AN ANALYSIS OF DAILY CHANGES IN SPECIALIST
INVENTORIES AND QUOTATIONS

by

Ananth Madhavan
Seymour Smidt

2292

RODNEY L. WHITE CENTER FOR FINANCIAL RESEARCH
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6367

The contents of this paper are the sole responsibility of the author{s).

Copyright © 1992 by Ananth Madhavan and Seymour Smidt



An Analysis of Daily Changes in Specialist
Inventories and Quotations

Ananth Madhavan
and
Seymour Smidt*

Original Version: September, 1991
Current Version: October, 1992

*Wharton School, University of Pennsylvania and Johnson School, Cornell University, re-
spectively. We thank Marshall Blume, Fernando Diz, Prajit Dutta, Thomas Finucane, Lawrence
Harris, Joel Hasbrouck, Richard Highfield, Eric Hughson, Shmuel Kandel, Donald Keim, Craig
MacKinlay, Krishna Ramaswamy, Oded Sarig, and Laura Starks for their helpful comments.
Special thanks are due to Matt Richardson for his help with the estimation. We have also bene-
fitted from the comments of seminar participants at the California Institute of Technology, Cor-
nell University, the University of Rochester, Syracuse University, the 1992 USC/UCLA/NYSE
Conference on Market Microstructure, the 1992 Western Finance Association Meetings, and
the 1992 European Finance Association Meetings. Research support from the Geewax-Terker
Research Fund (Madhavan) is gratefully acknowledged. Any errors are entirely our own.



An Analysis of Daily Changes in Specialist Inventories and
Quotations

Abstract

This paper develops a model of market making that incorporates both
inventory control and asymmetric information effects. We show that the spe-
cialist acts both as a market maker and as an active investor trading for his
own account. As a market maker, the specialist quotes prices that induce
mean reversion toward a desired level of inventory; as an active investor, he
periodically adjusts the target inventory levels towards which inventories re-
vert. We test the model using data obtained from a NYSE specialist. We find
that specialist inventories exhibit mean reversion, but the adjustment pro-
cess is slow, even controlling for shifts in target inventories. The model also
predicts that quote revisions are negatively related to specialist trades and
positively related to the information conveyed by order imbalances. We find
strong evidence for this hypothesis; further, our results suggest that specialist
quotes anticipate future order imbalances.



1 Introduction

Interest in the behavior market makers reflects their crucial roles in price formation and
in the provision of liquidity in securities markets. This paper analyzes, both theoretically
and empirically, the trading behavior of a specialist on the New York Stock Exchange
(NYSE).

Views about specialists’ roles have changed dramatically over time, perhaps reflecting
real changes in their functions or their environment, or a realization that they perform
several complex functions. The specialist was initially described as an auctioneer or as ‘the
broker’s broker,’ responsible for maintaining the limit order book and enforcing price and
time priority rules for order execution. The specialist is also a ‘supplier of immediacy,” who
provides liquidity by acting as a market maker. Early analyses of the specialist’s market
making function presumed that they would passively provide liquidity to accommodate
transitory order imbalances, thereby stabilizing prices. To perform their market making
function, however, specialists must bear unwanted inventories. Theoretical models show
that when market makers face inventory carrying costs or are risk averse they will actively
control their inventory by setting prices to induce movements towards desired inventory
levels.!

Another class of models emphasizes the importance of asymmetric information in
analyzing market maker behavior.? In these models, the perceived presence of informed
traders with private information regarding fundamental asset values affects price dynamics
and the size of the bid-ask spread. The inventory control and asymmetric information
theories are not mutually exclusive: they yield similar predictions about asset returns
and volume, but until now have not been integrated into a formal model with optimizing
agents,

Empirical analyses of market maker behavior are mainly limited to indirect implica-

tions of these theories because the available public databases do not distinguish market

‘See, e.g., Amihud and Mendelson (1980) and Ho and Stoll (1983).
*See, e.g., Kyle (1985) and Glosten and Milgrom (1985).



maker transactions from those of other market participants.® Very few studies are based
on the actual trading records of market makers in any financial markets.? Studies of mar-
ket makers’ daily inventory positions (U.S. Securities and Exchange Commission (1971),
Stoll (1976), Ho and Stoll (1983) and Ho and Macris (1984)) find evidence of inventory
effects, but do not distinguish these effects from the effects associated with asymmetric in-
formation. More recent studies that recognize both effects (e.g., Hasbrouck (1988), Stoll
(1989), and Madhavan and Smidt (1991)) find only weak evidence of short-run inven-
tory effects but strong information effects. These results argue for examining inventory
behavior over longer horizons.

While these studies shed light on the relative importance of the information and inven-
tory effects, several crucial questions concerning market, maker trading behavior remain
unresolved: If market makers pursue inventory control policies, why do previous empiri-
cal studies find inventory effects to be so weak? Are market makers at an informational
disadvantage relative to other traders, as presumed by asymmetric information models,
or do they possess valuable information about market conditions? Do market makers take
speculative positions, and if so, how do these positions affect short- and long-run return
dynamics? This paper examines these issues, both theoretically and empirically.

We develop an intertemporal model of specialist trades and quotes. The model differs
from previous models in three important respects: (1) The model incorporates formally
the effects of both asymmetric information as well as mventory control, where the behavior
of all agents is explicitly derived from utility maximization. (2) We model the specialist
as both a market maker who provides liquidity on demand and an active investor for his
own account. Previous models assume that the specialist acts as a pure market maker,
ignoring the possibility that specialist trades may also reflect investment and speculative
motives. (3) We explicitly model the impact on quotes and trades when the specialist

receives information about liquidity-based trading. Such information may arise from the

?See, e.g., Glosten and Harris (1988) and Hasbrouck (1988).
“See Working (1977a), Working (1977b), U.S. Securities and Exchange Commission (1971), Stoll

(1976), Ho and Macris (1984), Silber (1984), Madhavan and Smidt (1991), Neuberger (1992) and Has-
brouck and Sofianos (1992).



central position of the specialist on trading floor, his privileged access to the limit order
book, and the fact that he is the first to receive indications about order imbalances on
computerized trading systems.®

The model provides new insights into the role of the specialist. We show that a
specialist acts both as a market maker and as an active investor managing his portfolio
exposure. As a market maker, the specialist quotes prices that induce mean reversion in
inventory. As an active investor, the specialist seeks to maintain a long-term position in
the stock consistent with his portfolio objectives, while profiting in the short-term from
information about impending order imbalances obtained through his central position on
the trading floor.

The optimal quotations of the specialist induce mean reversion in inventory towards
target inventory levels determined by relatively long-term considerations. We find very
slow mean reversion in inventories if the specialist’s desired stockholdings are assumed
constant. It takes over 49 trading days, on average, for an imbalance in inventory to be
reduced by 50%. However, the specialist is an active investor as well as a market maker,
and shifts in desired inventories may bias our estimates of mean reversion. We use an
intervention model to correct for unobserved shifts in the specialist’s desired inventory
levels, and find strong evidence of mean reversion in inventories to these time- varying
targets. Even so, mean reversion takes place over far longer horizons than was previously
believed; it takes on average 7.3 trading days for an imbalance in inventory to be reduced
by 50%.

‘The model predicts that quote revisions are inversely related to specialist trades and
positively related to the information content of order flow. We find strong support for
this hypothesis. Interestingly, it is the non-block portion of order flow that appears to

have information content. We also find evidence that the specialist anticipates future

Indeed, the ‘tick test’ was introduced in the 1930s in response to congressional concerns that the
specialist’s trading was detrimental to the interests of their brokerage customers. Thus, federal regulation
of specialists in the United States starts from the premise that individual investors must be protected from
exploitation by better informed specialists. Forster and George (1991) provide a model where market
makers are at an informational disadvantage relative to traders with security-specific private information,
but possess private information about the distribution of noise trading.



order imbalances. This finding provides support for early arguments that the specialist’s
unique position provides him with market information not available to most traders.
The paper proceeds as follows. In Section 2, we develop a theoretical model of specialist
trading. In Section 3, we describe the data and in Section 4 we discuss our estimation
technique. Section 5 provides the results of our analyses of specialist inventories while
Section 6 examines the relation between specialist trades and stock prices. Finally, Section

7 summarizes the paper and offers some suggestions for further research.
2 A Framework for Analysis

2.1 The Trading Environment

We begin by developing an intertemporal model of specialist trades and quotes. As noted
above, the model differs from previous theoretical work in three important respects: First,
the model incorporates the two main theories of market maker behavior, namely the
asymmetric information and inventory control theories, in a framework where all agents
solve an explicit utility maximization problem. Second, the specialist acts both a market
maker and an active investor. Third, the specialist’s information about the distribution
of liquidity-based trading is incorporated in the decision process.

Consider the market for a single risky asset that trades on dayst =1,2,...,7. Let
v; denote the value of the security on day ¢{. On the final trading date, 7, the security
pays a liquidating dividend. The dividend date is a random variable, and we assume
that at the beginning of day ¢, before any trading occurs, there is a positive probability
(1 ~ p) that day will be the liquidation date, i.e., Prlt = 7] = (1 — p). We assume that
the security’s fundamental value follows a random walk, e, vy = v4_1 + 1, where 7; is
normally distributed error term with mean zero and variance ol.
At the beginning of day ¢, the specialist quotes a price p, for the security and investors

then submit their orders given this price.® The specialist’s quotes are determined by his

®1t is not difficult to relax the assumption of a single price and incorporate a bid-ask spread without
altering our basic conclusions, We show the specialist can make positive profits through his knowledge
of liquidity demands, even in the absence of a spread.



conjectures about trader demands, which in turn maximize utility given the quotes set
by the specialist. Equilibrium requires that these conjectures and actions be consistent.
The submitted orders may or may not get executed depending on whether day ¢
1s the liquidation date. If with probability (1 — p), day ¢ is the dividend day, then
submitted orders are canceled, and the security pays a liquidating dividend. Otherwise,
with probability p, day ¢ is not the liquidation date, and the submitted orders are executed
at the quoted price by the specialist who absorbs any excess demand into his inventory.
The specialist need not participate in every transaction; some orders will cross at the
posted price. Let z(p;) denote the excess demand at price p¢ with the convention that
z; > 0 represents positive excess demand and z; < 0 positive excess supply. Let I, denote
the specialist’s inventory before trading takes place on day ¢,so that I, = I,y —z,_;. After
trading is completed, the specialist updates his beliefs based on order flow and quotes a
price for the next round of trade. Investors then submit their orders for execution, and
the process continues until, with probability one, the liquidation date is reached.
Traders and the specialist maximize the expected utility of final period wealth, w,.
Consistent with previous theoretical research, we assume that traders have mean-variance

expected utility functions of the form:
U(W.,) = E{W.|®,] — wo?[W,|®], (1)

where w > 0 is a parameter that measures the degree of risk aversion and E[] and 0[]
denote the conditional expectation and variance operators with respect to the information
set, @;.

At time ¢, the specialist views the asset’s current fundamental value as a random
variable, denoted by #,. Traders observe the current realization of vy, which is the payoff
that would occur if ¢ is the liquidation date, and trade based on this mformation. We
could, with no loss of generality, assume that traders had only a noisy estimate of v,. The
specialist’s beliefs will be a function of the observed history of order flow, as we show
below. Excess demand on day ¢ originates from N traders, who enter the market with

an existing endowment of the security. Let F;; denote the share endowment of trader
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7 in auction ¢, where we normalize the mean endowment over all traders to be zero. A
negative endowment is interpreted as a short position. For simplicity, we assume that
traders trade only once, when they have private information about fundamental values,
and do not place orders at other times. We normalize the discount rate to zero to simplify
the notation; this assumption has no effect on our qualitative results because there is, with
probability one, a terminal date.”

We show in the appendix that the aggregate excess demand can be represented by the
equation:

Zt(Pt) = 5(’0\: - Pt) + X, (2)

where § = Mml;—;l measures the responsiveness of demand to price and X; = — ¥, Ej,
represents liquidity trading. Note that liquidity trading arises endogenously within the
model; it represents the portfolio hedging demands of traders which are the exact analogue
of the specialist’s motives for inventory control.

As discussed above, the specialist may have information about the composition of
liquidity-motivated demands. Formally, we assume that X; = z; + &, where z; 1s the
portion of the shock observed by the specialist and £, is the unanticipated shock. We
assume that at time ¢, ¢ and z,,, are pure white noise and are temporally uncorrelated

with all other random variables. Then, the specialist views excess demand as a random

variable, denoted by Z,(p), given by:

Z(p:) = 85 — p) + s + &, (3)
where £, is the unknown order flow shock,

Like traders, the specialist maximizes the expected utility of his final period wealth,

W.. At time t, the specialist maximizes:

Blu(Wo)l®]] = E[W,19]] — w.0" ;]9 (4)
where w, > 0 measures the specialist’s risk aversion and E - ] and o?] -] denote the

conditional expectation and variance operators given the specialist’s information set at

"It is straightforward to interpret the probability p as an effective discount factor for a problem where
the discount rate is strictly positive.



time ¢, ®;. The specialist’s information set, ®;, consists of information on the history
of trading and noisy information signals about impending order imbalances. Note that
the specialist’s risk aversion parameter is not constrained to be the same as that of the
traders, as specialists may be less risk averse than the average trader,

The specialist’s wealth at the beginning of period ¢ consists of the value of his opening

inventory, Iz, plus his opening capital, denoted by K;. Thus:
W, = 5.1, + K, (3)

The capital at the start of period ¢ represents the value of the specialist’s holdings in other
assets and is a random variable because the current income from other assets, denoted
by , is stochastic. The specialist’s capital evolves according to the following transition

rule:

Kt+1 = K; + pzi + 3, (6)

1.e., it consists of the previous period’s capital, trading revenues, p,z,, and income from
other financial assets. We assume that §, is distributed identically with mean zero. The
assumption of a zero mean is just a convenient normalization, and does not affect our
results in any way. Note that this income is received in period ¢ irrespective of trading
activity, i.e., even in the final period, 7. The asset’s return may be correlated with the
specialist’s outside income, and we denote the covariance between these random variables
by Cov(g,, 9] = o,,.

The solution to the utility maximization problem (4) represents the indirect utility
function, whose value depends on four state varjables sunmtmarizing the current environ-
ment: the opening inventory, [;, anticipated order imbalances, x;, and the conditional
expectations of the security, y,, and non- equity capital, K ¢, glven the specialist’s prior
beliefs. Formally, let J(I;, 2, s, Ky) = max ,,} E[u(W,)|®:] denote maximized value of
equation (4). We assume that J is well-defined and that the specialist’s utility maxi-

mization problem at time # can be written, using the Bellman principle of optimality,



as:

J(L, xy, pe, Ky) = maxi (E[WJ] —WSUz[Wj]) Pr[r = j]. (7)

j=t
2.2 Inventory Dynamics

In the appendix, we show that in equilibrium, the solution to the dynamic maximization

problem (7) implies that the change in the inventories (i.e., specialist trades) are:
Ly — L = (L — 1) + v, + ¢, (8)

where —1 < 8 < 0 and —1 < 4 < 0 are constants, I, = 040, %, and € = [6( E[5,|®:] —
vy} — &) represents an error term from the viewpoint of the specialist. This error term
represents the unanticipated component of order flow. Clearly, E [e] = 0 because the
revision in beliefs is an innovation.

Equation (8) illustrates the dual nature of specialist trading behavior. The specialist’s
market-making role is reflected in the first term on the right-hand side of equation (8),
which implies that inventories exhibit mean reversion. The specialist’s role as an active
investor is reflected in I, the desired or target inventory level towards which invento-
ries revert. In our model, /; is the covariance between the stock’s return and shocks to
the specialist’s outside income, relative to the conditional variance of the stock’s return.®
The theory suggests that desired inventories may shift with periodic adjustments in the
composition of the non-equity portion of the specialist’s portfolio or in the returns dis-
tribution. These adjustments may occur prior to the event date, 7, or may coincide with
such events,

Equation (8) also illustrates the short-horizon investment strategy of the specialist,
as reflected in the term ~z,. This term represents the expected change in the specialist’s
inventory position that results from his information about impending order imbalances.
As 7, the coefficient of ,, lies between —2 and 0, the specialist is willing to accommodate

less than half the anticipated order imbalance. Nevertheless, to an outside observer, the

8The desired holdings may also reflect short-sale restrictions and minimum capital requirements.



specialist appears to be stabilizing prices by absorbing transitory demand shocks into

inventory,

2.3 Information and Learning

The dynamic behavior of inventories is mirrored in the behavior of prices since the market
maker uses price as a control to move towards desired inventory levels. Substituting

equation (3) (using the fact that z, = I, — I,;1) into (8) yields:
pe = pe — Q1 = Ig) + Gy, (9)

where ¢; = §71|8| > 0 represents the inventory effect and ¢, = &Hl+y)=(1~8)/2>0
represents the effect of order imbalances on price. The equation shows that the deviation
between the price set by the specialist and the expected value of the security is inversely
related to inventory and positively related to the anticipated order imbalance. Intuitively,
the specialist lowers price when inventories are high to induce traders to buy the security,
thereby reducing future inventory carrying costs. Similarly, the specialist raises prices
when faced with a positive anticipated imbalance since this increases trading profits.

Taking first differences in equation (9), we obtain:

Pt — pror = (g — pamy) — LI — Liy) + Gle — x4 ). (10)

Equation (10) shows that returns from day ¢ — 1 to  can be decomposed into three com-
ponents: (1} the change in the specialist’s beliefs, (2) a term proportional to the change in
inventory, and (3) a term proportional to the change in predicted order imbalances. The
latter term is unobservable and constitutes the error in the regression model. However,
the first term is related to the current order flow. To estimate equation (10) we must
specify how the specialist’s beliefs evolve over time.

The specialist’s inference problem consists of updating prior beliefs given the signals
conveyed by order flow. However, as the unobservable state changes through time, the
specialist’s posterior beliefs do not ‘converge’ to the fundamental asset value, but instead

form a distribution centered about the conditional expected value of the asset. Under
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rational expectations, the conditional expectation at any point in time is an unbiased
forecast of asset value. We show in the appendix that the market maker’s inference
problem can be modeled within a state-space framework using the Kalman filter algorithm.

The solution yields:

Pe = Pio1 = Q6 (21 — E[Z (@) = (L — L) + Golae — 2eey), (11)

where 0 < < 1 is interpreted as the weight placed on the noisy signal from order flow
about the unobservable state, which is proportional to the variance of market maker’s
forecast of the asset’s value., The first term on the right-hand side of equation (11) is the
deviation between the actual and predicted excess demand. Equation (11) implies that
the revision in price is a linear function of the unanticipated component of order flow, the
change in inventories, and the change in anticipated order imbalances. This representation
suggests that specialist trading behavior can be examined not only through the degree
of mean reversion in inventory but also through the impact of specialist trades on prices.
Both approaches are equivalent theoretically (The inventory effect ¢ is proportional to
the speed of mean reversion |81.), but differ from an econometric perspective, In our
empirical analyses, we use both approaches.

Our analysis of inventory dynamics also has implications for the autocorrelation pat-
tern in prices. Using equation (10), we can compute Elpiy1 — p]®], i.e., the expected
quote revision given the specialist’s information just before trade in period t:

E[Pt+1 - Pt!q)f] = 5_1f32(ft - Id) - ((17 + C?)l't- (12)

Equation (12) implies that the unconditional expected return from day ¢ to £ + 1 is
positively related to inventory, showing that knowledge of market maker positions is
valuable to other traders. It can be shown that (G177 + ¢2) > 0, so that the expected price
change is inversely related to the anticipated order imbalance. Intuitively, equation (9)
shows that if the expected order imbalance is positive, the profit maximizing strategy of
the specialist is to raise prices. As order imbalances are transitory, the expected price on

the following day is less than the current price, producing a negative expected return.

10



2.4 Comparative Statics

In this section, we examine the effects of changes in the model parameters on the special-
ist’s price quotations and trades. From equation (8), it is clear that the speed of inventory
adjustment is related to 3; lower values of 3 imply more rapid adjustments to the desired
inventory level. Recall that the stabilization parameter v in equation (8) measures the
fraction of the anticipated order imbalance that the specialist plans to accommodate. As
Y= —(1+ 3)/2, lower values of 8 imply less stabilization and greater price fluctuations.
Thus, the speed of mean reversion can be used to gauge the specialist’s willingness to
stabilize temporary order flow shocks.

From the solution to the specialist’s optimization problem in the appendix, 8 =
—6ws0y /(1 + éw,02), where o? represents the conditional variance of & given the spe-
cialist’s information set at time . We derive a closed-form expression for this variance
in the appendix and show it to be a complicated function of the variances of the error
terms £ and 7. This expression for 4 shows that the speed of adjustment is a decreasing
function of depth, 8, the specialist’s degree of risk aversion, ws, and the conditional asset
variance, o2. Intuitively, the greater the demand responsiveness, the disutility of carrying
unwanted inventory or uncertainty about asset value, the greater the incentives to control
inventories and the stronger the mean reversion.

The demand parameter § in equation (2) measures the responsiveness of order flow
to a change in specialist quotes; it is a metric for the liquidity or depth of the market.
In a liquid or deep market, where § is high, large trades can be accomplished with very
little change in quoted prices. Depth, §, increases with trading frequency or breadth, N,
and with the likelihood of an information event, (1 — p), and decreases with greater risk
aversion, w, and asset risk, oZ.

In the special case where 6 or w, is near zero, 3 is near zero, and inventory changes
approximate a random walk. Intuitively, if demand is completely unresponsive or if there
1s no disutility from carrying excess inventory, the market maker simply sets price equal to

the expected value of the security and inventory fluctuates in response to excess demand.
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Another special case occurs when traders and the specialist have the same degree of risk
aversion. In this case, 3 is independent of the coefficient risk aversion.

The effect of inventories on price is measured by ¢, = w,02/(1+ bw;0o?). The inventory
effect diminishes with greater depth, é, and increases with greater risk aversion, w,, and
uncertainty, o2. Finally, the information eflect, measured by the coeflicient 671§ in equa-
tion (11) is independent of the specialist’s degree of risk aversion; it is inversely related
to market depth and is positively related to the parameter (2 which represents the weight
placed on the signal content of order flow. In turn, {2 increases with the variance of noise
trading and decreases with the variance in fundamentals. This discussion shows that less

liquid markets tend to be associated with stronger inventory and information effects.

3 The Data

The data used in this paper are drawn from two sources: (1) A file covering all transactions
of a New York Stock Exchange (NYSE) specialist firm in its 16 assigned stocks, from
February 1, 1987 to December 31, 1987. (2) A file of the bid, ask, and transaction prices
and volumes of the specialist’s stocks in all domestic markets, obtained from the Institute
for the Study of Securities Markets (ISSM). Together these files enable us to compile a
complete record of specialist and non-specialist trading activity in the 16 stocks over the
sample period.

The specialist data set consists of trading records, which are analogous to invoices,
and settlement records, which are analogous to canceled checks. Since the settlement
records are based on corrected trades and represent actual cash flows, they are the most
accurate representation of the specialist’s trading activity, and we use these records in
our analyses. The specialist settlement records typically contain multiple information on
fields of interest to the specialist. For example, trade size is signed, but there is also
a separate buy-sell indicator. These redundancies permit extensive cross-checks of the
accuracy of the records. In total, there are almost 75,000 specialist transactions in the

sample period.
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The data on non-specialist transactions and quotes used in this study were obtained
from the ISSM transaction files. The file contains transaction and quote data for NYSE
and AMEX stocks, as well as transactions and quotes from other markets in the National
Market System (NMS). Although the specialist data signs volume, the ISSM files do not
indicate whether a transaction was buyer- or seller-initiated. These transactions were
classified as buyer or seller-initiated using a method developed by Lee and Ready (1991)
that compares the transaction price with the prevailing bid-ask quotations. Lee and Ready
consider quotes that are eligible for inclusion in the National Market System and NASD
Best Bid and Offer (BBO) quotes. The ISSM quote records include associated condition
codes which allow users to identify BBO eligible quotes. A transaction is classified as a
buy if the price is greater than or equal to the prevailing BBO ask, or closer to the ask
than the bid, and as a sell if the price is less than or equal to the prevailing BBO bid,
or closer to the bid than the ask. Trades for which there were no BBO eligible quotes,
or which take place within the spread, are classified using the traditional tick test. The
prevailing bid and ask quotations are quotes that are at time stamped at least five seconds
before the reported time of the trade. Using the signed volume, we computed the net order
imbalance on a given day as the buyer-initiated share volume minus the seller-initiated
share volume on that day.

The two data files provide a complete time-series of inventories, quotes, and non-
specialist trading in the 16 stocks in the sample period. We formed a time-series of the
specialist’s inventory at the beginning of each trading day for the 16 stocks traded between
February 1 to December 31, 1987 which had an average of at least 4 transactions per day
on the NYSE. These data, used in our inventory analyses, cover the 232 trading days in
the sample period. From the ISSM data, we formed a time-series of opening bid and ask
quotes and daily order imbalances in the National Market System (NMS). The ISSM file
was missing data on 33 days (mostly in August) so our measure of order imbalance, used
in our quote analyses, covers 199 trading days. The only exception is stock 4, which was

allocated to the specialist unit for part of the sample period. For this stock alone, there
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are 99 inventory and order imbalance observations.

Table I reports descriptive data for the 16 stocks in our sample, ranked by the average
number of transactions per day in all markets, with stock 1 being the least active. The
statistics tabulated are averages of daily observations for each stock; the standard errors
associated with these estimates are very small and are not reported here. In computing
closing inventories, the absolute value of the dzﬁly value was used. Changes in closing
inventories are the absolute difference between the inventory values on a given day and
on the previous trading day.” Because of price changes, the change in inventory value can
exceed the value of the specialist’s trading on that day.

The specialist’s closing inventories are substantial, averaging $2 million per stock, but
there is only a weak tendency for these closing inventories levels to be larger in more
active stocks. Over all 16 stocks, the smallest average closing inventory was $114,000 for
the least active stock while the largest average inventory was $6.2 million for stock 7. The
average value of transactions per stock per day was $12.4 million.

Cross-sectionally, the average change in closing inventories in a stock is more closely
correlated with trading activity in that stock than is the average level of closing invento-
ries.. The average change in closing inventories per stock ranged from $15,000 in stock 1
to $835,000 million in stock 12. The average ratio of inventory change to value of trading
is 2.6%. Changes in inventories understate the specialist’s participation because he is
typically buying and selling on the same day. We measure participation by comparing
the specialist’s trading (in either dollars or transactions) with the total trading in the
stock. The participation ratio would be 100% if the specialist were the only party on the
other side of every trade. The average dollar participation ratio is 5.1% but the average
transaction participation ratio is 52.7%. The difference occurs because the specialist has
only limited participation in large-block trades which are a small fraction of all trades,

but account for approximately 50% of the trading value.

In the case of stock splits, data measured in shares were adjusted to the pre-split levels.

14



4  Empirical Methods

4.1 Generalized Method of Moments Estimation

The econometric technique used throughout the paper 1s Hansen’s (1982) Generalized
Method of Moments (GMM). This technique is particularly appropriate here because
the procedure is based on weak assumptions for the stochastic process generating the
data. Using the results of Newey and West (1987), we can adjust the error term for
serial correlation and conditional heteroskedasticity. Further, GMM provides a method to
perform multivariate tests of stationarity in specialist inventories, which may be important
because of cross-stock effects.

To illustrate the GMM approach, note that equation (8) can be written in the form:
uy=1I - I, - JB(Itml - Id)a (13)

where u; = ¢,_1+vx,_; represents the error term from the viewpoint of the econometrician,
who does not observe the specialist’s ez ante order imbalance signal. (As «; has mean zero,
this presents no difficulty.) If the model is correctly specified, u, has a conditional mean of
zero given information at time ¢ —1, so that E[uy|Z,_;] = 0, where Z,_q is a r-dimensional
vector of instrumental variables that are in the information set. This condition implies
that Elu, @ Z,_;] = 0. The GMM procedure consists of replacing this expectation with its
sample analog, denoted by gr(8), where T is the number of observations and § — (8, 14)
is the vector of unknown parameters of the model, and then choosing parameter values
for  that minimize a criterion function based on these r orthogonality conditions.

Specifically, if the vector of instruments is Z,_y =(1,1;_1), the moment conditions for
a single stock are represented by the (2 x 1) vector:

1.

gr(f) = Z [(It =l — B(fey — I Zia]. (14)

t=1

~

These conditions are analogous to the OLS normal equations. With N stocks, there

will be 2N such orthogonality conditions. Hansen (1982) shows that these orthogonality
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conditions can be used to estimate the unknown parameters of the model and test the
restrictions implied by theory.

The GMM estimates of  are found by minimizing the quadratic criterion function:
Jr(8) = gr(0) Wr(0)g7(0),

where W7 (0) is the weighting matrix. If the number of orthogonality conditions equals the
number of parameters to be estimated, as is the case of the unrestricted model, Jr(6) = 0
for all choices of the weighting matrix Wr(8). However, if there are overidentifying re-
strictions, Hansen (1982) shows that the estimator with the minimum variance-covariance
matrix obtains from choosing the weighting matrix to be the inverse of the covariance ma-

trix of the orthogonality conditions:
Wr(6) = S71(9), (15)

where S(0) = E[f,(0)f!(8)] and fe(8) = v ® Z,_1. Denote by So(8) an estimator of the

covariance matrix S(#). Then, the asymptotic covariance matrix for the GMM estimator

is given by:
T U0 O)D(0), (16)
where:
n=[Ss ] ()

is the Jacobian matrix, which is evaluated at the GMM parameter estimates.

Hansen (1982) proves that the GMM estimates, é, are consistent and asymptotically
normally distributed.!® The minimized objective function, Tgr(6) WT(Q)gT(é), is asymp-
totically x? distributed with degrees of freedom equal to the number of orthogonality
conditions, less the number of parameters to be estimated. Hansen proposes this as a test
statistic for the goodness-of-fit of the model. The asymptotic covariance matrix provides

standard errors used to test the significance of the parameters separately.

10The asymptotic results require only that the distribution of the dependent variable is stationary and
ergodic,
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Newey and West (1987) show that the weighting matrix can be adjusted to account for
serial correlation and conditional heteroskedasticity, allowing a more general specification
of the error term. With this adjusted weighting matrix, multivariate hypothesis tests are
straightforward. In general, consider a null hypothesis, Hy : a(f) = 0, where o(8) is a
vector of model restrictions of dimension k, and denote by J7(0”) the minimized objective
function under the parameter restrictions implied by the null hypothesis. Then, the test

statistic:

R = T[Jr(6") - Jr(8)] (18)

1s asymptotically distributed y? with & degrees of freedom. A high value of this measure

suggests some form of model misspecification.

5  Analysis of Inventories

5.1 Mean-Reversion in Inventories

In this section , we test the model’s hypotheses for specialist inventories; we examine
the price effects associated with these inventory movements later on. Table II presents
the GMM estimates of equation (8), with t-ratios based on Newey-West autocorrelation-
heteroskedasticity consistent standard errors, following the procedure described in the
previous section.!’ For all 16 stocks, the estimate of {3 is negative. The average value of
B is about —0.05, and this is significantly negative for half the stocks. These estimates
are not consistent with inventory effects taking place within the day since this would
imply that # = —1, i.e., that inventories I, are stationary around the target level 7¢. The
spectalist’s desired inventory is positive for all 16 stocks and is statistically significant for
12 stocks. The estimates of I, vary widely, ranging from 248 shares to 790,941 shares.
The results of Newey and West, (1987) provide a multivariate test of the null hypothesis

Hy : 3 =0. A multivariate test is appropriate for these data because of the posstbility

" As autocorrelation may be a problem, we used lagged inventory over the previous three days as
additional instruments. The standard errors reflect a correction for conditional heteroskedasticity and
for serial correlation up to three lags.
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of cross- stock inventory effects. Following the procedure described above, the statistic R
has a value of 106.074 under the joint restriction. This statistic has z x? distribution with
degrees of freedom equal to the number of restrictions imposed. The corresponding p-value
1s below 0.001, so that the null hypothesis of non-stationarity is strongly rejected. This
result is consistent with Garman (1976), who shows theoretically that if dealer inventories
were non-stationary, a market maker with finite capital would eventually become bankrupt
with certainty.

We also estimated the model using Zellner’s method of Seemingly Unrelated Regression
Equations (SURE). The results from the joint generalized least-squares estimation are not
reported here and are essentially the same as reported in Table II. The system-wide R?
for the SURE estimates is only 0.03, suggesting that mean reversion explains only a small

fraction of the variation in specialist trades.

5.2 Cross-Stock Effects

The possibility that the specialist uses his inventory positions in some stocks to hedge his
positions in other stocks suggests that we examine cross-stock correlations in specialist
inventories. However, excluding October 19, 1987, when inventories rose sharply for most
stocks, the cross-stock correlations in the estimated residuals from equation (8) are quite
weak. Another way to assess these effects is to estimate equation (8) using the dollar value
of inventory held by this firm in all stocks. If there were significant cross-stock effects,
the specialist’s overall position should exhibit faster mean-reversion than the individual
stocks. This is not the case. The estimate of B is ~0.0316, and the corresponding t-ratio,
using autocorrelation-heteroskedasticity consistent standard errors based on the Newey-
West (1987) procedure, was —1.355. The implied desired inventory level was $33.23
million, with a t-ratio of 5.841. We cannot reject the null hypothesis of a unit root for
dollar inventory. Moreover, the fit is extremely poor; the regression R? is just 0.015.
The absence of significant cross-stock inventory effects may appear surprising at first

glance, but is consistent with the comments of NYSE specialists. In particular, observers
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familiar with the actions of specialists note that the most efficient method for a specialist
to hedge his portfolio is through the use of futures contracts, rather than by using his
individual stock positions to offset market risk. Also, the value of this specialist firm’s

stock portfolio may not be all that large relative to the total assets of the firm’s owners.

5.3 Shifts in Desired Inventory

The GMM estimation indicates that specialist inventories are jointly stationary, but the
adjustment process appears to be very slow, and the model captures only a small fraction
of the variance in specialist trades. Indeed, the R? for the regressions in Table II is low,
about 2% on average, suggesting that lagged inventories by themselves account for only
a small portion of the day-to-day variation in specialist trades. The model provides a
possible explanation for these findings. In particular, specialist trades may reflect peri-
odic revisions in the desired inventory level, 14, reflecting long-term investment strategy.
Similarly, specialist trades also reflect short-run speculation based on signals about im-
pending order imbalances. Tsay (1986) has shown theoretically that failure to identify
and correct for model misspecifications, such as periodic shifts in the mean of the process,
can severely bias the estimate of the parameter B. An examination of the time-series be-
havior of individual stock inventory levels appears to confirm these suspicions. For many
of the stocks there are substantial and persistent deviations of inventory from the mean
over the entire sample period. These observations are apparent in Figure 1, which shows
the time-series for dollar inventory and for the inventory for every third stock.

To obtain consistent estimates of the inventory effect, we must take into account the
potential for shifts in the mean of the inventory process. It would be easy to estimate a
modified version of equation (8) that embodied changes in desired inventory or abnormal
order flow shocks using dummy variables if the days on which these events occurred were
known. However, neither the dates nor the types of these events is observable. T\ ortunately,
a technique, known as intervention analysis, has been developed to address precisely this

problem.
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Intervention analysis focuses on systematic patterns in residuals to identify and correct
for events, such as periodic shifts in desired stockholdings, which have intervened into
changing the underlying stochastic process.!?

To develop a formal intervention model, suppose that revisions in desired inventory
holdings occur on s different days in the estimation period and that desired iventory
changes by o; shares on day t; when the i*" event occurs. Similarly, suppose that the
error term in equation (8) consists of the original white noise process and a process
that produces an error drawn from a distribution with a large standard deviation on
p different days. Let e; be the abnormal error on day t; when the j** shock occurs.
The latter distribution captures the effect on inventories of large but infrequent order
imbalances (z,) as well as inventory shocks arising from block positioning or stabilization

of transitory imbalances. The revised model is:

Li—L = Bl —IL) + u (19)
o= @+ Y oS (20)
i=1
P
Uy = Et+zetpjta (21)
i=1

where Si; = 1 if ¢ > ¢; and 0 otherwise and Py = 1if t # t; and 0 otherwise. The type
of intervention illustrated in equation (20) is called a Level Shift (LS). A level shift is a
‘step’ — it has a permanent effect on the mean of the series after a certain point in time,
By contrast, equation (21) illustrates an intervention known as an Additive Qutlier (AQ).
Unlike a LS-type intervention, an additive outlier is a ‘pulse’ that affects the series for
only a single period.

The idea behind estimating an intervention model of the type described by equations
(19)-(21) is to examine the residuals associated with specific observations, unlike most
time-series analyses which focus on the overall patterns of serial correlation. Intuitively,

the estimated residuals should not display systematic patterns if the model is correctly

2For a description of these techniques see, for example, Fox (1972), Box and Tiao (1975), and Tsay
(1986).
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specified. Various kinds of misspecifications will be reflected in systematic patterns in
the estimated residuals. For example, suppose in equation (20), that s = 1 and t; = 98,
ag = 0 and oy = 18,000, implying that from day 99 onward, desired inventory increased
by 18,000 shares. In this case, if we estimated equation (8) assuming a constant mean, the
estimated residuals from day 99 onwards would tent to be positive, while the estimated
residuals on days 1 through 98 would tend to be negative. If o is large, the timing of the
shift in the mean can be identified by analyzing the time series of the model’s residuals.

Tsay (1986) proposes an iterative procedure for detecting and correcting for interven-

tions:

1. First, the types of errors allowed and the criteria for identification are specified. The
criterion for identification may be in terms of a significance level for a statistical test

or a pre-specified upper bound on the number of interventions.

2. Using the estimated model residuals, the largest outliers are identified and classified
using a likelihood ratio test for the null hypothesis that there is no intervention
on that date. For example, consider an AO-type intervention. To perform the
likelihood ratio test for the st observation, a consistent estimate of the residual
error variance and an estimate of the magnitude of the intervention on that date
are required. It can be shown that the best estimate of the size of an AO is a linear
weighted combination of the residual for observation i and for future time periods.

Similarly, the estimate of the error variance also depends on all the residuals.

3. If there are no significant outliers (where significance is determined by the choice
of the critical value for the likelihood ratio test), then the procedure terminates.
Otherwise, the data are corrected for the estimated magnitude and type of the in-
terventions detected from the previous step (to provide consistent standard errors)
and the model is re-estimated to identify the next largest outliers, until the remain-
ing outliers are below the specified significance level or the maximum number of

outliers is reached.
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To identify the AO- and LS-type interventions in each stock’s inventory series, we ap-
plied Tsay’s iterative procedure, setting a maximum of five outliers per stock and choosing
a relatively high significance level for the critical value in the detection step.’® Conser-
vative values were chosen for two reasons: first, we wished to estimate a parsimonious
model, and second, as illustrated in Figure 1, the inventory process is subject to a few,
relatively large shocks to inventory in the sample period.

Figure 2 illustrates the intervention totals for all stocks, grouped by month and type.
Not surprisingly the rate at which the interventions occur increases greatly in the days
immediately following the October crash. Of the 63 interventions identified for the in-
dividual stocks, 44 are of the LS-type, the remainder being AO-types. For the dollar
inventory series, there are three interventions, only one of which is of the LS-type. All
three interventions occur within a week of the crash. This finding suggests that the shifts
in desired inventory levels for individual stocks are small relative to the total dollar value
of inventory or that the shifts in individual stocks offset each other.

Based on the results of the intervention analysis, we re-estimated equation (8), adding
mndicator variables based on the identified timings of the interventions. Table III presents
the GMM estimates of the non-linear model:

5
Li— Ly =Bl —ap— Zgajpﬁ) + us, (22)
i=
where Dj; is an indicator variable defined as follows. If outlier j is of the AO-type and
occurred on day ¢;, then D;, = 1 for t = t; and 0 otherwise; similarly, if outlier § is of the
L5-type and occurred on day t;, then Dj; = 1 for ¢ > t; and 0 otherwise.

Table I1I should be compared with Table II. The mean-reversion coeflicient 3 in equa-
tion (22) is negative in all 16 cases. The average estimate of § in Table III is —0.134 as
opposed to an average of —0.05 for equation (8). The Newey-West standard errors of Jé]
are also much lower, which is consistent with our intuition that the regression equation

(8) was misspecified.' Again, a multivariate x? test of the null hypothesis Hy : 8 = 0 is

13See Chang, Tiao, and Chen (1988) for further details of the implementation.
With the inclusion of the Dj¢ indicator variables, we found no need to adjust for serial correlation.
The standard errors do correct for conditional heteroskedasticity.
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rejected; the p-value is below 0.001.

An estimate of the initial desired mventory is given by &g while &; is interpreted as the
change in desired inventory on day #;, if the intervention is the LS-type, or the order flow
shock on day ¢; if the intervention is of the AO-type. Most of the indicator variables have
statistically significant coefficients. Fewer than five indicator variables are included in the
regressions for some stocks if fewer than five outliers were identified. No interventions
were estimated for stock 4. The average R? for this set of regressions is 0.18.

These results suggest that level shifts in the desired inventory level explain the poor
fit of the model and the apparently weak inventory effects documented in Table II. An-
other perspective on our results is provided by Hasbrouck and Sofianos (1992). Based
on a spectral analysis of specialist profits for a sample of 144 stocks, they conclude that
specialist positions ‘are driven by rapid inventory adjustments towards targets that are

themselves time-varying.’

9.4 Inventory Effects and The Speed of Adjustment

The speed of adjustment of inventories is directly related to the mean reversion coefficient
f, which represents the fraction of the deviation between actual and desired inventories
that is eliminated each day. A useful measure of adjustment speed is the inventory half-
life, denoted by A, defined as the expected number of days required to reduce a deviation

between actual and desired inventories by 50%, where:
In(2)
)
Table IV provides two estimates of the inventory half-life for the 16 stocks: The first

(23)

estimate, denoted by h° is based on the estimates of the mean-reversion parameter 3
in Table II, assuming a constant mean for Iy. The second estimate, denoted by A1, is
based on the estimates of the mean-reversion model correcting for interventions in Table
1. Without any correction for interventions, the inventory effect appears weak. It takes,
on average, 49.7 trading days for an inventory imbalance to be eliminated by half, with

the smallest half-life being just over 5 days and the largest 334 days. By contrast, the
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inventory effect correcting for interventions is much stronger. On average, the half-life is
only 7.3 trading days, ranging from 1.9 to 22.4 days. This adjustment process, however,
is still longer than many researchers had previously thought. It is worth noting that in
the macroeconomic literature, commodity inventories are slow to adjust. The slow speed
of adjustment for specialist inventories is puzzling because, unlike commodity inventories,

the security positions can be rapidly changed at low cost, especially for the specialist.

6 Specialist Trades and Stock Returns

6.1 Information and Inventory Effects

Our approach to analyzing the specialist’s behavior so far has focused on inventory dy-
namics. Equation (11) suggests an alternative approach based on an examination of the
relation between price changes and specialist trades. From a theoretical viewpoint, both
approaches are representations of the same optimal policy rule. However, there are econo-
metric advantages to this approach over our previous approach based solely on specialist
trades. First, by differencing prices and inventories, we resolve some of the more serious
problems created by periodic shifts in the desired inventory level, without requiring an
intervention model. Second, a model of price changes allows us to examine directly the
impact of specialist trades on stock prices. The drawback to this approach is that it re-
quires a model for the evolution of the specialist’s beliefs over time. Specifically, equation
(11) shows that the revision in prices is positively related to the change in the specialist’s
prior beliefs and inversely related to specialist trading. In turn, the revision in beliefs is
positively related to the unanticipated order imbalance, which is an unobservable variable.
Let s, denote the shock to order imbalances. An analysis of the estimated order
imbalances (constructed from the intraday data by signing volume) reveals the presence
of some extremely large, stock specific, outliers corresponding to large-block trades. It is
likely that these trades were pre-arranged in the so-called upstairs market and executed
on the floor, and should be excluded from an analysis of specialist quote determination.

Accordingly, we constructed a time series of all intradaily large-block trades. We
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define a block buy (sell) for a particular stock as a buy order the top (bottom) 0.5% of
the size distribution of intradaily buys (sells) for that stock over the entire period. Thus,
our definition of a block trade varies by stock and by trade type. This procedure appears
more reasonable than simply defining a block as 10,000 shares, irrespective of the volume
of trading in that stock.

We then constructed a daily net imbalance variable, denoted by ¢;, for each stock
defined as the order imbalance from day ¢ ~ 1 to day ¢ less the aggregate volume of block
trades for that day. The shock to order imbalances is modeled as the estimated residual
in the following regression:

M N
¢ = o+ ; Bigr-i + ; Vi(Proj = Pe-jo1) + s (24)
In estimating these regressions (which are not reported here) we used M = N = 3. This
procedure is suggested by Hasbrouck (1991), who estimates a vector autoregressive model
using intraday data for NYSE stocks. From an empirical viewpoint, the two approaches
differ primarily in that we define order imbalances excluding large-block trades that are
likely o have been negotiated in the upstairs market.

The regressions generally have low explanatory power, but using a F-test we can reject
the hypothesis that the coefficients of the independent variables are zero. In general, there
was small, but significant, positive autocorrelation in the g: variable. The shock variable
8¢ 1s then defined as the residual in the regression, ie., s, = ¢, — E[q|®,_;]. Thus, s,
reflects the innovation in order imbalances net of large-block trades measured from the
opening on day ¢ - 1 to day ¢.

The regression model follows directly from equation (11):

P — pe—1 = Po+ Bise + Bolly — L_q) + Bs0CT19 + €ty (25)

where p, is the opening mid-quote from the ISSM file, s; is the innovation in order im-
balance from the opening on the previous day to the opening on day ¢, I, is the opening
inventory on day ¢, OCT19, is a dummy variable that equals one on October 19, 1987

and 0 otherwise, and ¢, is the regression error term. Equation (11) implies that g, = 0,
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/1 >0, and 5, < 0. The crash dummy is included to assess whether the drop in stock
prices on the day of the crash could be explained by order imbalances alone. Blume,
MacKinlay, and Terker (1989) find a significant relation between order imbalances and
price movements on the day of the crash, but it is not clear whether this is true on other
days as well. If 83 = 0, the drop in prices on October 19 can be explained entirely by
selling pressure on that day. The regression error term, &, captures the unobservable
term x; — @;_, that reflects the specialist’s signals regarding order imbalances.

We estimated the model using the GMM procedure, writing the moment conditions
with instruments.'> We also estimated the model using a limited information (k-class)
instrumental variables estimator which is the least-variance ratio estimator. Our results
are not sensitive to the estimation method.

Table V presents the GMM estimates of equation (25). The results provide strong
support for the model. As hypothesized, the constant Bo is generally close to zero. The
information effect, as measured by 3, is positive in 15 cases and is statistically significantly
posttive at the 5% level for 13 stocks using Newey-West standard errors. These results
are especially strong because the innovation s, is likely to be measured with error so that
the coefficient 3, is biased downward towards the null hypothesis.

The inventory parameter, as measured by Ba, is negative as predicted for 14 of the
16 stocks, and is statistically significantly negative for 11 stocks. The coefficient of the
dummy variable is negative for 14 stocks and is significant for 13 stocks, suggesting that
selling pressure and inventory effects cannot entirely explain the drop in prices on Qctober
19, 1987. The model fits remarkably well and the R? exceeds 0.25 for 10 stocks.

When the daily large-block volume is added to the regression equation, this variable
has little or no significance suggesting that it is the non-block order flow that conveys
information to the specialist. This appears surprising at first glance, but is consistent

with the results of Madhavan and Smidt (1991) who find that the price impacts of large-

®The instruments include lagged values of inventory, order imbalances, and block trades. This proce-

dure yields consistent parameter estimates when the explanatory variables may be correlated with the
disturbance term.
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block trades is bounded above. This result may also reflect the ‘leakage’ of information
concerning the impending block transaction since negotiating a large-block trade in the
upstairs market takes time. So, the information conveyed by large-block trades may
already have been impounded in security prices before these trades occur. We turn now
to a further investigation of the information available to the specialist and the uses to

which this information is put.

6.2 Price Dynamics and the Specialist’s Information

In this section, we examine whether the revision in quotes reflects information about future
order imbalances, as suggested by our model. To test this hypothesis, we estimated the

following regression:

Pt — Di—1 = Bo + Pigus1 + Pas, + Bs(1, — Ii_1) + B,OCTI9 + &,. (26)

This equation is identical to equation (25) except that it includes g1, i.e., the leading
order imbalance (net of large-block trades) as an independent variable. The regression
estimates, again using the GMM procedure, are reported in Table VL It is interesting to
compare this table with Table V. First, our previous conclusions regarding the inventory
and information effects are largely unaltered. Second, the coefficient of leading order
imbalances is positive in all 16 cases and is significantly positive in 10 of these cases. This
1s consistent with the recurrent argument that the specialist’s privileged position (which
includes access to the limit order book) provides a short-run informational advantage
relative to some traders.

Another perspective on this issue is provided by examining the causal relation between
quotation revisions and specialist trades. Granger causality is a purely statistical concept
— 7 is said to Granger cause y if knowledge of past values of z enables better predictions
about y, other things equal. Using a Wald test proposed by Geweke, Meese, and Dent
(1983), we reject the null hypothesis that price changes do not Granger cause inventory
changes in 12 of the 16 cases. Repeating the Wald tests in the other direction we rejected

the null hypothesis that inventory does not cause quote revisions in only two of the 16
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cases. The results indicate that quote revisions anticipate future inventory movements,
but not vice versa. We interpret the result that price changes appear to Granger-Sims
cause inventory changes as additional support for our model where the specialist’s infor-
mation about future imbalances affects current price quotations. The apparent lack of
causality running from inventory changes to subsequent quote changes may reflect long-
term speculation by the specialist that is not detected at short horizons. These results
are also consistent with other explanations, such as the specialist altering quotations to

induce informative trade, thereby expediting the process of price discovery.1®
7 Conclusions

This paper analyzes dealer behavior using data obtained from a NYSE specialist. We
develop a theoretical model of trading where all agents take actions to maximize their
expected utility. The model differs from previous work in that it incorporates formally
both asymmetric information and inventory control effects. The specialist is shown to act
not just as a market maker, but also as an active investor. Finally, the specialist’s infor-
mation about liquidity-based trading is made explicit and is shown to have an important
influence on price formation.

The model yields a number of testable hypotheses. We focus on two representations of
the specialist’s optimal trading strategy. The first representation shows that inventories in
the stocks assigned to the specialist unit may exhibit mean reversion to target levels that
themselves may shift in response to the changes in the composition and risk characteristics
of other assets or liabilities owned by the specialist. The specialist’s trades also reflect
forecasts of short term order imbalances. The second representation shows that stock price
changes are positively related to the innovation in order flow and are inversely related to
specialist trades. Further, any information on future order imbalances should be reflected

in a current quote revision. While these representations are equivalent theoretically, they

'%See, e.g., Leach and Madhavan (1992). Unlike other asymmetric information models such as Kyle
(1985), the price experimentation hypothesis implies that quote revisions are associated with nongero
expected order flow.

28



differ from an empirical viewpoint, and we use both approaches. Throughout, we use
Hansen’s (1982) Generalized Method of Moments as our estimation technique.

Beginning with inventories, when specialist desired inventories are assumed constant,
we find weak support for the mean reversion hypothesis. On this assumption it appears
to take over 49 trading days, on average, for an imbalance in inventory to be reduced by
50%. Desired inventories are uniformly positive, and a multivariate GMM test suggests
the system is jointly stationary. The theoretical model suggests the possibility of periodic
shifts in desired inventory holdings. Such shifts may account for the apparent slowness
of the inventory adjustment process, We develop an econometric model that corrects
for periodic, unobserved, shifts in the specialist’s desired stockholdings and find strong
evidence of mean reversion in inventories to these time-varying targets. The average
inventory half-life, correcting for such shifts, is 7.3 trading days.

Turning to the effect of specialist trades on stock prices, we find strong support for
the predictions of our model. We find that unanticipated (non-block) order imbalances
convey signals to the specialist regarding future price movements. Interestingly, large-
block trades appear to convey little information to the specialist, perhaps because they
have been anticipated by the specialist through ‘leakage’ in the upstairs market. Further,
the specialist appears to possess market information unavailable to most traders; future
order imbalances affect current price quotations.

The paper suggests that the specialist plays a far more complex role in price formation
than previously thought. As expected, the specialist is an market maker who adjusts
quoted prices to control fluctuations in inventory. The specialist is also an active investor
for his own account, a role that was not suspected until recently. As an active investor,
specialists may hold large positions, and may periodically adjust the size of these positions
based on relatively long-term considerations that reflect his whole portfolio, including
personal assets that are not part of the specialist firm.

Our analysis raises several questions that lie beyond the scope of this paper: What

considerations underlie the shifts in target inventory levels, and do these movements antic-
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ipate future changes in fundamentals? Do predictable patterns in security prices induced
by mean reversion in inventory give rise to possible arbitrage opportunities or provide a
rationale for the persistence of technical trading strategies? What is the nature of the
specialist’s information about impending order flow, and how much of this information is

public? These are topics for future research.
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Appendix

Derivation of Equation (2):
For trader ¢, who trades z;; at price p, in period t, the final period wealth is given by:

W, = &z + Ei) + Cit — pezas, (A.1)

where E;; represents the trader’s endowment of the risky asset, C;; the initial cash holding, and
vr is the value of the asset at date 7. Since the liquidation date is random, we need to derive an
expression for the variance of final period wealth to solve the maximization problem. Observe
that at time ¢, given that an informed trader observes the fundamental price at the time of the
trade, the asset’s value at time 7 is a random variable, ,, where %, = v, + M+1+ - -+ 7. Thus,
at the time of the trade at time ¢, the conditional variance of #. is:

o0 [s. o]

2

a,

o*[o,] = 3 0*[BaklT = K[ Pr(r = t+ k] = 3 (1= p)p*~ho? = - _"P. (A.2)
k=1 k=1

For trader ¢ at time t, E[fj+;] = 0, for > 0, implying that the conditional expectation of v, at
time t is just v,. Using (1), investor’s quantity, z;, solves:

wol
I{I;iu‘}( {E[UTiéit](zit + Eit) + Cu — przay — a——ﬂp)(zﬂ + Eit_)g} . {A.3)
The first-order conditions for equation (A.3) yield:
sy = A= —pr) Fis. (A.4)

‘2w02

The excess demand in period t is obtained by adding the demands of the N participating traders,
ie., z = N 2. From equation (A.4), we see that z takes the form given by equation (2) where:

N{l-
§ = %Egﬂ (A.5)
N
Xt = - Z Eit- (Aﬁ)

Derivation of Equation (8):
Using equation (5), the specialist’s wealth at the start of period ¢ is a random variable with
conditional expectation:

E[Wz] =pedt + Koy + pi_120_1, (A.7)
where we assume, without loss of generality, that E[§] = 0. Similarly, the variance of the
specialist’s wealth at the start of trading on day ¢ can be expressed as:

Uz[Wt] =all? + 0‘2 + 2l0y,, (A.8)

where a is the variance of §,, oy, is the covariance between 9, and §y, and o2 is the conditional
variance of vy given the specialist’s information set. We will derive a closed- form representation
for this variance later on. It follows that:

o’ W] = o + &1y — Lg)?, (A.9)



where:

2

o 2 [T
do = o (Uu) (A.10)
$ = of (A.11)
1, = U—; (A.12)

are constants. The parameter I, is interpreted as the specialist’s desired or target inventory.
Applying the Bellman principle, the functional equation equivalent to the optimality equation
associated with the maximization problem in equation (7) is:

J(Itaxtaﬂ'hlft) = IEJa.i(E{(I—p) [E[Wt] —w3(¢0+¢1(ft - Id)z)] +

pd (L1, Eegr, fheats Kogr) | ‘I’f}- (A.13)

Intuitively, the functional equation consists of two parts: THe first term in brackets in the
functional equation is the expected utility if the event occurs in the current period, i.e., at time
t, (note that by convention there is no trading in period ¢ itself if 7 = ¢) times the probability
of this event, i.e., (1 — p). This term is the immediate payoff if the stock pays a liquidating
dividend. The final term in the functional equation is the expected utility if the event does
not occur at time ¢, multiplied by the probability that the event does not occur in the current
period, and represents the continuation value if there is trading in period ¢.

For now, we suppress subscripts to minimize the notational burden. Define by I’ the inven-
tory position in the next period, and similarly define #',’, K'. Before deriving the solution to
the maximization problem, we need to formally express the transition equations governing the
evolution of the state variables, i.e., inventories, beliefs, order imbalance signals, and capital:

E[I'®) = I-é(u—p) -2 (A.14)
E[#)®] = 0 (A.15)
E[E®] = 4 (A.16)
E[K'|®°] = K +p(6(u—p)+z). (A.17)

These transition equations are interpreted as follows: Equation (A.14) states that expected in-
ventories are current inventories less expected demand, equation {A.15) states that the expected
order imbalance is zero, equation (A.16) is the Law of Iterated Expectations and implies that
the revision in beliefs is an innovation, and equation (A.17) states that capital increases with ex-
pected trading income. The specialist’s price choice affects his utility in future periods through
its effect on future inventory and on his capital position.

Let I’ denote the specialist’s expected inventory position where, from equation {A.14), I is
linearly related to the specialist’s quoted price, p. It is easiest to solve the dynamic programming
problem by finding the specialist’s optimal choice of I’. This solution vields a policy function,
denoted by g({,z,u,K’), that relates the expected inventory to the state variables. Once we
have obtained the function g, we can then derive the implied optimal price quotation function
using equation (A.14).

The first step to solving the problem is to substitute the transition relations (A.14)—(A.17)
into equation (A.13), taking care to express the choice variable in terms of expected inventory



I, not the price p. This is straightforward as p =y — §~ (7 — [' - z), and I' = I' 4+ ¢, where ¢
is a mean zero error term.

Assuming the functional equation J is differentiable and the maximizing value of p is inte-
rior, the first order condition for the dynamic programming problem is found by differentiating
equation (A.13) with respect to I’. This yields:

i ~ i X oI -
R R R e | Bt

The envelope conditions are found by differentiating the value function {A.13) with respect to
each of the four state variables. These yield:

Sl o, K) = (1= p)pe ~ 2w, (I — Ip)) +

PEMIA(I' &, i, W)+ 671 (2AI' — I) + 1)) (A.19)
oLz, K) = —§E[J4(f',5',ﬁ',ﬁ")(r - 1) (A.20)
Jo(l, 2,4, K) = (1—p) + pE[Ja(P, &, i, K] +

PELI &, i KNI - I')] (A.21)
JiI, 2,4, K) = (1=p)+ pE[J(I", & i’ K")). (A.22)

The linear-quadratic structure of the maximization problem suggests that J(f,z,u, K) has a
quadratic form given by J(I,2,p,K) = Ao+ pl + K + Ay (I — I;)? + Agzl + Azz? + Asz, where
A; (1 =0,...,4) are constants.

Equations (A.19) and (A.20) then imply that the optimal policy g(I,z,u,K) is a linear
function given by g(f,z,u, K) =TI+ (I - I;)+ vz, so that J indeed has the conjectured form.
It remains to show that 3 and ~ exist. Difterentiating J, we obtain J; = p + 2A4,(1 - I3) + Azz.
Using the fact that E[u'] = p2 and E{z’] = 0, we see that E[J1] = u + 2A,(I" — 1;). Using this
expression and the conjectured policy function in equation (A.18) and equating the coefficients
of (I — I;) and z respectively, we obtain A; = B/[(1 4 3)6] and A, = (2v + 1)/(285). Similarly,
setting J1 = p + 241(J - I;) + Asz in equation (A.20), and equating coefficients yields 4; =
P38 — (1 ~ phoyoy. Combining these expressions for A;, we obtain:

_6"‘-"3@51
1+ dw,y
—(1+6)

2

3 (A.23)

i (A.24)

So, 3 €(—1,0)and v € (-%,0). In the special case where all agents have the same coefficient

of risk aversion (i.e., w = w,), 8 = *—'210’_,——, which is independent of the risk aversion
1*(W~2f£{)
parameter.
Derivation of Equation (11):
As the state v; is not observed by the specialist, we can model the learning process in a

state-space {ramework, using the Kalman filter algorithm. Observing (z,z;) is equivalent to
observing w; where
Zy—xi+bpe &

wt:—_é\———z'l‘);ﬁ-g.



Using this definition and equation (3), we see that w, = v, + & /6. Since & has a zero mean, w,
is an unbiased signal about the unobserved fundamental price. Let ¢? denote the variance of
this signal, i.e., the variance of Et/é. Let 8 = 03/02 represent the signal-to-noise ratio; a higher
value of # implies more order flow provides a more precise signal about the asset’s value.

The Kalman filter provides a recursive method to summarize the learning behavior of the
specialist; it provides the minimum mean square error estimate of the unobserved state. As the
specialist observes signals from order flow, he updates his prior beliefs regarding asset values,
generating a posterior distribution. However, since the unobservable state changes through time,
the posterior beliefs never ‘converge’ to the actual state; rather posterior beliefs converge to a
steady-state distribution whose time-varying mean is an unbiased estimate of the true value of
the asset at that point in time.

Consistent with rational expectations, we assume that the specialist’s prior distribution is
the ‘steady-state’ distribution over asset values. Let p¢ denote the market maker’s forecast of v,
given information before the market opens on day t and recall that o2 denotes the conditional
variance associated with this forecast. It is convenient to express this conditional variance in
the form: o3 = 0%Q, where o2 is the variance of the signal and £ is a constant. Combining the
prediction and updating equations for the Kalman filter (see, e.g., Harvey (1989), Chapter 3)
yields:

N+48
Ht = pe—r + [m] (wi-1 — pte—1), (A-25)
where:
—0 4 /92
Q= i‘t#‘f_ (A.26)

Equation (A.25) shows that expected value of the security can be represented in ‘error correction’
form, while equation (A.26) provides an expression for 1, which represents the conditional
variance of this forecast, relative to the signal variance. Clearly, 0 < © < 1, as the forecast, which
also uses prior information, is more accurate than the signal alone. Then, it is straightforward
to show that equation (A.25) can be written as:

Hey = th_l + (1 b Q)ﬂt..l. (A27)

Thus, Q also has an interpretation as the steady-state weight placed on the signal about the
unobservable state. Intuitively, as the signal-to-noise ratio, #, increases, {} increases and less
weight is placed on prior beliefs.

Using equation (A.27) and the definition of w,, we can write the revision in beliefs as:
Mt — pe-1 = Qvey — py—q + &1 /6). This decomposition shows that the revision in beliefs is
proportional to the unanticipated component of order flow in the last trading round. Then,
equation (11) follows directly from (10).



Table I

Descriptive Statistics on Specialist and Market Transactions for 16 NYSE Stocks

The figures represent averages of daily values for the period February-December, 1987 for the 16
stocks, ranked by transaction frequency from lowest to highest, in the National Market System
(NMS). Data on inventories and specialist trades are obtained from the settlement records of the
specialist. Data prices and volumes in the NMS are obtained from the Institute for the Study of
Securities Markets (ISSM).

Closing Chal.lg? il,l Value of Number of
Stock Inventories ?pecnahs.t s Transactions Transactions
nventories
T s T e T snanon [ g T e T i | s
1 $114 63 315 8.3 $25 3186 4 5
2 $1,999 1,847 $44 16.1 %24 $1,190 4 7
3 $2,156 814 3106 464 $195 $4,501 8 15
4 %345 235 $58 38.4 $102 $7,945 9 16
3 $180 110 372 44.4 $138 39,109 9 19
6 $2,230 2,165 $97 88.3 $122 34,513 8 23
7 $6,223 1,532 $217 48.3 $358 313,637 14 22
8 $912 179 $270 53.0 $687 $9,716 20 30
9 34,327 2,237 $106 49.3 $226 $3,805 17 32
10 31,627 646 $327 53.0 $467 $11,866 9 30
11 $343 234 %76 49.3 $143 $2,737 12 31
12 54,202 695 $835 141.9 $1.879 $26,176 24 38
13 $409 215 867 35.9 3179 $1,558 18 35
14 $2,593 1,196 3150 54.2 $307 $47,702 i6 36
15 $4,190 1,490 $a72 177.3 31,876 319,172 54 92
16 $824 508 $385 200.1 $1,088 334,758 49 110
Totals 332,674 13,862 $7,818 $198.622 275 541




Table 11

Mean Reversion in Specialist Inventories
Using Daily Data from February to December. 1987

Generalized Method of Moments Estimates of the model:
fi— I:-—l = B(]t—-l - Id) + €

where [, represents the opening inventory on day t. The figures in parentheses are
t-statistics based on autocorrelation-heteroskedasticity consistent standard errors
computed using the procedure of Newey and West (1987).

Stock a fax 1073 R?
1 -0.017 777 0.010
{—1.20) (1.68)
2 —-0.008 198.43 0.001
(—0.46) (3.62) "~
3 —{0.020 72.51 0.006
(~2.01) (3.32)
4 —0.030 0.25 0,000
(~1.82) (0.01)
5 —0.115 10.81 0.064
(—3.46) (3.44)
6 -0.035 211.91 0.019
(—1.78) (10.03)
7 ~(.006 166.74 0.005
(—0.81) (2.07)
8 —-0.076 14.53 0.037
(=2.96) (2.38)
9 —-0.019 225.98 0.005
(—1.90) (7.56)
10 -0.012 91.52 0.005
(—0.69) (0.66)
il —0.069 20.45 0.028
(~2.35) (2.88)
12 —0.065 58.23 0.027
(—2.58) (2.65)
13 —0.047 24.75 0.021
(-2.33) (3.43)
14 —0.036 97.20 0.022
(—2.50) (5.11)
15 —0.002 790.94 0.000
(~0.23) (0.24)
16 —0.125 39.30 0.055
(-3.21) (2.85)




Table III

Mean Reversion in Inventories Corrected for Interventions

The table presents Generalized Method of Moment estimates of the model:

3
Ie=Tioy =3l ~ a0 = Y a,Dye) + e,

1=1

where [, is the opening inventory on day t (scaled by 107%), and Dj;: is an indicator
variable for intervention j on day t,. The figures in parentheses are t-values computed
from standard errors obtained using the Newey and West (1987} procedure.

Stock

3

o

d" ég fr; d‘& 23
1 —0.06 —~0.03 0.12 —0.05 0.29
(—2.47T)  (—0.98) (3.43) (-1.23) (1.57)
2 —0.24 1.67 0.24% 0.26 0.24 0.17 —0.56
(=2.16)  {26.11) (1.55) {13.18) (10.48) (5.73)  (~6.06)
3 —-0.18 0.99 0.22 —0.48 —0.62 2.30 -2.30
(—2.73)  (15.53) (2.72)  (-8.16)  (—0.74) (2.11)  (=3.78)
4 -0.03 0.00
(—1.82) {0.01)
5 —0.13 0.10 1.90° -1.77°
(=3.75)  (3.75) (3.54)  (~3.76)
] -0.13 1.82 1.78¢ 4.40 —4.85° —-4.04 0.43
(—2.57)  (27.85) (2.37) (2.33)  (=2.35)  (—2.37) (3.19)
7 -0.07 0.03 0.66 1.17 0.30 —0.75 3.89°
(-1.84)  (0.15) (1.63) (3.29) (1.52)  (—4.29) (1.71)
8 -0.10 0.14 0.32
(—2.95) (2.99) (1.25)
9 —0.16 2.53 —0.51 ~-0.08 0.87 1.94° 0.24
(=3.27)  (13.86)  (—2.44)  (—0.61) (1.28) (2.74) (0.35)
10 -0.13 3.07 -2.43 —-5.75¢ -0.60 3.21° 4.12
(=1.44) (7.90)  (-5.42) (-1.35) (—2.41) {1.87) (2.53)
11 —-0.12 0.07 1.61° 0.18 0.32 -3.92¢
(-3.93)  (1.13) (4.17) (2.06) (3.12)  (-3.77)
12 -0.11 —0.35 1.20 8.53¢ 8.33¢ —4.72° —0.66
(—2.99) (-2.02) {4.60) (3.31) (3.27)  (=249)  (-2.11)
13 —0.06 0.23 2.65° 0.04 —3.20°
(-2.95)  (2.90) (2.78) (0.33)  (-3.21)
14 -3.05 1.02 0.96 —-0.96 —6.08 3.12 2.85
(=2.75)  (5.51) (0.57}  (-0.57)  (-2.69) {(1.91) (2.24)
i5 -0.31 —0.31 0.33 0.85 2.81 1.92 2.99
(=3.97)  (-2.19) (2.14) (4.85) (5.03) (3.17) {2.79)
16 —-0.17 0.26 6.29° —16.22° —4.43% 1.11 —0.56
{—4.28) (2.76) (4.50) (~4.06) (—4.43) (2.00) (—0.92)

® Denotes an AO-type intervention; all the remaining are LS-type interventions.




Table IV

Estimates of Inventory Half-Life for Specialist Stocks
Based on Coefficient Estimates of the Mean-Reversion Parameter

The estimated half-life, denoted by &, is:

_ In(2)
T In(1+ B)

where 3 is the mean-reversion parameter. Two figures are reported, based on the
the Generalized Method of Moments estimates: A° denotes the half-life using the
estimates of 3 contained in Table II, and h' denotes the half-life using the estimates
of 3 corrected for AO- and LS-type interventions in Table I1I. The sample mean
(h) and standard deviation () are reported in the last two rows.

Stock Ao ht
i 39.36 12.33
2 83.31 2.54
3 34.28 3.48
4 22.37 22.37
5 5.65 4.89
6 19.15 4.21
7 101.09 9.05
8 8.77 6.76
9 34.68 3.95
10 55.01 5.14
11 9.64 5.42
12 10.29 6.15
13 14.10 12.17
14 18.45 13.37
15 333.79 1.86
16 5.17 3.64
h 49.69 7.334
e 78.16 5.200




Table V

Estimates of the Modei of Quote Revisions
Using Generalized Method of Moment Estimators

The table presents coefficient estimates of the model:
pe—=peo1 = B0+ Bise + 32(I — Loy} + 3:0CT19, + =,

where, on day ¢, p, is the opening mid-quote, s, is the unanticipated order imbalance from
the previous day, computed as the residual from a VAR of non-block order imbalances on
lagged order imbalances and lagged quote revisions , [, is the opening inventory, QCT19,
is 2 dummy variable that equals 1 on October 19, 1987 and 0 otherwise. Figures in
parentheses are t-statistics using Newey-West standard errors.

Stock B 8; x 10° B2 x 10° 3, R?

1 —0.02 6.82 —-6.11 —0.94 0.288
{—1.05) (3.22) (—2.40) (—2.98)

2 —0.04 150 ~2.42 —1.33 0.199
(—1.90) (2.74) (—3.56) {—4.22)

3 -0.01 1.43 —0.64 —4.10 0.321
(=0.50) (3.09) (~1.47) (~7.58)

4 0.01 —0.20 —5.57 0.18 0.186
(0.15) (—0.21) (—4.31) (0.32)

5 —0.00 0.10 —1.80 —0.98 0.099
(~0.03) (0.98) (~3.68) (~=2.27)

6 —0.03 .22 —0.54 —0.26 0.130
(~1.91) (2.32) (~4.35) (~1.02)

7 —0.00 3.84 ~4.84 ~8.55 0.509
(~0.10) (4.40) (—5.65) (—8.76)

8 0.06 1.32 —~7.33 —6.27 0.341
(0.67) (4.75) (~4.90) (—4.48)

9 0.09 2.68 0.82 —7.72 0.470
{1.88) {5.24) (1.21) (—10.60)

10 0.11 0.45 0.18 —3.67 0.106
(1.90) (2.49) (0.64) (—4.36)

11 ~0.02 1.48 —0.63 0.08 0.226
(—0.86) (6.23) (—2.07) (0.22)

12 —0.01 1.09 —1.37 —3.89 0.371
(-0.19) (3.48) (—3.84) (—4.41)

13 ~0.00 0.91 —0.62 -1.33 0.267
(=0.57) (3.91) (—1.76) (—5.46)

14 —0.00 0.45 —1.26 —3.49 0.320
(—0.26) (1.57) (—3.09) (~7.92)

15 —0.02 0.80 —0.20 —7.33 0.334
(—0.35) (2.97) {—0.91) (~7.52)

16 —0.02 0.28 —0.43 —2.04 0.258

(-0.74) (3.62) (—4.09) (—4.68)




Table VI

Regressions of Daily Quote Revisions on Leading (Non-Block) Order Imbalances,
Unanticipated Order Flow, and Specialist Trades

Generalized Method of Moments estimates (with t-values based on Newey-West standard errors in
parentheses) of the regression equation:

Pe—Pi-1 =B+ Bigepr + Fase + Fa(fy ~ Ty + 3:0CT1%: + e,
where p; is the opening mid-quote on day ¢, g4, is the order imbalance {net of block trades) over

day t, 3¢ is the unanticipated order imbalance over day ¢t — 1, I; is the cpening inventory on day ¢,
OCT19; is a dummy variable for October 19, 1987.

Stock o B = 10° 32 x 10° 33 x 10° EX R?

1 —0.02 3.25 7.24 —~5.16 —1.03 0.303
(—0.94) (2.22) (3.44) (=2.02) (~3.26)

2 —0.02 1.00 1.38 —2.36 —1.27 0.211
(—1.21) (1.96) (2.51) T (—3.49) {~4.04)

3 —0.02 0.67 1.30 —0.68 —4.08 0.328
{—0.61) (1.69) (2.77) (—=1.56) (~7.57)

4 —0.01 1.46 —0.48 —5.60 0.28 0.203
(—0.24) (1.72) (~0.48) (—4.38) (0.51)

5 —0.00 0.01 0.10 -1.79 —0.97 0.095
(~0.02) {0.10) (0.95) (-3.63) (-2.23)

6 —0.02 0.22 0.18 —0.60 —~0.19 0.153
(—1.13) (2.44) (1.89) (—4.79) (—0.75)

7 0.02 1.69 3.60 —4.62 —~8.16 0.519
(0.35) (2.22) (4.14) (—5.41) (—8.32)

8 0.04 1.81 3.84 —7.23 —5.83 0.355
(0.43) (2.22) (4.14) (—4.88) (—4.17)

9 0.05 1.63 2.16 0.66 —7.36 0.513
(1.11) (4.13) (4.26) (1.01) {-10.45)

10 0.01 0.89 0.38 0.46 -3.25 0.257
(0.22) {6.21) (2.30) (1.76) (—4.22)

11 —0.01 0.36 1.39 —0.63 0.05 0.234
{—0.76) (1.76) (5.73) (~2.08) (0.14)

12 —0.00 0.37 0.99 —1.47 —~3.64 0.376
(—0.15) (1.56) (3.09) (-4.07) (—4.07)

13 ~0.00 0.50 0.79 ~0.77 ~1.31 0.285
(—0.56) (2.39) (3.38) (—2.17) (—5.47)

14 0.00 0.70 0.45 -1.17 —3.47 0.343
{(0.14) (2.76) (1.61) (-2.90) (—8.01)

15 —0.00 0.32 0.75 —0.17 —7.18 0.338
(—0.07) {1.47) (2.78) (—0.80) (=7.35)

16 —0.00 0.26 0.24 —0.41 —2.11 0.313

(—0.25) (3.97) (3.28) (—4.01) (—5.01)
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Figure 2: Intervention Totals for All Stocks, by Month and Type




