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Abstract

We present a test of the theory of the term structure developed by Cox, Ingersoll, and Ross
(CIR). The econometric method uses Hansen’s Generalized Method of Moments and exploits the
probability distribution of the single state variable that determines real bond prices. The approach
avoids problems due to measurement errors in bond prices; it does not employ data on aggregate
consumption; and it enables the estimation of a continuous time model based on discretely-sampled
data. The tests indicate that the model for real indexed bonds that underlies all the alternative
specifications in CIR performs reasonably well when confronted with short-term Treasury Bill data.
The parameter estimates indicate that term premiums are positive and that the term structure of
indexed bonds can admit several shapes. However, we find it difficult to rationalize the sample
serial correlation in Treasury Bill returns using our estimates of the CIR parameters.
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1 Introduction

The relation between the yields on default-free loans and their maturities has long been a
topic of interest to financial economists. The focus of the early work on the term structure
of interest rates was on the relation between the expected interest rate to prevail at a future
date and the implied forward rate embedded in the yield curve.! The earliest empirical
studies focused on the historical shapes of the yield curves and their relation to stages of the

business cycle.

The Intertemporal Capital Asset Pricing Model pioneered by Merton (1973) and the ra-
tional expectations equilibrium model due to Lucas (1978) have led researchers to consider
equilibrium models of the term structure of interest rates. The term structure model de-
veloped in Cox, Ingersoll, and Ross (1985a,b) represents an equilibrium specification that
is completely consistent with stochastic production and with changing investment oppor-
tunities. This model provides testable implications for the prices of bonds whose payoffs
are denominated in real terms — closed-form expressions are provided for the endogenously
derived real prices in terms of a single state variable (the instantaneously riskless real rate).
The evolution of this variable is determined endogenously, and this permits empirical testing
of the pricing implications as well as the restrictions on the dynamics of the term structure.
The availability of such a model of the term structure also permits ready application to the
pricing of options and futures contracts on financial assets and to the management of bond

portfolios.

In this paper, we conduct an empirical test of the Cox, Ingersoll, and Ross (1985b; hence-
forth “CIR”) model of the term structure. Our method has the following advantages. First,
we formulate a test of the implications from a continuous-time mode] based on discretely
sampled data, and this test is designed to avoid musspecification arising from this temporal
aggregation. Second, while our test centers on a stochastic Euler equation similar to tests in
other studies (e.g., Hansen and Singleton (1982)) that employ Hansen’s (1982) Generalized
Method of Moments {henceforth, “GMM?”), we avoid the use of data on aggregate consump-
tion. This enables us to avoid many of the measurement problems that accompany the use of
these series. Third, our econometric procedure is such that no stochastic specification of the
process for the aggregate price level is necessary. Under an assumption made in CIR con-
cerning the effect of the aggregate price level on bond prices, we test a necessary implication

for a broad class of pricing models which differ by the assumptions regarding the process

1For a review of traditional hypotheses regarding the term structure, see Cox, Ingersoll, and Ross (1981).
Breeden (1986) also provides a synthesis of several strands in the literature. Melino (1986) provides a review
of the evidence, focusing on the expectations hypothesis.



for inflation. Fourth, our econometric method is fully consistent with the underlying theory
even though the investment opportunity set is not constant over time. There is increased
interest in asset pricing when conditional distributions are not constant; however, much of
the empirical work is based on theory that is not completely specified as to why some mo-
ments are fixed while others are changing (for example, see Gibbons and Ferson (1985), and
Ferson, Kandel and Stambaugh (1987)). By contrast, our econometric method requires no

additional assumption beyond those maintained in the theory.

Other empirical research has examined the CIR model. Most of this work has focused on
the nominal prices of U.S. Government Securities. Using a general framework, Stambaugh
(1988) relies on nominal Treasury Bill data to reject a single latent variable model of condi-
tional expected returns, but he finds that the data are consistent with a model with two or
three latent variables. Brown and Dybvig (1986) have examined the fit of nominal Treasury
Bill prices to CIR’s single state formulation,? and Pearson and Sun (1990) extended Brown
and Dybvig’s method to CIR’s models with explicit processes for inflation. Heston (1991)
also uses the CIR model to find the nominal price of a nominal Treasury Bond; however, his

statistical method is a modification of the econometric approach that we develop here.?

The inability of a single state variable model to find the nominal value of a nominal
Government Bond has led to the development of models with multiple state variables.? For
example, Brennan and Schwartz (1982) and Nelson and Schaefer (1983) consider some two
state variable models, where the factor risk premiums are specified exogenously. Multiple
state variable models of the term structure are of considerable interest, especially when
one attempts to price nominal bonds, but it is not clear to us that one must abandon the
study of single state variable specifications of the term structure of real rates. In fact,
it might well be the case that the term structure of rates embedded in indexed bonds is
adequately described by one forcing variable while the behavior of nominal bonds of various
maturities is driven by a vector of forcing variables. One obvious disadvantage of multiple
state variable formulations for the pricing of indexed bonds is that this makes the valuation
problem complicated and often intractable — and this leads us to examine the CIR model

as a parsimonious, and hopefully useful, description of the term structure.

*Using an econometric method similar to that in Brown and Dybvig (1986), Brown and Schaefer (1990)
examine the fit of indexed gilts in the UK to CIR’s single state model.

*Heston’s (1991) specification allows him to work with bond returns in excess of the return on a short-term
Treasury Bill; this procedure does not rely on inflation data. However, he approximates an instantaneous
holding period with a discrete holding period, and he doesn’t identify all of CIR’s parameters.

“Constantinides (1991) models the nominal term structure in the spirit of Brown and Dybvig (1986).
His theoretical development makes his “SAINTS” model amenable to the econometric framework that we
suggest in later sections,



The plan of the paper is as follows. Section 2 lays out a general framework for real and
nominal bond prices, and Section 3 summarizes the CIR model. In Section 4 we discuss
the design of the econometric method; Section 5 describes the data. Section 6 contains the
main empirical results and summarizes the successes and failures of the CIR model. Section

7 concludes the paper.

2 A General Framework for Nominal and Real Bond
Prices

In this Section we describe a general framework for pricing real and nominal discount bonds
of various maturities. The discussion here applies, strictly speaking, to the general treatment
in CIR (1985a). The development of the empirical test relies heavily on the arguments in
this Section.

The framework within which CIR develop their continuous-time valuation model can
briefly be described as follows: there are infinitely-lived and identical individuals who max-
imize the discounted expected utility of consumption of a single good, which is produced
stochastically from a finite number of technologies, each exhibiting constant stochastic re-
turns to scale. The individuals’ wealths are totally invested in these firms, and they each
choose a consumption rule and an investment allocation rule in maximizing their expected
utility. The values of the firms in the economy evolve continuously as a vector [t6 process,
whose drift rate and covariance matrix depend on the evolution of a vector of state variables.
The evolution of this vector of state variables is itself governed by a system of stochastic
differential equations — therefore, the future investment opportunities in this model are
stochastic. The environment is competitive and frictionless; a riskless asset (which is in zero
net supply) and the firms’ shares are available for continuous trading with no transaction

costs or taxes.

The CIR model uses additional assumptions that we discuss later; the above framework
is sufficient to permit a simple exposition of the valuation model. From the first-order
conditions for the representative individual’s maximizing problem, it follows that the current
(date t) real price of a claim that pays one unit of the consumption good at date t+ 7, written

Py(7) is given by

P(r) = B, [57 E_LCM] _

U () W
In (1), U {c(s)) is the utility of the optimal consumption flow ¢(s) at date s, § is the rate of

time preference, and F[-] denotes the conditional expectation where the #-subscript reflects
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the conditioning information set. Note that this is the expected marginal rate of substitution,
and it corresponds to the real price of an indexed (or real) bond that is default-free. Denoting
by m(s) the money price of one unit of the consumption good at date s, the real price at
date ¢ of a nominal bond that pays one dollar at date ¢ +7is
.
i = e[ P s )
which is the expected real payoff weighted by the marginal rates of substitution. Hence the

nominal price of a nominal unit discount bond, N{(7), can be written

o) = xtoe) = o { S ©)

We can rewrite (3)
M) = Rem ()

o (UEAT)  w()
”C"”‘( U () ’fr(t+r))’ )

where Cov,(-,-) is the covariance operator conditional on information at time ¢. Relations

(1) and (4) give the prices of real and nominal discount bonds as a function of maturity.
From these equations we can readily deduce conventional yield curves in real and nominal

terms. It is important to note from (1) that the real yield

y(7) = ~In(P(7)) /7 (5)
is observable and achievable in a 7 period strategy only if there is an indexed bond available
to investors. The availability of a nominally riskless pure discount bond ensures, however,
that the nominal yield

yi(r) = —In(N;(n)) /7 (6)

is observable and achievable in a 7 period strategy.

Every model of the nominal term structure must specify the conditional moments in
(4). One way to achieve this is to put sufficient structure on the model to specify the joint,
conditional distribution of the marginal rate of substitution {/* (e(t+ 7)) /U’ (c(t)) and the
inverse of the inflation rate (¢)/#(t+ 7). The specification of the joint distribution (between
the marginal rate of substitution and the inverse of the inflation rate) calls for an explanation

of the precise way in which money enters the economic environment.

CIR (1985b) implicitly assume® in their nominal bond pricing examples that the co-

variance in (4) is zero. Since our work is a test of the CIR framework, we follow CIR in

®See CIR (1985b, page 402). Benninga and Protopapadakis ( 1983) discuss this assumption in the context
of the Fisherian hypothesis in a discrete time framework.



assuming that changes in the price level have no effect on the real variables in the model.®
The resulting expression for the nominal discount bond price is therefore
oy 7(t)
¥i(e) = i |7 "

which readers will recognize can be transformed (by taking logarithms) into a version of the

Fisherian hypothesis on interest rates.

We can employ relation (7) to specify the real return on a nominal bond over any holding

period. The gross real return on a nominal discount bond, held from date ¢ to date £ + v, is
defined by

7 N — w)/7(t + u)

= <

tRepu(T) Ne(r) /) foru<r

Pou(r =) Eno(1/7(t+7))

x : , (8)
Pi(T) E(1/x(t+ 7))

where the first fraction is the gross return on an indezed discount bond with maturity T,
held from ¢ to ¢ +u. Relation (8) is the object that is at the heart of our computations. The
numerators of the two fractions on the right hand side (RHS) of relation (8) depend on the

information set at date ¢ +wu. By taking the date ¢ conditional expectation of (8) and recalling

the CIR approach where the stochastic process for inflation is exogenous and independent
of the pricing of indexed bonds, we can see that the expected gross, real, holding period
return on a nominal discount bond is equal to the conditional expectation of the return on

its (hypothetical) indexed counterpart;

. _ f’t W7~ 1)
Et (tR‘H-u(T)) = Et (+—Pﬂ(‘;)—) , for u _<_ T. (9)

From relation (8) we can also compute the products of the gross, real returns to discount
bonds of various maturities. These computations lead to specifications of comoments, which
are closely related to autocovariances and serial cross-covariances of returns. From (8) we

can write, for0 < u <v<w <v+ 1 and u < 7,

pt+u(T1 — u) _ I5t+w(v + 7 —w)
-Pt(Tl) P:+u(7'2)
Buu(1/7(t+ 1)) Equ(1/F(t+ v + )
E(/#(t+n)) Eq(/f(t+v+m)) "
If v > w, then the holding periods [t,¢ + u] and [t + v,¢ + w] are nonoverlapping. We

now combine nonoverlapping holding periods with the CIR approach where the stochastic

tét+u(7'1) x t+uét+w(7-2) =

(10)

An alternative mode! is developed and tested in Pennacchi (1991), where the instantaneous real rate
and expected inflation are found to be correlated.



process for inflation is exogenous and independent of the pricing of indexed bonds. These
two assumptions allow us to write the conditional expectation of the product of the gross,
real returns on the nominal discount bonds as the conditional expectation of the product of

the gross, real returns on their indexed counterparts:

(11)

7 2 P ulTl — }5 w + —
E, (fRHu(Tl) : t+uRt+w(Tz)) = Et( wu(n —u) Pyu(vtm w))

Pt(Tl) Pt+u('f'2)

Equation (11) followed from equation (10) because the first two factors are uncorrelated
with the last two factors in (10). Furthermore, the last two fractions in (10) involve the
same random variable in the numerator and the denominator — leading to cancellation
when iterating expectations over a coarser information set. We can compute conditional
expectations of the product of three (or more) gross, real, holding period returns by extending

the above arguments, and keeping the holding periods nonoverlapping.”

If we knew the relevant information upon which the expectations in (9) and (11) are
based, then these equations provide a natural basis for econometric work.® However, if the
state variables in the relevant information set are unobservable, then we need to pursue an

alternative path to develop the econometric framework, to which we now turn.

It is easy to see in relations (9) and (11) that, by the law of iterated expectations, the
unconditional expectation of the corresponding quantities would also be equal. First, take

the unconditional expectation of (9):

E{B, (fru(r))} = E{Et (P“’“TEET;J‘_))} foru<r (12)

= O(u,m;0). (13)

In the RHS of (12) the real indexed bond prices Py(7) and Pyu(r—u) depend on conditioning
information (the state variables) at dates ¢ and ¢ 4u respectively. Knowledge of the functional
form of these real indexed bond prices, together with knowledge of the probability densities
of the state variables allows us to pass to relation (13), where the unconditional expectation
has been taken. The resulting function ®,(u, 7; B) is the unconditional first moment of the

real holding period return on a nominal bond, and § is a vector of parameters.

“If v < u, then the holding periods overlap. This will lead to nonzero correlation between By u(1/7(t+11))
and Ey(1/7(t + v+ m)). Without an explicit process for inflation, we cannot calculate this correlation.
Thus, restricting our attention to nonoverlapping holding periods is an important ingredient in our econo-
metric modeling.

81f the relevant information were known, then equations (9) and (11) could generate a set of orthogonality
conditions much like that in Hansen and Singleton (1982). Of course, this presumes that the relevant
information is observed and that the proper specification for the impact of this information on bond returns
and products of bond returns is available.



Next, take the unconditional expectation of (11):

BB (Rt ()} = P (Fefprst) Peslotnou) ]

= O(u,v,w,m,7y;8) . (15)

In the RHS of (14) the real indexed bond prices P;(+) depend on conditioning information (the
state variables) at dates s = ¢,t4+u,{ +v and t +w. Again, knowledge of the functional form
of these real indexed bond prices, together with knowledge of the probability densities of the
state variables, allows us to pass to relation (15), where the unconditional expectation has
been taken. The resulting function D2(u, v, w, 71, 795 B) is the unconditional second moment
of the product of two nonoverlapping, real, holding period returns on nominal bonds. It
1s easy to see that we can extend these calculations to compute unconditional moments of
higher order.?

The functions ;(-) and ®,(-) do not depend on the unobservable state variables, because
these variables were integrated out as part of the transition from conditional to unconditional
expectations.!® In models where explicit formulas are available for these functions, relations

(13) and (15) provide a basis for empirical tests. This is the method pursued in this paper.

Before we study the exact specification of the CIR, model, it is useful to recognize that all
the examples of nominal discount bill valuation in CIR (1985b) employ the same model for
the real price F;(-) and treat the process for inflation as exogenous and independent of Py(-).
These examples all share the common testable implication for the real price of a riskless real
bond. We derive a test of the central implication of the CIR model, which is about the term
structure of real prices of bonds with real payoffs, in a way that is robust to misspecifications
of the process on the price level. Of course, our test is a necessary implication for any model
of the term structure which uses the same real price Py(-) as in CIR even if the alternative

model differs from CIR in the process for inflation.

3 The CIR Model of the Term Structure

In the principal model presented in their paper, CIR (1985b) derive the formula for the real

price of an indexed bond assuming a single state variable z(¢) and logarithmic preferences.

The functions ®1(-) and ®3(:) are computed in the Appendix usmg the specific distributional results in
CIR. Throughout the rest of the paper we will use ®; to represent an expectation computed under the CIR,
framework,

“Note that the arguments of @(-) and &,(-) depend only on the maturities of the nominal bonds being
considered, and not on calendar time.



In their framework, z(t) follows an autoregressive process with a conditional variance of the
instantaneous change proportional to z. Further, the means, variances and covariances of

the rates of return on the production technologies are proportional to the level z.

CIR then show that the instantaneous riskless rate of interest, »(¢), which corresponds to
the expected rate of change of the marginal utility of wealth, has a one-to-one correspondence
with the state variable (t).!! Hence, the stochastic process for r(t) inherits the properties

of the process for z(t); its process can be written as
dr = k(6 —r)dt + ov/rdz (16)

where {z(t),t > 0} is a standard Wiener process; & is the speed of adjustment of r to
its long-run mean, #; and o is a positive scalar. The stochastic differential equation for
the instantaneous riskless rate implies the date ¢ conditional distribution of r(s), s > t,is a
transform of a noncentral x* and the steady state distribution is a gamma (see Feller (1951)).

The CIR pricing formula for the real unit discount bond is
Fi(r) = A(7) exp {—B()r(t)}, (17)

where A(-) and B(-) are given by

r 2x8/o?
Ar) = [%exp{(ﬁDw:T);ﬂ“r) /2}] , (18)
B(r) = 2[‘”‘%’(’:}) -1 (19)
D(r) ={+ A+ 7} {exp(yr) — 1} + 27, (20)
and
y= /(K +A)?2 + 202 (21)

A is the parameter which determines the risk premium — this follows from the fact that the

instantaneous expected return on any default free bond in the CIR model is

Ar JP(7)

Tt Pt('T) ar

=r—AB(r)r. (22)

The risk premium is positive whenever A < 0. Other comparative statics properties of the
discount bond price are given in CIR (1985b, p. 393).

While the parameters #, «, A and ¢ have a natural role to play in the context of CIR’s

pricing model, we have adopted an alternative parametrization that we find more intuitive

"In what follows we use the term “state” variable for 7, even though that applies strictly to z.
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and more convenient for the numerical work that follows. We transform & to a parameter
that has a natural interpretation from discrete time autoregressive models. We eliminate
A by focusing on a parameter describing the asymptote of the term structure. The scalar
parameter ¢ is replaced by a parameter which measures the standard deviation of the steady
state distribution for r. The transformation will allow the reader to interpret the model for
discrete time intervals. Furthermore, these parameters are related to the yield curve, which
is a more familiar object. It is noteworthy that we do estimate the parameters using the
implications of the continuous time process for discrete sampling intervals — we do not rely

on approximations of instantaneous holding periods for returns.

Here is a brief description of the transformed parameters. We define an autoregressive
parameter for the interest rate process, p, given by p = exp(—£/12), instead of working with
& directly. The parameter p is the coefficient of a regression of the intercept of the yield
curve for indexed bonds on the intercept of last month’s yield curve. It is easier to interpret

the unconditional standard deviation of the intercept of the yield curve, a,,

Joe (23)

rather than o. Instead of using A directly, we focus on the effect of A on the long-run yield
(o), which is independent of the level of the state variable and is the asymptote of the CIR

M

Oy

yield curve as maturity increases. The transformation to this long-run yield is:
2x0
E+A+y’

We find the long-run mean, 4, of the intercept of the yield curve easy to interpret, and we

Yoo = (24)

have not transformed this parameter. In summary, the vector of parameters that we estimate
for the CIR model is 3, where

B=(0 p yu o). (25)

This transformation of the parameters also has the property that given 4 we can invert to
find the original CIR parameters.!?

4 The Econometric Method

Recognizing the definition of a yield on an indexed bond given in equation (5), equation (17)

implies:
_ log(A(7))

T T

r(t), (26)

2Straightforward algebra will verify that the transformation is one-to-one.

w(r) =




which is linear in the unobserved variable. This implies that the correlation between the
yields of indexed bonds of different maturities are all unity. Therefore, applying the CIR
model (viz., relation (17)) to nominal data on nominal bonds leads to a rejection of the model,
for casual empiricism (ignoring the effects of measurement error) suggests that nominal yields
are not perfectly correlated.

A sufficient history of properly measured prices of indexed bonds would, however, enable
a direct test of the CIR model. Brown and Schaefer (1990) test the CIR model with data
on indexed bonds in the UK.? Although the state variable is not observed in this case,
nonlinear cross-sectional regressions employing (26) permits the estimation of some, but not
all, of the underlying parameters. Their procedure “inverts” the CIR formula for r and some
of the other parameters from a cross-section of prices, just as if we backed out the stock

price and the implied volatility using the Black-Scholes model.!

While these nonlinear cross-sectional regressions are tractable, they cannot connect di-
rectly the estimated parameters with the time series properties of the bond prices. For
example, 8, p, and oy are not linked to the sample mean, autocorrelation, and standard
deviation of r, which is estimated over time from each cross-sectional regression. We will
integrate the dynamic properties of the CIR model with its cross-sectional implications for
bonds of differing maturities. The use of CIR’s specification of the stochastic evolution
of the state variable lends the test considerable sharpness, for we are able to exploit this

information in testing the overidentifying restrictions and arriving at parameter estimates.

Our objective is to test the CIR model of indexed bond prices from data on nominal
bonds. While our test will be robust to measurement error, we do not incorporate an explicit
model of measurement error to rationalize why real bond prices are not perfectly dependent

~— unanticipated inflation will preclude perfect correlation in our view of the data.

In Section 4.1 below we discuss an econometric procedure which allows us to compare
the implications of the CIR model with the sample characteristics. This method has certain

distinguishing features that are outlined in Section 4.2.

13Also see Brown and Dybvig (1986) who apply the CIR model to nominal prices of nominally riskless
bonds.

"The methods in Brown and Schaefer (1990) and in Brown and Dybvig (1986) are similar; however, the
former paper analyzes indexed bonds while the latter focuses on nominal bonds. Both papers can only
identify the following functions of the CIR parameters: k + A, k6, and o.

10



4.1 Comparing Population and Sample Moments

The econometric technique corresponds to the GMM procedure developed by Hansen (1982)
and employed in Hansen and Singleton (1982), Brown and Gibbons (1985), and elsewhere.
The differences in our procedure are (1) that we avoid the use of consumption data or data
on aggregate wealth (the “market”) and (2) that we exploit the availability of a functional

form within the CIR model for the relevant densities of the unobserved state variable, r.

Before we can apply the GMM approach, we must calculate some population moments
for real returns on nominal bonds. These population moments are characteristics that we
expect to see in the data if the CIR model were true. Qur procedure involves a comparison
of the implied population moments with the corresponding sample moments as a way to

estimate the CIR parameters and to judge the model’s descriptive validity.

Recall from relation (12) that the expectation of the gross real return from owning a

nominal discount bond of maturity 7 from ¢ to ¢ + u is given by

5{z (f_<;_))} foru < r (27)

E {E‘ (tR‘Jf“(T))} P,(7)

E {Et (M exp (= B(r — w)i(t + u) + B(T)F(t))) } (28)

A(r)
%E {exp (= B(r — w)i(t + u) + B(r)#(t))} (29)
= Oy(u,7;9), (30)

where the CIR formula has been used to pass to (28). Note that the expectation in the RHS
of relation (29} is taken using the joint, unconditional distribution of the random variables
{7(t),7(t + u)}. CIR’s model specifies this joint density from relation (16). The conditional
distribution of 7(¢+u) given r(£) is noncentral chi-square, and the unconditional distribution
of #(t) is a gamma. Clearly, the expectation in (29) defines the moment generating function
for this bivariate distribution. The appendix provides an explicit calculation of Dy (u,T; 8),

and it shows how the unobservable variables #(¢) and #(t + u) have been integrated out.

Following an identical argument, we can use the CIR formula to compute the expectation
of the product of two gross, real, nonoverlapping returns from nominal discount bonds. In
the following expression we examine this product, where the first return (from a bond with

maturity 7y) is from ¢ to ¢ + u, and the second return (from a bond with maturity 72} from

11



t+vtot+ w!s

E {E't (t-ﬁ)t+u(7—1) t_,_,,fft_,_w(?'g))} =F {Et (PH}‘;EE_II 'M) . Pt+w(;3j+:(s_3_ U)))} (31)

= Aln-—u) Aln-(w-v)) A (r) A1) x

E {exp (—B(m — u)#(t + u) + B(r )i (t) — B(ry — (w — v))#(t + w) + B(m)#(t + v))}
(32)
= @3(u,v,0, 7,73 8) . (33)

The expectation in the RHS of (32) involves the calculation of the moment generating func-
tion of a joint distribution of four random variables, which is tedious but straightforward to

compute (see the appendix for details).

Relations (30) and (33) serve as restrictions on the first moment and the second como-
-ments of the gross real returns on nominal bonds. These moments are expressed solely as
functions of the maturities of the bonds and of the vector of parameters, given the CIR

model.

We are now in a position to apply Hansen’s GMM. Suppose we have data on the real
gross returns on nominal discount bonds of maturity 7;,4 = 1,2,...,n. Define the following

functions of the data and the moments and nonoverlapping comoments:

hlt(ua Ti;ﬁ) = th+u(Ti) - q)l(uaft'; ﬂ)a (34)
hzt(ua v, w, T, Ty, ﬂ) = R (Ti) t+vRi+W(Tj) - <I)2(u, v, W, 7, Ty, ﬂ) . (35)

Now stack these into a vector:

( %Et hlt(ua 7'1;18) \
T 2t hlt(usT2;ﬁ)

1

_Zthlt(uarn;ﬁ) s

T J=12...n, 36
%Zcht(u7vaw97—177—1;ﬂ) hJ " ( )
%Eth%(uavawarla‘rﬁﬂ)
%Zth%(uavawjrﬁfj;ﬁ)

gr(8)

In

/

where n is the number of maturities for the available bills. Alternatively, g7(8) = 51,—2, h(3),
where h,(3) is a vector built by stacking h14(+) and hy(-) in the obvious way given equation
(36). The vector g7(8) has dimension ! x 1, and we assume that [ > 4 so that the number

"We assume that ¢ < t+u <t+7,t+v < t+w St+v+ry, and u < v, If u = v, then the left hand side
(LHS) of relation (31) represents the expected real growth in a strategy of rolling over discount instruments.
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of restrictions exceeds the number of parameters to be estimated. The model’s implications
(from relations (30) and (33)) are

E(gr(8)) =0, 387)
so we choose 4 to make the sample counterparts to these moments close to zero. Hansen'’s
procedure involves choosing S from a feasible!® region B:

min T gr(8)' 07" gr(8), (38)

where the weighting matrix Q is the asymptotic covariance matrix of the vector of sample
moment conditions. Given the CIR model and mild regularity conditions, the minimand in
(38) has, asymptotically, a x? distribution with (I — 4) degrees of freedom; this is the test
employed below. Hansen (1982) provides the sufficient conditions for the consistency and

asymptotic normality of ,B as well,

We now turn out attention to the appropriate way to construct 2 in equation (38) so as
to account for the serial dependence in the observations.!” In many applications of GMM,
hi(B) is orthogonal to all past information, including information in the lagged values of
h:(B). This orthogonality follows directly from the rationality assumption that agents use
all past information in setting market prices — this was the appropriate assumption in
the context of the models investigated by Hansen and Singleton (1982) and Brown and
Gibbons (1985)."® In our application hi(B) is not the deviation of the realized return from
its conditional expectation, but it is the deviation of the realization from its unconditional
expectation, ®(-) or ®,(-). The CIR model predicts that the deviations of bond returns
(or of the products of these returns) from the unconditional expectations will be serially
correlated because these deviations depend on (). Our inability to observe r(t) precludes
us from constructing k,(3) as a deviation from an expectation conditional on r(t), so we

cannot remove this source of serial correlation in the data.

The maintained assumptions from the CIR model permit us to specify some elements
of the weighting matrix. However, to determine other elements (for example, the variances

along the diagonal), we need additional — and for our purposes unnecessary — assumptions

'®The restrictions from the CIR model are p. 0,0, >0and p<1.

""White and Domowitz {1984) have extended Hansen’s (1982) asymptotic justification for GMM to handle
such cases.

"In this earlier work, as in Hansen and Hodrick (1980), serial correlation in A,(8) could only be present
because overlapping observations are used. If the only problem were overlapping observations, Hansen’s
(1982) analysis suggests a way to handle such a case. In our application we rely on overlapping observations
when we focus on ez post real yields for bonds held till maturity. For example, if we had examined on a
monthly basis the returns on three month bill held tiil maturity, there would be two months of overlap in
consecutive observations.
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about the process on inflation and the variance of any measurement error. Therefore, it
is not possible to specify the exact form of the weighting matrix although we expect serial

correlation to be present in the observations.

To account for general forms of serial dependence and heteroscedasticity (at least asymp-
totically), we adopt the Newey-West procedure. The asymptotic justification for GMM
requires only that the weighting matrix be a consistent estimator'® of the asymptotic covari-
ance matrix; the following weighting matrix, given in Newey and West (1987), is a consistent

estimator which is always positive definite:

0 = o+ Dowm) [0+ (39)
wm) = 1-[22], (40)

- 1 L - Nt

0, = ?tgl (he—1) (he-s — ). (41)

Asymptotic justification for the Newey-West procedure relies on m growing at least at the
rate 7925, The covariance matrix of the asymptotic distribution of the GMM estimator for

B is consistently estimated by:

Var(B) = [D'(B) D), (12)

where . h
DBy == =22 43
(B) th: 5, (43)

4.2 The Econometric Procedure: Some Additional Features

Part of the motivation for our particular method should be clear. We have developed a
procedure which determines the implications of a continuous time model for discretely sam-
pled data. Further, we are not required to observe state variables or measures of aggregate
consumption in comparing the theory with the data. However, there are additional reasons

which encouraged us to follow this approach. These are outlined in this subsection.

First, our moment conditions are robust to the usual forms of measurement error. Even

if the gross real returns are measured in error, the measurement error has no impact on the

¥Many applications of GMM Tequire a two-step procedure to find the optimal set of estimates for B. The
first step involves minimizing the objective in equation (38) setting Q equal to the identity matrix. The
resulting set of estimates for # are then used to construct a second Q2 matrix, not equal to the identity
matrix. However, in our case the first step can be avoided due to the special structure of our orthogonality
conditions, hy(3). Our orthogonality conditions can be written as a set of sample moments that do not
depend on 4 and functions of 8 that do not depend on the sample.

14



expectation of equation (34) as long as the error has a mean equal to zero. Furthermore,
assuming the measurement error is serially uncorrelated, the expectations of the comoments
In equation (35) also remain valid in the presence of such error.?® Similarly, serial cross-
comoments implicit in equation {35) should not be affected by measurement error that is
uncorrelated across bonds of different maturities. This robustness to measurement error

increases our confidence in the point estimates for 4 that are provided in Section 6.

Second, we have avoided a moment condition that is related to the variance of the real
returns. If we had specified a process for inflation, we could calculate a moment condition
corresponding to the population variance of the gross return on a bond as a function of the
parameters underlying the inflation process as well as 3. This variance would be sensitive
to measurement error unless we deliberately modeled the process for this error. Such an
approach would have more potential for misspecification (it would lead to a joint test of the
CIR model and the assumed inflation process), and it is not clear to us that it would offer
any real advantages over the moment restrictions chosen here. Rather than test models of
inflation, we wanted to follow a path that would allow us to investigate models for real bond

returns.

Finally, there is nothing in the procedure that requires us to examine monthly (say)
holding period returns on bonds of various maturities. In constructing the moment conditions
there are very few restrictions on the holding period of the gross real returns on the nominal
discount bonds. We could, for example, choose the holding period to correspond to the
maturity of each bond. Selecting a holding period in this way leads to an examination of the
data on the ex post real yields-to-maturity of these bills. However, in this case the estimation
must take into account the fact that there is substantial overlap (for example, with monthly
data and yields on twelve month Bills, there are eleven months of overlap); therefore, we must
choose higher values for m in the Newey-West procedure. We will examine the sensitivity of

our empirical results when we use real yields instead of real returns.

5 Data Description and Summary Statistics

The empirical results reported in this paper are based on monthly data from 1964 through
1989. Data on U.S. Treasury Bills were obtained from the Government Bond Files of the
Center for Research in Security Prices (CRSP) at the University of Chicago. The Bureau

*Even if the measurement error had serial correlation induced by a moving average process of low enough
order, the computation in equations (31) through (33} remains valid for lags that are sufficiently long to
remove the dependency induced by the measurement error.
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of Labor Statistics’ series on the Consumers’ Price Index, corrected for the home ownership
interest component, were kindly provided to us by John Huizinga. From these two sources,
gross holding period real returns tRe4u(7) were constructed for each month t, for maturities

(7) of one, three, six, and twelve months.

In principle, the CIR model, in providing the real price of a default free pure discount
bond, enables one to value coupon-bearing bonds as a linear combination of pure discount
instruments. Therefore, the test of the model could be conducted with a rich structure of ma-
turities by employing coupon-bearing instruments. We chose to avoid this for three reasons.
First, the nonlinear structure of the pricing formula for coupon bonds would place a heavy
burden on the algorithm which searches for the parameter values satisfying the moment con-
ditions. Second, the differential taxation of the income and capital gains component would
undoubtedly affect the pricing of coupon bonds. The effects of differential taxation would be
exacerbated by the restrictions placed on the Treasury during the sample period as to the
maximum coupons payable. Any call features on these instruments would preclude a simple
approach to the valuation of coupon-bearing bonds. It should also be noted that although
prices of stripped, single-payment certificates derived from coupon-bearing Treasuries are
now available, we lack a sufficient history of these for our purposes. Third, the problems
from overlapping observations (which becomes an issue when we employ data on yields till
maturity) become progressively worse as we use bonds with long maturities. In addition to
these three considerations, we are not persuaded that the benefits from including long bonds
are great. As Dunn and Singleton (1984) argue, the variation in long term bond returns is
large, so it may be more difficult to estimate parameters from long bond data with great

precision,

Although CRSP reports Treasury Bill prices for several maturities at each month’s end,
this study restricts the maturities to one, three, six, and twelve month bills. The last three of
these are the most heavily traded “on-the-run” bills; therefore, their month-end prices from
CRSP are most likely to be current and simultaneous quotations. Treasury Bills for other
maturities are usually not as heavily traded, and the potential for nonsynchronous prices and
measurement error is greater with these. It should be recognized that the CPI series that
is employed has consumption goods’ prices that are usually sampled during a month, and
therefore there is error induced in taking the CPI as a month-end price level for the purpose
of computing the real return. This error is unavoidable, whereas the measurement errors in

nominal bill prices may be reduced, as is argued here, by employing the bills on-the-run.

The estimation procedures employed in this study build on the moments of the real,

monthly holding period returns. At each month’s end, it is generally not possible to find
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Treasury Bills with maturities of exactly one, three, six, and twelve months; however, there
are bills with maturities surrounding these. We constructed the prices of these Treasury Bills
by linearly interpolating between the annualized yields of the two bills that immediately
surrounded the desired maturity.?!

Figures 1A through 1D plot these data series, which are used for the bulk of the tests
reported in Section 6. Panel A of Table 1 provides summary statistics of the real return
series for the four maturities. The statistics reported in Panel A indicate that the mean
and standard deviation of the real monthly returns increases as the maturity increases;
the correlations between bills of adjacent maturity are high relative to the others. The
autocorrelations at lag 1 are highest for the one month bills. While the autocorrelations
decay quickly at higher lags for six month and twelve month bills, they are slow to die out

for the one month and three month bills.

The Consumers’ Price Index, which we use in computing the real returns may induce
autocorrelations in the series. This will occur if the reported index values are computed
from prices that are sampled for different goods in sequence, and for an individual good
periodically. We are careful to employ comoment conditions which only use nonoverlapping

returns; we discuss this in Section 6.2 where we report on some diagnostics.

Panel B provides the statistics on the real yields (to maturity) of the same bills. Because
the monthly data for real yields-to-maturity involve overlapping intervals, the autocorrela-
tions should at least reflect that degree of overlap. For instance, the autocorrelations for
the yields on three month bills should be affected by the overlap for at least two months;
the autocorrelations beyond lag 2 should reflect the autocorrelation in the structural model
underlying the nonoverlapping returns. For the one month yield series there is no overlap,
and the significant autocorrelations are, in the absence of measurement error, an indication
of the structural model underlying the returns. For the other sertes, the autocorrelations are
significant for lags well beyond their degree of overlap, and this also provides information
on the process that generates the data. The contemporaneous correlation coefficients also
display the effects of overlapping intervals across the observations; its greatest impact is, as

expected, in the computed correlation between six and twelve month yields, which is 0.95.

Figure 1 and Table 1 indicate that the average er post real return was large over this

sample period by historical standards. For example, Fama (1975) reports the average real

*1In the actual estimation we denoted time in units of years and treated a one month Bill as if it matured
in 30/365 years, a three month Bill as if it matured in 90/365 years, a six month Bill as if it matured in
180/365 years, and a twelve month Bill as if it matured in 345/365 years. Since we rely on end of month
prices of Treasury Bills, we found the average maturity of the longest bill was approximately 345 days.
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returns on one month Treasury Bills was seven basis points per month, from 1953 to 1971;
our higher value of 13 basis points reflects recent experience. Despite the high average return,
Figure 1 shows that the ez post returns were negative over some periods, especially in the

late seventies.??

The variation in the ez post real return series (the standard deviation of 0.273% per
month for Bills of one month maturity) is substantially greater than that reported in Fama
and Gibbons (1982, 1984) for the sample period 1953-1977. Again, the sample period in our

work includes relatively volatile periods.

6 Results

In Section 6.1 we report the empirical results using the moments given in equations (30) and
(33). To test these with the data, we limit our attention to a few discount bonds and some
specific moments. As mentioned in Section 9, we rely on monthly returns on Treasury Bills
maturing in one, three, six, and twelve months. Section .2 investigates the sensitivity of
our findings from alternative econometric specifications. Using the CIR model Section 6.3
focuses on a particular implication about the dynamics for real returns on bonds; here we

report that the CIR framework is inconsistent with a time series feature in the data.

6.1 Empirical Tests with 14 Moments

To estimate the parameters and test the implications of the CIR model, we need to summarize
the historical data using some sample moments and then compare these sample moments with
values implied by the theory. For a given set of parameter values, equation (30) provides the
theoretical prediction about the first moment while equation (33) supplies similar restrictions

regarding second moments. We must first decide which first and second moments to use.

Obviously, we would like to use sample moments that provide a good summary of the
historical data and capture the important stylized facts about this time period. We would
also like to use enough moments to generate overidentifying restrictions to confront the
theory. However, we recognize that the GMM approach has only asymptotic justification, so

we want to avoid the use of too many moments, especially if the information in one moment

*2This is not inconsistent with the CIR, model, which predicts that the ez ante real rate, over all holding
periods, is nonnegative. This feature of their model is an outcome of their decision to model the process on
the single state variable as they did; there are no a priori reasons to expect a nonnegative ez anie real rate,
except if the consumption good could be stored costlessly.
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may be redundant with the other moments.

We selected the first moment for all bond maturities, which seems like an obvious choice.

Equation (30) generates four first moment conditions since we have four maturities.

The choice of the sample comoments to be used in equation (33) is not as straightforward.
Even with a small number of bond maturities, the restrictions implied by equation (33)
permit an unmanageably large number of comoment conditions, obtained by varying the
lag structure. Since the sampling characteristics of the comoments are probably superior at

small lags, we focused on short lags.

We rely on the comoments to capture the dynamic characteristics of the historical data.
The degree of mean reversion in the sample is an obvious surnmary of the temporal behavior.
Thus, we examined one serial comoment for each maturity, providing four additional moment
conditions. The serial comoment, even though it is not a central moment, is closely related

to the first order autocovariance.

We also wanted a measure of the correlation among bond returns of differing maturities.
Because we do not specify a process for inflation, we are unable to compute a theoretical value
for the contemporaneous correlation among bonds with different maturities. As a substitute
for the correlation, we rely on serial cross-comoments which provide some information about
the association among bond returns — as well as some information about the dynamics of
bond returns. We correlated a lagged return on a one month bill with the returns on the
other three maturities, and we correlated a lagged return on a twelve month bill with the
returns on the other three maturities. These comoments correspond to using the shortest
maturity bill to predict the subsequent returns on the other bills and to using the longest bill
to predict the subsequent returns on the other bills. This information represents six cross

comoments for fitting the CIR model.

To summarize, we have four first moments (one for each maturity), four serial comoments

(one for each maturity), and six cross comoments. The second column in panel B of Table
2 provides a list of the specific moments.23

80 far, we have chosen to interpret the expectations in equations (30) and (33) as noncentral moments
of returns. In panel B of Table 2, we have scaled these moments up by 100,000. Now columns 3 and 5 can
be given another interpretation. Column 3 represents the historical average of the real wealth one obtained
by investing $100,000 in bonds. Column 5 indicates the expected real wealth from the same investment
strategy assuming the CIR model is correct with particular parameter values. In the case of the four first
moments, the holding period of the investment is one month. In the case of the ten second morments, the
holding period is two months. Each investment strategy differs by the maturity of the bond(s) purchased
during the holding period.
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In applying GMM we sought a set of parameter estimates for 3 that fixed the 14 pop-
ulation moments as close as possible to the sample moments given in the third column of
panel B of Table 2. The system is overidentified, so it is not possible to perfectly match the
sample moments in the third column. We minimized the quadratic form given in equation
(38) to determine the optimal set of estimates.2* Table 2 provides a test statistic for the
overidentifying restrictions. Essentially, this test measures whether deviations from the sam-
ple moments in Table 2 are small, as would be expected if the theory is true. The deviations
are measured by using the quadratic form in equation (38), which is distributed x2, under
the null hypothesis, Since the fitted moments implied by the parameter estimates in the fifth
column in Panel B of Table 2 seem very close to the actual sample moments in the third
column, it is not surprising to find that the CIR model cannot be rejected at traditional
levels of significance. Having failed to reject the overidentifying restrictions, we now turn

our attention to the parameter estimates which generated column 5 of Table 2.

The parameter estimates along with standard errors based on asymptotic theory are
given in the second column in Panel A of Table 2. All the estimates are more than two
standard errors away from zero. The point estimate for ¢ is large in magnitude (154 basis
points per annum) relative to a similar parameter estimated by Fama (1975). This probabiy
reflects our use of more recent history where the real return on Treasury Bills has been
high by historical standards. Indeed, Section 6.3 confirms the importance of the particular
time period selected when results by subperiods are presented. For the reader’s convenience,
the last column in Panel A of Table 2 also reports the implied parameter estimates for the

parametrization using the original CIR notation.

The degree of mean reversion as measured by p is quick relative to the random walk
model in Fama and Gibbons (1982), which implies that p should be close to one. This
parameter provides some guidance for the speed of adjustment of the intercept of the “real”
yield curve in a CIR world. Equation ( 19) in CIR (1985, page 392) provides a formula for
the conditional expectation of r. Restating their equation using a parametrization based on
p gives®

Elr(s)lr(t)] = 0+ 5O [r(t) — ] (44)

Thus, employing the estimates from Table 2, if the current intercept of the yield curve is
2.77% (which is one standard deviation above the mean of the steady state distribution), we

expect it to be 1.98% in one month hence and almost equal to the long-run mean of 1.54%

*4The optimization was done using conjugate gradient methods as implemented in Mathematica. We also
confirmed our results with the numerical minimization routine in Gauss, which uses an algorithm based on
the Broyden-Fletcher-Goldfarb-Shanno positive-definite secant update method.

*In equation (44), (s—t) is measured in units of months, not years. Recall that we defined p = exp(—x/12);
we omitted the 12 in equation (44).
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by six months. This adjustment seems quick given recent behavior in the bond market when
the short-term real rate was high by historical standards and remained at that high level for
sustained periods. This rapid speed of adjustment is the focus of Section 6.3 below, so we

postpone discussion of this point till that subsection.

The estimate of o, provides a measure of the unconditional standard deviation of r; for
our sample period we estimate o, to be 1.23%. Consistent with recent experience when
real rates were high, the estimates in Table 2 do imply that the conditional variation in
the instantaneous rate is sensitive to the level of the rate. For example, using equation
(19) in CIR (1985, page 392) the standard deviation of r(s) conditional on r(t) = 2.77% is
1.36% and 1.23% for s — ¢ equal to one and twelve months, respectively. The sensitivity of
the conditional variance of r(s) to the current level of r(t) is based on just the 14 sample
moments in Table 2. None of these 14 moments are the sample variances nor do any of the 14
moments relate directly to the predictability of the variance based on current interest rates.
Section 6.2 will examine an extension to Table 2 where we build in some information about

the sample correlation between the conditional variance and predictors of this variance.

Consistent with traditional theories of term premiums, the value for y., is positive in
Table 2. Thus, the steady state yield curve js positively sloped with a spread between the
asymptote and the intercept of the yield curve of 3.01% — 1.54% — 1.47%. Theories of the
term structure also make predictions about the expected returns on short versus long bonds.
The last column of Panel A of Table 2 reports a value for A that is negative. Equation
(22) indicates that the instantaneous expected return on any pure discount indexed bond
is equal to r — AB(7)r, and B(r) > 0 for all . This implies the instantaneous expected
real return on a bond is positively related to its interest sensitivity (and its maturity). To
provide an alternative perspective, Panel A of Figure 2 provides a plot of the unconditional
expected returns over a discrete holding period of one month for bonds of various maturities.
Based on the parameter estimates in Table 2, the curve for unconditional expected returns
asymptotes at 2.98% for maturities in excess of one year. In fact, the unconditional expected
return is 2.90% even for bonds with six months to maturity. Fama (1984) reports that the
unconditional sample average returns on T-Bills are not monotonically increasing after six
months till maturity. Our parameter estimates for the CIR model suggest that expected
returns may effectively asymptote around six months till maturity.

To summarize, we have failed to reject some overidentifying restrictions implied by the
CIR model, and we have parameter estimates which we view as plausible. Panel B of Figure 2
attempts to summarize the results in another way by providing a plot of the term structure

of real yields on indexed bonds for different values of the current instantaneous rate (using
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the parameter estimates in the second column of Table 2). All yield curves in Figure 2B
asymptote to Yoo, which is 3.01%. For cases where the r is such that it is less than the long-
run yield, the term structure is uniformly increasing. None of the yield curves in Figure 2B
display a “hump”. In principle the CIR model can generate a hump in the yield curve;

however, our particular parameter estimates preclude such a shape for any value of r.

6.2 Sensitivity Analysis

While our econometric framework is conceptually straightforward, the optimization requires
a solution to a difficult nonlinear problem. With many of our initial runs, we had a difficult
time finding the proper set of starting values in order to achieve convergence. Furthermore,
we experienced some situations where the minimum was apparently found; yet our numerical
calculation of the hessian suggested that it was not positive definite. We have attempted to
do a thorough search over the parameter space to confirm our estimates reported in Table 2.2
Figure 3 provides some graphical evidence on the shape of the objective function. In these
graphs we held three of the four parameter estimates fixed at the values given in Table 2,
then we graphed the objective against the fourth parameter along the horizontal axis. In
all cases, the graphs suggest a (locally) unimodal objective function around the optimal

estimate of that fourth parameter.

We also examined the robustness of our results to various changes in the econometric
specification. Table 3 summarizes the results for the sensitivity analysis. The first row
of Table 3 repeats the results in Table 2 to allow for easier comparison between the initial
result and alternative specifications. The sensitivity checks can be classified into four groups,

These are:

1. Lags used in the Newey- West weighting matrix (reported in row 2 of Table 3)

2. Lag structure in the second moment conditions (reported in row 3 of Table 3);
3. Additional overidentifying restrictions based on third moments (reported in row 4 of
Table 3); and

4. Moment conditions using yields to maturity (reported in row 5 of Table 3).

*5Since the value of the x? statistic is small, this is also a good indication that the algorithm has successfully
found a global minimum. Of course, the converse does not necessarily follow. A large value for this statistic
need not imply a local minimum has been found, for a large value is also consistent with the case that the
theoretical model is misspecified.
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Each of the above categories will be discussed in turn.

1.) LAGS USED IN THE NEWEY-WEST WEIGHTING MATRIX: The choice of the number
of lags (i.e., m) to use in the Newey-West weighting matrix [see equation (39)] is somewhat
arbitrary. In Table 2 we set m = 4 to account for our inability to observe and hence condition
on r, which has a first-order autoregressive structure. We varied m between 0 and 8; the
second row of Table 3 illustrates the effect of increasing m to 8. Fortunately, our results in
Table 2 were not significantly affected by alternative choices of m. The point estimates and
the standard errors in the first two rows of Table 3 are stmilar.

2.) LAG STRUCTURE IN THE SECOND MOMENT CONDITIONS: T'wo considerations moti-
vated the lag structure used in Table 2. First, analyzing too many lags may lead to small
sample problems with GMM. Second, using short lags are probably superior to long lags
because the statistical precision is greater for the former. However, we did experiment with
alternative lag lengths, but we found little change from the results in Table 2. The parameter
estimate with the greatest sensitivity to the lag structure is o. The third row of Table 3
illustrates the impact of using comoments at a two month lag rather than at the one month
used in Table 2.

While we examined other lag structures as well,”" the two month lag is perhaps the most
interesting. The advantage of the two month lag over the one month lag is threefold. F irst,
we are more confident that the actual dating of the returns does not overlap (either due to
nonsynchronous trading or the measurement problems with inflation). Second, extending
the lag length in the comoments minimizes problems associated with autocorrelated mea- _
surement error as long as the measurement error follows a moving average process of small
order. Finally, a slightly longer lag length guarantees that the information that we viewed
as known in deriving equation (33) is in fact known by the market when it sets the prices of
bonds. The results in the third row are reassuring because they suggest that our findings in

the first row are robust to such measurement errors,

3.) ADDITIONAL OVERIDENTIFYING RESTRICTIONS BASED ON THIRD MOMENTS: Not only
is the selection of the lag length somewhat arbitrary, but it is also unclear why we should
limit our analysis to just the first and second moments. In Section 4, we computed the first
and second moments for real returns on nominal bonds under the CIR specification; in the

appendix we generalize these results to higher order moments.

*"For example, when we used a twelve month lag instead of the one month lag in Table 2 we found the
standard error on ¢y increased, and we could no longer reject the hypothesis that oy was equal to zero—even
though the point estimate did not change substantially.
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Originally we relied on just the first and second moments because of the difficulty in
estimating higher order moments precisely. We extended our investigation to include a
noncentral third moment, for it is closely related to the conditional standard deviation of r,
which is not constant in the CIR world. Clearly, the conditional variance is related to third
moments since it reflects the expectation of the square of the random variable times a lagged
value of the random variable. We estimated the model keeping the original 14 moments
reported in Table 2, while adding eight more sample moments. These eight additional

moments had the form:

E[tﬁ:ﬂ(ﬁ) X :+1fi‘z+2(‘fz) X t+2Rt+3(T2)]’ (45)

where 71 was set equal to one month or twelve months and T2 was set equal to each of the
four maturities. That is, we correlated the lagged value of the one month (or twelve month)

Bill return with the serial comoments of all four maturities.

As in Table 2, the p-value of the x1s statistic (reported in row 4 of Table 3) exceeded .05
despite the additional constraints placed on the model. Except for oy, (and to a lesser extent
Yoo), the estimates in Table 2 were not significantly affected by the additional eight moment
conditions. As reported in the fourth row of Table 3, the estimate for oy was reduced to
0.86, but its standard error decreased as well. The reduction in the standard error provides
some evidence that the third moment has information for the conditional variance of r and

hence for oy;.

4.) MOMENT CONDITIONS USING YIELDS TO MATURITY: Our final sensitivity check exam-
ines the measurement error associated with on-the-run bills versus off-the-run bills. Table 2
is based on returns where the holding period is one month. For example, a six month bill
is purchased and then sold when its maturity is five months. When this bill is sold, it is no
longer on-the-run, and the measurement error in the market price of the security is somewhat
greater due to decreased trading activity in the market. We can circumvent this problem by
computing real returns from holding an on-the-run bill until it matures. Such a procedure
for measuring real returns also provides the er post real yield on the bond. We adopt the
terminology of real yields to distinguish this analysis from the cases involving one month
holding periods. Since the Treasury does not auction one month bills, we also exclude this
maturity in this sensitivity check in an attempt to provide a clean set of prices for measuring

real yields based only on on-the-run instruments.

The fifth row in Table 3 summarizes the results when rea] yields are used instead of one
month holding period returns. At first glance it seems that the measurement error may

be important, for the point estimates of g, p, and y., are smaller than those in the earlier
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rows in this table. However, the standard errors are now much larger, so the discrepancies
are less significant than they first appear. The increase in the standard errors is to be
expected because the real yields generates a large amount of overlap in the observations.
For example, the real yield on a twelve month bill has eleven months of overlap with the
adjacent observation of the same series. This overlap requires us to extend the Newey-West

lag structure of the weighting madtrix; in Table 3 we report results where m is equal to 22.%8

While the point estimates in the fifth row are bothersome, we found the x2 statistic for
the overidentifying restrictions more troubling, for now we are rejecting the CIR model at the
usual levels of significance. One could attribute all the results in the fifth row to small sample
properties of the econometric procedure due to the presence of extreme amounts of serial
dependence induced by overlapping observations. A second explanation may claim that the
measurement error in off-the-run bill prices is substantial and biases against rejection. A
third possibility may be the presence of one month bills in the first four rows of Table 3 and
the exclusion of this maturity in the fifth row.

To investigate this last possibility, we extended the results in Table 2 to a setting where
returns with a one month holding period are used but where we excluded the one month bill.
This exclusion decreases the number of moment conditions to ten and reduces the number of
overidentifying restrictions. The results of this case are reported in the sixth row of Table 3.
As expected the precision of the estimates in the final row is greater than that reported in the
fifth row since the one month holding period returns eliminate the overlap in the data. Now
the point estimate for y,, is comparable to that in the earlier rows. However, the estimates
for § and p are different from the earlier rows. The inclusion of the one month maturity
provides a more reasonable estimate for @ which may be expected since # represents the
expected return on a very short-term maturity bond. Measurement error in the off-the-run
prices for bills is not an adequate explanation of the discrepancy between the fifth row and
the earlier rows, for the x2 continues to reject the over-identifying restrictions in the sixth
row where off-the-run prices are used in computing the real returns. (Again, we defer our

discussion of p till the next subsection.)

‘The sixth row of Table 3 suggests that the CIR model fits the very short-end of the term
structure better than it fits the intermediate range. Row 6 of Table 3 provides an empirical

discrepancy between the CIR model and the data. The next subsection discusses another
deficiency of the CIR model.

#We tried alternative values for m which did not reduce the degree of discrepancy between the row for
yields and the other rows in Table 3.
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6.3 A Deficiency of the Model

Based on the previous subsections, one might conclude that the CIR model provides a
reasonable characterization of the real returns on nominal bills - at least for maturities
twelve months or less. For the most part the estimates are reasonable, the implied shape of
the term structure for indexed bonds is plausible, and the results are not very sensitive to

the exact specification of the econometric model.

The estimate of the autocorrelation, p, is the most troubling. As was noted in Section 6.1
above, the yield on indexed bonds reverts rather quickly to @ given the parameters estimates
in Table 2. We also found in the last row of Table 3 some evidence suggesting higher
estimates for p for alternative econometric specifications. Figure 2A illustrates the inpact
on unconditional expected returns when p is increased from 0.35 to 0.95. As p increases, the

graph for unconditional expected returns displays curvature even for long maturities.

Other implications from the low value of p show up in Table 4. Using the fitted values
for the first moment and for the serial comoment in Table 2, we backed out the implied value
for the autocovariance. Then we divided these theoretical autocovariances by the sample
variances to compute a standardized measure of serial dependence based on autocorrelations;
these numbers are reported in Table 4. (Since we have not specified a process for inflation,
the theory does not make a prediction about variances, and we must rely on sample variances.
We divided by the sample variance in order to produce numbers that are a little easier to
interpret.) In all rows of Table 4, we are reporting implied autocorrelations for real returns

on bonds with a one month holding period.

The results in Table 4 are striking in that the autocorrelations are quite close to zero,
die off quickly, and for most maturities the autocorrelations are negative. In contrast, Panel
A of Table 1 suggests that the sample autocorrelations are substantially different from zero,
die off slowly, and are always positive. It is difficult to reconcile the results in Tables 1 and
4, where the mode! performs poorly, with Table 2 where the model seemed to fit well. Recall
that in Section 6.2 we reported that the fit of the model was not affected by the use of an
alternative lag structure. The very low value of the implied autocorrelation in Table 4 for
even twelve month lags does not seem to be a problem in fitting the model despite the high

sample autocorrelation reported in Table 1.

One possible explanation is that the parameter estimates in Table 2 are not based on
moments reflecting the sample variance. As noted earlier, the CIR model has no implications

for the variance without specifying the inflation process. The predicted autocorrelations in
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Table 4 would be much higher if the variances used in transforming autocovariances into
autocorrelations were lower. However, even if the standard deviations were lower, the signs
in Tables 1 and 4 are troublesome. How can the model fit so well in Table 2 and yet the sign
of the implied autocorrelation be wrong? The answer to this question may lie in the fact
that we used noncentral second moments. As a result little penalty is attached to situations
where the central second moments (after adjusting for the first moment) have the wrong sign

relative to the sample central second moments.

Casual empiricism is also troubling for this aspect of the CIR model. During the middle
1980’s expected real returns were high (by the standards of the fitted CIR. model) and stayed
high (i.e., mean reversion was slow). Given we estimate 8 to be about 1.54%, how can we
have a time period like the 1980°s where the “expected” real returns on short-term bonds
are substantially greater than implied by this valne of 7 When nominal interest rates were
high during the middle 1980%s, it is hard to imagine that anyone forecasted inflation to be a
comparably high number — especially for short-term bond maturities. If the mean reversion
1s quick (or p is only 0.35), it would seem that the “expected” real return should have been

smaller.?®

One obvious solution is to increase the number of parameters in the CIR model and
allow for a time-dependent value of § — an extension that is discussed in Cox, Ingersoll, and
Ross (1985b). Because we do not have a good model for 0, we have not pursued this line of
inquiry; however, we do report parameter estimates from two subperiods in the last two rows
of Table 3. Not surprisingly, # and y., are much lower in the first subperiod (1964-1976)
than in the second subperiod. In line with Fama (1975), 0 is 85 basis points. We also find
6y is essentially zero in the first subperiod® and much higher in the second. Again, Fama
{1975) concludes that one cannot reject the hypothesis that the real return is constant during
a time period that largely overlaps with our first subperiod. The higher value of oy is to
be expected in a time period which includes the change in Fed monetary policy. While j
is higher in the first subperiod than in the second, it is not close to unity which is implied
by a view that the real rate follows a random walk. In both subperiods, the overidentifying

restrictions are not rejected.

*Here we use “expected” to mean the forecasts of interest rates and inflation held by investors in the
market — not necessarily the conditional expectation calculated by a formal theoretical model.

30Based on our experience with the estimation, the low standard errors reported for the first subperiod is
a by-product of the low value of oy .
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7 Conclusion

We have presented a test of the model of the term structure developed in Cox, Ingersoll,
and Ross (1985b) and estimates of its parameters. Our fests and estimates indicate that
the model, which is at once quite complicated in its structure and rather simplistic in its
dependence on a single state variable, performs reasonably well when confronted with data
on short-term Treasury Bills. The parameter estimates indicate that term premiums are

positive, and that the term structure of indexed bonds can assume a number of shapes.

Much work remains to be done. We hope to exploit our estimates in a procedure which
extracts a time series for the unobservable economijc variable (i.e., r(¢)); to extend the tests
to a class of models which explicitly incorporate inflation and find the nominal price of a
nominally riskless bond; and to conduct empirical tests of models which find the nominal
prices of derivative securities. We hope that future research will extend the theory to a
general equilibrium setting wherein money has a useful economic function. Such an extension

would provide an endogenous process for inflation and for interest rates.
Appendix

In this Appendix we compute the restrictions on the first and second moments of tf;,’t_‘_u(r),
denoted ®,(u, ;) and ®,(u, v, w, 11, 7m; B) as defined in equations (30) and (33), respec-
tively, in the text. These computations permit the application of the GMM procedure.

Consider first the computation of D1 (x, 7; 8) in (30):

AT — u)

®y(u,m;8) = A

E {exp (-B(r — w)i(t + u) + B(T)#(t))}. (46)

The expected value in the RHS of (46) needs to be computed. Now defining p = B(r — u)
and ¢ = B(7) we can write

Il

E{exp (—p#(t + u) + ¢#(2))) E {exp (¢7(t)) E¢ [exp (—p#(t + u))]} (47)

Efexp(=pit+w)} = G exp[Cor(t) (48)
o? (1 — exp {—xul)] ~0/7*
where C; = [l _r 2:{ })J (49)
_ 2kp
and G = [2& —po? [l —exp {—nu}]] ' (50)

Equation (48) relies on the fact that the distribution of 7(¢ + u) given #(t) is noncentral X2
(see CIR(1985b)), whose properties are given in Johnson and Kotz (1970, Chapter 28). Use
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(48) in (47)
E {exp (=p#(t+u) + ¢7(t))} = C1E {exp (g + Co)i())} - (51)
The distribution to be used in computing the RHS of (51) is the unconditional or steady

state distribution of r(¢), which is a gamma. From CIR(1985b) and Johnson and Kotz (1970,
Chapter 17)

Blexp (47(1)] = [—f} for 6 <uw, (52
where w = g—;, (53)

T
and v = 2?522 (54)

The function @,(u,r;3) is found from substituting (52) in (51), and the result in (46).

The condition on the second moment of (Riyu(T) follows from relation (33). This involves
the computation of the unconditional expectation involving r(t), r(t+u), r(t+v), and r(t+w)

of the following form:

E{expla?(t) +07( + u) + c7(t 4+ v) + di(t 4+ w)]}, (55)

where a,b, ¢, and d are of the form B(r;} and hence a function of the parameters and the

holding periods. This expectation can be rewritten as

B {explai(t)] - B {exp [b7(¢ + u)) - Bypu {oxp [e(t + v)] - By {exp [ (2 + w)}}}}. (56)

By repeated use of the arguments in (47) through (52), this expectation can be expressed
as a function of @,b,¢ and d (which are defined in terms of CIR. parameters), the holding
periods (¢ to t4+u and {+v to t+w) and the times to maturity. This defines Bo(u, v, w, 71,723 8)
which is the unconditional expectation defined in the comoment (33). The restriction in the

computation of this comoment is that the holding periods should not overlap.

This procedure can be extended to compute comoments of higher order; for example,
in computing the third comoment the expectation would involve six distinct values for r
at different times ¢. Section 6.2 summarizes our empirical results using an additional eight
third moments.
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Table 2

Test of the Cox, Ingersoll & Ross Model of the Term Structure
Using the Generalised Method of Moments

Data :  Real, monthly holding period returns on 1, 3, 8,
and 12 month U S Treasury Bills: 1964-89.

4 first moments, 4 autocovariances and

6 serial cross-covariances (lagged 1 month).

m = 4 for weighting matrix.

Gross real return on r-month

T Bill held from ¢ to t + «.

Moment Conditions :

Newey-West Lag :
tfqu(7)

Panel A: Parameter Estimates!?

Yield Curve Standard Correlations CIR. Model
Based Parameters | Estimate Error ¢ p Yoo cu Based Parameters
6(%) 1.54 0.26 1.000 0.436 0.893 0.295 8 =1.54%
P 0.35 0.06 0436 1.000 0422 0.050 £ =12.43
Yoo (%) 3.01 0.30 0.893 0422 1000 0.995 A= —6.08
oy (%) 1.23 0.44 0.295 0.050 0.225 1.000 o= 049
Test Statistic, X%o : 13.39
p-value : 0.203
Panel B: Sample Moments and Fitted Moments {x 100, 000)2
Moment Sample | Standard Fitted
Number | Definition Mean Error Value

1 E[Rip1(1)] 100129.09 | 26.18 | 100153.71

2 E[tff,,+1(3)] 100192.28 30.05 100214.95

3 E[,Ry11(6)] 100220.20 | 3478 | 100241.13

4 E[Riy1(12)] 10021281 | 47.96 | 100247.70

5 EliRep1(1) ep1feqa(1)) [ 10025863 | 5185 | 100307 68

6 E[t}iﬂt+1(3)t+11~%f+2(3)] 100384.85 59.54 100430.28

7 E[JJ?,.H(S) t+1 44 2(6)] 100441.32 68.51 100482.72

8 EliBi41(12) 111 Riy2(12)] | 100427.41 | 9351 | 100495.87

9 E[tl_%t+1(1)t+1}?t+g(3)] 100321.96 55.42 100369.02

10 E[;%+](1)3+1}?t+2(6)] 100349.96 58.89 100395.25

11 E[t@H(I)HIR&z(l?)] 100342.67 69.33 100401.83

12 B Ry (12) 141 Reya(1)) | 10034274 | 6852 | 100401.70

I3 | EliRey1(12) 141 Reya(3)] | 10040624 | 73.64 | 10046305

14 E[th+1(12)3+1Rt+2{6)] 100434.40 79.90 100489.29

16 is the mean of the steady state distribution of r in CIR’s model, and also the intercept of the “steady state” yield curve(% per
year); p is its autoregressive parameter at 1 month lag, where p = exp(—n/12); yoo is the asymptote of the CIR yield curve (% per year)
and oy is the unconditional value for the standard deviation of r (% per year).

®The standard errors in the fourth column are the square roots of the diagonal elements of the inverse of the Newey-West weighting
matrix.
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Expected Monthly HP Return

CIR Real Zero-coupon Yields

A. Unconditional Expected Returns to Indexed Bonds

BB

261 The (annualized) expected monthly holding period
zi ﬁ returns 10 indexed bonds of vartous malurities, showrn
2'3 i for two values of the autocorrelation coefficiert,
2.2 N ho=0.35 fthe fitted estimate), and for rho=0.95.
2.1

2 ]
1.9
1.8 1
1.7
1.6
1 -5 I T T T T T T T T 1§ T i T T T H T T T i

0 2 4 6 8 10 12 14 16 18 20
Maturity
B. The Term Structure for Indexed Bonds

4
3.5 -

3+ /f =
2.5 The term structure of zero-coupon yields for real indexed bonds

of various maturities, drawn for 5 inftial values of tha instantaneous

2 interest rate r = 4%, 3%, 2.77%, 1.54% and 0.50%.
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Figure 2. Bond Returns and Yields-to-Maturity for the

CIR

Model, Using GMM Parameter Estimates, 1964-89



