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Abstract

Asymptotic variances of estimated parameters in models of conditional expectations are calcu-
lated analytically assuming a GARCH process for conditional volatility. Under such heteroskedas-
ticity, OLS estimators of parameters in single-period models can possess substantially larger asymp-
totic variances than GMM estimators employing additional multiperiod moment conditions—an
approach yvielding no efficiency gain under homoskedasticity. In estimating models of long-horizon
expectations. the VAR approach provides an efficiency advantage over long-horizon regressions un-
der homoskedasticity, but that ordering can reverse under heteroskedasticity, especially when the
conditional mean and variance are both persistent. In such cases. the VAR approach maintains a
slight efficiency advantage if the OLS estimator is replaced by an alternative GMM estimator. Het-
eroskedasticity can increase dramatically the apparent asymptotic power advantages of long-horizon
regressions to reject constant expectations against persistent alternatives.

*The Wharton School, University of Pennsylvania, and NBER. [ am grateful for comments by Marshall

Blume, Tim Bollerslev, Robert Engle, Robert Hodrick, Michael Gibbons, and workshop participants at the
University of Pennsylvania.



1. Introduction

Much empirical research in finance and economics attempts to estimate models describing
changes through time in conditional expectations of times series. The series of interest,
such as returns on financial assets or growth rates of economic aggregates, often appear to
exhibit significant fluctuations in conditional volatility. This study investigates the role of

such heteroskedasticity in the estimation of conditional expectations.

Large-sample variances of estimators of parameters in models of expectations are calcu-
lated analytically under a GARCH specification for conditional heteroskedasticity.! Many
of the estimators considered have been used often in previous empirical research, especially
in finance, and in all cases the estimators use the Generalized Method of Moments (GMM)
to exploit only the unpredictability of the forecast errors in linear models of conditional
expectations.? The primary objective is to explore the precision of estimators obtained us-
ing this popular approach when the forecast errors possess conditional heteroskedasticity. A
GARCH process for the heteroskedasticity is specified simply to allow analytic results. The
investigation does not entertain methods, such as maximum likelihood, that would incorpo-
rate a model of conditional heteroskedasticity in the estimation. Such alternative approaches
may offer a fruitful direction for subsequent research, however, especially given the appar-
ently important effects of heteroskedasticity found in this study. Future research can also
investigate, probably using Monte Carlo experiments, the extent to which the asymptotic
results approximate the corresponding properties in finite samples. It is hoped that the
design of such experiments can be guided by the analytic results obtained here, which allow
precise statements about the effects of heteroskedasticity across a wide range of behaviors

for conditional means and variances.

The investigation is conducted in the context of a model with two variables, z, and ;.

Conditional expectations of these variables are assumed to obey the two equations,

Yter = a+ pye + €41, (1.1)
Ty = a4+ by 4wy, (1.2)

where 0 < p < 1, and both ¢;4; and us+1 have zero expectations conditioned on information
available at time t. This simple model provides a tractable framework that has allowed a

number of studies to investigate properties of estimators of conditional expectations in both

!Bollerslev (1986) introduces Generalized Autoregressive Conditional Heteroskedasticity {GARCH), a
generalization of the ARCH processes of Engle (1982). Bollerslev, Chou, and Kroner (1992} review the use
of such models in applications in finance and economics.

*Hansen (1982) develops the asymptotic properties of GMM tests and estimators.



small and large samples.” In a common finance application, the principal motivation for this
study, wey) is an asset’s rate of return from time f to ¢ -+ | and Yi. observed at time ¢, is
assumed to capture the information relevant to predicting that return. A typical choice for
y: 18 a dividend yield, a bond yield. or another variable that is inversely related to an asset’s

current price.*

The univariate first-order autoregression for ye in (1.1) serves as the starting point for
the investigation. After quantifying the increase in the variance of the ordinary-least-squares
(OLS) estimator of p under heteroskedasticity, section 2 considers alternative estimators that
exploit additional moment conditions using Hansen’s (1982) Generalized Method of Moments

(GMM). An estimator formed by using multiple lagged values of y; as instruments—an

approach with no asymptotic advantage under homoskedasticity—can provide substantial
reductions in asymptotic variance under heteroskedasticity, especially when the conditional
varlance is persistent.” The number of additional moment conditions underlying such an
estimator can be large, however, and section 2 goes on to consider an estimator that replaces
those muitiple moment conditions with one condition based on a simple multiperiod forecast
error. This estimator appears to provide efficiency gains relative to OLS that. in many cases,
nearly match those delivered by the estimator computed with multiple additional moment

conditions.

Section 3 extends the analysis to consider the estimation of the parameters of the sec-
ond equation. the regression of x,,, on y, in (1.2). In the finance application mentioned
above, this equation gives the asset’s conditjonal expected single-period return. An estima-
tor obtained by adding two moment conditions based on multiperiod forecast errors again
provides substantial asymptotic efficiency gains relative to the OLS estimator in the presence

of heteroskedasticity.

Fquations (1.1) and (1.2} provide conditional expectations of y, and x, one period ahead,
but conditional expectations of multiperiod quantities are often of interest as well. In fi-
nance applications, for example, researchers have analyzed conditional expectations of the
multiperiod sum Zj‘zl Zitj, a K-period return. Estimating this conditional expectation in
the presence of heteroskedasticity is the topic of section 4. The “long-horizon-regression”

approach estimates the conditional expectation by regressing observations of 2;‘:1 Ty, di-

rectly on y;, where the observations can either overlap by A" — | periods or be spaced so as

3FExamples include Mankiw and Shapiro (1986), Stambaugh (1986), Nelson and Kim (1893), Campbell
(1992}, and Boudoukh and Richardson (1993).

*See, for example, Keim and Stambaugh (1986) and Fama and French (1988}

?As used throughout this study, the term “persistence” describes a stationary series with high autocor-
relation, as opposed to an integrated process.



not to overlap. The efficiency gains achieved by overlapping the observations are somewhat
greater when the conditional variance is time-varying and persistent, although these gains
become modest in any case as p approaches unity. An alternative approach to estimating
the conditional expectation of Zj‘il Lyy; 18 first to compute QLS estimates of the parameters
of the two-equation system in (1.1) and (1.2} and then to use those estimates along with the
implications of that vector autoregression (VAR) in computing the multiperiod expectation.
Under homoskedasticity, the VAR approach offers efficiency advantages over the long-horizon
regression, but heteroskedasticity can reverse this ordering, especially when the conditional
variance is persistent. When, instead of OLS, GMM with two additional multiperiod moment
conditions is used to estimate the parameters in (1.1) and (1.2), it appears that the VAR
approach maintains its efficiency advantage even under heteroskedasticity. The advantage is

minimal, however, when conditional volatility is persistent.

Section 4 also investigates the effects of heteroskedasticity on the power of long-horizon
regressions to reject the null hypothesis of constant expectations. Using the “approximate
slope”™ measure due to Bahadur {1960) and Geweke (1981), Campbell {1992) finds that, as
compared to single-period regressions, long-horizon regressions can possess asymptotic power
advantages against alternative hypotheses in which conditional expectations are persistent,
Campbell’s analysis assumes homoskedasticity. The investigation here reveals that the ap-

parent asymptotic power advantages of long-horizon regressions can increase dramatically in

the presence of heteroskedasticity.

2. The Univariate Case

In order to focus on the most essential aspects of the problem and to lay some groundwork
for the two-equation case, we first consider estimating only the parameters in equation (1.1),

the first-order autoregression for y,. Assume that o;, the conditional variance of €:41, Obeys
a GARCH(1,1) process.

Et{ﬁ?ﬂ} = gf = Yo + 7103—1 + 72637 (2.1)
where %, and v, are nonnegative and
YTEN Aty < L (2.2)

Let of denote the unconditional variance of ¢,. As observed by Engle and Bollerslev (1986),
equation (2.1} implies

Et{af+l - ‘752} = 7(0%2 - (752): (2-3)



50 7 1s the autocorrelation of the conditional variance.® The conditional distribution of ¢,

need not be normal, but assume

Et{€§+1} =0 (24)
and that E{e}} exists. Also define
_Ee)

the unconditional excess kurtosis of ¢,.”

2.1. The Asymptotic Variance of the Sample Autocorrelation

Let p(;y denote the OLS estimator of p. (The subscript notation is explained and used
later.) When the disturbances in {1.1) are homoskedastic, it is well known that VT () —p)
converges 1n distribution to a normal variate with zero mean and asymptotic variance 1 — p?

as [’ grows large.®

More generally, when the disturbances in (1.1) obey the GARCH (1,1) process as specified
above. it can be shown that the asymptotic variance (multiplied by T') of p(1y 1s given by

v(1—0*)(x +2)
L —py

var(p)) = (1 — p%) |1 + , (2.6)

which simplifies to 1 — p? in the homoskedastic case of 7 = 0. (Details are provided in the
Appendix.) The bracketed quantity in (2.6) is greater than or equal to unity, increasing in
# and v, and decreasing in p. In other words, the relative increase in asymptotic variance is

larger when €7 is more volatile, 02 is more persistent, but y, is less persistent.®

Table 1 reports the ratio of A(1)’s asymptotic variance under homoskedasticity to that

under heteroskedasticity. That is, each entry in table 1 is the reciprocal of the bracketed

®Although they do not address parameter estimation, Baillie and Bollerslev (1992) analyze the distribution
of prediction errors from the same AR(1)-GARCH(1,1) model specified above.
“If the conditional excess kurtosis of €, is constant, denoted by k.. then

_ sl =" —293) — 643
K73+ 1 =72 + 393

1

which. given v and «. obeys the bounds

w1 — 39%) — 647 o <
Kyt 41+ 292 — 70 =

®See, for example, chapter 7 of Brockwell and Davis (1987).

“Note that, by the definition of excess kurtosis %, the unconditional variance of ¢ is given by (k + 2)o,
and & > —2.



quantity in {2.6) for a given combination of ~. . and p. The choices of x are intended to
include a fairly wide but reasonable range of values relevant to applications in economics and
finance. The values k = 3 and x = 13 (used in subsequent tables as well) approximate the
sample excess kurtosis of the residuals of (1.1) fitted using OLS over two periods. 1/1927-
12/1952 and 1/1953-12/1989. where v, is the monthly time series of the dividend-price ratio
{D/P) for the value-weighted portfolio of stocks on the New York Stock Exchange (NYSE)

The dividend-price ratio for month ¢ is computed as the sum of all dividends paid during the

twelve months through month ¢ divided by the value of the portfolio at the end of month
t. It should be noted that even the higher value of x = 13 is considerably lower than the
sample excess kurtosis of 26 obtained from the residuals of (1.1} using the D/P series for
the entire 1927-89 period.

As table | indicates, the largest relative increases in the asymptotic variance of A1y occur
when 7 is high and p is low, but the increases when p 1s high can be substantial as wel],10
The value p = 0.97 corresponds to the sample autocorrelation of D/ P over the 1927-89
period. Even for this value of p, the ratios in table 1 are as jow as 0.161 when ~ = 0.9, and
a number of previous studies have estimated the persistence of the conditional variance of
financial time series to be at least that high. For example, Hodrick (1992) estimates a value
of ¥ = 0.98 in a GARCH(1,1) process for unanticipated movements in the dividend-price
ratio.'! In general, it appears that conditional heteroskedasticity can produce large increases

in the asymptotic variances of sample autocorrelations.

2.2. Adding Multiple Moment Conditions

In the presence of conditional heteroskedasticity, one approach to estimating « and P18 to
specily a conditional density function for ¢, and then compute maximum likelihood estimates
using both the AR(7) process for y, in (1.1) as well as the GARCH(1,1) process for 02 in (2.1).
This stuay investigates estimation approaches that specify neither the process for o? nor the
conditional density of ¢,. The estimators considered here rely only on the requirement that
the forecast errors in (1.1) have zero conditional expectations. The large-sample variances
of such estimators in the presence of heteroskedasticity are analyzed using the GARCH(1,1)

process.

The requirement E,{¢,;1} = 0 can be used to generate many moment conditions that

" Milhgj (1985} and Diebold {1986, 1988} show that the asymptotic variances of sample autocorrelations
can be substantially larger in the presence of ARCH.

"Hodrick specifies a GARCH(1,1) model in a somewhat different setting than assumed above. Specifically,
he estimates a multivariate constant-correlation GARCH process for the disturbances of a VAR in three
variables, one of which is D/P, and he assumes multivariate normality.



could be used in a GMM procedure. One set of conditions can be obtained from the K + 1

element vector ) )
Cepa
€1+1Yt

Y = | fe+2le | . (2.7)

| Ct+RYe J
(For later tractability, these conditions are stated in terms of leading the €’s rather than
the equivalent representation of lagging the y’s.) Let 9(A-) = (&(xy i) denote the optimal
GMM estimator of ¢ based on the & + | moment conditions E{gr:} = 0. That is, é(h—) 18
the value of # that minimizes g}(S'}}lgﬁ—, where g = (1/T)SF, gn,, T is the sample size,
and Sy is a consistent estimator of

B

Sk = Z E{QI\'.tg:'{,:—I}' (28)

{=—o0

Note that 63(1) is the OLS estimator. Hansen (1982) shows that as T grows large \/T(é(;\—) —0)

converges in distribution to a normally distributed vector with mean zero and covariance

matrix (D5 Sg' D )~!, where

i 891{,1
DK_E[%,J. (2.9)

Under the assumptions for (1.1} and the GARCH process in (2.1), Dx and Sk can be

calculated analytically. Let tt, and crj denote the unconditional mean and variance of Yy-

Then

1 2/-51; ‘
Juy nu‘y + O-_jr
DI\— = — #y #5 + poj ] (2'10)
ey
and
2 9 L,
Sy = O'y(l — p} pe @ | (2.11)
where ¢ is a K-vector of ones and the (i,7) element of ® is given by
Lisos i—7 max(i,; 1 - : 'k':+2
B(i.§) = “3 + pl Jlo.i (l + o~ {i.4) {( ]P_)f)z‘v )]) ' (2.12)

(Details are provided in the Appendix.)

It is useful to observe that 0(!{) 15 the efficient instrumental variable (IV) estimator of
the regression in (1.1) when the instrument vector is (1 yr ye—r -+ g ). If the regres-

sion disturbances are serially uncorrelated and homoskedastic, standard results imply that

6



this IV estimator has the same dsymptotic covariance matrix as the OLS estimator.'? That
is. including additional lags of y, offers no asymptotic efficiency advantage, which can be
confirmed by evaluating (2.10) through (2.12) in the homoskedastic case of v = 0. In the
presence of heteroskedastic regression disturbances. it is possible that expanding the set of
instruments used to compute an IV estimator can produce efficiency gains, as has been ana-
lyzed in general settings by Cragg (1983), White (1984), and others. In the mode] employed
here, it can he verified that when p = 0, Var(é(m) = Var(é(l)) for alt A" > 1. That is, the
additional moment conditions provide no efficiency gain when y, is serially uncorrelated,
whether or not the disturbances are homoskedastic. When both p and v are nonzero, how-
ever, there will in general be asymptotic efficiency gains by adding moment conditions for
multiple-step-ahead forecasts or, equivalently, by adding multiple lags of y,. Hansen and
Singleton (1990} analyze GMM estimators that use multiple lagged values of an instrument
to estimate a class of models that, in terms of departures from the standard i.i.d. setting,
might be viewed as the complement, of the models considered here. Hansen and Singleton
consider models in which the disturbances are homoskedastic but serially correlated. whereas

the disturbances in (1.1} and (1.2) are seriaily uncorrelated but heteroskedastic.

Table 2 displays the ratio var{pwy) /var(g)) for various values of K, p,v. and «. (The
ratio does not depend on g, or 7.) In the context of the previously described example using
the monthly (D/P) series, K would denote a number of months. Although the entries in
table 2 indicate that the ratio var{pyy)/var(pgy) is monotone in neither £ nor ¥, many of
the lowest ratios (greatest efficiency gains) tend to occur when both of those parameters are
high. In such cases, asymptotic efficiency gains continue as K is increased to fairly large
values. I'or example, when p = 0.97, ¥ = 0.9, and A = 48, the variance of the OLS estimator
exceeds that of gy by 33% when x = 3 and by 92% when & = 13. Of interest for finance
applications is that, as observed eatlier, researchers often obtain similarty high values for

sample estimates of both p and .

Increasing A to large values is not always required to achieve substantial asymptotic
efficiency gains. By construction, var(p())/var(p(1y) cannot increase as moments are added,
but there are cases where most of the gain is achieved with a modest value of . For
example, gains nearly equal to those noted above are obtained with K =6 when p = 0.9

and 7 = 0.5. For all of the cases considered in table 2. Var(;}(h-))/var(ﬁm) 1s decreasing in &.

12See, for example, proposition 4.50 in White (1984).

-1



2.3. Adding One Long-Horizon Moment Condition

The analysis in the previous subsection indicates that, although substantial reductions in
the asvmptotic variance of pry relative to p(1) are possible when both 4 and p are high,
achieving those gains can require rather large values of K, and thus a large number of
moment conditions. We consider here an alternative GMM estimator obtajned by adding

only one moment condition to the two conditions used in computing the OLS estimator.

Let €41 1 denote the forecast error for the sum of K future y’s:

N Iy
ek = D Yk — B ek}
k=1 k=1

N - (JK + 1),0+,0K+1) (P . {OK-H)
= S s —a - | -{ =}, 2.13
g . ( (1—p)? A (2.13)

(When A" = 1. the second subscript on ¢ is suppressed.) Construct the product

MRt = SR K Y, (2.14)

and define the three-element vector
" 1.
-, = ' . 1
9K 4 { My J (2.15)

Let 074y = (a7 Py} be the optimal GMM estimator of 8 based on the moment conditions
E{gs.} = 0. The asymptotic covariance matrix for Oy can be evaluated analytically. The

expected value of the gradient of ¢}, is given by

. ag;{,t . Dy
== B () B (o) | 1210
where
aml\',f _ _ Juy re _ _ N )
amh’t) I - -
El——=] = ———E _[K(l—p)- p(1 = p"
( 7 (]ﬁp)g[ (I=p)~p(1 = p™)]
——i[l — (K +1)p" + Kpi+1] (2.18)
(1—p)? g e '

The multiperiod forecast error €41,k 1 a combination of the single-period forecast errors:

K K—k+1

1 -
Sl W = Z _‘*p——EH_k. (219)
k=1 1 - p



This implies that the three elements of 9w can be written as linear combinations of the

N + 1 elements of gx ,, defined in (2.7). Specifically,

Ir, = Qrgr., (2.20)
where
1 ] 0 0
Qr=10 1 0 0 (2.21)
0 1 _pJ{ l_pf\r—l l
1—p 1—p
Therefore,
S = Z E{gﬁ'.tg};‘i,r—f} = Z E{QI\'QK.tQ’}\'.t—JQ;\’} = QKSKQ}\'A_ (2.22)
[=—no [=-nc

and the asympotic covariance matrix of 9?}{) 1s equal to (DFG(S}“\—)‘ID}\-)‘I.

Table 3 displays the ratio var(pir )/ var(p,) for the same parameter values used to
construct table 2. Here. increasing i replaces the single additional rmoment condition, so
Var(p;]\-))/var(f)(l)) will first decline and then, unlike the entries in table 2, eventually rise as
K increases. Nevertheless, two rather striking observations emerge from table 3. First, there
generally exists a value of K such that the efficiency gains for A(xy reported in table 2 are
nearly matched by Plk)- Second, even when K differs from that “best” choice, the relative

reductions in asymptotic variance produced by Pixy can still be substantial.

Consider again the case in which p = 097 and v = 0.9. When 49 separate moment
conditions are used (K = 48), the resulting estimator py4) has an asymptotic variance that
is either 0.748 or 0.521 times the variance of the OLS estimator g1y, depending on whether &
equals 3 or 13. Those ratios increase to only 0.751 and 0.528 for Pl4s), the estimator computed
with three moment conditions--the two conditions used in OLS plus one condition for a 48-
month forecasted sum of the y’s. In the case where p =109 and v = 0.5, also considered
earlier, the asymptotic variance of P2y 1s 0.553 times that of p(1) when & = 13, and that
ratio increases to only 0.565 for Plrz)- Choosing K smaller or larger than 12 stil] produces

substantial efficiency gains: var(plg ) /var(pay) = 0.574 and var(plyy ) /var(pay) = 0.666.

In general, it appears that a significant fraction of the asymptotic efficiency gains rela-
tive to OLS obtained with Aiiy, the estimator computed using A + 1 moment conditions,
are delivered by Pky, an estimator computed with three moment conditions. With both

estimators, the gains relative to OLS increase with kurtosis (%)

9



2.4. Weights on the Multiperiod Moment Conditions

Both 9(1\—) and 07 are solutions to a two-equation system of the form Agn(0) = 0, where
Alsa2x (K +1) “welghting matrix” and dr (0), a function of 6, is the sample analogue
of B{gx.}. The choices of A differ for the two estimators, and the differences relevant to
determining asymptotic variances lie in the relative weights applied to elements 3 through
K +1 of gg(#), which are the sample analogues of the multiperiod morment conditions
Elemiyh, 7 = 2,... K. The weights on those conditions used in computing 6’(’}() are
proportional to the corresponding elements in the third row of Qr in (2.21). In that case,
the weights depend only on p and are determined by the identity governing the multiperiod
forecast error in (2.19). In computing Fj(m, where the additional K — 1 moment conditions
enter separately, the weighting matrix conver-ges (for large T) to A = D% Si* [see Hansen
(1982)]. It can be verified that ouly the second row of that matrix contains nongero entries
for the additional X — 1 moment conditions. which permits a straightforward comparison of

the relative weighting schemes for the estimators.

Figure | displays several sets of weights on the sample analogues of the moment conditions
Eleviye}, 7 =2,.... K, for the case p =09 v=05, and x = 13. The “optimal” weights
used in computing é(h’) increase through ; = 4 and then decline monotonically. These
weights are shown for K = 48, although it is evident from the figure that essentially the
same weights would result for any K > 13, since the weights are nearly zero beyond that
horizon. The weights in the N-period sum used to compute 9’(‘}\-), shown in the figure for
both A = 12 and A = 48, decline monotonically to zero over the range 7 = 2,... K + 1.
Both sets of multiperiod-sum weights depart from the optimal weights, but when K = 2
there is at least fairly close agreement with the optimal weights at the beginning and ending
points (j = 2 and j = 12). The results in table 3 are consistent, with this analvsis, in that
07,y does substantially better than 9’(‘48} in matching the asymptotic efficiency gains achieved
by O(xy (for K > 12). The relevant ratios in table 3 are 0.565 for 6’;‘12) and 0.823 for 92"48), as
compared to 0.553 for 0y (table 2}. Although a simple analytical expression for the optimal
weights remains elusive, those weights typically appear to decline less rapidly when + and p
are both high. That behavior is consistent with the result in table 3 that, when p = 0.97

and v = 0.9, the greatest efficiency gain for 875y then occurs with K = 48.

3. The Two-Equation Case

The previous section addressed the estimation of the parameters in equation (1.1), the first-

order autoregression for y;. In finance applications, the parameters of equation (1.2), which

10



gtves conditional expected single-period returns. are often of equal or greater interest. This
section considers the estimation of « and 5. As in the previous section, conditional het-

eroskedasticity in the disturbances €141 and v, remains the central focus.

[n order to keep the problem tractable enough so that asymplotic variances of the estima-
tors can still be calculated analytically and characterized by a small number of parameters,
the conditional heteroskedasticity in 41 15 assumed to driven by that in €i4+1- Specifically,

the conditional variance-covariance matrix of the disturbances is assumed to obey

}:t{,i .EH-l } { Cipr o Upgy }} = O'tQQ, (31)
Ut

where © is a (constant) positive-definite matrix with its (1, 1) element set to unity, and ol
1s still defined bv (2.1). This simple specification of the conditional heteroskedasticity in the
bivariate process for (€141 tgp1) may no doubt be viewed as too restrictive for many appli-
cations. It is hoped that the analvtical results obtained here can provide some guidance for
subsequent investigations, perhaps involving Monte Catlo experiments. under more general

specifications of heteroskedasticity.

3.1. Adding Multiple Moment Conditions

We first consider a GMM estimator for 3 = (a b)" analogous to the estimator é([{) defined in

the previous section. That is, define

( Ut
Ur 1Yy

Srg =1 Wl || (3.2)

| Yi+R Y |

and let B{P&') = {ax) f;(K))’ denote the optimal GMM estimator of 3 based on the K + |
moment conditions E{fx,} = 0. As before, .3(1) is the OLS estimator.,

Obtaining the asymptotic covariance matrix of B(K) involves a simple extension of the

analysis from the previous section. Define the 2{K + 1)-element vector

. | 9
hh,t = { let J y (33)

as well as the four-element parameter vector § — (@ pab). Itis straightforward to show
that

Ohy

11



where [, denotes the 2 x 2 identity matrix and Dy is as defined in (2.10). In addition, the
specification in (3.1) implies that

[o.w)

Z E{bribi, ) = Q@ Sk, {3.5)
=—oc
where Sk is as defined in (2.11). It follows from (3.4) and (3.5) that the asymptotic covariance
matrix of ;3’( /) 1s given by

-

Var(B(K)) = wovar(fix), (3.6)

where wy 5 1s the (2,2) element of £, Moreover, if 3(;\-) is the optimal GMM estimator of §
based on the 2(K + 1) morment conditions E{fg,} =0, it also follows from (3.4) and (3.5)

that var(é(h-)) =0 var(é{;\-)),_ so there is no asymptotic gain in efficiency relative to the
. s

estimator (6 Biry)-

The immediate implications of (3.6) are that (i) each value in table 1 is also the ratio of
f)(l)'s variance under homoskedasticity to its variance under heteroskedasticity and (11) each
value in table 2 is also the ratio var(ga{;\v))/var(f)(l)). Obviousty, the same observations offered

earlier about those tables apply here as well. Note also that VEL]."(B(K)) does not depend on

3.

3.2. Adding Two Long-Horizon Moment Conditions

Proceeding as before, we now consider an estimator obtained by combining the two moment
conditions used in OLS with moment conditjons corresponding to multiperiod forecast errors
for sums of future y,’s and z,’s. Equations (1.1) and (1.2) constitute a first-order vector
autoregression (VAR) for y; and z, that can be used to obtain a forecast of a sum of K
future r,’s—a multiperiod return in the finance application described ecartier. If Utr | K

denotes the error in such a forecast, one can show that
i A
U KK = Z Tepk — Ez{z ’l?t+k}
k=1 k=1

s K-1-Kp+p¥ 1—ph
= B k—f{aab( )—b( )y. 3.7
,; v (1-p)? L—p ) (3.1

(As before, the second subscript on u is suppressed when K = 1.) Construct the product

MR = Wt K K Yis (3.8)

12



and define the six-clement vector

g1 *
' M e
iy = [ fie |- (3.9)
' 3N
3'15"3

Let 6&,) = (QIK) p(TKJ agh-) bgm)’ denote the optimal GMM estimator of § based on the
moment conditions E{h}\t} = 0.

The asymptotic covariance matrix of 8} can also be calculated analytically. The expected

value of the gradient is given by

Dy 0

ah%
Dk =t [ (;r?’tJ B 9 ’ 9 In g 1 5 ’ (3.10)
B(25) (%) F{e) B )
where
d R . b;“y - : 2 .
an}{r) byt? o .
El——=] = -2 [K(1—-p) =14~
( 75 (1_p)2[ (1 —~p) P
ba, - K-1 - K
_(l_p)z[I—Ap T (K - 1)pt, (3.12)
aTLK‘ - .
E( Bat) = —Kpy,, and (3.13)
- f)n;\-_t g2 21 - p}'{
E( ab ) = l/ly O'yT“——p. (314)

The multiperiod forecast error Ui i,i 18 @ combination of the single-period forecast errors

in both y; and «,,

K—~1 bl — )I\'—k e .
Uip K = Z _(*f—)fu-k + Z Upgk, (3.15)
k=1 l - k=1

which implies that ng s 15 a linear combination of the elements in gxt and fr,. As observed
carlier in {2.19), mg, is a linear combination of the elements of gg ,. Therefore, h}\-‘t can he

written as

hiw = Prhg, (3.16)
where

[ 1 0 0 0 0000 -

0 1 0 0 0000 --- 0

= = 1000 ... 9

- - I—p I—p

Pr=1y 0 0 0 01060 -0 (3.17)

0 0 0 0 0010 .- ¢

bfl— !\'—1) b(l— KN=2
[0 5= — b0 0 11 - |
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Combining (3.5), (3.16), and (3.17), and applying the same approach as in (2.22), gives
Sk = Pr(Q0 S )Pl (3.18)

The asymptotic covariance matrix of 6{1\-) is then given by (D}\-’(fﬂ)‘lDL)".

Table 4 reports the ratio Var(bzr[\-))/var(f)(l)) for the same values of the model parameters
used to construct tables 2 and 3. Constructing this and subsequent tables requires values
for some additional parameters. The unconditional mean and standard deviation of Yy, are

specified as

#y = 0.044 and (3.19)
oy, = 0.014, (3.20)

which are sample estimates obtained from the monthly series of (D/P) for the period 1/1927-

12/1989. The unconditional mean and standard deviation of z, are specified as

fe = 0,010 and (3.21)
oy = 0.057, (3.22)

and the unconditional correlation between € and u, is set to

corr{e;, u,} = —0.90. (3.23)

The values in (3.21) and (3.22) are the sample moments of monthly returns on the value-
weighted NYSE portfolio for the 1927-89 period, and the value in (3.23) is the sample
correlation of the residuals obtained by an OLS fit of both {1.1) and (1.2) using D/ P and

the value-weighted NYSE return over that same period.

The asymptotic variance of bgf\-) also depends on b, and table 4 displays resuits for both
b= 0.0 and b = 0.5. The first value corresponds to the case of constant expected returns,
seen as an interesting null hypothesis by many researchers in finance, whereas the second
value is typical of sample estimates obtained in previous empirical studies investigating the
relation between D/P and expected returns le.g., Fama and French (1988)]. As indicated

by the entries in table 4, however, the variance of bgK) 15 virtually identical for both choices

of b.

The values of var(bzh-])/var(!;(l)) in table 4 indicate that adding two moment conditions
to those used in computing the OLS estimator achieves many of the asymptotic efficiency
gains produced by adding the A — ] separate moment conditions used in computing ZJ(K).

That is. many of the entries in table 4 are nearly as low as those in table 2. As was the
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case with (x> substantial gains occur over a fairlv wide range for &. In the previously
Considered case where p = 0.97 and v = 0.90, for example, var(b! (ag) )/ var( b(l } = 0.53 and
var(b! (12))/ var( b(l ) = 0.69. Thus, at 1edst for the simnple specification of heteroskedasticity
cousidered here, it appears that approaches similar to those considered in the previous section
for estimating the single-equation autoregression for y, can produce similar reductions in

asymptotic variance when estimating the parameters of the regression of z,4; on y,.

4. Estimating Long-Horizon Expectations

The previous sections address the estimation of the parameters in equations {1.1) and (1.2),
which give conditional expectations one period ahead. In finance applications. interest often
centers on estimating expectations for multiperiod horizons. Specifically, the parameters of
interest are ap and by in the regression

N

Z Trple = ap + DRy + weg i pn (4.1)
k=1

where the dependent variable is the rate of return over a f{-period investment horizon.

4.1. Long-Horizon Regressions

One approach to estimating 3y = (ag br) is simply to regress 5K Tepr on y.t In other
pp £ pl £ k=1 L1t ¥

words. if

Uiy KK
Wry = ' . 4.2
Bt { Ui+ K K Yt } (42)

a long-horizon regression computes the GMM estimators of agx and bk based on the moment
condition E{wg,} = 0.

[f the long-horizon regression uses wgy for each of T periods in the sample, then the
successive observations of Zi‘zl Lk overlap by A" —~ 1 periods. Denote the long-horizon
regression estimator obtained in this case as J;\ REG lap). Let o’;\ (REG non) denote the estimator
obtained when wpg, is instead computed only every & periods, so that the multiperiod

observations do not overlap.

"o obtain the asymptotic covariance matrices of these regression estimators, first define

the vector

l T
MKt = ( " ) B (€rqq - Eob i Uppy o Uypp ), (4-3)

!3See, for example, Fama and French (19838, 1989),



which is 1A x 1. [t can be verified that

= 2| Q&) QR ()
e dpe .0t — g2 ybot A .
S??]\' = 1;{3@ E{’?A.tr]f\‘t‘{} T, [ 0 (ﬂyﬂ [,.') Nwd 2 (14)

where © is defined as in (2.11) and (2.12). Next observe from (3.15) that

Wi = Wrg s, (4.5)
where I Kt o1 K2
Wi =5L% U=p7) b —r ) o h 0 ). (4.6)
L —p I —p
Equations (4.4) and (4.5) imply that
Swr = Y Blwgw), )} = Wi Syx Wi, (4.7)
l=—00

so the asvmptotic covariance matrix of BK(REG.1ap) 18 given by (D{VK,SR}KDWK)”, where

aw;{t} l: 1 I }
Dwy =5 | =22 — MR 4.8
WK !:dﬁft\ 1ty #j _+_0.; ( )

The asymptotic covariance matrix of ﬂK(REGmn), which does not use overlapping observa-
tions. is given by K wr (Siwr) ' Dwi )™, where Siwvr = Wi S5 Wi and

(4.9)

e ‘ . Q@ Iy QQ 5
N A

D0 u,lx Q6 diag(®)

For the case in which b = 0 and the disturbances in (1.1) and (1.2) are homoskedas-
tic. the ratio var(f;h-mg(;.mp))/var(f);\—(;gEG‘non) 1s computed analyticallv by Boudoukh and
Richardson (1993). They observe that. although this ratio equals 1/K when p = 0, indi-
cating large asymptotic efficiency gains to using overlapping observations in that case, the
efficiency gains are much smaller if p1s high. If K = 24, for example, they report that
Var(E)K(REG'gap))/Var(?);\-(HEG'mn) rises from 0.042 at p = 0 to 0.505 at p = 0.9. Table 5
reports Var((A)K(REGJQPJ)/x’ar(gh—(HEGmn) for the same parameter values used in table 4. In
other words, the analytical computations of Boudoukh and Richardson, reproduced in the
7 = U rows of the b = 0 panel in table 5. are extended here to include cases in which b > 0

and the model’s disturbances are heteroskedastic.

The resuits in table 5 indicate that var(fﬂ)K(REG,Iap))/var(EJK(REG,WR) = 1/K when p = 0,
whether or not & and ~ are zero, but perhaps more interesting are the results regarding the

asymptotic efficiency gains produced by overlapping observations when p 1s high. First, the
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efficiency gains increase in 7. For example. when b = 0. f =097 and K = 18, the ratio
var(ZA)K(REGJRPJ)/var(5;\4-(356-.”0“) cquals 0.649 when v = 0 but falls 1o 0.469 when v = (.9. In
other words, the gains from overlapping observations are smallest in the homoskedastic case.
Also observe that, in the homoskedastic case. the relative efficiency gains from overlapping
are smaller when 6 = 0 than when 6 = 0.5. For example, again when p = 0.97 and & = 48,
var(?);\—(REG'jap))/Var(?);\—mggmn) equals 0.588 when b = 0.5, compared to 0.649. This latter
difference disappears and even reverses slightly, however, as ~ increases: when b = 0.5,
var(?)A—(REGMP))/Va,r(f;K(REG_mﬂ) equals 0.484, compared to 0.469. In general, although the
asymptotic efficiency gains obtained by overlapping observations are modest in any event
when p is high as compared to when p = 0. il appears that such gains are smallest for the

case of homoskedastic disturbances and b — i

4.2. The VAR Approach

An alternative approach to estimating gr = (ax bk )’ is 1o substitute an estimator of § =

(e p a b) into the functions,

. K-1-Kp+ pK)
ap = [\a—l—ab( , 4.10
(1 p)? (4.10)
1 pf
b = b( ’ ) (411)
1—p

as given earlier on the right-hand side of equation (3.15). That is, the VAR approach esti-
mates long-horizon expectations by using both (1.1) and (1.2).2 The alternat;ve estimators
of & discussed in the previous section, when substituted into (4.10) and (4.11), give alterna-
tive VAR-implied estimators of Ir. Let ,«‘?3[\-(“7‘43) denote the estimator based on the OLS

estimator 5(1), and let d}\'(J"."AR) denote the estimator based on the GMM estimator 6}.

The asymptotic covariance matrices of BK(I.VAR) and 5L’(J,VAR) can be obtained by using

the first-derivative matrix.

86[" Pag QEIL Fag LT
D= |——1=| 2 Jo Jo (4.12)
o dp Fa b
where dag /o = K, dby [da = Dby fda = 0,
Jay K—1+ph—Kp
= b . 1,15
da ( (1 —p)? (4.13)

'"S1ch an approach to constructing expected long-horizon returns is analyzed by Kandel and Stambangh
(1987, :188), Campheil {1991), Hodrick (1992), and others.
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d;: o (K(ph’—l ~1)(1 - fl) i;()f\ ~1+p" A’p)) __ (4 10)
g - N
a(;)é _ 11—_,0:'_ (4.17)

The asymptotic covariance matrix of 5(1) is equal to Q @ (DS D)1, by (3.4} and (3.5).
Therefore, the asymptotic covariance matrix of ,*;)K(lly,m} is Dap[Q 9 (D;S;lDl)“]D;K,
Stmilarly, since the asymptotic covariance matrix of & is equal to (D} '(S})”Dﬂ)_l. as
shown in the previous section, the asymptotic covariance matrix of ,SL(J’V‘,lR) Is equal to
Dg;{HDEI(S})_lD})_I] s The analysis below sets J, the horizon used in constructing
the additional VAR moments. equal to K, the multiperiod horizon in (4.1). This choice for
J. although perhaps somewhat natural. is made purely to contain the scope of this study;

other choices for J could prove more desirable.

We first compare the two approaches to estimating bx that have been analyzed in a
number of previous studies: (i) computing an implied bg as a function of the QLS estimators
of the single-period VAR parameters versus (i) regressing zﬁ;l Tr+k ON ¥y using overlapping
observations. Table 6 reports the ratio var(EA)K{LVAR))/var(Z:K(REGJQP)) for the same parameter
values used in tables 4 and 5. Boudoukh and Richardson (1993) compute this ratio when
b =10 and the disturbances are homoskedastic, and their results are reproduced in the v = ()
rows of the & = 0 panel in table 6. When both & and 7 are zero, the ratio of variances equals
I/K at p = 0 and then approaches unity as p increases. In other words, the OLS-VAR
approach always enjoys some efficiency advantage over the long-horizon-regression approach
in this case. but. as Boudoukh and Richardson observe, that advantage grows small as I/
approaches unity. Table 6 indicates that the same statement can be made when b = 0.5,

except that the efficiency advantage of the OLS-VAR, approach is slightly greater.

The most striking result in table 6 is that persistent heteroskedasticity can render the
OLS-VAR approach decidedly inferior to the regression approach, especially when p is high.
Consider again, for example, the case where 6 — 0.5. p = 0.97, and K = 48, When v goes
from 0 t0 0.9, the variance of the OLS-VAR estimator of by goes from 65% less than that of
the regression estimator to 62% more. Another dramatic reversal occurs in the case where
b=105 p =009 and K = 12: as 7 goes from 0 to 0.9, the variance of the OLS-VAR
estimator goes from 52% less to 73% more than that of the regression estimator, although

this case demonstrates that the ratio of variances is not monotonic in v. Similar results
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hold for & = 0. In general, the apparent asymptotic efficiency advantages of the OLS VAR

approach derived under homoskedasticity are not robust to violations of that assumption.!®

Table 7 reports the ratio var(b}{(K‘VAR))/var(f)[\-(REG.gam). In other words. table 7 reports
the same VAR-versus-regression comparison as table 6, except that the VAR approach re-
places the OLS estimator of § with the GMM estimator based on the two additional moment
conditions. For the parameter values considered, the long-horizon-regression estimator of by
never has an asymptotic variance less than that of the VAR-based estimator. That 18, none
of the entries in table 7 exceeds unity, although in several cases with & = 2 the ratio is equal
to 1.000 {to that manyv decimal places). In the case considered previously, where b = (.5,
p = 0.97, and K = 48, the ratio of variances remains below unity as v increases, although
the ratio rises to 0.892 at v = 0.9. The VAR estimator of bg using the additional moments
provides only a slight asymptotic efficiency advantage over the regression estimator when
both p and v are high, but this advantage, unlike that of the QLS-VAR estimator, is not

reversed by the presence of autocorrelated conditional heteroskedasticity.

4.3. Approximate Slopes

Much empirical research in finance investigates the hypothesis that rates of return for all
investment horizons are unpredictable. In the context of the model used here, that null
hypothesis corresponds to the restriction b — b = 0 for all I{'. The powers of various tests to
reject that null hypotheses can be analyzed using the asymptotic variances of the parameter
estimators computed above. The vehicle for the analysis is “approximate slope,” a measure
introduced by Bahadur (1960} and analyzed subsequentiy by Geweke (1981). Consider the
powers of statistics z; and z; to reject the null in the presence of a fixed alternative. and
let ny and n, denote the numbers of observations required for each statistic to reject with
a given probability at significance level s, CGeweke shows that, as 7" grows large and s is
decreased so as to hold constant the probability of rejection, n1/ny approaches ¢3/ey, where
c¢; and ¢; denote the statistics’ approximate slopes. If ¢, is twice ¢, then asymptotically, z,

requires ouly half as many observations as =, to reject the null with a given probability.

For any statistic distributed yv? under the null, Geweke (1981) also shows that the approx-
imate slope is the probability limit of 1/T times the statistic under the alternative. When
the null is that a single parameter p is zero, and if the estimator p is asymptotically normal,

then this probability limit is simply ¢ = pa/(Tvar{p}), where the variance is calculated

*The data-generating process used by Hodrick (1992) in his Monte Carlo experiments assumes a GARCH
specification for heteroskedasticity. Hodrick considers both the OLS-VAR estimator and the long-horizon
regression estimator, but he does not directly compare their variances.
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under the alternative p = p4. It follows that the ratios of asymptotic variances reported in
tables 2 through 7 can be interpreted as reciprocals of asymptotic slopes under a variety of
alternatives. That is, when the parameter examined is the same for both tests, which is the
case in those tables, then the ratio of approximate slopes simplifies to the rectprocal of the

ratio of the variances of the estimators.

Campbell (1992) analyzes the powers of various regression-based tests of predictability.
He finds that statistics based on long-horizon regressions with overlapping observations can
possess approximate slopes greater than tests based on single-period regressions. Campbell
calculates approximate slopes under an assumption of homoskedasticity. The asymptotic
varlances computed in this study can be used to investigate the properties of the same
approximate slopes under heteroskedasticity, The approximate slope for the test based on
the single period regression is given by c(l) = b2/(_Tvar{f;(1)}). In the long-horizon regression,
the approximate slope is ¢(K) = bf\-/(Tvar{BK(REG,;ap]}), where by is given by (4.11), and
the variance in the denominator is calculated under that alternative. Note that (K )/e(l)
does not simplify to a ratio of variances, since the two tests examine different parameters, by
versus b. As Campbell observes, the long-horizon regression can achieve asymptotic power

advantages if, as K increases, b3 grows faster than Var{b;\-(REG,gap)}.

Table 8 reports the ratio of approximate slopes when the alternative hypothesis is given
by b= 0.5. In essence, the two values of b used previously in tables 4 through 7 are used here
to specify the null and the alternative. The vy = 07 rows correspond to the homoskedastic
setting analyzed by Campbell (1992). The entries in those rows confirm that long-horizon
regressions can indeed possess asymptotic power advantages when p is high, although the
ratios of approximate slopes exceed unity by only modest amounts for the horizons and
parameter values used here. Campbell obtains higher ratios by including somewhat different
parameter settings and by entertaining horizons substantially longer than 48 months. Table
S reveals that higher ratios can also arise in the presence of heteroskedasticity. Most dramatic
s the case of the 48-month regression when p =0.97. When x = 13, the ratio of approximate
slopes goes from 1.14 to 5.25 as 7 increases from 0 to 0.9. Substantial increases occur in
other cases with much shorter horizons. When p = 0.9, for example, the ratio of approximate
slopes in the 6-month regression goes from 0.92 to 2.30 as v increases from 0 to 0.5. The

latter case also reveals that the ratio of approximate slopes is not monotonic in .

Given that approximate slope is an asymptotic construct, the power advangages it ap-

Y Jegadeesh {1991) and Richardson and Smith {1991, 1992) also use approximate slope to analyze power
in regressions of returns on lagged returns.



pears to indicate may prove iilusory in finite samples.’” Monte Carlo experiments can reveal
the extent to which comparisons of approximate slopes are indicative of tr1e power advan-
tages, but the results in table 8 suggest that such investigations may depend importantly
on the assumptions made regarding heteroskedasticity. Again, while an asymptotic analysis
cannot supersede a Monte Carlo investigation. perhaps it can suggest important dimensions

for designing such experiments.

5. Conclusion

Modeling conditional volatility as a GARCH(1.1) process permits the analytical calcula-
tion of asymptotic variances of parameter estimators in models of conditional expectations.
Those calculations reveal that heteroskedasticity plays an important role in determining the
large-sample behavior of such estimators. In estimating models for single-period-ahead cop-
ditional expectations, GMM estimators using moment conditions for multiperiod forecast
horizons offer no large-samnple efficiency gains under homoskedasticity. Under heteroskedas-
ticity, however, such estimators can possess asymptotic variances that are substantially lower
than those of QLS estimators, especially when both the conditional mean and the conditional
variance are persistent. The addition of just one or two moment conditions based on fore-
casts of multiperiod sums can deliver asymptotic efficiency gains relative to OLS that are,
in many cases, similar to those obtained by adding a larger number of moments based on

multiperiod forecasts.

Heteroskedasticity also affects cormparisons of alternative approaches to estimating mod-
ets for conditional expectations of multiperiod quantities, such as long-horizon rates of return.
In that application, heteroskedasticity increases somewhat the advantage of overlapping the
observations in regressions of long-horizon returns on a predetermined variable, and, in sharp
contrast to the homoskedastic case, heteroskedasticity can provide such regressions with an
efficiency advantage over an alternative VAR-based approach considered in previous studies.
Replacing OLS estimators with GMM estimators that use additional multiperiod moment
conditions can restore some efficiency advantage to the VAR approach, but that advantage
is miminal when the conditional mean and the conditional variance are both persistent.
Campbell (1992) argues that, when compared to single-period regressions, long-horizon re-
gressions possess greater power to reject the null hypothesis of constant expectations in favor
of alternative hypotheses in which the conditional expectation is persistent. This apparent

power advantage, which is computed asymptotically using approximate slope, can increase

7Tames Stock emphasized this point in a discussion of Campbell’s paper, and Campbell also reports
Monte Carlo experiments conducted to address this concern.
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dramatically in the presence of heteroskedasticity.

Whether the asymptotic properties reported here serve as useful guideposts to finite-
sample behavior remains to be investigated. The Monte Carlo experiments of Boudoukh
and Richardson (1993), conducted in a homoskedastic setting, indicate that ratios of {inite-
sample variances of several of the estimators considered above in section 4 are approximated
reasonably well by their asymptotic counterparts.”® [n other words, the finite-sample effi-
ciency of one estimator relative to another 1s, in many cases, close to the ratio of asymptotic
variances. At the same time. however, the asymptotic variance of either estimator might
prove less useful in conducting hypothesis tests. Monte Carlo simulations by Richardson
and Stock (1989) and Hodrick (1992) reveal that standard asymptotic distributions often
provide poor approximations to the sizes of tests in finite samples, especially for methods
employing multiperiod forecasts in samples of sizes typically encountered in economics and
finance applications.!® Although the asvinptotic results presented in this study are confined
largely to comparisons of variances. Monte Carlo experiments could clearly address a wider
vange of issucs. As stated at the outset. it is hoped that the asymptotic resuits can ajd n

the design of such experiments.

Since the GMM estimators using additional multiperiod moment conditions produce
overidentified models, the method for estimating the covariance matrix of the moment con-
ditions becomes an important choice in evaluating the finite-sample behavior of such estima-
tors. The asvmptotic results in this study require only that the estimator of the covariance
matrix be consistent in the presence of heteroskedasticity and autocorrelation, but the finite-
sample properties of the estimators in the mode] of conditional expectations may be depend
significantly on the choice of the covariance-matrix estimator. One approach would be to
employ an estimator that accomodates heteroskedasticity and autocorrelation of unknown
form.*®  Another approach might make use of the implied structure of the large-sample
covariance matrix by specitving and estimating some features of the process governing het-
eroskedasticity. In the AR(1)-GARCH (1,1) model considered here, for example, the large-
sample covariance matrix Si depends on o2, v, and « (in addition to the parameters of the

mode] for conditional expectations).

"®For example, they find that the asymptotic ratio var(6}((35@‘;@))/var(EK(REG‘mm) is close to that
obtained in samples of size T = 790 for K < 60.

In fact. Richardson and Stock (1989) find that a nonstandard asymptotic approach, wherein the forecast
horizon tends to a fixed fraction of the sample size (as opposed to zero in the standard approach used here
and elsewhere), provides a closer approximation to finite-sample properties.

““Examples include the estimators in Hansen (1982) and Newey and West {1987). Andrews (1991) inves-
tigates the asymptotic and finite-sample properties of a wide class of such estimators. Mishkin (1990) also
provides evidence on the finite-sample behavior of the Newey-West estimator.
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Also of interest are the potential effects of mode] misspecification on both the asymp-
totic ond finite-samp’ . properties of the various estimators considered here. Boudoukh and
Richardson (1993) argue that the VAR estimator of expected long-horizon returns is likely
to be more sensitive to misspecification. since, unlike the long-horizon regression, that es-
timator relies on the assumed dynamic behavior of the single-period expected return. A
similar concern arises with the GMM estimators based on additional multiperiod moment

conditions, since those conditions rely on the same assuniption.
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Appendix

This appendix outlines the derivation of (2.11) and (2.12). The first step 1s to obtain a
simple expression for
A) = E{e €}, i=0.1,... . (A.1)
Define
Vier = €4 — 0f, (A.2)

so that E{vi .1} =0. Use (2.1) and (A.2) to write

2 _ 2 2
ottt = V0 N — NP T V2604 F Vigiga, (A.3)

for ¢ > 0. Multiplying both sides of (A.3) by ¢; and then taking expectations gives
A4 1) = 3002 + 7A(3). (A4)

The solution to this difference equation is

_ .2 ol
Me) = 75+ M0y 225 (A.5)
l—~ l =~
where, using (2.5),
A0) = E{e!) = o¥(x + 3). (A6)
It is easily verified that
Yo =0 {l —7), (A7)
so equation {A.5) can be rewritten as
Mi) = o1+ ( + 2] (A.8)
The next step is to obtain an expression for
o) = B, ), (A9)

where 7 > 0. Squaring both sides of (1.1), multiplying through by ¢, and then taking

expectations gives

Wit} = p"0(i+ 1)+ o®a? + A1) + 2app,0?
= PP+ 1+ uio(1 - p?) + A(4), (A.10)
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where the first line makes use of the property that E.{ef ;¢,y;} = 0 for i > ( [implied by
(2.1) and (2.1)], and the second line simplifies using a = u,(1 — p). Multiplying both sides
of (A.3) by y} and then taking expectations gives
o+l = volug + ol + i)
= (=yjeid + ol 4wt (A11)

Solving (A.10) and (A.11), substituting (A.8) for \(i), gives

. . S ok 42
Now observe that, for both & and / greater than zero.
( ’ ’ ‘ .
ffﬁU:yt‘t = Ef.i-kplynz—z + (if+k#y(1 - PI_)?JE—I + ff+k Z ijt—jy:—h (A-13)

j=o

and that the expectation of the third term on the right-hand side is zero. Therefore,

E{c ayeyemi} = plop(k + 1) + olus(1—=p') for k>0 and { > 0. (A.14)

From (2.8) and the definition of gx.e 10 (2.7), the (7, 7) element of & in (2.11) obeys
7,04, §) = B (coesye) (coirspes)} for [ = J—1 (A.15)

since the above expectation is zero for all other values of /. The expression on the right-hand
side of (A.15) corresponds to (AI4) with k =/ and | = J—twhen i < ;. When j « z, then
the correspondence occurs with & = Jand I =4 —j In both cases, k + / = max(%, j} and
[ =1i —j|. Thus, using (A.14) and (A.12),

o:0(i.5) = p'h(max(i, ) + a2p2(1 - pli)

2 I
2o limj| 2 lij|_max{i) | Tc(® + 2)
B UE{”y R Ch [hp%

_ 2 i—3l max(i,j (l_pz)(&+2)
= o/(1~p% {#5 + pl JJU; (1 + ymax(ij) [ e , (A.16)

which verifies (2.12),

The right-hand side of equation (2.6) is the (2,2) element of (D{ST D). The elements
of this matrix are easily computed analytically using (2.10) through (2.12) for K = 1.
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Table 1
Effect of Heteroskedasticity on the Variance of the Sample Autocorrelation
Fach entry is the ratio of the asymptotic variance of p(1y under homoskedasticity to the

asymptotic variance of (1) when the disturbances follow a GARCH (1,1) process, where Aa)
is the OLS estimator of the first-order autocorrelation (p.)

Y [p=00 p=03 p=07 =009 p =097
K=1

0.0 { 1.000 1.000 1.000 1.000 1.000

0.3 | 0.526 0.543 0.650 0.816 0.931

0.5 | 0.400 0.412 .497 0.676 0.857

0.7 0.323 0.329 0.380 0.520 0.733

0.9 0.270 0.272 0.289 0.346 0.490

k=23

0.0 | 1.000 1.000 1.600 1.000 1.000
0.3 | 0.400 0.416 0.527 0.726 ().890
3.5 0.286 0.296 0.372 0.556 0.782
0.7 0.222 0.227 0.269 0.394 0.623
0.9! 0.182 0.183 0.196 0.241 0.365
k=28

0.0 | 1.000 1.000 1.000 1.000 1.600
0.3 0.250 0.263 0.358 0.570 0.802
0.5 0.167 0.173 0.228 0.385 0.642
0.7! 0.125 0.128 0.155 0.246 0.452
0.9 | 0.100 0.101 0.109 0.137 0.224

k=13

0.0 1.000 1.000 1.000 1.000 L.000
0.3 0.182 0.192 1.271 0.470 0.730
0.5 ] 0.118 0.123 0.165 .295 0.544
0.7 0.087 0.089 0.109 0.178 0.355
0.9 | 0.069 0.070 0.075 0.096 0.161
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Table 2
OLS Estimator of p Versus GMM Estimator with K —1 Additional Moment Conditions

Each entry is the ratio var{pigey) fvar(poyy). where fr1y is the QLS estimator and Pery is the GMM estimator
obtained by adding & — | moment conditions to those used in computing the QLS estimator.

A=3 =13

Kl y [p=00 =03 P=07 p=09 p=097 p=00 p=03 p=07 p=09 p=097
0.0 ] 1.000 1.G60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
03] L.000 0.974 0.893 0.904 0.956 1.000 0.935 0.745 0.734 0.851
2105 1.000 0.982 0.904 0.878 0.928 L.000 0.969 0.830 0.753 0.812
0.7 ] 1.000 0.993 0.953 0.912 0.924 1.000 0.990 0.931 0.856 0.847
0.9 1 1.000 0.999 0.994 0.980 0.967 1.000 0.999 0.992 0.973 0.950
0.0 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.06G
0.3 | 1.000 0.973 0.880 0.888 0.949 1.000 0.931 .684 0.666 0.813
6 05 ] 1.000 0.981 0.865 0.809 0.886 1.000 (0.965 0.715 0.555 0.670
0.7 ] 1.000 0.993 0.917 (.788 0.814 1.000 0.989 0.857 0.601 0.583
0.9 1 1.000 0.999 0.988 0.933 0.869 1.000 0.999 0.983 0.903 0.794
| 0.0 ] 1.000 1.000 1000 1.600 1.000 1.009 1.000 1.000 1.GOO 1.000
0.3 1 1.000 0.973 1.880 (.888 0.949 1.000 0.931 0.684 0.666 0.813
12 1 0.5 | 1.000 0.981 0.865 0.809 0.886 1.000 0.965 0.715 0.5353 0.668
0.7 1 1.000 0.993 0.916 0.777 0.801 1.000 0.989 0.853 0.554 0.534
091 1.000 0.999 0.987 0.909 0.793 1.000 0.999 0.983 0.859 0.650
0.0 1 1.000 1.000 1.000 1.000 1.000 1.G00 1.000 1.000 1.000 1.000
0.3 1.000 0.973 0.880 0.888 0.949 1.000 0.931 0.684 0.666 0.813
24 | 0.5 | 1.000 0.981 0.865 0.809 0.886 1.000 0.965 0.715 .553 0.668
0.7 1 1.000 0.993 0.916 0.777 0.801 1.000 0.989 0.853 0.554 0.533
0.9 1 1.000 0.999 0.987 3.903 0.752 1.000 (.999 0.983 0.841 0.541
0.0 1.000 1.000 1.00G 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 ] 1.000 0.973 0.880 0.888 0.949 1.000 0.931 0.684 0.666 0.813
48 [ 0.5 | 1.000 0.981 0.865 0.809 0.886 1.000 0.965 0.715 (0.553 0.668
0.7 1 1.000 0.993 0.916 0.777 0.801 1.000 0.989 0.853 0.554 0.533
[ 0.9 1.000 0.999 0.987 0.903 0.748 1.000 0.999 0.983 0.840 0.521




Table 3
OLS Estimator of p Versus GMM Estimator with One Additional Moment Condition

Fach entry is the ratio var(pEK))/var(;i(u), where gy is the OLS estimator and Plry 18 the GMM estimator
obtained by adding one long-horizon moment condition to those used in computing the OLS estimator.

K=3 K=13
N1 v |p=00 p=03 p=07 p=09 p=0097 p=00 =03 p=07 p=09 p=10.97
0.0 ] 1.000 1.000 1.000 1.0G0 1.000 1.000 L.0o0 1.000 1.000 1.000
0.3 1 1.000 0.974 0.893 0.904 0.956 1.000 0.935 0.745 0.734 0.851
2 1051 1000 0.982 (0.904 0.878 0.928 1.000 0.969 0.830 0.753 0.812
0.7 | 1.000 0.993 0.953 0.912 0.924 1.000 .990 0.931 0.856 0.847
0.9 | 1.060 3.999 0.994 0.980 0.967 1.000 0.999 0.992 0.973 0.950
C.0¢ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00¢ 1.000 1.300
0.3 1 1Looo 0.989 0.903 0.895 0.950 1.000 0.961 0.705 0.668 0.814
6 (051 1.000 0.989 0.870 0.810 0.887 1.000 0.976 3.715 0.574 0.687
0.7 L1000 0.996 0.917 0.808 0.837 1.000 0.993 0.860 0.666 0.658
0.9 1.000 1.000 0.988 0.945 0.904 1.000 (.999 0.984 0.923 0.853
0.0 ] 1.000 1.000 1.0G0 1.000 1.000 1.GG0 1.000 1.600 1.000 1.000
0.3 1 1.000 0.995 0.951 0.925 0.961 1.000 0.982 0.817 0.721 0.832
12005 L.ooo 0.995 0.919 0.831 0.892 1.000 i.986 0.773 0.565 0.671
0.7 | 1.000 0.998 0.934 0.778 0.803 1.000 0.995 0.863 0.567 0.561
0.9 1.000 1.000 0.990 0.917 0.839 1.000 1.000 0.985 0.877 0.746
0.0 l.000 1.000 1.000 1.000 1.000 1.000 £.000 1.000 1.000 1.000
0.3 | 1.000 0.998 0.981 0.960 .975 1.000 0.991 0.921 0.822 0.872
24 1 05| 1.000 0.998 0.966 0.895 0.918 1.000 0.992 0.885 0.666 0.709
0.7 | 1.000 0.999 0.967 0.825 0.814 1.000 0.997 0.912 0.584 {(1.538
0.9 1 1.000 1.000 0.994 0.904 0.771 1.000 1.000 0.990 0.843 0.616
0.0 | 1.000 L.ooo 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 ] 1.000 0.999 0.992 0.983 0.987 1.000 0.996 0.965 0.920 0.921
48 1 0.5 | 1.000 0.999 0.986 .955 0.950 1.000 0.996 0.946 0.823 0.787
0.7 1 1.000 0.999 0.985 0.913 0.866 1.000 0.998 0.953 0.734 0.603
091 1.000 1.000 0.997 0.931 0.751 1.000 1.000 0.993 0.859 0.528

28



0.25 T T T T T T T T
0.2 | | N |
Weights on separate moment conditions

T »
=
8=
S 015 - .
S
Q
=
Q
=
<
= 01 r ]
g 7 Weights in multiperiod sum with K=12
= »
k)
=

0.05 | Weights in multiperiod sum with K=48 -

0

Figure 1. Weights on the moment conditions in computing P(x), the estimator that
uses A — | additional separate moment conditions. versus the weights implicit in the
multiperiod sum used to obtain the one additional moment condition used in computing
Pir). The figure plots the weights on the sarmple analogues of Elec o}, j=2.... .48,
when p =0.9. v = 0.5, and x = 13. All weights are normalized to sum to unity.



Table 4
OLS Estimator of b Versus GMM Estimator with Two Additional Moment Conditions

Each entry is the ratio var( (K))/var 5(1)) where b(l 15 the OLS estimator and b Ky 15 the GMM estimator
chbtained by adding two long-horizon moment conditions to those nsed in computing the OLS estimator.

k=3 =13
K1y ip=00 p=03 p=07 p=09 p=097 p=00 p=03 p=07 p=09 p=0.07
b=10.0
0.0 | 1.000 1.000 1.000 1.0G0 1.G00 1.000 1.000 1.000 1.000 1.000
0.3 1.000 0.974 0.893 0.904 0.956 1.000 0.935 0.745 0.734 0.851
2 105 L000 0.982 0.904 0.878 0.928 1.000 (1.969 0.830 0.753 0.812
0.7 | 1.000 0.993 0.953 0.912 0.924 1.000 0.990 0.931 .856 0.847
0.9 ] 1.000 0.999 0.994 0.980 0.967 1.000 0.999 0.992 0.973 0.950
0.0 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1 1.000 .996 0.959 (0.937 0.966 1.000 0.983 0.844 0.755 0.849
12105 | 1.000 0.995 0.931 0.852 0.902 1.000 0.986 0.799 0.594 0.684
! 0.7 | 1.000 .998 01.942 0.787 0.803 1.000 0.995 0.873 0.555 0.537
0.9 1.000 1.000 0.991 0.910 0.809 1.000 1.000 0.986 0.863 0.691
0.0 1 1.000 1.000 1.000 1.000 1.06G0 1.000 1.000 1.000 1.000 1.000
0.3 ] 1.000 0.998 0.984 0.968 0.979 1.000 0.992 0.930 0.851 0.892
24 1 0.5 | 1.000 0.998 0.970 0.913 0.931 1.000 0.992 0.896 0.713 0.741
0.7 | 1.000 0.999 0.971 0.850 0.834 1.G00 0.997 0.920 0.623 0.560
0.9 | 1.000 1.000 0.995 0.910 0.754 1.000 1.000 0.991 0.843 0.563
0.0 [ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 0.999 0.993 0.987 0.989 1.000 0.996 0.967 0.933 0.935
48 | 0.5 | 1.000 0.999 0.986 0.962 0.959 1.000 0.996 0.949 0.849 0.821
0.7 | L1.000 0.999 .986 0.927 0.888 1.000 0.098 0.955 0.770 0.651
0.9 | 1.0006 1.000 0.997 0.940 0.769 1.000 1.000 0.994 0.871 0.527

b=0.5
0.0 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 0.974 0.893 0.904 0.956 1.060 0.935 0.745 0.734 0.851
2005 1.000 0.982 0.904 0.878 0.928 1.000 0.969 0.830 0.753 0.812
0.7 1.000 0.993 0.953 0.912 (0.924 1.000 0.990 0.931 0.856 0.847
i 0.9 1.000 0.999 0.994 0.980 0.967 1.000 0.999 0.992 1973 0.950
0.0 1.000 1.000 1.G00 1.000 1.000 1.000 1.009 1.000 1.000 1.000
0.3 | 1.000 0.996 (.959 0.937 0.967 1.000 0.983 0.845 0.756 0.850
12 |1 0.5 | 1.000 0.995 0.932 0.853 7 0.902 1.000 0.986 0.801 0.596 0.684
0.7 | 1.000 0.998 0.942 0.788 0.803 1.000 0.995 0.874 0.535 0.537
0.9 1.000 1.000 0.991 0.910 (.809 1.000 1.000 0.987 0.863 0.689
0.0 1 1.000 1.000 1.000 1.600 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1 L.000 0.998 0.984 0.968 0.979 1.G00 0.992 0.930 0.852 0.892
24 1 0.5 | 1.000 0.998 0.97¢ 0.914 0.931 1.000 0.992 0.898 0.714 0.741
0.7 1.000 0.999 0.971 0.851 0.834 1.000 0.997 0.921 0.625 0.561
0.9 1.000 1.009 0.995 0.910 0.754 1.000 1.000 0.991 0.843 0.562
0.0 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 0.999 3.993 0.987 0.986 1.000 (3.996 0.968 0.933 0.935
18 | 0.5 1.000 (.999 0.987 0.963 .960 1.000 0.996 .950 0.850 0.821
0.7 | 1.000 0.999 0.986 0.927 0).889 1.000 (0.998 0.956 0.772 0.652
0.9 1.000 1.000 0.997 0.940 0.770 1.000 1.000 0.994 0.871 0.527
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Table 5
Efficiency Gains from Overlapping Observations in Long-Horizon Regressions

Fach entry is the ratio var((ﬂK(REGJGP))/\’ar(lﬁK(REG‘mn), where EK(REGJGP) is the OLS estimator obtained with

overlapping observations, and 5K(H,gg_mn) is the OLS estimator obtained without overlapping (using only every
N'th observation).

k=23 k=13

K| v [p=00 p=03 p=07 p=09 p=097 p=00 p=03 p=07 p=09 /=007
b=10.0
0.0 1 0.500 02.6560 0.850 (5.950 0.985 0.500 ().650 0.850 0.950 0.985
0.3 | 0.500 0.611 0.781 0.902 0.966 0.500 0.591 0.730 0.847 0.934
2 105 0.500 0.618 G.785 0.894 0.957 0.500 0.608 0.758 0.8564 0.923
0.7 1 0.500 0.630 0.807 (0.905 0.956 0.500 0.626 0.796 0.887 0.933
0.9 1 0.500 0.644 0.835 0.932 0.969 0.500 0.643 0.833 0.929 0.964
0.0 | 0.083 0.146 0.366 0.686 {.889 0.083 0.146 0.366 0.686 0.889
0.3 ] 0.083 0.140 0.343 0.663 0.879 0.083 0.131 0.308 0.622 0.858
12105 0.083 0.137 0.323 0.632 3.860 3.083 0.128 0.277 0.553 0.810
0.7 | 0.083 0.137 0.312 01.588 0.822 0.083 0.132 0.279 0.501 0.731
0.9 0.083 (5.143 0.338 0.611 0.802 (0.083 0.142 0.331 {.588 0.759
0.0 | 0.042 0.075 }.209 0.504 0.795 0.042 0.075 0.209 0.504 0.795
0.3 | 0.042 0.073 0.202 0.495 0.780 0.042 0.070 0.189 0.477 0.780
241051 0.042 0.072 0.194 0.480 0.780 0.042 0.068 0.173 0.439 0.751
0.7 0.042 0.072 0.185 0.448 0.751 0.042 0.069 0.163 0.379 0.679
0.9 | 0,042 0.073 0.191 0.428 0.685 0.042 0.073 0.184 0.395 0.611
0.0 | 0.021 0.038 0.111 0.318 0.649 0.021 0.038 0.111 0.318 0.649
031 0.021 0.038 0.109 0.315 0.647 0.021 0.037 0.105 0.309 0.643
45 | 05 | 0.021 0.037 .107 0.310 0.643 0.021 0.036 0.099 0.294 0.629
0.7 | 0.021 0.037 0.103 0.296 0.627 0.021 0.036 0.093 (1.263 0.589
0.9 0.021 0.037 0.102 0.270 0.558 0.021 0.037 0.097 0.238 0.469

=105
0.0 0.500 0.649 0.849 0.949 0.985 0.500 0.649 0.849 0.949 0.985
0.3 0.500 0.614 0.784 0.904 0.966 0.500 0.594 0.736 0.851 0.935
2 |05 7] 0.5060 0.620 0.788 0.896 (0.958 0.500 0.610 0.762 0.857 0.924
0.7 | 0.500 0.631 0.809 0.906 0.956 0.500 .628 0.799 0.889 0.934
0.9 1 0.500 0.643 0.835 0.932 0.969 0.500 0.642 1833 0.929 0).964
0.0 (1.083 {1.145 0.360 0.674 0.880 (.083 0.145 0.360 0.674 0.880
0.3 0.083 0.139 0.340 0.657 0.872 0.083 0.131 0.310 0.628 0.857
12105 | 0.083 0.136 0.324 .634 0.858 0.083 0.128 0.282 0.h72 0.818
0.7 1 0.083 .137 0.314 0.598 (0.826 0.083 0.132 0.282 0.522 0.749
0.9 0.083 0.142 0.336 0.614 0.807 0.083 0.141 0.330 0.595 0.769
0.0 0.042 0.075 0.206 0.486 0.768 0.042 0.075 .206 0.486 0.768
0.3 | 0.042 0.073 0.199 0.480 0.765 0.042 0.070 0.188 0.468 0.759
24 1 0.5 0.042 0.072 0.192 0.470 0.759 (G.042 0.068 0.173 0.442 0.742
0.7 0.042 0.071 0.184 (.448 0.740 0.042 N.068 0.163 0.394 0.693
0.9 | 0.042 0.073 0.180 0.431 0.691 0.042 0.073 0.184 .403 0.631
0.0 | 0.021 0.038 0.110 0.304 0.588 0.021 0.038 0.110 0.304 0.588
031 0021 0.033 0.108 0.302 0.587 0.021 0.037 0.105 0.298 0.585
48 | 0.5 0.021 0.037 0.106 0.298 0.585 0.021 0.036 0.099 0.287 0.579
0.7 | 0.021 0.037 0.103 0.288 0.579 }.021 0.036 0.093 0.263 0.560
0.9 | 0.021 0.037 0.102 0.269 (1.541 0.021 0.037 0.007 0.241 0.484




Table 6
Long-Horizon Regression Versus the OLS-VAR. Approach

Fach entry is the ratio var(b;((1!“m)/var(bm_RE(;_mp)), where by(pEe 1ap) is the estimator of bx obtained in a

long-horizon regression with overlapping observations, and br(1,var) is the value of by implied by the parameters
of a VAR estimated using OLS.

k=3 k=13

K| v |p=00 p=03 p=07 p=08 p=097 p=00 p=03 p=07 p=09 p=007
bh=10.0
0.0 | 0.500 0.650 (+.850 ().950 0.985 0.500 0.650 0.850 0.950 0.985
.3 | 0.633 0.868 1.109 1.106 1.045 0.701 0.997 1.329 1.308 1.147
2 105 0609 0.830 1.092 1.136 . 1.072 0.642 0.890 1.205 1.284 1.187
0.7 1 0.566 0.758 1.006 1.097 1.076 0.579 0.781 1.048 1.161 1.151
0.9 | 0.521 0.684 0.901 1.006 1.034 (.524 0.689 0.909 1.018 1.051
0.0 | 0.083 0.097 0.205 0.521 0.813 0.083 0.097 0.205 0.521 0.813
0.3 | 0.177 0.209 (.375 0.710 0.911 0.298 0.376 0.681 1.079 1.106
12 1 0.5 | 0.206 0.251 0.487 0.899 1.027 0.315 0.412 0.890 [.569 1.440
0.7 ¢ 0.191 0.235 0.512 1.085 1.212 0.247 (.316 0.761 L.768 1.860
0.9 0.124 0.148 0.328 0.843 1.211 0.133 0.160 0.361 0.955 1.437
0.0 | 0.042 0.047 0.092 0.292 0.652 0.042 0.047 0.092 0.292 0.652
0.3 | 0.09 0.107 0.172 0.400 0.732 0.181 0.210 0.324 0.615 0.892
24| 05 0.121 0.139 0.234 0.517 0.831 0.218 0.265 0.476 0.949 1.186
0.71 0.126 0.148 0.281 0.686 1.024 0.195 0.240 0.509 1.327 1.719
0.9 0.084 0.097 0.201 0.646 1.244 0.098 0.114 0.244 0.841 1.758
.0 | 0.021 0.023 0.043 0.135 0.438 0.021 0.023 0.043 0.135 0.438
0.3 ] 0.050 0.054 0.082 0.185 0.492 }.101 0.112 0.156 0.286 0.600
48 1 0.5 | 0.066 0.073 0,113 0.24] 0.560 0.135 0.155 0.243 0.449 0.803
0.7 | 0.075 0.085 0.146 0.331 0.699 0.139 0.163 .303 0.691 1.210
0.9 1 0.059 0.068 0.130 0.398 1.028 0.080 0.092 0.186 0.636 1.812
b=105
0.0 | (.442 0.611 0.837 0.947 0.985 0.442 0.611 0.837 0.947 0.985
0.3 | 0577 .835 1.104 1.106 1.045 0.650 0.972 1.334 1.212 1.148
2 105 ] 0.552 0.795 1.086 1.137 1.073 0.586 0.858 1.204 1.288 1.188
0.7 | 0.508 0.720 0.997 1.097 1.076 0.522 0.744 1.040 1.162 1.153
0.9 1 0.463 0.645 0.890 1.005 1.034 (3.466 0.6a1 0.898 1.018 1.091
0.0 0.082 0.093 0.182 0.47% 0.798 0.082 0.093 0.182 0.479 0.798
. 0.174 0.202 0.334 0.654 0.895 0.294 0.366 0.612 0.998 1.087
12106 0.203 0.244 0.438 0.833 1.010 0.312 0.404 0.819 1.479 1.422
0.7 | 0.189 0.230 0.470 1.025 1.199 0.246 0.312 0.719 1.730 [.866
0.9 | 0.122 0.144 0.299 0.799 1.207 0.132 0.156 0.331 0.915 1.446
0.0 | 0.041 0.046 0.085 0.241 0.607 0.041 3.046 0.085 1.241 0.607
0.3 ] 0.095 0.105 ().159 0.332 0.681 0.179 0.207 0.301 0.511 0.831
24 105 0.120 .136 0.217 0.430 0.774 0.216 0.262 0.445 0.795 1.107
0.7 | 0.125 0.146 0.263 0.57¢ 0.959 0.194 0.238 0.485 1.156 1.632
0.9 | 0.084 0.096 0.191 0.569 1.204 0.097 0.114 0.234 0.768 1.762
0.0 | 0.021 0.023 0.042 0.109 0.352 0.021 (.023 0.042 0.109 0.352
0.3 | 0.050 0.054 0.079 0.149 0.395 0.101 0.111 0.151 0.231 0.482
48 [ 0.5 | 0.066 0.073 0.109 0.195 0.450 0.134 0.154 0.234 0.364 0.645
0.7 0.075 0.085 0.141 0.269 0.563 0.138 0.162 0.294 0.568 0.980
0.9 | 0.059 0.067 0.127 0.339 0.863 0.079 0.092 0.184 0.570 1.624
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Table 7
Long-Horizon Regression Versus the VAR Approach Using Two Additional Moment Conditions

Each entry is the ratio va.r(b}((K‘VAR))/var(BK{REG.,aP)), where BK(REG.:’(L;}) is the estimator of by obtained in a

iong-horizon regression with overlapping observations, and b}{(K v ap) 1s the value of bg implied by the parameters
of a VAR estimated using GMM with two long-horizon moment conditions in addition to those used in QLS.

=3 k=13
p=00 p=03 =07 p=009 p=08971p=00 p=03 p=07 p=09 p=0097
b=10.0
0.0 | 0.500 0.650 1.850 0.950 0.985 0.500 0.650 0.850 0.950 0.985
0.3 | 0.633 0.846 0.991 1.000 0.999 0.701 0.933 0.989 0.960 0.976
2 705 0609 0.815 0.987 .997 0.995 0.642 0.862 1.000 0.967 0.964
0.7 1 0.566 0.753 0.959 1.000 0.994 0.579 0.774 0.975 0.994 0.975
0.9 0.521 0.684 0.896 0.986 1.000 0.524 0.689 0.902 0.990 0.998
0.0 0.083 0.097 0.205 0.621 0.813 0.083 0.097 0.206 0.521 0.813
0.3 0.177 0.208 .360 0.665 {+.881 (0.298 0.370 0.575 0.815 0.940
12 105 0.206 0.250 G.453 0.766 0.927 0.315 0.406 0.710 0.931 0.985
0.7 0.191 0.235 0.482 0.854 0.973 0.247 0.315 0.665 0.981 0.999
0.9 0.124 0.148 0.325 (.767 1.980 0.133 0.160 0.356 0.825 0.992
001 0.042 0.047 0.092 0.292 0.652 0.042 0.047 0.092 0.292 0.652
0.3 | 0.096 0.107 0.169 0.387 0.717 0.181 0.209 0.302 0.524 0.795
24 105 0121 0.138 0.227 0.472 0.773 0.218 0.263 0.427 0.676 0.878
0.7 0.126 0.148 0.273 0.584 0.854 0.195 0.239 0.468 0.826 0.962
0.9 | (.084 0.097 0.199 0.587 0.938 0.098 0.114 0.241 0.708 0.990
0.0 | 0.021 0.023 0.043 0.135 0.438 0.021 0.023 0.043 .135 1.438
0.3 ] 0.050 0.054 0.081 0.183 0.487 0.101 0.111 .151 0.266 0.561
48 [ 0.5 ] 0.066 0.073 0.112 0.232 0.537 0.135 0.154 0.231 .382 0.659
0.7 1 0.075 0.085 0.144 0.307 0.621 0.139 0.163 0.289 0.532 0.788
0.9 ] 0.059 0.068 0.130 0.374 0.790 0.080 0.092 0.185 0.554 0.954

b=105
0.0 0.442 0.611 0.837 0.947 0.985 0.442 0.611 0.837 0.947 0.985
0.3 0577 0.813 0.986 1.000 0.999 0.650 0.909 0.993 0.964 0.977
2 105 | 0552 0.780 0.982 0.998 0.995 0.586 0.831 0.999 0.970 0.965
0.7 1 0.508 0.716 0.950 1.000 0.995 0.522 0.737 0.968 0.995 0.976
3.9 | 0.463 0.645 0.884 0.985 1.000 0.466 0.6a0 0.891 0.989 0.999
0.0 0.082 0.093 0.182 (0.479 (.798 0.082 0.093 0.182 0.479 0.798
031 0174 0.201 0.322 0.617 0.866 0.294 0.360 0.526 0.770 0.928
12105 0.203 0.243 0411 0.718 0.914 0.312 0.398 0.666 0.900 0.978
0.7 0.189 0.230 0.445 0.814 0.964 0.246 0.311 0.632 0.964 0.999
09 ] 0.122 0.144 0.297 0.727 0.974 0.132 0.156 0.327 0.789 0.990
0.0} 06.041 G.046 0.085 0.241 0.607 0.041 0.046 0.085 0.24] 0.607
0.3 0.095 0.105 0.157 0.323 0.669 0.179 0.205 0.281 0.449 0.750
24105 ] 0.120 0.136 0.211 0.400 0.727 0.218 0.260 0.402 0.599 0.841
0.7 0.125 0.146 .256 0.506 0.811 0.194 0.237 0.448 0.760 0.937
0.9 | 0.084 0.096 0.190 0.521 0.908 0.097 0.114 (.232 0.652 0.979
0.6 | 0.021 0.023 0.042 0.109 0.352 .021 0.023 0.042 0.109 0.352
0.3 0.050 0.054 0.078 0.148 0.393 0.101 0.110 0.146 0.219 0.460
48 | 0.5 | 0.066 0.072 0.108 0.189 0.437 0.134 0.153 0.223 0.321 0.558
0.7 1 0.075 0.085 0.139 0.254 0.516 0.138 0.162 0.281 0.461 0.695
091 0.059 0.067 0.127 0.322 0.689 0.079 0.092 0.182 0.504 0.892

K

-~
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Table 8
Comparison of Approximate Slopes: Long-Horizon Regression versus Single-Period Regression
Each entry is the ratio of approximate slopes, ¢(K)/c(1), where the approximate slope of the A-horizon

regression is c(R) = b%r/(Tvar{E}K(RgG:;am}), and the approximate slope of the single-pertod regression is
e(l) = bg/(Tvar{!;(i)}). The null hypothesis is that b = 0, and the alternative hypothesis is that & = 0.5.

K=13 k=13
K| v [p=00 p=03 p=07 p=09 p=097]1p=00 p=03 P=07 p=09 p=097
0.0 0.56 0.72 0.92 1.00 1.01 0.56 0.72 0.92 1.00 1.01
0.3 0.73 0.99 1.21 1.16 1.07 0.82 1.15 1.47 1.38 1.18
2105 0.70 (.94 1.19 1.20 1.10 0.74 1.02 1.32 1.36 1.22
0.7 0.64 0.85 1.10 1.15 .11 0.66 (.88 1.14 1.22 1.18
0.9 0.58 0.76 0.98 1.06 1.06 0.59 0.77 0.99 1.07 1.08
0.0 0.20 0.26 0.57 0.92 1.04 0.20 0.26 0.57 0.92 1.04
0.3 0.38 0.a1 0.99 1.24 1.16 0.55 0.82 1.68 1.82 1.39
6 |05 0.39 0.56 1.18 1.48 1.28 0.51 0.77 1.82 2.30 1.70
0.7 0.34 0.47 1.08 1.56 1.40 0.39 (.55 1.34 2.06 1.85
0.9 0.25 0.33 0.74 1.20 1.29 0.26 0.34 0.77 1.27 1.40
0.0 0.10 0.13 0.31 0.749 1.08 0.10 0.13 0.31 0.79 1.08
0.3 0.22 0.28 0.57 1.08 1.21 0.37 0.50 1.05 1.65 1.47
1205 0.26 0.34 0.75 1.38 1.37 0.39 0.56 1.41 2.45 1.92
0.7 0.24 0.32 0.81 1.70 1.62 0.31 0.43 1.23 2.86 2.03
0.9 0.15 0.20 0.51 1.32 1.63 0.17 0.22 0.57 1.51 1.96
0.0 (.05 0.06 0.15 0.57 1.13 0.05 0.06 0.15 0.57 1.13
0.3 0.12 0.15 0.29 0.78 1.27 0.23 0.29 0.54 1.20 [.55
24 1 0.5 0.15 0.19 0.39 1.01 1.44 0.27 0.36 0.80 1.87 2.07
0.7 0.16 0.20 0.47 1.36 1.79 (.24 0.33 0.87 2.72 3.04
0.9 0.11 0.13 0.34 . 1.34 2.25 0.12 0.16 0.42 1.81 3.29
0.0 0.03 0.03 0.07 0.33 1.14 0.03 0.03 0.07 0.33 1.14
0.3 0.06 0.07 0.14 0.45 1.28 0.13 0.15 0.27 0.69 1.56
48 | 0.5 0.08 0.10 0.20 0.58 1.45 0.17 0.21 0.42 1.09 2.08
G.7 .09 0.12 0.25 0.81 1.82 0.17 0.22 0.53 1.70 3.16
0.9 0.07 0.09 .23 1.02 2.79 0.10 0.13 0.33 1.71 5.24
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