal to 6. 15% (the buy-and-
hold retumn is 5.68% in the same period). In other words, dropping the crash year from the test period would
have somewhat lowered the excess returns, but cutting the test period short would have led to significantly higher
excess returns than those reported above.

# of trades
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Figure 6. Yearly excess return and the average number of trades for the trading rules found by the genetic algo-
rithm.

Figure 6 shows a scatter plot, where each point represents one of the 100 trading rules. The coordinates corre-
spond to the yearly excess return and the average number of trades per year (each trade consists of one buy-signal
and a subsequent sell-signal). It can be seen that the collection of rules is reasonably diverse: the yearly excess
return ranges from +0.0139 to +0.0591, and the number of trades per year ranges from 14 to 42, The biggest
9. The S&P 500 series is clearly nonstationary, as the level of the index has risen from around 100 in the 1960’s to close
to 400 by the late 1980s. To compensate for the nonstationarity in a heuristic manner, the trading signals were generated

from data that were normalized by dividing cach day’s price by a 250-day moving average. However, the excess returns
(and all the test results) are based on the compounded returns corresponding to the original data.

10. To be more accurate, 82 rules with different trading patterns were found. Many of the rules with identical buy/sell signals

do look quite different at first sight, indicating that the genetic structures contain a lot of redundant material (which may
well be useful during the course of the evolution as raw material for the recombination operator).
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cluster consists of rules that made about 30-35 trades/year, earning a yearly excess return of 4-5%. There is a
smaller cluster of rules that made 15-25 trades/year with an annual excess return of 5-6%. However, some of
the worst rules also made about 20-25 trades per year.

Yearly return

Year

Figure 7. The average yearly return for the trading rules found by the genetic algorithm (dashed line) and for
the buy—and-hold strategy (solid line) in 1970-89.
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Figure 8. The cumulative return for the trading rules found by the genetic algorithm (dashed line) and for the
buy-and-hold strategy (solid line) in 1 970-89.
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Figure 7 shows a comparison of the average yearly return for the 100 rules to the buy-and-hold return. The graph
indicates that the trading rules tended to underperform the market in good years, but yielded positive excess
returns in bad years. Qverall, the variability of returns across the years is smaller than for a buy-and-hold strate-

2y.

Figure 8 shows the average cumulative return for trading rules vs. the buy-and-hold return. It is evident that
much of the excess return was accumulated during the 1970’s. In the 1980’s, the trading rules would not even
have matched the market rate of return. These observations raise the possibility that the price patterns captured
by the rules are no longer present in the latter part of the data. On the other hand, it should be kept in mind
that the 198(’s was a rising market on the whole, making it difficuit for any kind of market timing rules to outper-
form the buy-and-hold strategy.

To study the trading rules in more detail, a subset of ten rules was selected. These rules were chosen by ranking
the rules in descending order according to the excess returmn in the selection period of 1968-69, and retaining
the rules 1,11,21,... in this ranking (i.e. rule 1 had the highest excess return in the selection period). The average
excess return in the test period for the ten rules was + 0.0436, ranging from -+0.0208 to + 0.0553. The number
of trades ranges from 14 to 37 per year. These rules (and the corresponding test results) are quite representative
of the 100 trials.

Tuble 2. Test results for trading rules found by the genetic algorithm. The second column shows the average yearly excess
return above the buy—-and-hold strategy in 1970-89. Daily returns during “in” and “out" periods are denoted by 1, and

r, , respectively, and the number of days during these periods is denoted by N and N, . T-statistics are given in paren-
theses.

rule | excess | Ny Tp ) o N, Ts 3] a Ty Ts ®

T To02 | 203 0001278 (+4.161) 00083542618 0000675 (-3966) 0010624 [ +0.001953 (+7.039)
5 | vo0si2| 257 +0001241 (+4087) 0.008849 2475 -0.000750 (-4201) 0.010718 | +0.00191 (+7.175)
3 | +0.0449 | 2742 +0.001149 {(+3.77 0.008875 | 2312  -0.000781 (-4.231) 0.010818 { +0.001930 (+6.935)
4 | +00453| 2368 +0.001291 (+4.173) 0.008640 | 2686  -0.000637 (-3.837) 0.010739 +0.001928 (+6.93T)
5 | +0.0412 | 2613 +0.001137 (+3.665) 0.008890 | 2441  -0.000666 (-3.83%) 0.010722 | +0.001802 (+6.495)
o | voodi1]257 +0001227 (+4022) 000889 |2462 0000729 (-4.119) 0010676 | +0.001956 (+7.051)
7 | v0o427] 2764 +0001031 (+3279) 0.008866 2290 -0.000657 (-3.716) 0.010866 | +0.001687 (+6.055)
s | 1008|2762 +0000759 (+2.112) 0.008931|2292 -0.000327 (-2391) 0010843 | +0.001086 (+3300)
o | +00ss3 | 4139 +0000686 (+2033) 0008776 | 915 0001634 (-5366) 001350 | +0002321 (+6.444)
10 | +0.0503 | 4149 +0.000717 (+2.182) 0.008865 | 905  -0.001800 (-5.807) 0.013320 +0.002517 (+6.960)
avg | +0.0436 | 2912 +0.001052 0.008844 | 2142  -0.000866 0.011290 | +0.001917

In 1970-89, the average daily return for 5054 trading days was +0.000266 with a standard deviation of 0.009858.
Table 2 presents the resuits of statistical tests of daily returns for the ten rules. It can be seen that the average
daily return during “in” periods is significantly higher than the unconditional return, while the return during
“out” periods is lower than the unconditional return. The difference between the daily return in the two periods
is positive at any reasonable signifigance level (the t-statistic for the difference between the “buy” and the uncon-

ditional return is f = —2=— , where s is the sample variance; the other two statistics for the “sell” mean
5 /NLb +4
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and the difference between the two means are defined inan analoguous manner). In addition, the standard devi-
ation during “in” periods is smaller than during “out” periods for each of the ten rules. The excess returns do
not seem to be due to increased riskiness, although this point is addressed in more detail through bootstrapping
simulations below.

Although the pattern of returns is mostly similar across the rules in Table 2, rules 9 and 10 are somewhat different
from the rest. A total of 27 of the 100 trials converged to rules with trading patterns identical or very similar to
either of these two rules. These rules are interesting because they make very few trades in rising markets, but
signal frequent changes of position when prices are predominantly falling. In the subperiod of 1970-79, rules 9
and 10 would have earned an excess return of 9.63% and 7.48% above the annual buy-and-hold return of 1.57%,
respectively. In 1980-89, the yearly excess returns would have been 1.44% and 2.59% above the buy-and-hold
return of 11.84%. Over the entire test period, the break-even one-way transaction cost for these rules is 0.28%
and 0.22%, respectively. As these rules are among those with the lowest excess return in the selection period,
these findings can be interpreted as evidence that most of the other rules have to some extent been overfitted
to the training data after all. In other words, the trading rule results in this paper probably give a conservative
estimate of the returns at least theoretically obtainable using a similar methodology.

if - then -else

\

if - then -else > false

™~ /O

false maximum average

I

price =

N\

1.4812 price

/ < |
average price average minimum

|

/ + average / +\

minimum + maximum + 0.8822
|/ \ |/ N\

price 1.9354 * 2.0 price 1,0241

/\

1.1871 price

Figure 9. An example of the trading rules found by the genetic algorithm (rule 4 in Table 2}.
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There are two general characteristics of the trading rules found by the genetic algorithm: the representation is
often highly redundant, and the rules often work in unexpected ways that a human analyst would hardly have
thought of. Rule 4 in Table 2 is a typical example. The genetic structure consisting of 46 nodes is rather unwieldy
to write out, but it can be simplified to an equivalent rule shown in Figure 9.

This rule works as follows: First, the leftmost subtree ("average") computes either a 4-day or a 5-day moving
average of the past prices, depending on the current price history!1. If the moving average is less than the closing
price, then a shorter 1-2 day moving average is compared to the minimum of the past 3 days’ prices. If the moving
average is greater of the two, then the middle subtree (">") is evaluated. That subtree returns either a “buy”
or a “sell” signal, depending on whether the maximum of 1-2 days’ price is greater or smaller than the average
of the past two days’ prices. In all other cases, a “gell” signal is returned.

The rule in Figure 9 also illustrates how real-valued arguments are created in genetic programming. Although
the initial population only includes real constants in the range of 0 to 2, these constants and other functions are
combined by the algorithm to find additional numerical arguments that are needed to construct fit decision rules.

A simpler example is given by rule 7 (Figure 10). ‘This rule is usually equivalent to a 2-3 moving-average rule.
Sometimes, however, the length of the moving average window increases by several orders of magnitude, de-
pending on the price history in a complex manner.

T

average price
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Figure 10. An example of the trading rules found by the genetic algorithm (rule 7 in Table 2).

11. Recall that the price series is normalized so that prices fluctuate around 1.0 (sec footnote 9).



the variable-length moving average rules can be composed from our
manner. These rules generate a “buy”
average by a pre-specified percentage, and a “sell” signal wh
long one (the band is either 0% or 1%

The trading rule results can be compared to the study by BLL. They tested different kinds of simple technical

trading rules, including variable- or fixed-length moving-average rules and trading range break rules. Of those,
building blocks in a rather straightforward
signal when a short-term moving average exceeds a long-term moving
en the short moving average drops back below the
). Table II of BLL presents results for ten such rules for the Dow Jones
index. When the same ten rules were applied to the S&P 500 index in 1970-89, the av

was 2.19%, taking the transaction cost of 0.1% into a

erage yearly excess return
ccount (Table 3). Overall, these results corroborate the find-

ings of BLL. It also appears that the trading rules found by the genetic algorithm are more profitable than the
simple variable-length moving average rules.

Table 3. Test results for the variable-length moving
(1992, p. 1739). Rules are identified as (short, long,

and band is the threshold percentage before a buy/sell signal is generated. The second column shows the average yearly

average rules tested in Table Il of Brock, Lakonishok, and LeBaron

band), where short and long specify the length of the time windows,

excess return above the buy-and-hold strategy in 1970-89. Daily returns during “in” and “out” periods are denoted by

ry and r,, respectively, and the number of days during these periods is denoted by N, and N,

in parentheses.

. T-statistics are given

rule
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(1,50,0)
(1.50,1)
(1,150,0)
(1,150,1)
(5,150,0)
(5,150,1)
(1,200,0)
(1,200,1)
(2,200,0)
(2,200,1)

+10.0163
+0.0126
+0.0268
+0.0310
+0.0168
+0.0238
+0.0203
+0.0265
+0.0243
+0.0205

2965
2455
3104

3087
2834
3246

3249
3040

+0.000513
+0.000555
+0.000518
+0.000573
+0.000434
+0.000499
+0.000458
+0.000509
+0.000469
+0.000463

(+1.083)
(+1.190)
{+1.122)
(+1.327)
{(+0.745)
(+1.005)
{+0.864)
(+1.072)
(+0.915)
(+0.872)

0.008398
0.008536
0.008141
0.008187
0.008217
0.008230
0.008082
0.008114
0.008130
0.008172

2089
2599
1950
2213
1967

1808

1805
2014

-0.000084
-0.000006
-0.000135
-0.000128
+0.000003
—0.000031
-0.000078
-0.000102
~0.000099
-0.000031

(-1.36T)
(-1.146)
(-1.52T)
(-1567)
(-1.006)
(-1.182)
(-1273)
(-1415)
(-1.350)
(-1.146)

0.011612
0.010956
0.012090
0.011648
0.011986
0.011605
0.012421
0.012025
0.012369
0.011957

+0.000597
+0.000561
+0.000654
+0.000701
+0.000431
+0.000529
+ 0.000536
+0.000610
+(.000568
+0.000495

(+2.122)
(+2.023)
(+2.294)
(+2.506)
(+1517)
(+ 1.894)
(+1.851)
(+2.154)
(+1.962)
{+1747)

average

+0.0219

2987

+0.000499

0.008221

-0.000069

0.011867

+0.000568

Bootstrapping

Results in Table 2 indicate that trading rules yield statistically significant excess returns. However, the student-t

test statistics

ogy, which allows us to test specific null m

are derived under the assumption of normally distributed returns, which is scarcely supported by
the descriptive statistics for the data. Following the lead of BLL, we apply the so—calle
odels, assuming only ITD innovations (Efron, 1979; Efron and Tibshira-

d bootstrapping methodol-

ni, 1986; Hall, 1992; Leger, Politis and Romano, 1992). In addition, bootstrapping provides a way to examine the
riskiness of trading rules in more detail.

In bootstrapping, a hypothesized (“null”) model is fitted to the dat

a. A large number of simulated data sets are

then obtained by generating time series according to the nuil model. Residuals from the null modelare resampled

with replacement and substituted for innovations in the simulated data sets. If the null model is t
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lated data sets retain all the statistical properties of the original data, while all serial dependency (beyond any
imposed by the model) is lost.

In bootstrapping simulations below, the trading rules are applied to each of the B simulated price series

Py = Py exp@i), t=1,..T, b= 1....B (5)
where the return series ry = [r,',,l, ey r;,r] is generated according to the null model, and P}, is the price on the
trading day immediately preceding the test period. For each 3, & = 1,...,B, a resample €5 = [e}.1, ...,e,',_,-] of
the original residuals are used. A resample is obtained by drawing T items with replacement from the residuals

e =ley, ... e7) from the null model. If the null model is true, each resample is an unordered collection of [ID

random variables, and the simulated price series replicate the statistical properties of the original time series.
Consequently, the trading rule results should be similar between the original data and the bootstrapped price
series. In particular, each simulated data set is equally likely to produce a statistic above or below of that obtained
from the original data. Simulated p-values can be obtained by recording the fraction of times the value of the
target statistic exceeds the original results!2.

Three different null models were tested: a random walk with drift, an autoregressive AR(1) model, and 2
GARCH(1,1)-AR(2) model. The test period from January 2, 1970 to December 29, 1989 includes T = 5054 data
points,and B = 1000 simulated data sets were generated for each null model. Each of the ten test rules of Table

2 was applied to each of the simulated time series. The same statistics as in Table 2 were computed, with the
addition of a statistic recording the number of times standard deviation during “in” periods was greater than dur-
ing “out” periods.

In the case of a random walk with drift, the null model is
=& 6)
where the error terms [ey, ..., ey} are IID random variables with non—zero mean. The simulated return series

7 were obtained by simply resampling the daily returns.

The autoregressive model is

k
n-p = st ri-u) + & 0]
im}
where & is the order of the AR(k) process, and e, are the IID residuals. Although Akaike’s (1974) information

criterion points to an AR(2) model, the improvement from AR(1) is negligible, and the coefficient of the second
autoregressive term is only marginally significant. Asan AR(1) model also facilititates a comparison of the results
to BLL, it is used in the simulations below. Coefficients of the model were estimated through ordinary least
squares (Table 4a), computing heteroskedasticity—consistent estimates of standard errors as suggested by White

(1980) and Hsieh (1983). The scrambled residuals e for the bootstrapping simulations were obtained by resam-
pling the residuals [e,, ...,e7] given by (7).

12. See BLL (p. 1744-1745) for a justification of the bootstrap methodology for trading rule studies. BLL aiso tested the
convergence properties of bootstrapping, and found that the simulated p-values were reliabie after 500 replications.
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As discussed above, any nonlinear dependence in the data may be due to conditional heteroskedasticity. To ac-
count for time-varying variance, Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity
(ARCH) model, which captures empirically observed volatility clustering (large (small) price changes tend tobe
followed by large {small) price changes of either sign). Various generalizations of the original model have been
proposed during the past decade (for areview, see Bollerslev, Chou and Kroner, 1992). These include the Gener-
alized ARCH model (GARCH) of Bollerslev (1986), which can be combined with an AR(k) model as follows:

k

n-p = Zb.- (ri-p) + & (8)
g — N(@O,h) ©9)
h = a+ pZa.- 8,2_,- + zq:ﬁg b (10)

iml iml
While several low-order GARCH models were tried, GARCH(1,1)-AR(2) was significantly better than the alter-
natives by a likelihood ratio test. As opposed to the AR(1) case, the coefficient of the second autoregressive term
was highly significant. Coefficients were estimated by maximum likelihood (Table 4b).

Because e, in (8) can be rewritten as ¢, = \/IT, z, z — N(0,1), the residual series can be expressed as

€
Z T —
s \/f; (11)
where e, is specified by (8). Bootstrapped series were obtained from the null model defined by (8) and (10), re-

sampling the standardized IID residuals {21, ..., 27} given by (11) and using the error terms e, = Jk Z inthe

simulations.

Table 4a. AR(1) parameters for the daily returns of the S&P 500 index in 1970-89, estimated through ordinary least

squares (adjusted R* = 0.0155, log likelihood = 16212.8). T-statistics based on heteroskedasticity-consistent esti-
mates of standard errors are given in parentheses.

B by
0.231032 1073 0.125322
(+1.636) (+2.553)

Table 4b. GARCH(1,1)~AR(2) parameters for the daily returns of the S&P 500 index in 1970-89, estimated through
maximum likelihood (adjusted R* = 0.0170, log likelihood = 16910.0). T-statistics are given in parentheses.

" b1 b2 o7y o B1 h(0)

03423521003 0.166418 0030719  0.124523 10-5  0.072846 0.915440  0.262586 10~4
(+3.111) (+10.67) {(-1.952) (+7.188) (+39.66) (+229.5) (+1.263)

The choice of the AR(1) and the GARCH(1,1)-AR(2) models for bootstrapping is supported by results for the
trading rules corresponding to these models (move in or out of the market depending on the sign of the one-step
forecast). With zero transaction costs, a rule corresponding to the AR(1) model leads to a yearly excess return
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of 0.00026%, while the AR(2) rule yields an excess return of -1.183%. The GARCH(1,1)-AR(1) model gives an
annual excess return of —0.033%, while the GARCH(1,1)-AR(1) model leads to a slightly positive excess return
of 0.032%. With a one-way transaction cost of 0.1%, the annual excess return for these rules making 57-70 trades
per year range from -11.71% to -15.36%.

Results for the random walk with drift are shown in Table 5. For the first seven rules, none of the simulated data
sets yielded an annual excess return greater than for the original data. Even for the other three rules, only 5 to
10 out of the 1000 simulations led to greater excess returns. The simulated p-value for the difference in daily
return between “in” and “out” periods is zero for all rules except for rule 8, for which the simulated p-value
equals 0.001 (i.e. only one simulation out of the 1000 produced a larger difference than the S&P data). In 93.3
1099.9 percent of the simulations, the difference in standard deviations between “in” and “out” periods exceeded
the difference for the original data; the average p-valueis 1 - 0.9597 = 0.0403. Overall, the trading rule results
are not consistent with the random walk.

Table 5. Results from bootstrapping simulations of the random walk for trading rules found by the genetic algorithm.
The second column specifies the average yearly excess return for the 1000 simulated data sets. The p-values in parentheses
correspond to the fraction of simulated data sets for which the value of a statistic exceeds that computed for the original
data.

rule | excess # of days daily return standard deviation

return in out in out in - out in out in - out

1 00916 | 2415 2638 | +0.000247  +0.000266 -0.000020 0.009895 0.009881 0.000014
(0.0000) (0.0000) (1.0000) {0.0000) (0.9830) (0.1620) (0.9330)

2 00827 | 2561 2492 | +0.000268  +0.000268  -0.000000 0.009864 0.009862 0.000002
(0.0000) (0.0000) (1.0000) {0.0000) (0.9820) (0.1200) (0.9530)

3 00841 | 2729 2324 | +0.000269  +0.000272 -0.000003 0.009869 0.009883 -0.000014
(0.0000) (0.0000) (1.0000) {0.0000) (0.9780) (0.1140) (0.9600)

4 00861 | 2352 2701 | +0.000257  +0.000258  -0.000001 0.009903 0.009922 -0.000018
(0.0000) (0.0000) (1.0000) {0.0000) (1.0000) (0.1400) (0.9670)

5 00800 | 2571 2482 | +0.000270  +0.000258  +0.000012 0.009864 0.009894 -0.000030
(0.0000) (0.0000) (1.0000) {0.0000) (0.9780) (0.1280) (0.9410)

6 00905 | 2558 2495 | +0.000265  +0.000263  +0.000003 0.009903 0.009867 0.000037
(0.0000) (0.0000) (1.0000) (0.0000) {0.5700) (0.1400) (0.9350)

7 00755 | 2680 2373 | +0.000253  +0.000259  -0.000006 0.009904 0.009902 0.000002
(0.0000) (0.0000) (1.0000) (0.0000) (0.9810) (0.1240) (0.9640)

8 00553 | 2775 2278 | +0.000276  +0000250 + 0.000026 | 0.009888 0.009826 0.000062
(0.0080) (0.0080) (0.9940) (0.0010) (0.9730) (0.1090) (0.9530)

9 -0.0405 | 4113 940 +0000254  +0.000279  -0.000025 0.009907 0.009808 0.000099
(0.0050) (0.0010) (1.0000) (0.0000) (1.0000) (0.0100) (0.9990)

10 | -00517 | 4146 907 +0.000260  +0.000287  -0.000028 0.009878 0.009855 0.000023
(0.0100) (0.0010) (1.0000) (0.0000) (0.9970) (0.0220) {0.9920)

avg | 00738 | 2890 2163 | +0.000262 + 0000266  -0.000004 | 0.009888 0.009870 0.000018
(0.0023) (0.0010) (0.9994) (0.0001) (0.9842) {0.1069) (0.9597)




Results for the bootstrapping simulations of the AR(1) model are shown in Table 6. Although the average of the
simulated p-values for the yearly excess returns is 0.1006, the magnitude (0.57%) is considerably smaller than
for the S&P 500 data. The average p-value for the difference in the daily returns between “in” and “out” periods
is 0.0314, ranging from 0.001 to 0.068. The sign of the daily returns is correct, although the magnitude falls short
of the original results. For the difference in the standard deviation, the average p-value is 0.0304. These results
indicate that some of the excess returns can be explained by linear dependence, although the difference both
in the daily return and in the volatility between “in” and “out” periods cannot be accounted forby the autoregres-
sive process.

Table 6. Results from bootstrapping simulations of the AR(1) model for trading rules found by the genetic algorithm.
The second column specifies the average yearly excess return for the 1 000 simulated data sets. The p-values in parentheses
correspond to the fraction of simulated data sets for which the value of a statistic exceeds that computed for the original
data.

rule | excess # of days daily return standard deviation
return in out in out in - out in out in - out
1 +0.0067 | 2416 2637 +0.001006 0000401  +0.001407 | 0.009756 0.009771 -0.000015
(0.0910) (0.0840) (0.8970) {0.0220} (0.9720) (0.1070) (0.9570)
2 +0.0105 | 2552 2501 +10.000954 0000439  +0.001393 | 0.009765 0.009747 0.000017
(0.0770) {0.0810) (0.9080) 0.0170) (0.9650) (0.0790) (0.9650)
3 +0.0114 | 2713 2340 +0.00092% -0.000490  +0.001419 | 0.009780 0.009753 0.000027
{0.1230) (0.1320) (0.5020) (0.0350) (0.9740) {0.0760) {0.9730)
4 +0.0079 | 2348 2705 +0.001006 —0.000384  +0.001390 | 0.009755 0.009784 ~0.000029
(0.0870) (0.0810) {0.8910) (0.0290) (0.9990) (0.0840) (0.9790)
5 +0.0088 | 2561 2492 +0.000924 -0.000395  +0.001319 | 0.009750 0.009745 0.000004
(0.1130) (0.1400) (0.8720) (0.0570) {0.9620) (0.0880) (0.9570)
6 +0.0085 | 2546 2507 + 0.000993 0000472  +0.001466 | 0.009755 0.009817 -0.000063
(0.1340) (0.1430) (0.8750) (0.0370) {0.9550} (0.1160) (0.9480)
7 +0.0078 | 2670 2383 +0.000837 —0.000357 +0.001194 | 0.009760 0.009764 -0.000004
(0.1040) (0.1450) (0.8990) (0.0470) {0.9860) (0.0830) (0.9720)
8 -0.0133 | 2616 2437 +0.000577 -0.000080 +0.000657 | 0.009781 0.009806 -0.000025
(0.0880) (0.1600) (0-8190) {0.0680) (0.9680) (0.0860) (0.9540)
9 +0.0082 | 4097 956 +0.000481 -0.000570  +0.001051 | 0.009848 0.009715 0.000133
(0.1000) (0.0690) (0.9990) (0.0010) (0.9990) (0.0070) (0.9970)
10 +0.0002 | 4112 941 +0.000499 -0.000674  +0001173 | 0.009773 0.009796 -0.000024
0.0890) (0.0360) (0.9980) (0.0010) (0.9940) (0.0120) (0.9940)
avg | +0.0057 | 2863 2190 + 0.000821 0000426 +0.001247 | 0.009772 0.009770 0.000002
(0.1006) (0.1075) {0.9060) (0.0314) {0.9779) {0.0738) {0.9696)
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Results from bootstrapping simulations of the GARCH(1,1)-AR(2) model are given in Table 7. The simulated
p-values for the excess return range from 0.075 to 0.226, with the average equal to 0.1545. The magnitude of
the annual excess returns is still only about a third of that for the original data (+ 1.40% vs. 4.36%). The average
p-value for the difference in the daily returns between “in” and “out” periods is 0.1582, ranging from 0.020 to
0.243. The model replicates the difference in standard deviation poorly, with an average p-value of 0.0368.
Hence, the model cannot account for the the fact that the trading rules took long positions in days with relatively
little variation in returns, but provides a better explanation of the excess returns than the AR(1) model.

Table 7. Results from bootstrapping simulations of the GARCH(1,1)-AR (2) model for trading rules found by the genetic
algorithm. The second column specifies the average yearly excess return for the 1 000 simulated data sets. The p-values
in parentheses correspond to the fraction of simulated data sets for which the value of a statistic exceeds that computed
for the original data.

rule [ excess # of days daily return standard deviation
return in out in out in - out in out in - out
1 +0.0184 | 2417 2636 +0.001106 _0.000560  +0.001666 | 0.009995 0.010152 -0.000157
(0.1870) (0.1950) (0.7000) (0.1910) {0.8030) (0.2430) (0.9760)
2 +0.0216 | 2558 2495 +10.001040 -0.000585 ~ +0.001625 | 0.010012 0.010085 —0.000073
(0.1270) {0.1550) (0.7580) (0.1130) {0.7960) (0-2150) (0.9870)
3 +00220 | 2712 2341 +0.001011 -0.000673 +0.001684 0.009940 0.010015 —-0.000074
(0.2060) (0.2270) {0.6830) (0.2220) (0.7770) (0.2140) (0.9900)
4 +0.0190 | 2350 2703 +0.001103 0000535 +0.001638 | 0.009871 0.010149 -0.000278
(0.1560) (0.1760) (0.6880) (0.1790) (0.8470) (0.2410) (0.9790)
5 +0.0146 | 2564 2489 +0.000972 -0.000548 +0.001520 0.009949 0.010082 -0.000133
(0.1640) (0.1960) (0.7060) (0.1740) (0.7970) (0.2330) (0.9790)
6 +0.0199 | 2554 2499 +0.001082 ~0.000658  +0.001739 | 0.010005 0.010116 -0.000111
(0.2250) (0.2460) (0.6260) {0.2430) (0.7610) (0.2550) {0.9850)
7 +0.0148 | 2633 2420 + 0.000904 0000495  +0.001399 | 0.009883 0.010261 -0.000378
(0.1490) (0.2410) {0.7310) (0.1900) (0.7810) {0.2440) {0.9380)
8 -0.0050 | 2806 2247 F0.000602  -0.000231  +0.000833 | 0.009677 0.010378 -0.000701
(0.1670) {0.1930) - (0.6420) (0.2190) (0.6270) (0.2450) (0.8680)
9 +0.0071 | 4073 980 +0000484  -0.000824  +0.001308 | 0009724 0.010789 -0.001065
(0.0750) (0.0600) (0.9580) (0.0200) (0.7780) (0.0910) (0-9690)
10 +0.0073 | 4073 980 +0.000541 —0.001050  +0.001591 | 0.009702 0.010929 -0.001228
(0.0880) (0.0650) {0.9530) {0.0310) (0.7460) (0.1230) (0.9480)
avg +0.0140 | 2874 2179 +0.000884 -0.000616 +0.001500 0.009876 0.010296 -0.000420
(0.1545) (0.1754) (0.7445) (0.1582) (0.7713) (0.2104) (0.9620)

To study the effects of volatility clustering, another set of bootstrapping simulations was carried out for an AR(2)
model. The average yearly excess return was -0.0116 with a p-value equal to 0.0285. Asthe autoregressive coeffi-
cients were very similar to the GARCH(1,1)-AR(2) model, the difference between those simulations and the
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results shown in Table 7 can be attributed to changing conditional variancel3. This finding suggests that while
some of the excess returns are due to short-term linear dependence, the trading rules also exploit nonlinear
properties of the return series.

As observed above, the excess returns were not unduly driven by the stock market crash of 1987. However, the
crash may affect the bootstrapping simulations in a more subtle way, as the few returns of large absolute value
in October 1987 may have had a disproportionate influence on the parameter estimates of the null models tested
above. To study this possibility, the AR(1) model and the GARCH(1,1)-AR(2) model were re—estimated for the
subsample of 1970-86 (Table 8), and additional bootstrapping simulations were carried out for this period.

Table 8a. AR(1) parameters for the daily returns of the S&P 500 index in 1970-86, estimated through ordinary least
squares (adjusted R* = 0.0321, log likelihood = 14315.7). T-statistics based on heteroskedasticity—consistent esti-
mates of standard errors are given in parentheses.

Y b1
0.183128 10-3 0.179688
(+1.388) (+10.13)

Table 8b. GARCH(1,1)-AR(2) parameters for the daily retums of the S&P 500 index in 1970-386, estimated through
maximum likelihood (adjusted R* = 0.0327, log likelihood = 14618.0). T-statistics are given in parentheses.

m by by g oy B1 h(0)

0267278 10-3 0190853  -0.033242  0.61763810-5 0050789 0941469  0.389607 104
(+2.37) (+11.89)  (-2.072) (+3.990) (+11.04)  (+169.6) (+1.706)

For the AR(1) model estimated for the period of 1970-86, the average excess return for the bootstrapped series
was + 0.0341 with the average p-value equal to 0.2593. The simulated p-value for the difference in the daily re-
turn between “in” and “out” periods was 0.2261. For the difference in the standard deviation, the p-value was
equal to 0.0436.

For the GARCH(1,1)-AR(2) model in 1970-86, the average excess return in the bootstrap was + 0.0241 with p-
value equal to 0.1131. The p-value for the difference in the daily return between “in” and “out” periods (0.1563)
is hardly changed from the earlier simulations, but the p-value for the difference in the standard deviation in-
creases to 0.1302. All of these p-values are marginally significant at best, indicating that the results are to some
extent sensitive to the impact of the 1987 crash on the coefficients of the null models1*.

To summarize the bootstrapping simulations, we found — similarly to BLL — that trading rules tended to take
long positions when returns were positive and the volatility was relatively subdued; the rules stayed out of the
market when returns were negative and relatively volatile. Overall, the simulated p-values were less significant
13. Akgiray (1989) similarly found that the autoregressive parameters changed very little between an AR(1) model and a
GARCH(1,1)-AR(1) mode! for daily stock index returns in 1963-86.

14. Bootstrapping results for rules 9 and 10 in Table 2 are relatively robust to changes in the autoregressive parameters. In
the simulations of the AR(1) model estimated for the subperiod of 1970-86, the p-values for the excess return for these
two rules are 0.087 and 0.118, respectively. In the case of the GARCH(L 1)}-AR(2) model, the p-values are 0.034 and
0.072, respectively:
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than in the study of BLL (the time period was also much shorter), and somewhat sensitive to the impact of a
few outlying observations on the coefficients of the hypothesized null models. Nevertheless, the pattern is robust
across all the simulations carried out, indicating that none of the models tested provides a wholly adequate expla-
nation of the results.

If only the variability of the daily returns is considered, then the bootstrapping results suggest that the excess
returns are not due to increased riskiness. On the other hand, it is possible that other risk mecasures would be
more appropriate, and finding a good explanation for the results is only a matter of finding an appropriate model
of the return generating process. In this way, trading ruie studies are useful because they spur the development
of models leading to a better understanding of the behaviour of financial price series and the determinants of
risk.

Evaluation Using Timing Tests

Trading rules found by the genetic algorithm can be interpreted as market-timing strategies. Therefore, statisti-
cal tests of market-timing ability provide another way to evaluate the signifigance of the trading rule results.
While these tests have been initiaily developed to study the performance of mutual fund managers, they can
easily be adapted to the current study. The alternative viewpoint provided by the timing tests is useful because
the trading rule results reported in this paper differ from earlier studies by Fama and Blume (1966) and others
discussed in Section 2. ‘

Let R,(r) denote the return on a risky asset (the market portfolio) during the period ¢, and let R{y) denote

the return on the risk-free asset during the same period. Before each period, a market timer provides a forecast
X(f) that equals one if she thinks that the return on the risky asset will exceed the return on the risk-free asset

during the next period, and zero otherwise. Define pi(t) as the conditional probability that a forecast is correct,
given that the market return was above the risk-free return, and define p,(f) as the probability of a correct fore-

cast, given that the market return was below the risk—free return in period ¢ . Merton (1981) showed that the
forecasts are valuable if and only if py(f) + pa(t) > 1 (forecasts are also valuable — in a perverse way — if
pilD) + paf) < 1,ie.if the predictions are consistently wrong). Valuable forecasts induce an investor to revise
her prior beliefs about the distribution of returns on the market portfolio. Based on these results, Henriksson

and Merton (1981) derived both nonparametric and parametric tests of market-timing ability, depending on
whether forecasts are observable or not.

Cumby and Modest (1987) pointed out that the tests developed by Henriksson and Merton (198 1) are based on
the assumption that the conditional probability of a correct forecast is independent of the magnitude of subse-
quent returns. As they observed, this assumption is inappropriate in some situations, including studies of techni-
cal analysis. Predictive ability is neither a sufficient nor a necessary condition for profitable trading rules. Intu-
itively, it does not matter if you're mostly wrong, as long as you're right when it matters. For instance, a
moving-average rule might lead to many whip—saw losses as a trader takes and quickly terminates short-term
positions that place her on the wrong side of price movements. The resulting small losses are reflected in a poor
predictive ability, but they may be more than offset if the rule places the trader on the right side of long, sustained
price swings (it is of course an empirical question whether there are such price movements).
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While the assumption of independence restricts the applicability of the timing tests of Henriksson and Merton
(1981), the underlying reasoning is still valid: a forecast is valuable if it makes an investor revise her prior beliefs.
Building on this insight, Cumby and Modest (1987) proposed a test based on the regression

R.) ~R{t) = a+ B X({t) +e (12)
If forecasts are valuable, 8 in (12) shouid be significantly greater than zero. Cumby and Modest (1987) applied

the test to a number of exchange rate advisory services, and found strong forecasting ability where the original
Henriksson-Merton test failed to find any.

The regression test assumes that the expected equity premium is constant over time. In the light of the recent
evidence of the predictability of stock returns, this assumption is questionable. If the forecast X(t} is correlated
with time-varying risk premia, the test may falsely reject the null hypothesis of no timing ability, as pointed out
by Cumby and Modest (1987). However, if the forecasts X(f) are based on past prices only (as is the case for the
technical trading rules studied in this paper), the rejection of the null hypothesis implies that past prices can be
used to forecast expected risk premia. In other words, if one attributes a significant coefficient of X(¢) to time-va-
rying risk premia, one must also admit that risk premia are explained to a significant degree by past prices only,
with no need to consider more fundamental indicators about the state of the underlying economy.

Table 9 presents the timing test results for the ten rules from Thble 2. In these tests, X(f) = 1 for periods “in”
the market and X(f) = 0 for periods “out” of the market. The coefficient B in the regression (12) is positive
and highly significant for all of the trading rules (estimation was done through ordinary least squares, and t-statis-
tics were computed on the basis of heteroskedasticity-consistent estimates of standard errors). R? is small for

all rules, as should be expected — after all, price changes are mostly random. For comparison, the regression
coefficients for rules corresponding to AR(1) and GARCH(1,1)-AR(2) forecasts are small and insignificant.

Table 9. Tests of market timing ability for the ten rules from Table 2, for the AR(1) model and for the
GARCH(1,1)-AR(2) model (rules AR and G-AR, respectively). The second column specifies the number of observa-

tions, the third the adjusted R* and the fourth the Durbin-Watson statistic. T-statistics corresponding to the estimates
of a and B in (12) are given in parentheses.

rale | #ofobs. | R? D-W o (1) B )
1 1435 | 00328 | 1872 0003199 (4381) | 0006872  (+7.045)
2 1333 | 00362 | 1904 0003529  (4614) | 0007570  (+7.149)
3 1379 | 00337 | 1867 0003295 (4695 | 0007084  (+7.009)
4 1351 | 00346 | 1920 0003335 (-4257y | 000T174  (+7.032)
5 1295 | 00300 | 1861 0003266  (-4074) | 0007058  (+6415)
6 1491 | 00324 | 1867 0003096 (4635 | 0006649  (+7.135)
7 1119 | 00204 | 2054 0003518 (-3.663) | 0007645  (+5913)
8 197 00218 | 2001 0003033 (-2967) | 0006921  (+4.332)
9 589 0032 | 2123 0005737 (4920) | 0012639  (+4539)
10 821 0.0281 | 2248 0004439 (4T3 | 0009711  (+4.974)
AR 2293 | -0.0004 | 1830 0000045 (+0.103)] 0000205  (+0.336)

G-AR | 2595 | -0.0002 | 1826 0000049 (<0.120) | 0000357  (+0647)
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There is evidence of misspecification, as the Durbin-Watson statistics are (at least marginally) significantly differ-
ent from 2.0 for all rules except rule 8. The obvious first place 1o look for misspecification is the presence of
first-order serial correlation in the residuals, as that is what the Durbin-Watson statistic was developed to mea-
sure. The results for the estimation of the model

[R,,.(t) -R() =a+pXO)+u

U =€+ 0 Uy

(13)

are shown in Table 10, and it can be seen that the first-order autocorrelation largely accounts for the serial depen-
dence in the residuals. The estimates of a and B are essentially unchanged.

Table 10. Tests of market timing ability for the ten rules from Table 2, for the AR(1) model and for the
GARCH(1,1)-AR(2) model (rules AR and G-AR, respectively), accounting for first-order serial correlation of the

residuals. The second column specifies the number of observations, the third the adjusted R? , and the fourth the Durbin—
Watson statistic. T-statistics corresponding 1o the estimates of ¢, a and B in (13) are given in parentheses.

rule | #of obs. R? D-W P ® a ® B 0]
1 1435 00367 | 2000 | 00641 (+2431)[ -0003199  (-4617) | 0006872 (+7.506)
2 1333 0.0384 1997 | 00482 (+1761)| 0003529  (<4701) | 0007570  (+7.496)
3 1379 00380 | 1998 | 00666 (+2476)| -0003295  (-4589) | 0007084  (+7.487)
4 1351 0.0361 1999 | 00401 (+1476)| 0003335 (4614 | 0007174  (+7314)
5 1295 00347 | 199 | 00695 (+2508)| -0.003266  (-4.176) | 0.007058 (+6872)
6 1491 00367 | 1997 | 00666 (+2.576)| 0003096  (-4676) | 0006649  (+ 7.622)
7 1119 0.0301 1997 | 00268 (-0.895) | -0.003518  (-3.843) | 0007645  (+5751)
8 797 0.0218 1999 | 00006 (-0016) | -0.003033  (-2684) | 0006921  (+4.325)
9 589 00359 | 2008 | 00617 (-1499) | 0005737  (-2903) | 0012637  (+4264)
10 821 0.0430 1985 | -0.1238 (-3573) | 0004439  (-3.167) | 0.009708  (+4.389)
AR 2293 T0060 1 2001 | 00851 (+4088)| 0000045  (+0.103)| 0000205  (+0.366)

G-AR | 2595 0.0073 1999 | 00867 (+4435)| -0.000049  (-0.124) | 0000357  (+0.705)

The presence of positive serial correlation indicates that there are slight persistent trends in the returns across
subsequent holding periods for most of the trading rules. It appears that at least part of the trading rule returns
can be attributed to positive serial correlation on a few days’ horizon. In other words, trading rules pick up trends
that start when they hold a position out of the market, and the rules switch to a long position early enough to
be able to exploit the persistence of the price trend. However, rules 9 and 10 are an interesting exception, as there
is evidence of significant negative serial correlation in returns across subsequent holding periods. These rules
appear to exploit persistent long-term trends: they hold long positions most of the time (see Table 2), but switch
out of the market when a price trend reverses itself.

Overall, these timing tests indicate that the trading rules found by the genetic algorithm have significant forecast-
ing ability. Interestingly, the sum of the conditional probabilities is considerably less than one for each of the ten
rules: on the average, py(t) + por) = 0.448 + 0.449 = 0.8%6 (averaged over the 100 trials,

pi(t) + ps(t) = 0.451 + 0.449 = 0.900 ). These results support the intuition of Cumby and Modest (1987) that

prediction ability is not a necessary condition for successful market timing.
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5. Concluding Remarks

A genetic algorithm has been used to identify technical trading rules. By a number of measures, these trading
rules appear to perform better out-of-sample than a simple buy-and-hold strategy. There is some evidence they
perform better than the rules analyzed by BLL.

Bootstrapping simulations indicated that none of the tested null models could wholly explain the reduced vari-
ability of the returns during the periods when the trading rules held long positions in the market. As other mea-
sures of risk may be more appropriate, it appears premature to reject the possibility that the excess returns may
still be due to increased riskiness. Once more sophisticated determinants of risk are identified, however, machine
learning techniques like genetic algorithms can allow investors to incorporate those readily into their trading
strategies.

Although profitable, the excess returns provided by the rules considered are not dramatic; the breakeven transac-
tion costs are in the range of costs borne by large institutional investors. Moreover, a number of practical details
were not taken into account, including the exact intra-day timing of the trading rule signais and the possibility
of lumpy dividends. Overall, these results suggest that only large institutional investors are likely to find it profit-
able to use such techniques to develop technical trading rules (at least in equity markets); small investors certain-
ly will not. In this sense the results are consistent with Grossman and Stiglitz’s (1980) modified view of market
efficiency that gathering information can lead to trading profits which in the long run cover costs.

There are several liquid financial markets where transaction costs are much lower than in equity markets. These
include the futures markets for financial instruments (including the S&P 500 futures) and for various commodi-
ties, as well as the foreign exchange markets. Because of low transaction costs, these markets may offer more
promising opportunities for machine learning techniques than a composite stock index. On the other hand, such
markets may already be very efficient, making trading rules less profitable.

Finally, the genetic algorithm adopted is a relatively simple one. The parameters of the algorithm such as the
length of the training period and the selection period are not necessarily optimal. More importantly, it only uses
very limited information for its inputs. This suggests it should be possible to use different genetic algorithms to
find better rules than those developed above.
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