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Abstract

A Bayesian approach is used to investigate a sample’s information about a portfolin’s degree
of inefficiency. With standard diffuse priors, posterior distributions for measures of portfolio inef-
ficiency can concentrate well away from values consistent with efficiency, even when the portfolio
is exactly efficient in the sample. The data indicate that the N YSE-AMEX market portfolio is
rather inefficient in the presence of a riskless asset, although this conclusion is Jjustified only after
an analysis using informative priors. Including a riskless asset significantly reduces any sample’s
ability to produce posterior distributions supporting small degrees of inefficiency.
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1. Introduction and Overview

A portfolio is efficient if it offers the highest expected return for a given variance of return.
The concept of portfolio efficiency, pioneered by Markowitz (1952, 1959), offers obvious
normative content as well as a framework for representing modern theories of financial asset
pricing. In the latter context, for example, the capital asset pricing model (CAPM) of Sharpe
(1964), Lintner (1965), and Black (1972) maintains that the market portfolio is efficient, and
the consumption-based model of Breeden (1979) requires the efficiency of the portfolio whose

return has the maximum correlation with consumption.

In the traditional empirical approach, the efficiency of a given portfolio p, whose composi-
tion is known to the researcher, is tested as a simple (point) hypothesis. Classical methods of
statistical inference are used to accept or reject the hypothesis at a given significance level.!
Two departures from this traditjonal approach have emerged. The first of these stems from
the recognition that portfolio p is often an imperfect “proxy” for a more theoretically in-
teresting portfolio ¢, whose exact composition is unknown. One is thus led to entertain
a composite hypothesis that allows some degree of inefficiency in portfolio p, even though
the theory might specify a simple hypothesis of exact efficiency for portfolio ¢. Kandel and
Stambaugh (1987) and Shanken (1987a) have explored approaches to nvestigating compos-
ite hypotheses of approximate efficiency using classical frequentist methods. A second major
departure from the traditional approach relies on Bayesian inference instead of frequentist
methods. Shanken (1987h), McCulloch and Rossi (1990, 1991), and Harvey and Zhou (1990)
develop and apply Bayesian approaches to drawing inferences about portfolio efficiency and

asset pricing models.

This study develops and analyzes a framework that combines both of the above departures
from the traditional approach. The inefliciency of the observed portfolic p is described
by either of two univariate measures with stmple intuitive appeal: A, equal to minus the
difference in expected returns between portfolio p and an efficient portfolio of equal variance,
and p, the maximum correlation between the returns on p and an efficient portfolio. Exact
efficiency is represented by A = 0 and p = 1, and degrees of inefficiency are represented
by values of A > 0 and p < 1. Both measures incorporate the restriction that an efficient
portfolio must lie on the positively sloped portion of the minimum-variance boundary. The

latter restriction is not incorporated, for example, in the Bayesian approaches of Shanken

'The earliest examples of this approach include Douglas (1969), Black, Jensen and Scholes (1972), and
Fama and MacBeth (1973). For recent developments and interpretations of such methods see Gibbons, Ross,
and Shanken (1989), Kandel and Stambaugh (1989), and Shanken (1992).



{1987b). Harvey and Zhon (1990), and McCulloch and Rossi (1990, 1991) or in the likelihood-
ratio tests summarized by Kandel and Stambaugh (1989).

We apply methods of Bayesian inference to obtain posterior distributions for the ineffi-
clency measures p and A. Investigating a hypothesized restriction on the parameter space
by computing the posterior distribution of a function on {hat space (such as p) is known
in the Bayesian literature as the estimation approach. The alternative Bayesian odds-ratio
approach reports the posterior probability that the parameters satisfy a hypothesized re-
striction. When a point hypothesis is being investigated, the set of parameters satisfying
that hypothesis generally has lower dimension than the unrestricted parameter space, and
there are important differences between the estimation and odds-ratio approaches in that
case.” Only a formal distinction exists between the two approaches, however, when inves-
tigating a composite hypothesis that can be expressed in terms of the measure adopted for
the estimation approach (such as p). The posterior probability of a set defined in terms of
the adopted measure divided by the posterior probability of its complement is an odds ratio
and can be computed directly from the posterior distribution of the measure. For example,
given the posterior distribution of p, we can easily compute Pr{g > .9}/Pr{p < .9}, which
is an odds ratio. Conversely, providing the odds ratio for a variety of sets defined in terms

of a measure is equivalent to specifying the posterior distribution of the measure.

As discussed above, we believe that one is generally led to entertain composite hypothe-
ses of inefficiency when the observed portfolio of interest is selected with a view toward
investigating financial theory. Thus, we report posterior distributions, from which posterior
probabilities or odds ratios for composite hypotheses can easily be computed. Qur focus
on composite hypotheses stands in contrast to the emphasis on a point hypothesis of exact
efficiency in previous Bayesian studies. Shanken (1987b), McCulloch and Rossi (1991), and
Harvey and Zhou (1990) compute posterior odds ratios in order to infer the probability that
the observed portfolio p is exactly efficient, whereas that point hypothesis is assigned zero

measure in our approach.?

All of the previous Bayesian studies examine portfolio efficiency in the presence of a risk-

?For example, computing an odds ratio requires one to specify priors on both the lower dimensional set
of parameters satisfying the restriction and the unrestricted parameter space, and the choice of priors affects
the result even in large samples.

9The formal distinction between the two approaches is that, when computing an odds ratio, one specifies
a prior on the set defining the null hypothesis and a prior on its complement. Clearly, this is just a particular
method for defining the prior on the entire parameter space, which is required for the estimation approach.

1As we discuss below, Shanken {1987b) also examines a composite hypothesis, but he conditions on an
unknown parameter and directly assigns prior probabilitics to discrete values of p rather than specifying
continuous prior distributions for the underlying fundamental moments of returns.
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less asset. The definitions of A and p apply whether or not a riskless asset is included in
the asset universe. We investigate both cases and discover interesting differences between
themn. Our initial analysis specifies a diffuse prior distribution for the mean vector (£) and
the variance-covariance matrix (V) of the joint distribution of risky asset returns. Posterior
distributions of p and A are computed using 25 vears of weekly returns on twelve stock
portfolios, where portfolio p is defined as the value-weighted portfolio of the New York and
American Stock Exchanges. When a riskless asset (one-week Treasury bill) is included, the
posterior distributions for p and A appear to be concentrated on values well away from
those representing exact efficiency. When the riskless asset is excluded, the posterior distri-
butions for both measures, particularly the distribution for p, concentrate on values closer

to efficiency.

Of paramount interest in any Bayesian analysis is the role played by the sample data in
forming the posterior beliefs about a given parameter. When a riskless asset is included, we
show that the information in a given sized sample that is relevant to the posterior of g can
be summarized in terms of two sufficient statistics: p, the sample estimate of p, and é, the
sample Sharpe measure of portfolio p. (The Sharpe measure is the ratio of a portfolio’s mean
excess return to the standard deviation of its return.) This result allows us to investigate
thoroughly the role played by samples of various characteristics in determining the posterior
distribution of p. We discover that, in samples of sizes often encountered in practice, the
posterior distribution of p concentrates around low values of p for many samples—even those
in which portfolio p is exactly efficient (p =1). When prior beliefs about the distribution of
returns are disperse, a posterior for p that concentrates around low values need not indicate
that the sample information has played a significant role. In essence, disperse beliefs about
the basic parameters of the return distribution can imply sharper beliefs about an inefficiency
measure such as p, a nonlinear function of those parameters. More importantly, these prior
beliefs about p exert a strong influence on the posterior distribution, in that an extremely
large sample is required, even with p =1, in order to arrive at a posterior for p that supports

only modest degrees of inefficiency (high p).

Excluding the riskless asset dramatically reduces the sample size necessary to infer that p
is high, even though the prior distribution for p assigns much of its mass to low values in that
case as well. Thus, it seems that, with sample sizes typically encountered, a concentrated
posterior can be interpreted properly as reflecting primarily sample information. A similar
conclusion is reached for the posterior distributions for A, both with and without a riskless
asset. With that inefficiency measure, however, we find that disperse beliefs about and V
correspond to disperse beliefs about A.



In order to understand better the extent to which our actual sample does contain infor-
mation about p, especially when a riskless asset is included, we specify a class of informative
{proper) priors for the parameters of the return distribution. Priors from this class can be
specified so that, unlike the diffuse prior, they imply a marginal prior distribution for p that
is disperse between zero and one, but prior beliefs about expected returns must then be
surprisingly concentrated. With such a prior, the posterior for p obtained with the actual
25-year sample of weekly returns is concentrated around low values, so it appears that the
sample does indeed contain information indicating that the value-weighted NYSE-AMEX
portfolio is not highly correlated with the efficient (tangent) portfolio. On the other hand,
when the same disperse prior for p is combined with a hypothetical 25-year sample in which
p = 1, the posterior distribution is much less concentrated. Again it appears that, unless
one has strong prior beliefs that a given portfolio is highly correlated with the efficient port-
folio, much larger samples are required in order to assign high posterior probability to such
an inference. Whether p is high or low, however, the prior plays a very important role in
obtaining the posterior for p using typically sized samples that include a riskless asset. In
the absence of a riskless asset, the information in a 25-year sample 1s sufficient to produce

essentially identical posteriors using a wide range of priors.

Unlike previous Bayesian investigations of portfolio efficiency, the set of unknown param-
eters in our analysis includes the mean and the variance of the return on portfolio p, denoted
by p, and ag. While it might seem that, in order to infer a portfolio’s inefficiency, one
surely needs to infer the mean and variance of that portfolio’s return, there are in fact some
measures of inefficiency for which this is not the case. When a riskless asset 1s included, one
such measure, A, is the difference in squared Sharpe measures between an efficient portfolio
and portfolio p. A Bayesian posterior distribution for A can be obtained in a regression
framework, wherein the set of unknown parameters does not include ty and ag [Harvey and
Zhou (1990)]. Unfortunately, numerical values of ) do not lend themselves to simple inter-
pretations, so previous studies have attempted to develop intuition about A by transforming
it to p [e.g., Shanken (1987b) and Harvey and Zhou (1990)]. This transformation requires
knowledge of 4, the Sharpe measure of p, which in turn depends on iy and ag. An approach
followed in previous studies is to plug in a value of # to obtain the posterior of p from the
posterior of A. As shown here, this “plug-in” approach yields the conditional posterior distri-
bution of p given §. We find that the problems associated with misinterpreting concentrated

postertor distributions of p are exacerbated for this conditional posterior.

The remainder of the paper proceeds as follows. Section 2 formally defines the inefficiency

measures p and A, discusses their interpretations, and compares them to previously used



measures. Section 3 then describes the construction of posterior distributions of p and A.
Section 4 investigates the manner in which samples of various characteristics influence the
posteriors of the inefficiency measures. Section 5 considers the use of informative priors
instead of the diffuse priors used in the foregoing analysis. Section 6 briefly reviews the main

conclusions.

2. Measures of Portfolio Inefficiency

Let the vector R, contain returns in period £ on n risky assets, where one of the » assets is
portfolio p, whose efficiency is to be investigated. If a riskless asset exists, then R, contains
excess returns on these assets, i.e., returns in excess of the riskless rate. The set of efficient
portfolios is defined allowing short positions in all assets. Qur two inefficiency measures p and
A are rather complicated nonlinear functions of the elements of £ and V| the mean vector
and covariance matrix of £,. These functions will be used to obtain univariate posterior
distributions for A and p from the multivariate posterior distributions for £ and V. To
aid in the analysis, we first provide simple characterizations of both inefficiency measures in

mean-standard-deviation space.

Let @ denote the efficient portfolio with the same standard deviation as portfolio p, and
let ¥ denote the minimum-variance portfolio with the same mean return as portfolio p. Let ¢
denote the portfolio having minimum variance among all portfolios composed solely of risky
assets. The mean and standard deviation of the return og a given portfolio ¢ are denoted by
tq and o,. When a riskless asset exists, the Sharpe measure of a portfolio is defined in mean-
standard-deviation space as the slope of a ray connecting the portfolio to the origin. (Recall
that R, contains excess returns when a riskless asset is included.) The maximum Sharpe

measure is denoted by v, and the Sharpe measure of portfolio p is denoted by (= Eplop).

The inefficiency measure A is given by

A:ﬂx_"nupu (I)

or the vertical distance in mean-standard-deviation space between portfolio p and the locus of
efficient portfolios. This distance is well defined whether or not a riskless asset is included.
Alternatively, A (> 0) equals the average loss in rate of return associated with holding
the inefficient portfolio p instead of the efficient portfolio of equal risk. If portfolio p is
efficient, then A = 0. This simple inefficiency measure obviously lends itseif to economic

interpretation, since it can be viewed on the same scale as expected asset returns.



The inefficiency measure p is defined as the maximum correlation between portfolio p and
an eflicient portfolio. Exact efficiency of portfolio p corresponds to p = 1, whereas inefficiency
in p s characterized by p < 1. In the presence of a riskless asset, efficient portfolios lie on
a ray emanating from the origin with slope v (> 0).* The correlation between p and any
efficient portfolio s given by

p==0/y. (2)
That is, p is equal to the ratio of portfolio p’s Sharpe measure to the maximum Sharpe
measure [see Kandel and Stambaugh (1987) and Shanken (1987)].° In the absence of a riskless
asset, p 1s the maximum correlation between portfolio p and any portfolioc on the posttively

sloped portion of the (curved) minimum-standard-deviation boundary. This correlation is

given by
(3)

as shown by Kandel and Stambaugh (1987). When the mean of p exceeds that of the global

- oyfop if 1, > p
p o,/0, otherwise,

minimum-variance portfolio, then both (2} and (3) give p = o,/0,. [In the case of (2), this
follows from the observation that v is then the Sharpe measure of y, which has the same
mean as p.| Thus, while A is the difference in means for portfolios having the same risk, p

is the ratio of standard deviations for portfolios having the same mean.

-

To aid in economic intuition about values of p, it may be helpful to review some of the
previous literature. Perhaps the earliest use of correlation to characterize a portfolio’s ineffi-
ciency is by Roll (1977), who computes the sample correlation between a stock-market index
(portfolio p) and the in-sample tangent portfolio. In other words, Roll computes an er post
value of p. Roll argues that high values of p—at least 0.9 for his examples of the minimum-
variance boundary—should give one serious reservations about, rejecting the CAPM simply
because one rejects the exact efficiency of portfolio p, an imperfect market proxy. Roll also
observes, however, that “most reasonable proxies will be very highly correlated with each
other and with the true market,” and indeed Stambaugh (1982) finds that a variety of market
indexes computed with rather different weights on broad asset classes exhibit returns with
high mutual correlations (typically 0.8 or higher). Thus, given such an empirical prediction,
one’s fears about incorrectly rejecting the CAPM would lessen as p declines. This argument
underlies the frequentist approaches of Kandel and Stambaugh (1987) and Shanken (1987a),

and the same reasoning motivates our use of p in a Bayesian setting.

*In principle, the “tangent portfolio” composed solely of the n risky assets could lie on either the positively
or negatively sloped portion of the minimumrstandard-deviation boundary of risky assets (or a tangency could
fail to exist). In all cases, however, efficient portfolios lie on a positively sloping ray emanating from the
origin.

®Note that the correlation between p and the riskless asset (the origin) is undefined.
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As mentioned earlier, previous studies have analyzed an alternative measure of inefficiency
when a riskless asset is included. This alternative measure, denoted by A, is the difference

between the maximum squared Sharpe measure and the squared Sharpe measure of P
A=~ 02, (4)

Exact efficiency of portfolio p is equivalent to A = (. Although A does provide a univariate
measure of portfolio inefficiency, it possesses limitations not shared by p and A. For example,
if p lies close to the negatively sloping ray representing the lower boundary of the feasible
set in mean-standard-deviation space, that is, if 8 is close to —v, then A will be close to
zero, even though p is grossly inefficient. Since the sign of p is the same as the sign of 6,
however, p would be close to -1 (not +1} in that case. Moreaver, differences in squared
Sharpe measures do not easily lend themselves to economic interpretation. The Bayesian
approaches in Shanken (1987b) and Harvey and Zhou (1990) base their formal analyses on
A, but, in order to develop intuition, both studies turn to the link between A and 0,

p = sigal0) | —— (5)

which follows from equations (2) and (4) and the fact that the sign of p is the same as that of

# (and of p,). Note from (5), however, that the link between A and p also involves 6, whose

true value (or range} is uncertain. Later we compare inferences that ignore this uncertainty
to those that include it.

3. Posterior Distributions of Inefficiency Measures
3.1. The General Framework

We assume that the n-vector of returns R is distributed multivariate normal, independently
across £, with mean E and nonsingular variance-covariance matrix V. (Recall that the return
on portfolio p is included as an element of vector Ry, 50 no linear combination of returns on
the other n —1 assets can yield the return on p.) For our initjal analysis, we use the standard

diffuse prior for the multivariate normal distribution [e.g., Zellner (1971)]

P(E,V) o [V]~(n40)/2, (6)

For a sample of T observations of Ry, define the statistics

. 1.7
E = 5) R, (7)

t=1



(R B)(R,— B )

=1

Vo=

Given the sample of T observations and the prior distribution (6), the joint posterior dis-
tribution of (E, V) follows standard results. The matrix V- has a Wishart posterior
distribution with (7 — 1) degrees of freedom and parameter matrix (TV)~!. Given V, the

posterior distribution of E is normal with mean £ and covariance matrix V/T.

Note that, with the use of the diffuse prior in (6), several aspects of our Bayesian posterior
distribution correspond to confidence regions obtained by standard frequentist analysis. For
example, the quantity (£ — EYV-(E - £) has a posterior distribution (where £ is random
and E and V are considered fixed) exactly the same as the frequentist distribution (where
E and V are considered fixed but £ and V are random). The posterior and frequentist
distributions are both [n/(T — n)F, 7_.. The usual elliptical confidence region for E has
posterior probability equal to the frequentist confidence level. Thus, our Bayesian results
provide inferences about basic model parameters with a level of uncertainty equivalent to
that obtained through the frequentist approach. This suggests that while the prior in (6)
is sufficiently diffuse to represent ignorance, it does not inject an inordinate amount of
uncertainty into our inference process. The Bayesian analysis allows us to compute marginal
posterior distributions for the measures A and p, while it is not clear how one could compute

the corresponding frequentist confidence intervals.

3.2.  Obtaining the Posterior Distributions

Although the inefficiency measures pand A are functions of £ and V', the complexity of these
functions precludes a complete analytical derivation of the marginal posterior distributions
of p and A from the joint posterior distribution of E and V. Instead, we follow a Monte
Carlo method and repeatedly draw values for E and V' from the posterior distribution given
above. For each draw of £ and V, we compute the corresponding values of p and A. For
a large number of draws (5000 in this study), the empirical distribution obtained from the
computed values of each measure will provide a good approximation to the posterior marginal

distribution.”

When a riskless asset is included, the joint posterior distribution of A and 6 can be
obtained analytically, and these parameters determine p [equation (5)]. The Monte Carlo

method can then be used to obtain the posterior for p by simply drawing repeatedly from

"See, for example, Geweke {1989).



the distribution of A and §. We state the analytical results here, and the derivations are
provided in the appendix. These analytical simplifications are also used in Section 4 to
provide additional insights about the role of sample information in obtaining the marginal

posterior distribution.

We first define a few statistics that are functions of £ and V. Recall that, since a riskless
asset is included, returns are in excess of the riskless rate. Let ; jtp and &2 denote the elements
of £/ and V corresponding to the sample mean and variance of portfoho p (one of the n

assets). The sample Sharpe measure of p is defined as
§ = fip]Gp- (9)

It is easily shown that the maximum Sharpe measure is v = +/E'V-1E. The sample analog
is defined as

Y= +VEVAE (10)
which leads to the sample statistic )
= (11
p=—,
g

using the expression for p in (2).

The statistics 4 and  are sufficient to determine the marginal posterior distribution for
the inefliciency measure p. Conditional on a noncentrality parameter v, A is proportional to

a noncentral chi-square variate with n — 1 degrees of freedom:

1+ 62 |
A~ [ s } Xt (). (12)
The noncentrality parameter v is proportional to a central chi-square variate with T — |
degrees of freedom: )
0? 1—p? )
v - — ) X7P_1- 13
(1+92)( P2 ) X (13)

We also find that, given the data. A is independent of 8, and the posterior distribution of 8
is determined by 4. Specifically,

f ~ % (xr-n + 2) (14)
where y7_, is the square root of a central chi-square variate with 7 — n, degrees of freedom
and z is a standard normal variate, independent of yg_,. Therefore, to obtain a draw of p
in constructing its unconditional distribution (histogram), we first draw XT-n and z, which
together give a draw for § [using (14)]. Independently, a draw for v is obtained from (13)

and then used to draw A from the conditional distribution in (12). The value of p 1s then
obtained from (5).



3.3. Sample Results

Our sample consists of weekly returns for the period January 1, 1963, through December 31.
1987. The daily CRSP master is used to compute weekly raw returns on stocks of the New
York Stock Exchange (NYSE) and the American Stock Exchange (AMEX). Weekly returns
on U.S. Treasury bills are computed from quotations of T-bills obtained from the Wall Strect
Journal. The T-bill returns were originally compiled by Oldfield and Rogalsky (1987) and
were subsequently updated by Ferson, Kandel, and Stambaugh (1987) and McCulloch and
Rossi (1990).

We consider a set of twelve risky assets: ten size-ranked portfolios and two indices of the
stock market. The formulation and rebalancing of the size-ranked portfolios are described
in a greater detail by McCulloch and Rossi (1990). Every four weeks, firms are sorted by
market value and placed into decile portfolios. Portfolios’ raw returns are computed by
value weighting the individual firms’ returns. The two market indices are the NYSE-AMEX
value-weighted and equally wetghted portfolios. Excess returns are computed by subtracting

the weekly returns on the T-bills from the raw returns, Portfolio p is the value-weighted

market index.

Figure 1a displays the marginal posterior of p when a riskless asset is included, and figure
Ib displays the posterior of p in the absence of the riskless asset. In the first case, most of
the posterior mass lies between the values p = —0.1 and p = .3. The value of 5 defined
in (11} is 0.1. As noted earlier, correlations of this magnitude are probably less than one
would expect to find among alternative reasonable proxies for the market portfolio. A rather
different result occurs in figure 1b, where the riskless asset is excluded. In that case, most

of the posterior mass lies between the values p =10.89 and p = 0.94. (The sample estimate
of p based on E and V is 0.92.)

Figures 2a and 2b display the posterior distributions of A. The values of A are multiplied
by 52 in constructing the histograms, so A should be interpreted as (approximately) the
expected annual return lost from holding portfolio p versus holding the efficient portfolio
with the same risk. When a riskless asset is included, figure 2a indicates that the posterior
distribution of this expected loss centers around 30% per year, with most of the mass falling
between 20% and 40%. Excluding the riskless asset (figure 2b) shifts the posterior of A
toward zero, to the degree that the posterior distributions in figures 2a and 2b barely overlap.
Nevertheless, even when the riskless asset is excluded, much of the mass for A falls above

an expected annual loss of 10%. The posterior of A is also somewhat less disperse in that
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case. (The sampie estimates of A based on £ and f/’, with and without the riskless asset.,
are .31 and .12),

The results obtained without the riskless asset provide an interesting contrast between
the two inefficiency measures. The posterior for p in figure 1b suggests that the value-
weighted NYSE-AMEX index is highly correlated with the efficient portfolio having the
same mean, while the posterior for A in figure 2b suggests that the efficient portfolio with
the same variance would be expected to outperform the index by a substantial amount. Such
results need not be viewed as mutually inconsistent, since a pair of values such p = 0.9 and
A = 0.10 is certainly a theoretical possibility. The results in figures 1 and 2 indicate that
adding a riskless asset substantially increases the degree of inefficiency of the value-weighted
NYSE-AMEX index, whether that mefficiency is measured by p or by A. These results
are consistent with the theoretical property that adding any asset to the universe can only,
for a given portfolio p, lower p and raise A2 At the same time, however, one must be
struck by the low values around which the posterior for p concentrates when a riskless asset
is included. We discover in the next section that considerable care must be exercised in
interpreting posterior distributions of these and other inefficiency measures when using the

standard diffuse prior.

4. Interpreting Posteriors: The Information in a Sample

When interpreting the outcome of any Bayesian analysis, it is useful to develop some un-
derstanding of the role played by the sample in determining one’s posterior beliefs. The
Bayesian analysis in the previous section adopts the standard specification for a diffuse prior
distribution, which is intended to represent vague beliefs about the joint distribution of asset
returns. With such a prior, one might be inclined to interpret disperse posterior distributions
as indicating that the sample does not contain much information and to interpret concen-
trated posterior distributions as indicating a more informative sample. This conventional
intuition is not always justified, however, particularly for arbitrary nonlinear functions of

the parameters.

This section investigates the role played by sample information in determining posteri-
ors of efficiency measures when standard diffuse priors are used to represent uninformative
beliefs. The first subsection analyzes the marginal posterior distribution of p when a riskless

asset is included. Recall from section 3.2 that, in this case, the posterior distribution of P

This statement is obvious for A; Kandel and Stambaugh (1987) prove this property for p.
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depends only on the sample size (T') and the sufficient statistics ¢ and p, defined in (9) and
(11). We compute the posterior distributions of p for different sample sizes and values of
these sufficient statistics. The second subsection considers the case where a riskless asset is
included but the posterior distribution of p 1s conditioned on §. This analysis of the condi-
tional posterior of p, which we show is equivalent to the posterior developed by Harvey and
Zhou (1990) in a regression framework, provides additional insights into the effects of non-
linear transformations on posterior distributions as well as the importance of incorporating

uncertainty about 4.

The third subsection analyzes the posterior distribution of p when a riskless asset is not
included, and the fourth subsection considers the posterior of A both with and without a
riskless asset. Simplifying analytic results are not available for the computation of these
posterior distributions, so the application of the Monte-Carlo procedure requires that we
specity, in addition to the sample size, the sufficient statistics £ and V, defined in (7) and
(8). In order to keep the investigation manageable, we focus on the roles of samples of various
sizes in which £ and V correspond to exact efficiency of portfolio p (p = 1). In essence,
we investigate the maximum degree to which a given sized sample can move the posterior

distribution of an inefficiency measure toward its exact-efficiency limit.

4.1. Interpreting Posteriors for p when a Riskless Asset is Included

As stated above, computing the posterior distribution of p when a riskless asset is included
requires only two sufficient statistics, g and 63, and the sample size, 7. This simplification
allows us to investigate fully the role of sample information in determing the posterior of
p. We consider here four different values of p that range from exact sample eficiency to
substantial inefliciency: 1.0, 0.7, 0.4, and 0.1. Two values of the sample Sharpe measure
§ are considered: 0.03 and 0.1. The first value is approximately the Sharpe measure for
the value-weighted NYSE-AMEX index obtained from our 23-year sample of weekly returns
(the actual estimate is 0.0323), while the second value would exceed historical estimates in
most periods (a weekly Sharpe measure of 0.1 corresponds to an annual measure of about

0.7). Seven hypothetical sample sizes (T') are specified and numbered as follows:
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Sample-size no. Sample size (weeks
1 15
1.52

552
2552
100 - 52
400 - 52
1000 - 52

S—

=1 & O A~ WD

The first sample size, 15 weeks, provides a benchmark “uninformative” case in which the
sample clearly cannot provide much information about the distribution of asset returns. In
that sense, the posterior in this case can be viewed roughly as a representation of prior
beliefs-there is barely enough data to translate the improper diffuse prior distribution into
a proper posterior distribution. The fourth sample size, 25 years, corresponds to the size of
the actual sample used in the previous section. Although the last few sample sizes may seem

rather large, the reasons for their inclusion will become evident as we progress.

Figures 3a-3h display, for each of the eight combinations of § and 8, the posterior distri-
bution of p across the seven sample sizes. A solid line connects the 75% and 25% quantiles,

and dotted lines extend out to the 1% and 99% quantiles,

In each figure, the posterior for p with the “uninformative” 15-week sample (no. 1) has
its median around p = 0.1, and its interquartile range extends from about p = —0.2 to
p = 0.2. Thus, prior beliefs about p are rather concentrated around low values.® This is our
first illustration of how vague beliefs about the basic parameters of the return distribution
(£ and V') need not imply disperse distributions for nonlinear functions of those parameters.
More will be said on this point later. This observation alone, however, does not reveal the

rate at which prior beliefs hecome unimportant relative to the information provided by the
data.

Figure 3a displays the posterior distribution for p when @ = 0.03 and portfolio p is exactly
efficient in the sample, i.e., p = 1. The amount of additional data required to influence the
posterior distribution in this case is striking. A 25-year sample (no. 4} in which p is exactly
efficient still results in a posterior distribution with about 75% of the mass below p = .5.

With 400 years of weekly data (sample size no. 6), most of the posterior mass still lies below

Given the diffuse prior in (6), the marginal (improper) prior density on p* is given by

P(p?) o (p2)TE (1 — p?) "

1

which is unbounded as p approaches zero.
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0.9. We find that a sample of about 1000 years (no. 7) in which p is exactly efficient is
required in order to have most of the posterior mass exceed £ =10.9. In a Bayesian analysis
that starts with a diffuse prior about the parameters in the joint distribution of returns, a
posterior for p that is concentrated around low values might lead one to conclude that the
sample is being informative about the inefliciency of portfolio p. As we see, this need not be

the case.

Figure 3b displays the posteriors for p when 5 =1 but § = .1. As can be seen in the
figure, the posterior concentrates more rapidly on values near unity as sample size increases.
[t can be shown analytically that, for large T and when p = 1, an approximation to the
posterior distribution depends only on the product T' x 62 Indeed, the posterior for the
1000-year sample size (no. 7) in figure 3a is very similar to that for the 100-year sample size

(no. 5) in figure 3b, and #2 is about eleven times greater in the latter case.

Figures 3c-3h display the posteriors for the other values of p, where portfolio p possesses
various degrees of inefficiency in the sample. As the “uninformative” prior for p is concen-
trated on low absolute values, one may expect that, for each sample size 7', the concentration
of the posterior around the sample statistic p will occur more rapidly for lower absolute val-
ues of p. While this phenomenon is exhibited in the figures, one must nevertheless be struck
by how slowly the posterior changes as a function of p, especially for § = 0.03. For example,
the posterior obtained with a 25-year sample (no. 4j in which p = 1 (figure Ja) is almost
identical to that obtained when 4 = 0.7 (figure 3c) and is not much different from that with
p = 0.4 (figure 3e).

We observed in section 3 that, when a riskless asset is included, the posterior distribution
for p obtained with our sample concentrates around rather low values of p (figure la). One
might thereby infer that the data indicate p is probably quite low for the value-weighted
NYSE-AMEX portfolio. As our investigation here reveals, however, a sample of the same
size in which this portfolio is exactly efficient can still produce a posterior for p that has most
of its rmass below p = 0.5. It so happens that our sample produces a value of £ (0.1) that lies
well within the fairly concentrated marginal prior distribution for p (or, more precisely, the
15-week “uninformative” distribuiton). Thus, it becomes difficult in such a case to assess
the role played by the data in forming our posterior beliefs. The analysis using alternative

(informative) priors in section 5 will shed additional light on this issue.

14



4.2.  Interpreting Posteriors in the Regression Framework

As shown by Harvey and Zhou (1990), a marginal posterior distribution for the inefficiency
measure A, the difference in squared Sharpe measures defined in (4), can be obtained in a
regression framework. Let r,; denote the return on portfolio p in excess of the return on
a riskless asset, and let r; contain the excess returns on the other n — 1 assets. Define the

multivariate regression,

T't:a“}'ﬁ?".p,t‘l—ut, t:].....,T, (15)

and assume that u, is distributed multivariate normal, independently across ¢, with mean 0
and variance-covariance matrix ¥. The standard diffuse prior for the multivariate regression

model, used by Harvey and Zhou, is given by

ple, 3,5) « [T, (16)

The inefficiency measure A can be expressed in terms of & and ¥ [Gibbons, Ross, and Shanken
(1989)],
A=d Y. (17)

and the joint posterior distribution of (a, &) can be obtained analytically. From this distri-
bution, Harvey and Zhou draw independent realizations of (o, £) and compute the histogram
for A using (17), following essentially the same Monte Carlo method described in the previous

section.

Shanken (1987b) and Harvey and Zhou (1990) conduct Bayesian analyses using A, but
they turn to p in order to develop intuition. As noted earlier, the link between A and p in
equation (3) includes #, the Sharpe measure of portfolio p. Since 8 is a function of fp and
oy, and those two parameters are not included in the Bayesian regression framework, that
framework cannot provide the marginal posterior distribution for p. Harvey and Zhou (1990)
obtain a posterior for p from the posterior for A simply by plugging in a numerical value for
6 and then, in effect, changing variables from A to p. With the diffuse prior in (16), it can be
shown that A obeys the same marginal posterior distribution given in section 3, except that
the central chi-square distribution in (13) has 7' — 2 instead of T — | degrees of freedom (see
appendix). Recall from section 3 that, when s, and o, are included as unknown parameters,
A and @ are independent in their joint posterior distribution. Thus, it immediately follows
that the plug-in approach employed by Harvey and Zhou actually provides the conditional
posterior distribution of p given @ [except for the previously noted difference between 7 — 1
and 7' — 2 degrees of freedom for the chi-square in (13)]
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From the discussion in section 3 it follows that the statistics p and 6 are sufficient to
determine the conditional distribution of p given . To obtain a draw of p in constructing
this conditional distribution, a draw for » is obtained from (14) and then used to draw A

from the distribution in (12). The value of p is then obtained from (5) using the given value
for 6.

We compute here the conditional posterior of p given 6 for two values of 5, 1.0 and 0.4, and
the same two values for & considered previously, 0.03 and 0.1. In each case, the posterior for p
is conditioned on § = §. We also use the same seven sample sizes (T') as above. Figures 4a-4d
display, for each of the four combinations of 5 and 0, the conditional posterior distributions
of p given # across the seven sample sizes. In all four figures, the “uninformative” 15-week
sample produces a posterior for p that is very concentrated on low values. As the sample size
increases, the posterior for p spreads out before finally concentrating close to 3. As we also
observed for the unconditional posteriors of p, the rate of convergence is higher for higher
values of § and lower absolute values of p. Comparing the conditional and unconditional
posteriors in figures 3 and 4, however, reveals that including the uncertainty in 0 increases
the dispersion in the posterior of p for all sample sizes, but the increases in dispersion are
dramatic for the smaller samples. It appears that ignoring uncertainty about # increases the

potential for misinterpretating concentrated posteriors as reflecting informative samples.

The effect that a nonlinear transformation can have oq the dispersion of a distribution
can be illustrated by considering the conditional posterior for p in light of the posterior
distribution of A. It can be verified that the behavior of the posterior distribution of A across
samples of increasing size conforms to the conventional intuition. That is, the posterior mass
for A is disperse for small samples and then concentrates toward the statistic A (=4%—6?) as
sample size increases. Note from the expression for pin {5) that A appears in the denominator
and is multiplied by 1/6?. The values assumed by the latter quantity are likely to be
much larger than unity-even the largest “conceivable true value” for 6 used by Harvey
and Zhou (1990} implies that 1/6% would be roughly 50.'® Thus, in a very small sample, the
transformation from A to p produces, for a constant value of 8, a variable whose distribution

concentrates near zero.

The results displayed in figure 4 provide an interesting setting in which to review the
conclusions reached by Harvey and Zhou (1990). They observe that their plug-in posterior
distribution for p is concentrated away from unity, and they assign less than a 1% probability
that p is greater than 0.9 for the value-weighted NYSE portfolio. As demonstrated here,

' Their monthly value for  is halved to obtajn a weekly value.
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such an outcome would occur even if the portiolio were exactly efficient in the sample.

4.3. The Posterior for p in the Absence of a Riskless Asset

When a riskless asset is not included, we must specify all of the elements of £ and V in
order to compute the posterior distribution of p- Thus, unlike the case with a riskless asset,
we are unable to express the posterior of p in terms of a few univariate statistics and thereby
present a complete characterization of the role played by the data. We instead focus here
on the role of sample size (T) when s = 1. That is, we investigate the maximum degree to
which a given sized sample can move the posterior distribution of p toward unity. This line
of inquiry is guided by our previous observation that, when a riskless asset is included, large

sample sizes are required in order to form posterior beliefs that p is close 1o unity.

[n constructing the posterior for our actual sample, displayed in figure 1b, the sufficient
statistics £ and V correspond to the unrestricted maximum likelihood estimates of £ and
V' for the multivariate normal model. In this section, since we wish to analyze samples in
which portfolio p is exactly efficient, we instead set the sufficient statistics equal to restricted
maximum likelihood estimates for our sample. These estimates satisfy the restriction that
the value-weighted NYSE-AMEX index is efficient. Otherwise, the method used here to

construct the posterior for p is identical to that described in section 3.

Figure 5 displays the posteriors for p for the seven sample sizes considered earlier. The
uninformative 15-week sample produces a. posterior with a median around 0.5 and an in-
terquartile range between 0.4 and 0.6. Thus, the uninformative sample produces a posterior
that is again fairly concentrated around lower values of p, which might suggest problems of
interpretation similar to those discussed in the case when & riskless asset is included. An
examination of the other sample sizes, however, makes it readily apparent that excluding
the riskless asset produces dramatic differences in the behavior of the posterior of p. The
posterior quite rapidly concentrates on values near unity as sample size increases. In the

25-year sample, for example, virtually all of the mass for p lies above 0.9.

We see that, in contrast to the case where a riskless asset i1s included, modest sample
sizes allow one to arrive at posterior beliefs supporting high values of p, even though the
marginal prior for p concentrates around low values,. Indeed, figure 1b demonstrates that
such posterior beliefs are possible, but that posterior, viewed by itself, does not reveal the
role of the data in forming those beliefs. Given the contrast between the prior and posterior

shown here, we can better assess the substantial influence of the data in this case.
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4.4. The Posteriors for A

Computing the posterior distribution of A, with or without a riskless asset, requires that
we specify the elements of £ and V. Therefore, we again focuse our investigation on the role
of sample size when g = 1. As in the previous subsection, the values of £ and V are set to

the restricted maximum likelihood estimates for our actual sample.,

Iigures 6a and 6b display the posteriors for A with and without the riskless asset. First
note that the posteriors for the 15-week “uninformative” sample are not shown in either case.
Those posteriors are so disperse that increasing the scale to accomodate them would remove
almost all of the visible dispersion from the postertors for sample sizes two through seven.
Therefore, the posteriors of A based on our actual sample, reported earlier in figures 2a and
2b, differ substantially from those produced by an “uninformative” sample. Recall that,
when the riskless asset is included, the posteriors of p in both 15-week and 25-year samples
in which = 1 are concentrated around low values, so it is more difficult to gauge the role

played by our actual sample in forming posterior beliefs about that inefficiency measure.

As the sample size increases, the posteriors for A converge toward zero, although the
convergence is faster when the riskless asset is excluded. For the 25-year sample, the 75%
quartile falls at A = 8% with the riskless asset but at A — 2% without the riskless asset.
The posterior with the riskless asset is more disperse for the 100-year sample (no. 5) than is
the posterior without the riskless asset for the 25-year sample. As observed earlier for p, it
appears that excluding the riskless asset increases a sample’s ability to support an inference
that portfolio p is nearly efficient, even when that portfolio is exactly sample efficient in
both cases. We cannot supply a formal explanation for why it is that excluding the riskless
asset produces this result, but we can offer some simple intuition. Suppose we add the
same constant to the expected return on every tisky asset, i.e., make a vertical shift in
the minimum-standard-deviation boundary of the risky assets. When the riskless asset is
excluded, neither p nor A are affected by such a shift. When a riskless asset is included,
however, shifting the means of the risky assets relative to the observed riskless return will
change both p and A. Thus, uncertainty about a common additive scale factor in expected
returns on the risky assets does not contribute to uncertainty about p or A when the riskless

asset is excluded, but the same is not true when the riskless asset s included.
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5. Informative Priors

The posterior distributions analyzed in sections 3 and 4 employ the improper prior, p(E,V)
[V |=(+1/2 The general appeal of this prior stems from its presumed non-informative prop-
erty and the close correspondence between the resulting posterior distributions and classical
confidence regions for the parameters £ and V. In section 4, we observed that a posterior
for the inefficiency measure p can be tight and yet be influenced very little by sample in-
tormation, even though the prior is “diffuse”. Further, the posterior can be centered far
from the maximum likelihood estimate. Tt is well known [see Box and Tiao (1973)] that
a noninformative prior can be informative on certain marginals, and p provides a striking
example, especially when a riskless asset in included. With a diffuse prior, therefore, it is
more difficult to comprehend the data’s impact on the posterior of p than on the posterior

of parameters such as £.

In this section we construct proper prior distributions for the model parameters F and
V. Various priors are constructed, each one implying a marginal prior for p that reflects
beliefs about the inefficiency of portfolio p. We then gauge the data’s information about p
by comparing the various priors with their corresponding posteriors. When the goal of a
study is quantifying the amount of information about a hypothesis for a general audience,
rather than making a particular decision, the desirability of considering a variety of priors

has been noted in the Bayesian literature. [See Poirier (1992) for a lucid discussion.]

We construct prior distributions for the model parameters such that the range of marginal
priors for p includes those (i) concentrated near zero, (ii) disperse between zero and one,
and (iii) concentrated near one. In the application considered here, the last specification
would correspond to beliefs that the value-weighted NYSE-AMEX index is fairly highly
correlated with an efficient, portfolio. Such prior beliefs might be formed, for example, by a
consideration of asset pricing theory and the view that this stock market index is a reasonable
market proxy. We find that, when a riskless asset is included, seemingly strong prior beliefs
about the model parameters are required to obtain a marginal prior for p that concentrates
near one. This appears to be consistent with our previous finding in section 4 that, when

the non-informative prior is used, large samples are needed to obtain posteriors for p with

substantial mass near one.

When the riskless assed is excluded, we find that prior beliefs about the model’s parame-
ters need not be as strong in order to obtain a marginal prior for p that concentates near one.

This observation also appears to be consistent with the results in section 4, where we found
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that, with the noninformative prior, smaller samples can produce posteriors for p that con-
centrate near 1. Because the models with and without a riskless asset behave so differently,
and for technical reasons which will become apparent below, we consider different types of
priors for the different models. We also restrict our attention to the inefliciency measure
p in order to keep things concise. It appears in any event that the inefficiency measure A
1s less problematic, perhaps because it is not bounded both above and below, so that large

amounts of uncertainty can be represented by a disperse prior or posterior.

5.1. Informative Priors When a Riskless Asset is Included
5.1.1.  Spectfication of the Prior Distribution

Our goal is to formulate a class of priors capable of reflecting various degrees of belief about
p- Moreover, we wish to avoid priors that imply unnecessarily strong heliefs about all of the
other model parameters. That is, we wish to control, for any given p”, the prior probability
of the set {{E,V) : p > p*} without placing high probability on subsets of (£, V) within
that set. The results of section 4 suggest that the latter objective is easily satisfied when
the desired marginal prior for p is concentrated near zero, since vague beliefs about (E, V)

evidently imply strong beliefs that p is close to zero.

As one increases the desired prior probability assigned to values of 2 near 1, it becomes
increasingly difficult to satisfy the above objective by specifying a prior directly for £ and V.
We instead transform this set of parameters to a set consisting of a, 3, and ¥, the parameters
of the regression framework defined earlier, plus u, and o}f, the mean and variance of portfolio
P

E — [a + B#’PJ y
Hp
(18)

2
P

v [E-l—ﬁﬁ’cr; ,6”03}.

Bo? o
This parametrization allows the prior mass of p to be placed as close to one as desired by
concentrating the prior of o around zero and assigning all of the prior mass of iy to positive
values. At the same time, the priors for the parameters other than « can remain spread out

over a wide range of values, although we specify the priors to be proper. We will construct

four priors that differ only in the degree to which the marginal prior for « concentrates

around zero.
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" The joint prior distribution of (e, 3, X, ptp, 03) is specified as follows. The parameters

3,%, pp and o7 are independent with marginal distributions:

3~ N(B.o}l,_) (19)
ST~ Wps, S5) (20)

o ~ N(H,, a7, ) I]0,.2/52] (21)
ok ~ ”;{j ’ (22)

Here W(vs, 5y) is the Wishart distribution with vy, degrees of freedom and parameter
matrix Sy such that E(X71) = vgS;t. The distribution of }p 1s proportional to a normal,

truncated so that its support lies in the interval [0,.2/52].

The conditional distribution of & given Hy 18

ol ~ N(0,021,_y), (23)

where
Ta = da + 1y, (24)
We see from (5} and (17) that, if A is independent of 8, then smaller 8 values will be associated

with smaller p values. The specification in (24), where ¢; > 0, reduces this prior dependence
between p and ¢ by allowing the prior standard deviation of the elements of o to increase
with g, thereby associating smaller & vectors (which are positively correlated with A) with
smaller values of g, (which are positively correlated with 0). One can also view (24) as

assoclating higher absolute “mispricings” with higher overall levels of expected returns.

In constructing the priors for g, and ol we set i, = .07/52 o, = .04/52, v, = 20, and
Ao = .2/+/52. The resulting 5% and 95% quantiles are 0446/52 and .1718/52 for p, and
022 and .0374 for o,.

To aid us in the choice of Sy, we use a sample of monthly returns on NYSE size-ranked
portfolios for the period 1926 through 1962 to compute ¥, the maximum likelihood estimate
of ¥ subject to the restriction that o = 0. We set So = V):S/il, where division by four
converts from monthly to weekly magnitudes. We then set vs. = 20, so the prior information

about ¥ is comparable to 20 weeks of data.

Since the prior distribution of p does not depend on 3, we let the prior for 3 be very

disperse by setting o5 = 1000. We set 3 to be a vector of ones, although the large 05 makes
the choice of F relatively unimportant.
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Finally. we turn to the choices of ¢y and ¢, that determine the conditional prior for a
in (23) and (24). We select four pairs of values for ¢o and ¢, where each pair is chosen to
achieve a desired “average” value of o, as well as approximate independence between p and
0 over a fairly wide range for 6. We report below our choices for @0 and ¢, and the values of
0. that they imply for 4, = .1/52, which is approximately the prior mean of x,. (All values
of ¢y and ¢; are multiplied by 100.)

do ¢ o, for p, = .1/52

0 25 025752
0064 1.667 005/52
0019 0.500 .0015/52
0013 0.333 .0010/52

The implied choices of o, include values that may seem quite small, implying very precise

prior beliefs about «, but the reason for such choices wilj become apparent below.

2.1.2. Results

Figures 7a through 7d display the four marginal prior distributions for p as well as the
posterior distributions based on our sample of 1304 weekly excess returns. The dotted line
in each figure is the prior, and the solid line is the postertor. The computational algorithm

used to obtain the posterior distributions is given in the appendix.!!

The prior in figure 7a reflects the choices of ¢o and ¢y giving the largest values for T
while the prior in figure 7d reflects the choices giving the smallest values. As the prior on
o becomes tighter around zero, the prior mass of p shifts to values closer to one. The four
priors have been chosen to cover the possibilities of interest. The first prior is concentrated
on low values of p and has a prior mean of .19. The second prior is spread out over the
interval {rom zero to one with a prior mean for p of 47, The third prior is concentrated on
p values greater than .8, but with a heavy left tail, and the prior mean is .83. Finally, the

fourth prior is even more concentrated on large p values and has a prior mean of .91.

Clearly, the data shift the last three priors (figures 7h, 7¢, and 7d} to posteriors for p that
put more mass on smaller values. For the first prior (figure 7a), even though the posterior

mode is to the right of the prior mode, the posterior is tighter in a region of quite small i

""The plotted distributions are obtained by applying a kernel smoother to a set of draws from the true
distribution. As a result, the plotted distributions occasionally extend beyond the upper limit (1.0) of the
true distribution.
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values. This posterior. obtained with a proper but disperse prior for the elements of . is
very similar to that obtained earlier using the improper diffuse prior {figure la). Perhaps
the most important message conveyed by the collection of figures 7a through 7d is that, if
the four priors represent a reasonable range of prior beliefs about p, the data do not contain

enough information to make the posteriors converge to a common opinion.

The results with the second prior (figure 7b) are probably the most dramatic: the poste-
rior is much more concentrated than the prior and is supported almost entirely by p values
less than .5. After observing this case, it seems reasonable to conclude that our data do
in fact exert an important influence on the posterior distribution of p and thereby indicate
strongly that the value-weighted NYSE-AMEX index is inefficient. Although the marginal
prior for p in this case is disperse, it is important to realize that, to achieve this dispersion,
the underlying prior for & must be quite concentrated around zero. When p, is close to its
prior mean, for example, the prior standard deviation of the elements of « is only 0.5% on

an annual basis,

The third prior (figure 7c) assigns roughly 50% probability to the hypothesis that p > 0.9.
Shanken (1987b) specifies the same prior probability for this composite hypothesis by directly
assigning prior probabilities to thirteen discrete values of p under the null and the alternative.
Conditioning on a value for @, Shanken computes a posterior odds ratio and concludes that
the posterior probability of p 2 0.91s 20%. Our distribution in figure 7c indicates a very
small posterior probability that p 2 0.9. (As explained earlier, the posterior distribution of
p allows one to compute easily the odds ratio Pr{p > 9}/Pr{p < .9}.) Unlike Shanken,
we specity a prior distribution for the basic moments of the multivariate return distribution
and do not condition on §. Qur data differ as well, in that Shanken uses monthly returns on
NYSE stocks combined by industries while we use weekly returns on size-ranked portfolios
and include the AMEX stocks. Nevertheless, we reach a similar conclusion: if one assigns
substantial prior probability to the belief that the value-weighted stock portfolio is nearly
efficient {p > 0.9), this belief is weakened considerably by the data. Note, however, that

the posterior probability for, say, p 2 0.7 is substantial. (Shanken does not report posterior
probabilities for other composite hypotheses.)

Recall that section 4 analyzed posterior distributions obtained from hypothetical samples
in which 6 = 1. Figures 8a through 8d display the results of a similar exercise using the
four informative priors rather than the improper prior used previously. For this analysis, we
compute maximum likelthood estimates of the model parameters subject to the restriction

that 6 = 1 (or @ = 0). As explained in the appendix, the posterior distributions can be

23



obtained using maximum likelihood estimates of the model parameters {as sufficient statistics
for the data), so the restricted estimates will give the posterior for a hypothetical sample of

the same size as our actual sample but where portfolio p is exactly efficient,.

With the hypothetical data set in which p = 1, the posteriors for p move towards one,
as expected. Again, though, the data do not provide information that is sufficient to make
the posteriors concentrate near one for all four priors. A comparison of figures 7b and 8b
reveals an interesting difference between the posteriors. The marginal prior for p, the same
in both cases, is spread over a wide range of values. The posterior in figure 7b, based on
the actual sample in which p = 0.1, is significantly tighter than the posterior in figure 8b,
based on the hypothetical sample in which p = 1. It seems that, unless one believes q priori
that a portfolio is nearly efficient, substantially more data is required in order to assign high

probability to such a hypothesis.

3.2. Informative Priors in the Absence of a Riskless Asset
5.2.1.  Specification of the Prior Distribution

When there is no riskless asset, it is difficult to specify a prior on £ and V that allows us to
control the concentration of the mass on the set {(E,V):p>p*}. We can tighten the prior
around specific values of £ and V within this set, but this approach is less desirable. On
the other hand, we saw in section 4.3 that the data appear to have a greater impact on the
posterior for p when the riskless asset is excluded. Thus it seems that, although our tools
are less refined in this case, it seems easier to assess the role of the data in obtaining the

posterior distribution.

We specify a prior in which £ and V are independent with the following marginal distri-

butions:
E~ N(E, orl,) (25)

V_l ~ W(Uv,Sv) (26)

To completely specify the prior we must assign values to E, og, vy, and Sv. Qur approach
is to obtain a reasonable pair (E,V) in the set {(E,V):p =1} and then choose or and
vy to control the prior’s concentration around these values. We again use the monthly data
from 1926 through 1962 and compute maximum likelihood estimates £ and subject to the
restriction that p = 1. We then set £ = E’/fl and Sy = VVI}/ZI, where division by four puts

the monthly quantities on a weekly basis. The marginal prior for p will concentrate near one
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as we increase vy and decrease o, because we are then tightening the joint prior on (E,V)

around a value such that p = I.

We specify four different combinations of or and vy

R vy
05/52 20
05/52  2.52
005/52  2-52

.0005/52 252

The first (o, vy) combination is intended to construct a prior that, although proper, is
still fairly disperse. The elements of £ are independent with standard deviations of 05/52,
and the information about V is comparable to that obtained with 20 weeks of data. The
information about V reflected in the other three priors is the equivalent of two years of weekly
data, and these priors specify progressively smaller standard deviations for the elements of
E. While two years is not large relative to our 25-vear sample period, we find that such
information about V is sufficient to concentrate the marginal prior for p about one as we

tighten the prior for F.

5.2.2. Results

Figures 9a through 9d display the results based on our sample of 1304 weekly returns for
each of the four prior distributions. As before, the dotted line is the prior, and the solid line

is the posterior. The appendix explains the computation of the posteriors.

We see that the first prior (figure 9a) is disperse over a wide range for p. Thus, in
constrast to the case where the riskless asset is included, a disperse prior on the parameters
of the return distribution does not lead to a concentrated marginal prior on p. The posterior
is tightly concentrated about .92 and is, in fact, quite similar to that obtained in section 3
(figure 1b) using the improper prior. Thus, the difference between the improper diffuse prior
and the proper diffuse prior of this section is negligible relative to the information content
of the data.

As we progressively tighten the marginal priors in figures 9b through 9d, the posteriors
remain essentially the same, although they are a bit tighter for the last two priors. Therefore,
when the riskless asset is excluded, the data seem to be quite informative about p, in that

the information in our 25-year sample appears to overwhelm the information supplied by the
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prior. The results here based on the informative prior distributions strengthen the conclusion
drawn in the previous sections about the strong role played by the data in supporting the

near efficiency of the value-weighted NYSE-AMEX index in the absence of a riskless asset.

6. Conclusions

The inefficiency of a given portfolio p can be investigated in a Bayesian framework by exam-
ining posterior distributions of scalar measures of portfolio inefficiency. Two such measures
with simple intuitive appeal are A, equal to minus the difference in expected returns between
portiolio p and an efficient portfolio of equal variance, and p, the maximum correlation be-
tween the return on p and an efficient, portfolio. We obtain posterior distributions for these
measures that incorporate the inherent uncertainty about all of the parameters of the joint
distribution of asset returns. We demonstrate that ignoring the uncertainty in some of
the model’s parameters, as is sometimes done in previous studies, can exacerbate problems

inherent in interpreting posterior distributions of inefficiency measures.

The inefficiency measures A and p can be applied whether or not a riskless asset is
included in the set of assets. We find, however, that including a riskless asset has significant
effects on various aspects of the analysis. When prior beliefs are represented by standard
uninformative (diffuse) prior distributions, the value-weighted NYSE-AMEX index appears
to be quite inefficient when the riskless asset is included, in that the posteriors for both
A and p place most of their mass on values quite far from A = 0 and p = 1. A deeper
analysis reveals that such posterior distributions need not reflect information in the sample.
In particular, similar posteriors for p result when the portfolio of interest is exactly efficient
in the sample. Vague prior beliefs about £ and V imply a marginal prior for p that is
concentrated around low values, due the nonlinear relation between p and the basic return

moments.

In order to investigate more carefully the extent to which the data do contain informa-
tion about the inefficiency of the NYSE-AMEX index when a riskless asset is included, we
recompute posterior distributions of p using various informative prior distributions for the
parameters of the return distribution. Constructing a prior with disperse beliefs about p
requires prior distributions for other model parameters (the elements of «) that are quite
concentrated. Upon constructing such a prior, we find that the data produce a marginal
posterior for p that is concentrated around low values, so we conclude that the data do

in fact contain information indicating that the value-weighted NYSE-AMEX portfolio is
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rather inefficient. At the same time, however, a reasonable range of informative priors for
p produces posteriors that vary substantially. We also find that much larger samples are
required to produce a posterior distribution that strongly supports only modest degrees of
inefficiency (values of p close to one), even if the portfolio is exactly efficient in sample. In
general, with sample sizes typically encountered in practice, the prior distribution exerts an
important influence on one’s posterior beliefs about a porttolio’s inefficiency in the presence

of a riskless asset.

When a riskless asset is excluded, posterior distributions for the inefficiency measures
appear to be determined primarily by the data, in that the posterior distributions are very
similar for a wide range of priors. It appears likely that the value-weighted NYSE-AMEX
index is highly correlated with an efficient portfolio: most of the mass in the posterior
distribution for p is concentrated above 0.9. At the same time, the posterior for A places
much of its mass on values between 10% and 15%, which suggests that one would expect the

index to be substantially outperformed by an efficient portfolio of equal risk.

Including a riskless asset appears to decrease significantly one’s ability to draw sharp
inferences about a portfolio’s degree of inefficiency. With a sample of twenty-five years, for
example, the choice of the prior is critical in the presence of a riskless asset but unimportant
in 1ts absence. This property may arise, in part, from the increased importance of inferring
the levels of expected returns in first case. When a riskless asset, s excluded, the inefficiency
measures p and A are unaffected by a common shift in the expected return on all risky

assets, whereas both inefficiency measures are affected by such a shift when a riskless asset

is included,



Appendix

A. Analytic Results with Diffuse Priors

We derive here the analytic results, stated in sections 3.2 and 4.2, for the posterior distribu-
tions of p and A when a riskless asset is included. Without loss of generality, we assume that
the nth asset is portfolio p. That is, the 1 x n vector containing the returns on all assets in

period ¢ is 1} = [r] r/ ], where r, and rpe are defined in the regression in (15). Some useful

functions of the data and the parameters are defined as tollows:

R = [Ry R, - Ryl nxT,

T = ety Torls 1xT,

Y = [ry oo g (n—-1)xT,
o= [1,00,1], 1 xT,

X = [er 1], T x2,

B = [aj], (n—1) x 2,

b = [o 37, I x2(n—1),

B = (WX)XY =[af),  2x(n-1),

b = & A7, I x2(n 1), and
S = (Y-XB)(Y - XB), (n—1) x (n~1).

The Jacobian of the transformation in (18) is o2"~1). Noting that V] = o{%}, the prior
distribution of (E, V) in (6) is rewritten in terms of b, ¥, pp, and o

(n41)

p(b,E,pP,aﬁ)occr;_3[Z|— T, (A1)

The multivariate Normal sampling distribution of R, conditioned on £ and V, is:

T
p(RIE,V) « |V|F exp {-% Y (R — EYV YR, — E')} (A.2)

t=1
Using the transformation in (18), this distribution can be factored into the product of the

marginal distribution of r, and the distribution of ¥ conditioned o1 T,

p(R’b, x, Hops 03) = p(YITpa b, E) ) p(Tpl}ip, 0-5) (AB)
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where

p(Yr,, 5,X) x

7% exp { =30 - BY(LYX)™ 17— b)) - exp {—er(51),

and

5 oy i ) Tﬁ‘g
p(%'r“p:ap) X o,” rexp _.'_(J”’p - .“;D) CEXpY — 5 .

2
d
4

P
Combining (A.1) through (A.5) allows us to write:

p(b, S, ty, 72| R)

4

SLUPRE rp) - p(E]Y, rp) - p(ﬂplrma;) : P(Uﬁli‘“p)

where
PO, Yoy ox (B[ exp {~4 (b~ B)[(X'X) " @ X7 (B — 1)}
p(EIY.ry) o [S)™FH exp{—L tr215),
, T .
P(#plrp, ;) o o7 exp {-o—; (fp — up)z} :
HO‘p
and

T&2
2 -T—2 P
p(ap|rp) x oy exp {~ 202 } .

(A.10)

We see from (A.6)-(A.10) that, given the data, e, 3, and ¥ are independent of y, and

7p. When a riskless asset is included, p can be expressed as a function of A and @ [equation

{5)]. As shown in (17), A can be expressed as a function of @ and £. Hence, A is independent

of i, and o, and, therefore, is independent of 8. From (A.7) we observe that
(a]X,Y,r,) ~ N(&,d%),
where d, the (1,1) element of (X"X)"!. can be written as

(14 62)
—

From (A.8), we see that ¥~! obeys a Wishart distribution,

d=

(E7HY,r,) ~ W(S™L T 1}.
In order to derive the posterior distribution of A, define

v = d"1/22_1/2a,
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(A.12)

(A.13)

(A.14)



n= % = v'v, (A.15)

and .
&AE 14

d

The posterior distribution of A can be expressed as a product of conditional and marginal

(A.16)

distributions:

p(AlY.7p) = P(Alw, Y rp) - p(v|Y, ) (A.17)
From equation (A.11) and (A.14) we get,

(v]E,Y,ry) ~ N(d7Y287124 ), (A.18)
Combining (A.15) and (A.18) yields the posterior distribution of n conditioned on v:

(v, Yyrp) ~ x2_ (v). (A.19)

Using the definition of d in (A.12) we get

Ol ¥or) ~ i [ 2], (A20)
The marginal posterior distributior} of v 1s derived from (A.12), (A.13), and (A.16):
(W]Y,r,) ~ X2, - [4'S~'d]/d. (A.21)
Gibbons, Ross, and Shanken (1989) show that
T-&S7'q = 32
_ “—"92(1;3; /) (A.22)

where the second equality follows from (11). Therefore, the posterior distribution of v in
(A.21) can be written as '

g 1 — 2
(v]Y, rp) ~ X%‘—l ) (1 n 9*2) ( 72 ) . (A.23)

Based on (A.17), (A.20), and (A.23), in order to draw a value for A, we first draw a value of
a central chi-square variate with (7' — 1} degrees of freedom and calculate the corresponding
value of v. We then draw a value of a non-central chi-square variate with (n - 1) degrees of

freedom and » as the non-centrality parameter and calculate the corresponding value for ).
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With the standard diffuse prior for the regression model in (16), the posterior distribution
of A is virtually identical to that given above. The exponent on |Z| in (A.8) becomes
—(T +n — 2)/2, which simply requires that one change the degrees of freedom from 7' — 1
to I'— 2 in the Wishart distribution in (A.13) and in the central chi-square distributions in
(A.21) and (A.23).

The marginal posterior distribution of 4 is casily obtained from (A.9) and (A.10). From
(A.10),

ol = T6! — (A.24)

or

XT-n » A.25
O-P \/T&p T ( )

where y7_, is a chi-square variate with 7' — n degrees of freedom. From (A.9) we can

represent j, as
. a
fp = fip + Tj“ (A.26)

where z is a standard Normal variate that is independent of ¥ _ . Since § = ttp/ oy, com-

bining (A.25) and (A.26) gives

=

[APXT—TL +ZJ
P

= —=l0xr_a+4]. (A.27)

Q

S5l

B. Obtaining Posteriors Using the Informative Priors

We describe here the algorithms used to draw from the posteriors given the data and the
priors of section 5. Both algorithms use Gibbs sampling, which is described in detail in
Casella and George (1992) and Tierney (1991). Briefly, the jth draw of &, from the posterior
for (61,4s,...,0x}, where each §; is a subvector of the parameter vector ¢, is obtained from

the conditional distribution:
611 61,65,..., 60,670,671 D (A.28)

where D represents the data. The values are drawn sequentially, after choosing starting

values 62,1 = 1,... K.

In the case where the riskless asset is included, we must draw from the posterior distribu-

tion of the parameters («, 3,3, ttp,02). We use Gibbs sampling and draw from the following
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conditionals:

(c,3) | 5, 1,02, R (A.29)
b \a,ﬁ,,up,oig,R (A.30)
to |, 3.5, 00 R (A.31)
0}3 f@aﬁaEaMmR (A32)
For the conditional distribution in (A.29), define
) -1
A=z |Gt 010 (A.33)
0 o5
LBE=(X'Xen 447, (A.34)
and
b=[01)® . (A.35)
Then the distribution in {A.29) is
N(Zy[Vec(ZT'Y'X) + Ab], %)), {(A.36)
where Vec stacks the columns of a matrix.
The conditional distribution in {A.30) is
Wive +T,5 +(Y - XB)(Y - XB)). (A.37)

Draws from the conditional distribution in (A.31) are essentially obtained by brute force.
We have:

Pky | @8, %, 0, B) o pla | p)p(X |, 02)p{p1,) (A.38)
We compute this for a grid of i, values, normalize to obtain probabilities, and then draw
from the discrete distribution.
The conditional distribution in (A.32) is proportional to

OAO
Yoo 155 (A.39)

2
XUO+T

where rss = 3 (r,, — p,)%

For simplicity, the conditional distributions above are expressed directly in terms of

the matrices containing the data (using Y, X, etc.). It is straightforward to show that
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the unconstrained maximum likelihood estimates of the parameters «, 3,3, yp,a; serve as
sufficient statistics, and the conditional distributions can be rewritten using those quantities.
This alternative representation is used in constructing the posteriors in figures 8a through
8d, where, as described in section 5.1.2, it is assumed that the hypothetical samples produce

unconstrained maximum likelihood estimates yielding p = 1.

In the case where the riskless asset is excluded, we must draw from the posterior distrib-

tion of (E,V). We use the Gibbs strategy to draw from the conditional distributions,

E|V,R (A.40)
V|E.R (A.41)

where B again denotes the returns data. Since the location model used in this specification

is a special case of the regression model, these two conditionals are special cases of (A.29)
and (A.30).
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Figure 1. Posterior distributions of p using a diffuse prior.

Each figure is based on 5000 draws from the posterior distribution of the inefficiency measure
p, which is the maximum correlation between the value-weighted NYSE-AMEX index and
an efficient portfolio. Efficient portfolios are computed using weekly returns from January
1963 through December 1987 for a set of assets consisting of ten size-ranked portfolios and
the equally and value-weighted NYSE-AMEX indexes. F igure la displays the posterior of
p when a riskless asset is included, in which case returns are in excess of the return on a

one-week Treasury Bill. Figure 1b displays the posterior of p obtained when the riskless
asset 1s excluded.
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Figure 2. Posterior distributions of A using a diffuse prior.

Each figure is based on 5000 draws from the posterior distribution of the inefficiency measure
A, which is equal to minus the difference between the mean of the value-weighted portfolio
and the efficient portfolio having the same variance. Efficient portfolios are computed using
weekly returns from January 1963 through December 1987 for a set of assets consisting of
ten size-ranked portfolios and the equally and value-weighted NYSE-AMEX indexes. Figure
2a displays the posterior of A when a riskless asset is included, in which case returns are
in excess of the return on a one-week Treasury Bill. Figure 2b displays the posterior of A
obtained when the riskless asset is excluded. All values are multiplied by 52.
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Figure 3. Posterior distributions of p when a riskless asset is included, using a
diffuse prior, for various sample sizes and values of the sufficient statistics.

Each of figures 3a through 3d displays, for given values of the sufficient statistics p and é,
the marginal posterior distributions of the inefficiency measure p for seven different sample
sizes. The numbers 1 through 7 on the horizontal scale in each figure correspond to sample
sizes of 15 weeks, 1 year, 5 years, 25 years, 100 years , 400 years, and 1000 years. For each
sample size, the figure displays the 1%, 25%, 50%, 75%, and 99% quantiles of 5000 draws
from the posterior distribution. The 25% and 75% quantiles are connected by solid lines,
and dotted lines extend to the 1% and 99% quantiles.
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Figure 3 (continued). Posterior distributions of p when a riskless asset is in-

cluded, using a diffuse prior, for various sample sizes and values of the sufficient
statistics.

Each of figures 3e through 3h displays, for given values of the sufficient statistics p and é,
the marginal posterior distributions of the inefficiency measure p for seven different sample
sizes. The numbers 1 through 7 on the horizontal scale in each figure correspond to sample
sizes of 15 weeks, 1 year, 5 vears, 25 years, 100 years , 400 years, and 1000 years. For each
sample size, the figure displays the 1%, 25%, 50%, 75%, and 99% quantiles of 5000 draws
from the posterior distribution. The 25% and 75% quantiles are connected by solid lines,
and dotted lines extend to the 1% and 99% quantiles.
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Figure 4. Conditional posterior distributions of p given 6, using a diffuse prior,
for various sample sizes and values of the sufficient statistics.

Each of figures 4a through 4d displays, for given values of the sufficient statistics § and 4,
the conditional posterior distributions of the inefliciency measure p given § = 8, where a
riskless asset is included, for seven different sample sizes. The numbers 1 through 7 on the
horizontal scale in each figure correspond to sample sizes of 15 weeks, 1 year, 5 years, 25
years, 100 years , 400 years, and 1000 years. For each sample size, the figure displays the
1%, 25%, 50%, 75%, and 99% quantiles of 5000 draws from the posterior distribution. The

25% and 75% quantiles are connected by solid lines, and dotted lines extend to the 1% and
99% quantiles.
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Figure 5. Posterior distributions of p when a riskless asset is excluded, using a
diffuse prior, for various sized samples in which the portfolio is exactly efficient.

The numbers 1 through 7 on the horizontal scale correspond to sample sizes of 15 weeks,
1 year, 5 years, 25 years, 100 years , 400 years, and 1000 years. For each sample size, the
figure displays the 1%, 25%, 50%, 75%, and 99% quantiles of 5000 draws from the posterior
distribution. The 25% and 75% quantiles are connected by solid lines, and dotted lines
extend to the 1% and 99% quantiles.
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Figure 6. Posterior distributions of A, using a diffuse prior, for various sized
samples in which the portfolio is exactly efficient.

Figure 6a displays the posteriors of A when a riskless asset is included, and figure 6b displays
the posteriors in the absence of the riskless asset. The numbers 2 through 7 on the horizontal
scale correspond to sample sizes of 1 year, 5 years, 25 years, 100 years , 400 years, and 1000
years. For each sample size, the figure displays the 1%, 25%, 50%, 75%. and 99% quantiles
of 5000 draws from the posterior distribution. The 25% and 75% quantiles are connected by
solid lines, and dotted lines extend to the 1% and 99% quantiles.
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Figure 7. Prior and posterior distributions of p when a riskless asset included.

Each of figures 7a through 7d displays a marginal prior distribution for p (dotted line)
and the corresponding posterior distribution (solid line) obtained from a sample of weekly
returns from January 1963 through December 1987 for a set of assets consisting of ten
size-ranked portfolios, the equally weighted NYSE-AMEX portfolio, and the value-weighted
NYSE-AMEX portfolio, whose inefficiency is characterize

d by p. All returns are in excess
of the return on a one-week Treasury Bill.
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Figure 8. Prior and posterior distributions of p when a riskless asset is included
and the portfolio is exactly efficient in the sample.

Each of figures 8a through 8d displays a marginal prior distribution for p (dotted line)
and the corresponding posterior distribution (solid line) obtained from a hypothetical 25-year
sample of weekly excess returns in which the portfolio of interest is exactly efficient.
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Figure 9. Prior and posterior distributions of p when a riskless asset excluded.

Each of figures 9a through 9d displays a marginal prior distribution for p (dotted line)
and the corresponding posterior distribution (solid line) obtained from a sample of weekly
returns from January 1963 through December 1987 for a set of assets consisting of ten
size-ranked portfolios, the equally weighted NYSE-AMEX portfolio, and the value-weighted
NYSE-AMEX portfolio, whose inefficiency is characterized by p.




