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ABSTRACT

Quantity-adjusting option and forward contracts deliver a payoff on a variable
quantity of underlying.  This paper explains the use, pricing and hedging of such
contracts and extends them to sequential investment options. These are options which
guarantee optimal asset selection at switching points among a fixed set of traded assets.

Applications include domestic equity derivates held by a foreign investor and
hedged into that investor’s home currency. Similar hedges on foreign equities for
domestic investors can be constructed using symmetry considerations if the investors
are running their own hedge. If, however, the hedge is run by the same investment
bank, the problems are not symmetric. Such hedges are not attainable using a buy-
and-hold strategy with standard options and currency contracts.

Finally, in the presence of a forward contract on an inflation index, the real value
implied by the forward contract of equity derivatives may be hedged.



Over the past four years, a spate of new investment contracts has been developed
and marketed that allows investors to hold portfolios or options on portfolios of equities
denominated in non-domestic currencies, but without foreign currency (hereafter Fx)
risk.!"? The problem with using standard forward contracts or Fx options to manage the
currency risk is that the quantity of domestic currency (Dx) coverage provided does not
adjust to the Fx value of the underlying securities. Therefore, an investor hedging with
standard instruments an investment in foreign equities would be exposed to Fx risk to
the extent of any unanticipated changes in the value of foreign equities. To avoid this
exposure, a new technology was developed that produced “quantity-adjusting” forward
contracts (QAF) and quantity-adjusting Fx options (QAO).

For example, dollar-denominated currency-hedged put warrants are available at the
American Stock Exchange on the Nikkei 225. These put warrants expire in three years,
and are exercisable at any time. The warrants have a payoff that depends upon the
difference between the Nikkei 225 average (in Japanese yen) on the expiration or
exercise date and the strike price (in yen). If this difference is positive, there is no
payoff. If the difference is negative, the investor receives the (absolute value of the)
difference multiplied by the number of units specified in the contract, and translated
into dollars at an exchange rate that was fixed from the outset. This put warrant
differs from the standard put on the Nikkei 225 in that any gain realized on the
standard warrant would generally need to be translated into dollars at the spot
exchange rate prevailing at the time of the gain. (If the warrant were hedged with a

standard option or forward contract, the unanticipated gain still would be subject to the

Fx risk.)

The authors would like to thank Peter Abken and Abba Krieger for their

cominents.

*Goldman, Sacks & Co. developed currency hedged options in 1986, followed by
Salomon Brothers in 1987, and then a number of other firms. These securities had
modest sales until 1989 and 1990, at which time sales soared. During the first quarter
of 1990, the volume of trading in one such quantity-adjusting option, the Nikkei 225 put
warrants, accounted for over fifty percent of all transaction volume on the American
Stock Exchange.
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In this paper we will not elaborate a theory of hedging, nor attempt to justify the
demand for such quantity-adjusting financial contracts.® Rather, we take as given that
there is a demand for these products, and that this demand is being supplied, to some
extent. The finance literature, however, is silent on how a supplier of these instruments
could offer them without assuming undue risk. This paper is an effort to fill that void.4
We find these quantity-adjusting contracts to be special cases of a more general class of
contracts (dubbed GOs here). A valuation model for GOs is set forth and numerical
illustrations of the specialized cases of QAFs and QAOs are given. We also explore
other applications in the family of GOs.

In Section I of this paper, the relationship between our model and the previous,
more specialized models of Fischer [1978], Margrabe [1978] and Stulz [1982] is explained.
In Section II we explore nine applications within the family of GOs. These applications
further clarify the differences between the GOs and the options described by Fischer,
Margrabe and Stulz. In Section III we present a methodology whereby an issuer of
GOs could properly price and hedge these securities. The GO pricing function solves
the P.D.E. which is derived in this section. Section IV derives the solution. To
illustrate this methodology, in Section V we apply it to the two special cases mentioned
at the outset: QAFs and QAOs. Section VI presents sequential switching or “guru”

options as another example of the GO pricing methodology. Section VII concludes.

I Relationships Between Generalized Options (GOs) and Other Options

A useful way of understanding GOs is as a generalization of extant option pricing
models. There are two procedures that one might use to demonstrate that one pricing
model is a special case of another. Procedure One constrains a variable or a parameter

to restrict the model to a special case. Consider the case where Model A allows x to

3The theory of hedging has some intriguing dimensions, and has already received
some attention. For example, see Stulz [1982] and Smith and Stulz [1983).

4Our focus is on European style options. We leave to a second paper numerical
techniques for American style option pricing and hedging.
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vary, but Model B fixes x as a parameter, and the formulas to A simplify to those of B
when x is constrained to be constant. Procedure One would call Model B a special case
of A. Procedure Two includes procedure one but allows for an additional test which is
sufficient for B to be a special case of A. By Procedure Two, one asks whether there is
a portfolio which can be constructed using a buy-and-hold strategy on securities priced
using Model A to create a security priced by Model B. Procedure One, for example,
would not view the model for a call option spread (in a Black-Scholes economy) as a
special case of the Black-Scholes option pricing model. Procedure Two would. Both
procedures would view a stochastic volatility option pricing model which simplified to
the Black-Scholes equation where ¢ was held constant as a general case of the Black-
Scholes model.
With these procedures in mind, we now set forth the structure of a GO. The
payoff of a GO, Z(T), at exercise is
Z(T) = ext{X, Y} ext{U, V}*, (1.1)
where
*Note that the dimensions of the payoff to each option in (1.1) must be in the
appropriate units. For example ext{X, Y} French franc could be the price of 1
Japanese yen, and ext{U, V} could be in yen.

The following dimensions do not work. A farmer, Mr. Jones, is going to use an
unknown number of gallons of water pumped into irrigate his fields which he must pay
for. He would like to buy a QAO with the payoff

max{X, Y} U
where X and Y are fixed and spot prices respectively of a gallon of water and U is total
gallons of water for Mr. Jones firm. Because the dimensions of U are not price

dimensions, our model cannot be used for this application. If there was, however, a
traded asset whose price V, was perfectly correlated with U

V = {(U),
then one could trade V to hedge f(V) or
max{X, y} f}(V).
In the absence of such an asset whose price is perfectly correlated with U, the

dimensions don’t work because the model in this paper assumes complete markets (the
payoff being that there are no risk premium in the valuation equation).



ext = min or max .
It shall be assumed that
dTu = audt + oy dWy , (1.2)
u=X,Y,U, V.

The GO can be viewed as a general case of an option to exchange one asset for
another as described in Margrabe [2], a general case of an option with an uncertain
exercise price as in Fischer [1], or a general case of an option on the minimum or
maximum of two risky assets as in Stulz [4]. Formally, a Stulz option pays

ext{X, Y} . (1.3)
One can think of 2 GO as an option on the minimum or maximum of two risky assets
where the quantity is adjusted by a multiple of the payoff to another option on the
minimum or maximum of two other risky assets.

When the uncertain exercise price in Fisher’s model is the price of a traded asset,
the Fischer model becomes the same as Stulz’ model. Margrabe’s model for an option
to exchange one asset for another is an option that has the payoff:

M(T) = max{X, Y} - min{X, Y} . (1.4)

Thus, if at expiration X > Y, then
M(T) =X-Y. (1.5)
To make the exchange and start with Y to end up with X requires owning Y. Thus, a

Margrabe option plus Y gives X:
MT)+Y=(X-Y)+Y=X (1.6)

By Procedure Two, Margrabe options are special cases of Stulz options, and Stulz

options are special cases of GOs.
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. Applications of Generalized Option Technology

The generalized option pricing technology paves the way for several new kinds of
option-like contracts. We present nine potential applications below.

Case {i1). An application of the most general specification of a GO would be an
option sold to a firm, which does its accounting in U.S. dollars, on the maximum of two
Japanese stocks (U and V) converted into either British pounds or French francs at pre-
specified pound-yen and franc-yen rates, respectively, and valued in U.S. dollars at the
future spot rate.Case (ii). An application of GOs is to provide insurance on successive
investment
switching decisions, “switching options”. These decisions can be timing decisions on
when to switch from one project to the other one in a capital budgeting problem or
when to switch between two alternative investments for a portfolio. (While the
example here is kept to two periods and two alternatives, the technique used allows for
n periods.) The investor makes his initial investment, $I,, at time 0, decides to switch
or not to switch at time 1, and receives the payoff to his investment at time 2. For
each $1 invested at time 0, let the payoff on the investor’s best decision be $I,. For
each $1 invested at time 1, let the payoff on the investor’s best decision be $§I,. The

investor’s final payoff is:

(T)=L-1L -1, (2.1)
K(T) = I, max {XI’ Yl} - max{X,, Y} (2'2)
- 1. D), (23)

where Z(T) is one of the four cases characterized in equation (1).® The price of the GO

6Note that the final payoff is in dollars which are the units for (2.1-2.3). Thus in
this case, the dimensions of Z may be thought of as a pure number, the gross rate of
returning with I; in dollars. This case is discussed further in Section VI.
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at time 0, Z(0), is the value of perfect foresight at time 0 on the ranking of investments
X and Y over the partition [0,1], [1,2]. If a fortune teller or “financial guru” came along
who could predict the market, his information would be worth the value of insurance
which guarantees this timing decision, Z(0). If he offered a partial deal for period 2
only, the value would be that of Stulz option.

Note that the GO model allows for nonzero serial correlation and nonzero cross
section correlation. One can also compare the value of perfect information on rankings
over different partitions or different sets of projects or investments.

Also the incremental value of perfect foresight over a particular information set can
be compared. The information set is a variance-covariance matrix for the n xm Weiner
processes known at the date on which one could buy a GO for the remaining investment
horizon.

By comparing the cost of the GO for different information sets and partitions, one
can rank them by level of information. Because the cost of the GO is the cost of
insurance against bad timing on investment, the higher the cost of the GO, the lower
the value of initial information.

Case (1ii).  Another application is an equity option which is protected against
inflation, given the existence of a futures or forward market indexed to inflation.
Consider a put option on a stock portfolio. The payoff in nominal units, denoted in
capital letters, is

P(T) = max{K -8, 0} . (2.4)

The payoff in real units, denoted in small letters, is obtained by dividing the nominal

payoff by the inflation index, I(T) (dollars/real units) and is given by p(T) where?,

() = 773 - (25)

In the absence of complete markets where a security trades whose price is a
deterministic function of the inflation rate, I(T) is the implied inflation index.
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The inflation hedged put pays off in dollars,

Q(T) = (T)P(T). (26)
In real units its payoff is denoted by q(T) where,
q(T) = P(T) . (2.7)

That is, the payoff to the inflation-hedged put measured in real units is hedged against

inflation. Hence the payoff in real units is independent of I{T).2

Case (iv). Similar to an inflation-hedged equity put is an inflation-hedged
contract which has a payoff equal to the nominal price of the stock adjusted for
inflation. Its payoff is denoted by Fd(T) for a forward contract with a zero delivery
price, and in nominal units

| Fd(T) = I(T)S(T). (2.8)
The payoff in real units, denoted fd(T), is given by
fd(T) = §(T) . (2.9)

Case (v}). If X is the spot $/%¥ exchange rate and Y is a “strike” exchange rate
and set to a constant, Y™, (a’Y = (), the contract is an option which allows the investor
to convert, at the better of an exchange rate written into the contract or the spot rate
on exercise, the yen payoff of an option on the maximum of two risky assets U and V
denominated in yen. That payoff is:

max {X, Y*} max {U, V}. (2.10)

Case (vi). If we set X equal to 0, keep Y set equal to Y* as is and set V equal to
a constant V*(av = 0), we get a QAF, a quantity-adjusting forward contract, selling
8As with the currency hedge applications, here only translation risk is hedged.

Any risk to the real payoff due to a change in the nominal price and a non-zero
correlation between nominal and real price changes is not hedged.
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yen and buying dollars adjusted to the maximum of the Japanese yen price of the
Japanese stock and a zero coupon yen bond maturing on the option expiration date.
This gives a payoff of:

Y* max {U, V¥} . (2.11)

Case (vii). To get a QAO similar to that traded on the AMEX, and one has a
contract with the expiration payoff:

C(T) = Y* max {U-V* 0}. (2.12)

Following Procedure Two, this is a special case of a GO. Buy a GO where X is

restricted to 0, and Y is set to Y*. The expiration payoff to this security is:

Cy(T) = max {0, Y*} max {U, V¥} (2.13)
= Y* max {U, V*}. (2.14)
Sell a GO where U is further restricted to 6. The payoff to this short position is:
Co(T) = ~max{0, Y*} max {0, V¥} (2.15)
= —Y*V*, (2.16)

Note that this is the payoff to a “degenerate” special case of a QAF where the
adjustable quantity is the yen price of V. (More interesting is the case where V is
stochastic rather than fixed as with the face value of a 0-coupon bond.) Adding (2.13)
and (2.15) we get:

Ci(T) + Cy(T) = Y* max {U, V} -Y* v* (2.17)
= Y* max {U—_V*, 0} (2.18)
= C(T). (2.19)

Note also that by restricting X and Y to equal 1 (ox = oy = 0), the QAO becomes an

option on the maximum of U and U, or the kind of option modeled by Stulz [4] .
Because QAOs represent a specialization of GOs which help motivate the GO

model, it is of interest to note that Stulz options are a special case of QAOs and QAOQs

are not a special case of Stulz options. To see that Stulz options are a proper subset of
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QAOs recall the QAO payoff as characterized in (1.3). Multiplying through by Y™ the
QAQ payoff is

C(T) = max{Y*U -Y*V*, 0} . (2.20)

This payoff may appear to some readers like that of a Fischer option (in U.S. dollars
Y*U and Y*V are stochastic), but it is not. Y*V* is just the value of a portfolic made
up of a zero-coupon yen bond with a face value of V* yen plus a forward contract to sell
V* yen for delivery into U.S. dollars on date T at Y* dollars per yen. Y*U, however, is
a QAF and can be neither priced nor hedged using Fischer or Stulz options.?

Case (viti).  Similar to (vi), but with optionality on the currency instead of on the
stock, consider a quantity-adjusting option to sell yen into dollars. The option is a

QAO because the amount of yen to be sold is equal to the price of a Japanese stock.

*To see this we use proof by contradiction. The logic is as follows. Stulz options
include fisher options (by the comments in Section I). If a Stulz option cannot be used
to price and hedge a QAQ, then neither can a Fisher option. If an only if one of the
stochastic arguments to a Stulz option payoff is 0 does the option become a forward
contract. Also QAFs are special cases of QAOs. Hence if a Stulz contract with one
identically to 0 payoff cannot be used to model a QAF, then it cannot be used to model
a QAO. Finally Fisher contracts as special cases of Stulz contracts cannot be used to

model QAOs. Suppose that there exist two assets denominated in the same currency
(say dollars) A and B, such that A, B > 0 and

M(A(T) B(T)) = Y"U(T) ,

where denominated is a different currency gay yen) and Y* is a constant exchange rate
(dollars/yen). Then in general either B = 0 and A(T) = Y*U(T) or vice versa.
Without loss of generality suppose the former, then

M(A(T), 0)) = A(T) = Y*U(T)

where A has dimension (§), Y* has ($/¥) and U(T) has (¥). But the dollar price of
U(T) is Y(T)U(T) where it is the spot dollar/yen exchange rate at time T. Either there
is a contract which pays A&T) or there is not. (i) Suppose not, then in the absence of a
contract whose payoff is Y*U(T) obtain Y* = Y{T) which is a contradiction since Y(T)
is stochastic. (i1) Suppose such a contract exists, then A(t) is unknown and so are
OA(t) OA(t)
v a¥ U )

that asset as traded by the American firm.

, where Y(t)U(t) is the dollar price of the stock and is the price of
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Using the notation of (1), the payoff is:

max {X, Y*} . V. ‘ (2.21)

Here X is the U.S. Dollar price of a Japanese yen. Y?* is the U.S. dollar strike price of
a Japanese yen. V is the yen price of the Japanese stock.
Case (iz). Similar to both cases (v) and (vii) is a contract, D, with a payoff

almost identical to (2.12) except that Y™ is replaced with max{X, Y*} as in (2.10):

D(T) = max{X, Y*} max{U~-V, 0} . (2.22)

This contract is constructed analogously to C(T) by letting

Dy(T) = max{X, Y*} max{U, V} ; (2.23)
Dy(T) = max{X, Y*} V. (2.24)

D, and D, are special cases of GOs. D, is the example of case (viii).

OI. GO Model Development - Deriving the PDE

First obtain the risk premium to the GO, a,-r. Second apply Ito’s Lemma to

obtain dZ and hence E{dZ]. Set

Qg -1 = E{gZ}_ r (3.1)
to obtain the P.D.E.
For the purpose of derivation we will use X;, i = 1,....4 to denote the four
underlying: X, Y, U, V. Let
dX; = ¢ X;dt + 0. X;dW, (3.2)

be the return process for each of the underlying securities, and
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dZ = o, Zdt + Z( ¥ o, dW,)
i=1 2

(3.3)

characterize the return process for the GO. Then the risk premium for the GO, the

expected return minus the risk-free rate, is

4 O,
ap 1= 3% & (o-1)
i=1 3
From this Lemma

42 =24t + 3 2dX +§ 35 Z,dXdX, ;
i= i)

Substituting (3.6) and (3.7) into (3.4), the P.D. E. is

%[%(f: EZ aa’pu)+Z +EZXa]—r=Z‘:—'T'(ai—r).

i=1 j=1

Multiply by Z and cancel redundant terms,
2 E EZau+Z + ):ZXr -1Z2=90.

i=1 j=1

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Note, however, that when X, is foreign currency one substitutes

ZXi(r-r) (3.10)
for

ZXz , (3.11)

where r; is the interest rate of the currency in which asset i is denominated.

IV. Solution to the GO P.D.E.

P

The Truncated FEzpectation of A Multivariate Normal

In Part A, the solution to the P.D.E. is represented using a multivariate normal.
Part B decouples the multivariate normal subject to the bounds of integration.
Integrating the decoupled distribution, using the bounds of integration, is left for the
Appendix.

The P.D.E. is solved by calculating the expected contract payoff, discounted at the

risk-free rate, to obtain Z(t), the current no-arbitrage price of a GO:
2(t) = €TTE[Z(T)] (4.1)

Z(T) = max{X,(T), X5(T)} max {X3(T), X,(T)} . (4.2)
Given the assumptions on the return generating processes of the underlying
securities (Equation 1.2), the solution to the P.D.E. is expressed in terms of a
multivariate normal. Let
x; =ln X; (4.3)
then
E[Z(T)) =

E[e(xl + xs) !xl > Xg, X3 > x4] . Prob(xl 2> Xg, X3 2> x4)
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+ E[e(xl %) X1 2 %, X 2 %] - Prob(x; > x,, x> X3)

+ E[e(x2 t %) %2 2 X3, X3 > x,] - Prob(x, > x;, x5 > x,)

+ E[e(x2 + %) |x; > Xy, X4 2 x3] + Prob(x; > x, Xy 2 xs) .

(4.4)

Let g(x) be the multivariate normal distribution with variance covariance matrix

= [aij ] )
and x = (x,, X,, X3, X,) .
E[Z(T)] expressed in integral form is

BUD) = [ B S g axy [t g ax

Q12,34 Q’21,43

+ / (X2 + x3) g(x) dx + / 1+ %) g(x) dx ;

Q21,34 ﬂ’12,43

g(x) = ke 3 x#) TN x— p) ;

1
d?
. =1 1

B (21r)"/2 ;

p=4;

Qij.u = {xx 22X X 2 x}

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

for i, j, k and 1 between 1 and 4 inclusive. d; ,i = 1,...,4 are the characteristic roots of

Y. In (4.6) the integral sign represents a multiple integral in 4-space. For example,
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with the bounds of integration in the first term in (4.6),

/f(x)dx: 7 7 7 o/of(x)dx (4.10)

X4=-00 X3=-00 X3=X, X,=X
12,34 4 2 3 4 1 2

for any f(x). Note that generalizations to switching options or basket QAOs and QAFs,
for example, could be for N greater than 4.

Following standard practice, subtract off the means from x, to get

y=x-—4. (4.11)
The Jacobian of the transformation is unity. Obtain for each original region of

mtegration £, with xi(y;)) = y; + o fori=1,...,4,

E[Z(T)] = / ol¥1(1) + x3(y3)] Ke‘%ylz-ly dy (4.12)
y2,34(x(y))

+ / e[xl(Yl) + %4(y4)] Ke'%yl):'ly dy
12,43(x(y))

+ / [X2(¥2)+ x3(y3)] Ke—%y’):"y dy
£

21,34(x(y))

+ / e[xz(Y2) + x4(y4)] Ke'%Y'):_lY dy .
0

2143(x(y))

Thus we have obtained a solution to the P.D.E. in terms of 4 regions of integration to a

4-vector multivariate normal.
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B. Diagonalizing the Variance-Covariance Matriz

The next step is to simplify (4.12). We do this by diagonalizing the variance-
covariance matrix. The bounds of integration do not allow the integral to be
represented as the product of 4 cumulative normals but we are able to simplify the
expression. Since ¥ is positive definite, by a standard theorem on quadratic forms
there exists an orthogonal matrix P such that

PPyIP=D , (4.13)
where D is diagonal with the characteristic roots d; of 33! displayed on the diagonal.
g(-) is to be integrated over each of the four regions given in (4.6). Decouple the
multivariate normal subject to the constraints from the integration bounds.

For the most general derivation of the GO, intuition might suggest that the 4-
vector multivariate normal decouples into the product of two bivariates. Because of the
bounds of integration, however, even with the variance-covariance matrix diagonalized,
we have not obtained this result. For the more specialized applications of the GOs,
namely QAFs and QAOs decoupling does occur.

The GO Model applied to the QAF case uses a multivariate normal decoupled into
the product of four univariate normals. One obtains the result that QAF prices are a
function of the expectation of a normal and the integrals drop out altogether. For the
case of a QAO one has again a univariate normal, but because the bounds of integration
are not the whole line the price formula has a cumulative normal.

Transform y to t by the transformation

y="Pt. (4.14)

The determinant of an orthogonal matrix is 1. Substituting for y,

YEXly=tP'T1Pt ; (4.15)
=tDt.

For the bounds of integration,
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O a(x(y)) (4.16)
becomes

Uux(¥(6)) = Yu(x(PY)) .

The expected value of Z(T) becomes

E(Z(T)] = (4.17)

e[X1(P t)+x;(Pt)] Ke'%‘!m dt + j e[xl(Pt) + x4(Pt)) Ke’%"‘)‘ di

sz,u(x(P t)) 912,43("(1)';))

+ j e[xz(Pt) + x3(Pt)] Ke_%"m dt + / e[xz(Pt) + x4(Pt)) Ke-%t’m dt .
Qzl,u(x(P t)) 921,43(X(Pt))

Because D is a diagonal matrix,

E[Z(T)] = / Xi(Pt) + x5(PE)] 1 (3 Ed.t.)

dt (4.18)
Q12,:’.4(3‘(1)1’-))

b e (3R

045,43(x(Pt))

+ / o[%2(Pt) + x,(Pt)] Ke ( Edltl)
31,34(x(Pt))

dt

b +xro) R
921,43(X(Pt))

dt .
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Because x; is an affine transformation of the components of t, (x = Pt + u), the
power of e for each of the four integrals is a quadratic in the components of t. For the

last region of integration in the above equation, which we denote as I,, for example,

4 4
L= [ «x G uts Lage)

921,43("(Pt))

dt ; (4.19)

4= Py + Py b=y +p,.

By “completing the square,” and multiplying by e taken to the power of a suitable
constant, the exponent can be represented as a quadratic form with a diagonal matrix.
Subject to the bounds of integration, each 4-integral becomes the integral of the product
of four non-standard normals. These are easily transformed into cumulative standard
normals,

Denote the exponent to e for the last term in (4.19) as I’ with

4
%Z‘h =T, Y = —%dit? +a‘iti' (4.20)
i=1
1 3\ | af
7]--_.. —Ed](l_gl) +§'_l- (4‘21)
a,,? 1 (ti - #;)2
—_— 5 [ .
dize2di oo =31i ol = ﬁ (4.22)
1 (tx I 2
4 2 a!
I, =K / e % ag; (4.23)

Q21,43()!:(Pt))
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2

4 ! 4
r_ i 1
K' = exp{i=l 2—a{+b} 1 T (4.24)
4 #fz A 't
I, =exp { 3 ? +b } / i£11 n(t;; pi, o)) dt;, (4.25)
i=1 Yj -
21,43

where n(x;, pf; of) is a normal with mean ,ui and standard deviation of . With y!, of and
b suitably defined, similar equations hold for L,i=1,.,3. Conditions which simplify
(4.25) as applied to I, . . . , I, are given in the Appendix, “Bounds of Integration and

Decoupling the Multivariate Distribution”.

V. QAFs and QAOs
To illustrate an application of the GO pricing model, consider an investor who
wishes to take a long position in non-domestic equities (denominated in a currency
other than his own), but who desires to avoid any direct foreign exchange risk.!® Such
a position could be achieved by purchasing some foreign equities directly, and by
purchasing either a quantity-adjusting forward contract (QAF) to repurchase domestic
currency (Fx) at or above a given Fx strike price. The quantity of Fx coverage would
adjust over time to whatever level would be required to accommodate the full Fx value
of equities. The QAF would lock in a given exchange rate, whereas the QAO would
give the investor the opportunity to benefit from any appreciation in the value of Fx.
A distinction is best made at this point between the purchaser of the QAQ or QAF
and the vendor of this security. An investor who purchases this derivative as a
currency-hedged investment would naturally buy such a derivative on non-domestic
securities only. The vendor, presumably a bank or trading firm, might sell such
191t is clear that at some level, an investor who hedges away the direct Fx risk is
only hedging away a part of Fx risk. For example, the foreign business market may be

affected by the international business climate, or there may be component parts of the
products being produced abroad that are acquired through trade, and subject to Fx risk.
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securities to foreign investors as well as domestic investors. This presents the bank with
the need to synthesize and value QAOs and QAFs on both domestic securities with cash
delivery in foreign currency and non-domestic securities with cash delivery in domestic
currency.

Let us call the former derivative an “incoming” QAO or QAF and the latter an
“outgoing” QAO or QAF. It is immediately apparent that in the absence of arbitrage
opportunities, there can be only one price for a contract. For example, suppose that a
Japanese broker were to sell an outgoing QAQ (to an American pension fund) on
Japanese stock with delivery in U.S. dollars. In the absence of arbitrage opportunities,
the price charged by Japanese broker would equal the price charged by an American
broker for an incoming QAQ on the Japanese stock. Nonetheless the hedges would not
be identical. This results from the lack of symmetry to the two problems. In fact, the
securities available to trade for an outgoing QAO are not those available to trade for an
incoming contract. When the Japanese broker trades Japanese stock to hedge the
outgoing QAO, he trades a security denominated in Japanese yen, the domestic
currency. The same security, when traded by the American bank to hedge an incoming
QAQ, is a security whose U.S. dollar value is the product of the Japanese yen price of
the Japanese stock and the spot U.S. dollar/Japanese yen exchange rate.

On the other hand, if the American bank were to sell an outgoing QAQO on an
American stock to a Japanese investor, the hedging formulae would be identical to that
used by the Japanese broker in the previous problem, even though the parameter values

are different.

A. Outgoing QAOs
The outgoing QAO price is given by:

C(r) = -)%((L) S(7) exp(r(r—-rf+ p¥a)) N(q) ——->-{—-(X—T—) K exp(— Trf)N(q —oNT );
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4= 5y [(c + Yop)7 + In(S/K)] + T ; (5.1)

S = stock price in domestic currency ;

r = domestic interest rate ;

Ip = foreign interest rate ;

K = strike price in domestic currency ;

¢ = standard deviation of returns to domestic stock ;

Y = standard deviation of returns to the domestic price of

a unit of foreign currency;

p = correlation between returns to domestic stock and returns

of a unit of foreign currency;

X = U.S. dollar price of one unit of Japanese yen

written into the contract ;
X(r) = same for spot rate 7 time units before expiration ;
X £ (1) = forward exchange rate for delivery 7 time units in

the future (at T).

Note that if we want to write the option price function using forward, instead of spot

rates, then one has no change in h, or h;, with the new equation given by

X,(1) Xe(7)
C(r) = ];( S(r) exp(rpyo) N(q) — J;{ K exp(rr) N(q—ov7 ) ;

q= al—ﬁ [(r + op)7 + In(S/K)} + %E : (5.2)
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B. Outgoing QAFs

The outgoing QAF price with a payment a delivery (0 delivery price) is obtained
from taking the QAO price formula and setting K = 0 which gives N(q) = 1. This

contract is equivalent to currency hedged stock. Equation (5.5) becomes:

X(r

F(r) = 57 §(r) exp(r(s—1,+ po) (53)

Again if we want to write the forward price function using forward, instead of spot

rates, the new equation with a zero delivery price is given by:

X;(7)
F(r) = ~g—5(7) exp(rpt) (5.4

For a non-zero delivery price, K’, just subtract off the present value of K'. Because
the QAF is outgoing, K’ is denominated on foreign currency, for example Japanese yen;

so K' is multiplied by the forward price of a yen in U.S. dollars to obtain K’ e-‘r(rrr) .

C. Incoming QAOs
The Incoming QAO price is given by:

X(7)

O(r) = 5

Z(7) exp('r(rf —r—pyYo)) N(q) — -)-%({T—) K exp(rr) N(g—ov7 ) ;
9= 5z l(r; — Yop)r + In(S/K)] + 9T ; (5.5)
Z = foreign stock price in domestic currency ;
K = foreign strike price in foreign Currency ;

o = standard deviation of returns to foreign stock in

foreign currency;
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p = correlation between returns of foreign stock and returns

of a unit of foreign currency;

Formulas for Incoming QAFs are obtained from (5.6) as formulas for Qutgoing QAFs
(5.3-5.5) were obtained from (5.1) and (5.2).

VL. Sequential Switching or “Guru” Options
A. Description

The second example cited as an application of the GO model in Section II was that
of a contract which guarantees its owner optimal switching between two different
investments (which are traded assets) over two time periods. Sequential switching
options need not be restricted to the 2x 2 case, but may be generalized to n investment
opportunities over m periods which need not be of equal length. Using the solution
technique described in Section IV requires integrating a (m x n)— dimensional
multivariate normal. We will restrict ourselves to the 4-dimensional case.

Xy X2, Y1, Y, as they used in (2.1-2.3) are gross returns,

Il = max{l + rxl, 1 + ryl} 3 (6-1)
L =max{l + ry,, 14 Ty,} (6.2)
(T)=1L -1, - L. (6.3)

While it is useful to think of the sequential switching case of a GO as a quantity-
adjusting contract on returns, to be consistent with our presentation of GOs as options
on traded assets, relate an option on returns to an option on traded assets by

2(T) = Ty max{g!, 71} max{32, 3} (6.4)
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In terms of traded assets, {6.4) says that a quantity of I, GO contracts are
purchased. Each GO pays the maximum payoff of $1 invested in Xy or Y, times the
maximum payoff at time 2 of $1 invested in X, or Y, at time 1. With the time 0 prices
of X and Y given by X, and Y, the first-period GO payoff is the maximum of 1/X,
units of X and 1/Y, units of Y. This gives a payoff of X,/X, and Y,/Y, respectively.
These are the gross returns for period one. Period two gross returns are construced
similarly.

B. Hedging Forwards and European Options when the Payoff is Determined by

Asset Prices at more than One Future Date

Pricing and hedging forwards and European options whose contract parameters
(strike or delivery price and quantity) are set at the date of sale is standard. GOs are
among the set of contracts which have parameters set at a future date. '

With the exception of sequential switching options, all of the applications of GOs
mentioned in Section II have only one parameter set of a future date: the quantity of
currency sold at the predetermined or optional foreign or inflation rate. This quantity
is determined by the “state of the world” at only one date: the expiration date. The
adjustable quantity is hedged by trading all parts of the GO payoff represented by asset
prices starting at the issue date and continuing to the maturity or expiration date.

With the case of sequential switching options, however, this adjustable quantity is
determined by “state of the world” at more than one future date. Unlike the purely
“cross-sectional” GO applications, for a sequential switching option, the asset prices
which determine the quaatity-adjusting payoff are mot hedged by trading all relevant
assets starting with the contract issue date.

For example, in (2.1, 2.2) where there are 3 dates (0, 1, 2), I, is not determined,
much less does it change before date 1. Dynamic trading in the components of I,, (X,,
Y,) does not start until date 1. With this observation in mind some comments about

contracts with this property follow.
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(1) Sequential Spread Forwards

(a) Payoff
Fd(T,) = [S(T,) - 5(Ty)] - (6.5)
(b) Hedge
At Ty
(1) Buy a forward contract with a 0 delivery price on 1 share of stock
for delivery at T, for an immediate cash outflow of S(T,).
(2) Sell a+1 forward contracts with the same specification but for
delivery on T, for an immediate cash inflow of aS(T,) where
a = (1+1)%% At = T,-T, (6.6)
The initial price of the forward contract is
Fg(Tg) = S(Tol(1+1)A4~1] ~ S(Ty)rAt
for small r.11
At T;:
Borrow §(a)S(T,), at the risk-free rate and close short position.
At Ty
(1) Receive $5(T,).
(2) Payout $5(T,).
(c) Application

Hedging options struck at-the-money at a future date.

(i) Sequential Ratio Forwards
(a) Payoff
Fd(T,) = S(T2)/S(Tl) . (6.7)

"Apply Taylor’s Theorem to f(r) = (1 + r)A't where
f(r) ~1(0) + f(0)r = 1+ rAt.
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(b) Hedge
At T
Buy a zero-coupon bond with $1 face value and maturity at T, for a cash
outflow of § 3 with a defined in (6.6)
At T;:
Buy 1/S(T,) shares of S(T,) using the $1 from the maturing bond.
At T,
Receive §5(T,)/S(T,).
(c) Application

Hedging guru options.

(1) Sequential Spread Options

(a) Payoff
C(T,) = max{0, Fd(T,)} , (6.8)
where Fd(T;) is given by (6.5).
(b) Hedge

Hedge as one would hedge standard option but with the forward in (6.5) as the

underlying where

Fd(0) = a . (6.9)

(#v) Sequential Ratio Options
(a) Payoff
C(T,) = max{K, Fd(T,)} , (6.10)
where Fd(T,) is given by (6.7) , and K is a constant.
(b) Hedge

Hedge as a standard option but with the forward in (6.7) as the underlying.
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(c) Application

Stulz option applied to $1 invested at a future date.

(v) Sequential Ratio Forwards as the Underlying to “Guru” Options
It is immediately apparent that a sequential ratio forward with a zero delivery

price is an underlying to a guru option.

C. The Variance-Covariance Matriz for Guru Options

So far, Section VI has described “guru” options in some greater detail and
demonstrated that by constructing sequential ratio forwards, markets for guru options
are complete. To solve for the pricing formula and hedge ratios, the next step is to
derive the variance-covariance matrix for a 2x2 guru options, ¥ for 4-vector
multivariate normal distribution over finite intervals N(Ax;, Ax,, Ay,, Ay,) here Ax;,
Ay; regarding the changes in the logs of X and Y between date i and i — 1.

Recall that the payoff on a 2 x 2 guru option is

X(T,) Y(T,) X(T,) Y(T,)
W) = fomefgrs v melr yrg) - o

As before, X is calculated using the returns after making a change of variables. Taking

natural logs,

1]

X

In X(Ti) i
ln Y(T,) . (6.12)

¥i
Recall from (1.2) that

du = -d.[—gj-— = Qudt + O'udwu ) U= Xp Yl; X Yio i= 1’ 2 (613)
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T
A'I.IiI =4 - 1, = (%1_11 . (6.14)
Tis
Aui = OfuiATi + GuiAWui ; (6.15)
Z(T)=1, ma.x{eAxl, BY 1} max{esz, eAyz} . (6.17)

The next step is to calculate, T (Ax,, Ay,, Ax,, Ay,).
The data used to calculate ¥ are the four variances of the return process oy , Ox,,

Oy,» Oy, and the correlations between the disturbance terms:

Px.y; = AT E{(AWx)(AWy )} (6.18)

The off-diagonal elements of T are determined by:
ox,y; = Cov(Ax;,Ay;) - (6.19)

= E{(o‘xiAWxi) (O'yjAWY j)}

= ox0y.xy\ATAT; ;

i,j=1,2. Ifx =y, then for an off-diagonal element,i # j.
If the time partition is uniform then AT, = AT; = AT, and

a'xi’yj = Uxiayjpxi’yjAT. (6.20)

Summarizing, let u = x, y then

COV[(UuIWuI)(UuIWuI )] (6.21)
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are the entries to the upper left 2 x 2 submatrix. Similarly

Cov[(e uzwuz)(a u,wu,)] (6.22)

for u = x, y are the entries of the lower right 2 x 2 submatrix. For the off-diagonal 2 x 2

submatrices we have the serial covariance entries

Cov[(ouiAWui)(aujAWuj)] . (6.23)

D. Summary
Having shown how the underlying to guru options may be hedged, and how the

P.D.E. is solved, we can price and hedge such options.

VII.  Concluding Remarks

The GO model includes QAOs and QAFs as special cases. The QAQO model, in
turn, includes Stulz options as a special case. GAOs can also be used to model
“switching options.” These are options which guarantee over a finite number of
decision dates and a finite number of investments, optimal sequential switching between
investments to obtain the maximum return over the investment period which ends on

option expiration. Examples of closed-form solutions to GO models were given for the

QAO and QAF cases.
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APPENDIX
Bounds of Integration and Decoupling the Multivariate Distribution

This appendix simplifies the numerical integration of a 4-vector multivariate
normal as it appears in the GO price formlua, (4.18). There are four parts to this
section. The bounds of integration for x and t are given respectively in parts (i) and
(ii). An example is given in (iii), and two lemmas which generalize the example are
given in (iv). The example shows how the integration over dt ¢ R* can be reduced to
integrating over dt ¢ R%. The first lemma proves that certain conditions are necessary
and sufficient to reduce the dimension of the integration. The second lemma gives
necessary and sufficient conditions to determine the bounds of integration once the
dimensions to integrate over are reduced.

Reduction of the dimensions of integration from 4 to 2 is taken to mean that
instead of integrating a multivariate normal over four dimensions, the integration is
carried out in two stages as illustrated in (A.21) to obtain {A.23). First cumulative
normals are calculated. Then a function of the product of the cumulative normals is
integrated when this function can be expressed as a function of (t,, t,) ¢ R? instead of
R*.  To illustrate, consider the number of calculations needed to integrate over 4
dimensions versus the approach which reduces to (A.23). Suppose that over each
dimension the numerical integration is calculated 100 times. In 4 dimensions this gives
a 4-D grid of 10° points at which the calculation is be carried out. Using a “lookup
table” or an approximating polynomial for the cumulative univariate normals,
calculations are performed over 2 dimensions instead of 4, reducing the number of

points at which calculations are made from 100 million to 10,000.

(i) Bounds of Integration of z

Consider the first region of integration in (4.18). Similar reasoning applies to the

other three regions:
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00 > Xy 2 -00; {(A.1)
00 > X; 2 -00; (A.2)
X3 2 X4 (A.3)
X; 2 X, (A.4)

Next determine the region of integration for t.

(it) Bounds of Integration of t
Recall that
x =Pt + B (A5)

Note that {A.1, A.2) establish no constraints, so we shall work only with (A.3, A.4). To

illustrate, for the region of integration defined in (A.1) - (A.4), we work out I,, the first

term in (4.18), for a special case; then we generalize. From (A.3, A.4)

1

It

4
Z Bty + mi—py 2 05 B = Py—Py. (A.7)

=
(111) An Ezample: Reducing the Dimension of Integration From § to 2

From (A6)if e, > 0,

t, 2 —Zalt —_(l‘s Ha) - (A.8)

i=2

Similarly from (A.7)if 8, > 0,

(B —pa) - (A.9)

4
t, > "*E
i=1

't-:.| =
PI'-'
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Now substitute for t, in (A.8) using {A.9) and contingent on g—f < ¢ and obtain,

i

4 PO X
2 =Y et - g m-s)+ a2 g—iﬁﬁ%(ul—#z))- (A.10)

=3 ¥

a, B L0 ay B
ty (1*a%ﬂ—:) > —E(“% - "_'%_J)tj _0%(”3_“4“'% (# — pa) - (A.11)

@f v & o af; 2B\
t, 2 -(I_E%Bi) ;(a%—arﬂ'i‘)tj—(l—ajﬁ;) ‘5}?(#3—»”4) (A.12)

iy«
+ (1 - 0’1[32) 01%2 (B — pa) -

Because

(1 B azﬂl)-l __ ob (A.13)

a5, a8, —a,f,

(A.12) becomnes

ty 2 i; T 5+ Mo (A.14)
f
o8, — auf;
o == (5o ) @5 (=) = Balis— ). (A.16)
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Note that to obtain (A.14) it has been necessary to check the signs of: a, a 2 and

a,f,
(1 alﬁ2)

Let us now obtain the analog to (A.14) for t,. If 8, > 0 and —% > 0 substitute
2
(A.8) into (A.9) to obtain

Bt-hm-m). (A1)

[\1..-

[*]

t; 2 & (g g— al(ﬂs ))

il
w

)

This gives

(ﬂzcﬁ ﬂxaz) > E Brey ﬁjalt

Baa; e " B, U ﬁﬂ—c‘,l(ua—m) —31;(;:1—#2). (A.18)

By _ﬁ1a2 ) > 0

Contingent on ( Foo
20

4
t, 2 Z Yo t; + Yoo i (A.19)

=3

ﬁla ﬂ .
52“1 pray '

720:(m)( 13— ug) — al(#l—ﬂz)); th = 1.

Note that the inequality in (A.16) was contingent on the signs of: 4,, ﬂ_l and (1 — %1—-%).
2 20
For each one of these which is negative change the direction of the inequality. The

same holds for (A.14). By the arguments just made

j 10 ' (A20)

21 43
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o0 o @ o0 o0
/ 84(ty) '/ g3 (t3) ([ gz(tz)dtz)(/ gl(tl)dtl) dey [dt,
-0 -00 ty=ty(tq.t,) ty=ty{tz.ty)

where g = n(t;, pf, 0] ). Integrating over dt, and dt, in (A.20) where

t{tqt 4)
Niltst) = [ &(t) d (A.21)
oo
and g; is a non-standard normal,
00 00
] Baway= [ [ at)alt)1-Nls )1 -Nyliat)dtedt,  (A22)
-0 -bo

21 ,43

8

g~

70 Ealty) No(ts, ty) Ni(ts, ty) gs(ts) dt, dig (A-23)

8"*-.8

/&(t4 N;(ts, tg) (t3 ) dtz dt, —

8\8

o0
] et Nalts, 1) sufta) it .
o0

Given that the conditions on a;, a;, 8, and , in this example are statistical, the
integration over dt ¢ R* in (4.18) reduces to an integration over dt ¢ R? in (A.23) and
simplifies the numerical integration.

The implication of the failure to obtain the inequalities for t, and t, (A.14, A.19) or
similar inequalities for any two of t,, ... t, in this example is that (4.18) does not
simplify to (A.20) and (A.23).

I, for example, (A.14), the inequality expressing t, in terms of t, and t, cannot be

obtained, then t; must be represented with an inequality in terms of not only t, and t,
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but t,, also. The inner brackets to (A.20) becomes

00
Bat2) ( / gl(tl)dtl) dt, . (A-24)
tg = ty(ts, t,) ty=t;(ty, ts, ty)

The right-hand side of (A.22) becomes
o0
L

and the third term to (A.23) becomes

7 70 &(t‘l) 53(t3)(1 _Nz(t.'h t4) (1 - Nl(t'Z! t31 ti))dt2dt3dt4 (A25)

-00 -00

o0

o0 oo
/ / f 8a(ts) Ba(ts)Ny(t, ts, ty) dt,dtydt, (A.26)
-00 -00 -00

If no inequality for t; in terms if only t; and t, could be obtained either (and no
such inequalities are available for any other pair of t’s either), then similar to (A.26) the

last term in (A.23) becomes

o 00

7/[ Ea(ta) Na(ty, ts, ty)gs(ts)dt dtadt, (A.27)

00 -00

(iv) General Case
LEMMA 1:

Given from (A.6) and (A.7), then (a) if 3j' 3 aj'ﬁj' <0then Vij" 3 j" # i an
explicit inequality for tj" can be obtained; (b) If there also exists a j” 3 i #j' and

aj,,, ﬁj" < 0, then a second inequality for tj, can be obtained.
Proof:

(1) From (A.6) and (A.7),
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4 4

Yoo, 205 Y Bit; >0 ; (A.28)

j=0 j=0
(2) Forj,j" e{l,....,4}, consider a;, and By,. Either a; > 0, ay < 0 or ay = 0. If for
all i’ € {1,...,4}, ay = 0, then from (A.6) and (A.3), x; > x, reduces to p3 > p, 50 that
X3 — piz = X, — 4 for all (x3, x,), or (x3, x,) = (p3, #s) and (x4, x,) is constant. In this
the GO contract, defined by its payoff in (1.1) reduces to C Max{x,, x,} where C is a
known constant and C = max{x;, x,}. The problem then reduces to solving for the
value of C Stulz options. By similar reasoning if for all i’ € {1,...,4}, ﬂj" = 0, then x,
and x, are constants and again the GO problem reduces to a Stulz problem. If both @,
and ﬁj" are zero for all j’s and j"s, then all uncertainity is removed from the problem.
The same can be said of §;,, We shall make a table checking each of the four nonzero

Ccases:

aj,<0 aj; >0

Bu<0 | (i) (if)

ﬂjn >0 (iii) (iv)

Table 1
Consider a; > 0, then
4 a 4 o
Yowm 2 —t =Y @ 4 S t. (A.29)
=0 2 j=0 J
i#i i#T
(3) Second consider ay < 0, then
4 Q'J 4 O.’J
Z a6 S —tj;.or - o izt (A.30)
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(4) Consider ﬂj”. Let ﬂj" > 0, then

4 .
~ z % 4 Sty (A.31)
,-’;}" !
(5) Let ﬁj" < 0, then (A.32)
~ Bi ¢ <4 (A.33)
& E o= j" . .
iE

J
idea is to solve for t;, by substituting for t;,, in (A.6) or to solve for tj" by substituting

n
for t;, in (A7)

The object is to determine if an unambiguous inequality exists for tj" or t;,. The

(6) Case (i): Consider substituting for tj" in the a-equation first. Either ay, > 0,
oy = 0. We have already assumed in case (i) that ¢; < 0. If a5 = 0, then an
inequality in t;, is immediate. In the two other cases — aj,/ay > 0 and —ay /oy < 0

respectively.

f: % ¢ o ( i B )t ¢ (A.34)
- as b+ = 7 U T J T .
=% RS Bj" 13

i # " i#EM

If —aj"/aj, >0.

(8) K —aj,,/aj, < 0 , then multiplying (A.33) by a negative number changes the
direction of the inequality in (A.33). The result is that substituting for tj" in (A.26)
makes the left hand side of {A.26) smaller and the direction of the resulting inequality

i1s ambiguous so that an inequality in t;, not using t; 1s unavailable.

i
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(9) Note that for case (i} an inequality for tj' is obtained when o, > 0.

(10) By symmetry one cannot substitute for tj' in the B-equation using the a-equation
if — ﬁj,/ﬁj,, < 0, but one can if — ﬁj,/ﬂj" > 0. (Symmetry here means switch a with
and j’ with j".)

(11) Again as in (9) - ﬂj,/ﬁj > 0 implies ﬂj, > 0 in case (i) it is assumed that ﬁj, < 0.
Thus given the assumptions of case (i), an explicit solution is obtained if and only if By

> 0.

(12) Summarizing case (i):

Ctj;, ﬂj" <0< aj" = tj; (A35)
aj,, ﬂj" <0< ﬂ,]' = tj" (A.36)
Table 2

In Table 2, t;; on the right hand side of the arrows means that there exists an affine

function of t;,i # J, f(t;; i # j) such that (with similar results for ¢;,).

fltyi # i) = 24: Tty 2, (A.37)

B.  Case (ii): a, > 0> ﬂ]"
(13)  In this case (A.25) and (A.29) hold. As in (6) for case (i) consider substituting
for tj" in (A.25) using (A.32). If —aj,,/aj, < 0, then we obtain an unambiguous

inequality.

8.8
-

(i 5 t) <t (A.38)

1=0

i#i

Ql‘_

4
-2
iFo
. jf-l
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If — aj,,/aj, > 0, no unambiguous inequality results. Note that ——aj,,/aj, = % >
0, and an inequality for tj, is obtainable.
(14) Consider substituting for tjr in (A.29) using (A.25). If —Bj,/ﬂj,, < 0, an

unambiguous inequality for tj is obtained. Since 0 > ﬂj, obtain ﬁj" < 0. Summarizing

case (ii)
aj", Q’j, >0> ﬂj" = tj' (A.39)
4a>0> 8.y, Ba=t. A .40
GJ: ﬂ]" ﬂJr Jn ( )
Table 3

C. Case (1i): By, >0 > aj, .
(15) This case is identical to case (ii) with 4 and o switched and j' and j" switched, so

it is immediate that we get

ﬂjh B >0>a.y = t

J >, (A.41)

g>0>a. g =t A.42
ﬂjrr a]n ’ aju ]u ( )

Table 4

D. Case (iv): a, , ﬂj" > 0.
(16) In this case {A.25) and (A.27) hold. Consider substituting for tj" in (A.25) using
(A.30). If —aj,,/aj, > 0 an unambiguous inequality holds for tj,. Note that a,—

anfa;>0 =2a,<0.
J"/ Jf ]”

(17) Similarly an inequality for tj" can be obtained if — ﬂj,/ ﬂj" > 0. Note that ﬂj"’

_‘Bj'/ﬁj" >0= Bj" < 0. Summarizing case (iv) we get ,
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g B . ) A.43
C!Jr ﬂjn >0> QJM = t_]’ ( )
\ ) ) P A.44
&y Bin>0>py = o (A.44)

Table 5

(18) Summarizing over cases (i) - (iv) obtain

aj,, ﬁj" <0< aj,, = tj, (A.45)
aj, , ﬂj" <0< Bj, = tj" (A.46)
o >0> 'Bj”’ ﬂj, =t (A.47)
aj,,, aj, >0> ’Bj" = tj’ (A.48)
ﬂj,, ﬁj,, >‘0 > o = tj" (A.49)
ﬂj" >0> @1 5050 = tj, (A.50)
., ﬁj,, >0> ay = tj' (A.51)
ijh ﬁjn > ﬂjr = tjn (A.52)
Table 6

One can see that if o, and ﬂj, are of opposite sign, and hence o, ﬂj" < 0, then the
inequality for t;, can be obtained. Similarly, if cxj"ﬁj” < 0, an inequality for t;, is
obtained QED.

The next step is to summarize the direction of the inequalities.

For each case (i) - (iv) in Lemma 1, Lemma 2 derives the direction of the

inequalities for tj,- and tj,,. These inequalities are used to determine the bounds of
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integration (whether the co’s occur at the lower or the upper bound in the simplified

form of (4.18)).

LEMMA 2.
Q.n JB
Define ¢ = a”—" , then in Table 7 if ¥ < 1, then on each line, given the first two
it Pinn

inequalities, the last inequality is to be read that t; < 1 (or >) F(t;). Thus in the first

line of Table 7, for j =}, i, t; < F(t;). If ¢ > 1, then the inequality is reversed.
i j

o Bin <0< o <F(ty)
% ﬂj" <0< ij > F(tj)
> 0> ﬂjm ﬂjr < F(t)
Xy O > 0> ﬂjn > F(t;)
,Bj,, ﬂj,, >0> ay > F(t;)
ﬁj" >0> ur G < F(tj)
%, 5jn >0> o < F(t.i)

oy By > 0> B, > Ft.
CYJI ﬂjn ﬂjr (J)

Table 7
Proof:
A. Case (ia) : & By < 0 < ay,, .
(1) For tj: obtain from (A.30),
4 o a.n i, B
e t-+¢( __Lf,.)__>_t_ ; A.53
% i J aj,' j:z[) ﬂj" ¥} J’ ( )



41

4 a- ) 4 B ay B,
- o e gd ot >ty (1 - L A.54
_;:20 T +aj’ (FED B J) - J'( i’ ﬂ.n) ( )
P i ’
(2) Define
Q-nﬁj:
'l)' = J < 1 . (A.55)
a,yB.n
)
obtain,
4
tjr < E vt ti, to =1 (A.56)
i l=.i(.Jj"
anBy 4 a; a.nﬂj
g= 1=y (., 3 7Y. A.57
71,1' ( Ol,;ﬁ H) ( aj’ * a.rﬂ.n) ( )

For ¥/ > 1, the inequality in (A.51) changes direction.

Case (ib): 0%, ﬂj" <0< ﬁj,:

(3) For tj" by symmetry under the assumptions of case (i) to obtain the inequality for
tj" (which is possible only if (A.35) holds) rewrite (A.35) switching “ /™ with “ » ” and
a with 8. Obtain

"o ﬂ.i'aj" '
b=y = B %y =v. (A.58)

Thus both inequalities when they exist have the same direction in case (i).

B. Case (iia): o, a, > 0> 8, .
(5) Then (A.25) and (A.29) hold. Subsituting for t;, in (A.25) from (A.29) get (A.48)
with the inequality reversed.
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(6) Define ¢ as before. If ¢ < 1, then get the opposite result as in case (i).

Case (ith): a5, > 0> B, , B -

(7) By reasoning identical to (ib), we get the same result as (ib).

C. Case (iiia): ﬁj", ﬂj, >0>q.
The result is identical to (ia).

Case (iiib): B, , B;, > 0> q .
The result is the opposite to (tb).

D.  Case (va): o, B, > 0> q, .
Get the opposite result to (ia).
Case (i) o, B;, > 0> ;.
Get the opposite result to (%ib).

(b) If¢' > 1, then the inequalities in Table 7 are reversed.
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