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ABSTRACT

Several recent papers on dynamically optimal taxation have derived an
indeterminacy result regarding state-contingent capital taxation in stochastic models
with state-contingent government liabilities. The indeterminacy arises because the
government has N degrees of freedom to set tax rates on capital income in N states
of nature, only subject to a single constraint that assures an optimal level of capital
investment. The paper shows that this indeterminacy result is a consequence of the
assumption that the economy has only a single production technology. If there are
many technologies, there will be additional constraints, because differences in capital
income tax rates in different states of nature will create incentives to invest in those
technologies that have high payoffs in states with relatively low tax rates. If there are
a large number of technologies, both the structure of capital tax rates and the

structure of government debt are tied down in many dimensions.



1. Introduction

Several recent papers on dynamically optimal taxation have derived an
indeterminacy result regarding state-contingent capital taxation in stochastic models
with state-contingent government liabilities; see Chari, Christiano, and Kehoe
(1991a, 1991b), Zhu (1990), King (1990). Essentially, the government has N degrees of
freedom to set tax rates on capital income in N states of nature, but it is only subject
to a single constraint that assures an optimal (second-best) level of private capital
investment, Assuming that state-contingent government debt has been issued in a
way that the government is insured against all relevant “shocks” to the budget, this
leaves N-1 degrees of freedom for capital taxation. Alternatively, one can view state-
contingent capital taxation as the shock absorber and interpret the indeterminacy
result as indeterminacy of the optimal debt structure.

This paper will show that these indeterminacy results are a consequence of
the assumption that the economy has only a single production technology. With one
technology, the requirement of optimal investment imposes one constraint on
capital taxation. But if there are many technologies that have different patterns of
state-contingent payoffs, there will generally be one additional constraint per
technology. The reason is that differences in capital income tax rates in different
states of nature will create incentives to invest in those technologies that have high
payoffs in states with relatively low tax rates. Optimal taxation has to take these
incentives into account.

In practice, the problem how to tax a multitude of technologies in a way that
does not invite tax-avoidance strategies is indeed one of the key issues in capital

taxation. This suggests that in practice there is not much scope for shifting the

1 See, e.g., the Symposium on Tax Reform in the Journal of Economic Perspectives, Summer 1987,



burden of capital taxes across states of nature. Attempts to do so would likely create
severe distortions in the choice of investment projects.

In general, if there are M technologies (where 1SM<N), the Ramsey problem
has N-M degrees of freedom. Even for low values of M (but 22), both the structure of
state-contingent returns on debt and the structure of state-contingent capital tax rates
are non-trivial.2 Optimal policy requires optimal tax rates on capital income and an
optimal solution of a portfolio problem with at least M securities. Indeterminacy
arises only if the government issues more securities than it has to,

The paper is organized as follows. Section 2 sets up a two period version of
the Chari, Christiano, and Kehoe (1991b) model (referred to as CCK) with M21
technologies. Sections 3 and 4 examine the implications of different numbers of

technologies and securities. Section 5 concludes.

2. The Model

The model is a two period version of CCK. Having more than two periods would
merely complicate the conceptual points. The model has individuals (a
representative) and a government. The economy starts in period t=0 and ends in
period t=1. There are N states of nature se$ in period 1.

In period t=0, individuals consume cg, supply labor inputs 1y, purchase
government bonds b, and invest in M technologies indexed by m=1,..., M. In state s of
period 1, individuals consume c(s) and supply labor inputs 1(s). The government
taxes wages at rates 79 and 1(s) in periods 0 and 1, respectively. Capital income in
period 1 is taxed at rates 0(s). As in CCK, capital taxation at t=0 must restricted,

because it would be a lump-sum tax. For simplicity, a linear technology without

2 For M=1, one of them can be set constant without welfare loss.



capital is assumed at t=0. Taxes are ultimately used to finance eX0genous

government spending gg and g(s). The technological constraints are

M
C0+g0+2km=10, 4}
m=1
M
) +ge)= Y Fr(kpm, In(s), s) VseS, @
m=1
M
2 In(s)=1(s) VseS, (3)

m=1

where kp, is the investment in technology m, I (s) is the amount of labor used in
technology m in state s, and F™(.) is a linearly-homogeneous production function
describing technology m.3

For the budget constraint, the following notation (from CCK) is used. Wage
rates in period 1 are denoted by wf(s),4 purchases of government bonds with state-
contingent returns Ry (s) are denoted by b, pre-tax returns on capital of type m are
denoted by ri (s), and after-tax returns are denoted by Rm(s). The individual budget

constraints are then

M
co+b+ 2 km =(1-1) - 1o @
m=}1
M
c(s) = w(s} - (1-7(s)) - I(s) + Ry (s)-b + 2 Rm(s)-ky Vs, 5
m=1
where
Rm{s)=1+[1-0(s)] - [r,(s)-1] = I'm(s) - 0(s) - [rn (s)-1]. )

Individuals maximize expected utility

3 For notational simplicity, full depreciation of capital is assumed. As in CCK, capital income
taxes are levied on capital income net of depreciation. Also for simplicity, units are defined
such that period-0 labor productivity is one. In the absence of capital, pre-tax income is then 1.

4 The period-) wage rate equals the period-0 labor productivity, which is normalized to one.
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subject to these constraints, where W (s) is the probability of state s.

CCK show that the optimal solution for taxation (in the sense of Ramsey,
1927) and the associated allocation can be obtained as the result of the following
social planning problem: The government maximizes individual preferences (7)
subject to the technological constraints (1)-(3) and subject to a set of constraints that
assure that the government respects the individual first order conditions. (CCK
prove the case M=1, but the case M>1 is analogous.)

The focus here will not be on the optimal allocation itself but on the
possibility that the same allocation can be supported by several different tax policies.
Assume therefore that an optimal solution to the Ramsey problem has been found.
It will be taken as given from now on. Denote the resulting allocation for consumers
by {c*o, I*0, b*, k*1, c*(s), 1*(s), Im *(s)}, denote the policy supporting this allocation by
=* = {1%0, T(s), 8*(s), Rp*(s)}, and denote the supporting price vector by {w*(s), rp, *(s)}.
Under the usual concavity assumptions, the consumer allocation and the price
vector are unique. However, the policy n* is generally not uniquely determined.

This is the indeterminacy noted by CCK, King, and Zhu.

3. When is there an Indeterminacy?

The source of the policy indeterminacy is easily understood if one simply compares
the number of policy instruments and the number of constraints on government
policy in the Ramsey problem. The government has 3-N+1 policy instruments (if
one counts state-contingent bonds returns as choice variables). The N+1 tax rates on

labor income are uniquely determined by the first order conditions for labor supply

U™ 10™)-(1-19*)+ U (cp*,19*)=0 8)

U (c*(s),1*(s))-w*(s)-(1-1*(s))+ Uj {c*(s),1*(s))=0 9



at the optimal allocation (*). To examine the constraints on bond returns and on
capital tax rates, define q*(s) as the period-zero price of an (untaxed) Arrow-Debreu

security that pays one unit of consumption in state s, i.e.,

*(s),1*
TOZHOP U_lcf(cc(c?_)h?(*s)_)) (10)

These prices are also uniquely determined at the optimal allocation (*). The N bond

returns and the N after-tax returns on capital then have to satisfy

> qs)-Rpls)=1 (11)
seS
Y @6 Ru)=1 (12)
seS

Since the pre-tax returns on capital are given by the marginal products of capital,
Im*(s) = FMy(km*, I;m*(s), 5),5 equations (6) and (12) imply that
z q*(s) - F (ki * 1 *(s),8) + 2 8(s) - @* () - [F™ (k" 1y *(5),5)-1] = 1 (13)
seS seS
has to hold for each technology m. In addition, tax revenues must be sufficient to

finance government spending in each state of nature, i.e.,

M
g*(s) = 9(s) - Z [FP(km* 113 *(5),8)-1]’km* - b* - Ry (s)+ 1*(s) - w*(s) - 1*s)  (14)

m=]
must hold for all s.
Overall, equations (13) and (14) are a system of N+M linear constraints on (s}
and Ry (s).% Any set of policy choices {8 (s), Ry (s)} that satisfies these conditions is

consistent with the Ramsey solution. Thus, one has a system of (at most) N+M

5 The subscript k denotes the partial derivative.

6 Recall that there are N states of nature. Constraint (11) does not have to be imposed
separately, because it is implied by (13) and (14) if one takes the sum Dses 9°(s)-g*(s).



linearly independent equations for 2-N policy variables.” If M<N, there is an
indeterminacy of dimension N-M, ie, N-M of the policy variables can be set
arbitrarily.

The literature—CCK, Zhu, and King—has studied the case M=1. In the case of
M=1, policy analysis simplifies nicely because either all capital tax rates {8(s)} or all
bond returns {Ry,(s)} can be set equal to a constant.8 For the substantive analysis—e.g.,
for a characterization of the optimal policy—one may focus either on capital taxation
issues and assume safe debt, or focus on debt management and assume a state-
independent tax rate on capital.

In the real world, however, firms typically have a choice between many
different technologies. Moreover, these different technologies seem to have very
different patterns of payoffs across state of nature, e.g., if one compares investment
projects in different industries, projects in different geographical areas, and projects
that are more or less risky. The case M=1 should therefore be viewed as a rather
extreme simplification.

The general analysis with M>1 provides several interesting insights. First, it
shows that the degree of indeterminacy depends critically on the number of
technologies. The case M=1 is the polar case with the largest degree (dimension) of
indeterminacy. In the opposite polar case of M=N, there is a unique optimal policy.

All N capital income tax rates are then determined by the need to assure optimal

7 The generic case is the linear independence of the N+M equations. This will be assumed from
now on. Conditions for linear independence and degenerate cases are discussed in the appendix.

8 The constant is determined by (13) or (11), respectively. More generally, one of the two
distributions can be set arbitrarily up to a scale factor. That is, one may either impose an
exogenous pattern of payoffs on debt Ry, (s)/Ryp (s1) for states s#51 relative to the payoff some
state s1, or an exogenous pattern of capital tax rates 6(s)/ 8(s1) relative to the rate some state 51
{see Section 4).



investment levels in the N technologies, i.e. by (13). The N returns are determined
by (14).9

Second, a look at equations (13) and (14) reveals that for all values of M above
1 (i.e. M22) both the structure of capital tax rates and the structure of debt returns are
non-trivial. That is, one cannot set one of them constant and one cannot assume
that one of them has a distribution across states that is exogenous up to a scale factor.
The case M=1 is very special in this sense. If M is a reasonably large number, both the
structure of capital tax rates and the structure of debt returns are tied down in many
dimensions (at least M).10

The fact that both M=1 and M=N are special raises the next question: What
can one say about debt management and about capital taxation for cases with M
strictly between 1 and N? This is the third issue for which the general analysis is

useful; it will be examined in the next section.

4. The Relation between Technology Choices and Debt Management
The main point of this section is to show that the number of technologies
determines the minimum degree of “complexity” of the government’'s debt

management policy. Specifically, I will show that in an economy with M

% 1t is plausible that states of nature are differentiated in more dimensions than just by
technologies, suggesting that the case M=N is also unrealistic. Overall, values for M that are
large but below N should be most relevant for policy analysis.

10 Further constraints on capital taxation may arise in the context of technical innovation. If
the government uses capital income taxes to generate revenue in some states of nature, firms will
have an incentive to find new investment projects that have relatively high payoffs in states
of nature with low taxes. Then the government cannot take the set of M technologies as
exogenous in its optimization problem, Alternatively, one might try to interpret M as the
number of current and potential future technologies. In any case, state-contingent capital income

tax rates will presumably be constrained rather tightly by incentive conditions.



technologies, the government’s optimal portfolio has to consist of at least J=M
different securities. Each additional security (J>M) buys one degree of freedom in
setting tax rates on capital income. If M is large, debt management will have to be
relatively sophisticated in this sense.

In the optimal taxation literature, the government’s debt management
problem is often formalized as the problem of choosing the distribution of returns
across states of nature (see CCK, Zhu, King, and the model above; cf. Bohn 1990). In
finance, the analogous problem of an individual investor is usually formulated as a
problem of choosing a portfolio of exogenously defined securities. Here the finance
perspective is useful to link technology choices and optimal debt management,

In terms of the state-contingent claims framework of the previous section, a
security is defined by its promised payoffs in different states of nature. Suppose one
has defined a number of securities indexed by j=1,...]. The payoffs of security j in
period 1 are denoted by Vj(s). The price of security j in period zero, Pj, is given by the
Euler equation

Pi=¥ q*s)- Vjls) (15)
seS
where the state-contingent claims prices q*(s) were defined above. The gross rate of
return on security j is simply R;(s) = V;j(s)/P;. Thus, the pattern of returns across states
of nature (up to the scale factor 1/Pj) is determined by the characteristics of the
security. The level of returns—the scale factor Pj—is determined by the market.

The total value of government liabilities b can then be interpreted as a

portfolio of securities,

b=EiP}'-dj, (16)



where d; is the number of securities of type j that is being issued by the
government.1T The promised total payoff on the government’s portfolio in state s is
Rp(s)b = Z; Vj(s)d;. (17)
Now one can replace b and Ry(s)-b in all previous equations by the
expressions in equations (16) and (17), respectively. If there are J=N securities with
linearly independent payoffs (i.e., complete markets), the choice of a return
distribution {Ry(s)} examined in Sections 2 and 3 and the choice of a security
portfolio {dj}]-=1’,__,] are equivalent policy problems. However, the formulation with
securities provides a new characterization of the indeterminacy result and it allows
an extension to an incomplete markets environment.
The government's choice problem is now defined over quantities dj. If the
government issues ] different securities, where Ms<J<N, the Ramsey solution puts
N+M linear restrictions on the choices of the N+J variables {dj} and {8(s)}. Thus,

there is an_indeterminacy, if and only if the number of securities issued by the

government exceeds the number of technologies (J>M).12

This result has several implications for a substantive analysis of Ramsey-
optimal government policies. If one solves the Ramsey problem for a given number
of technologies M, one may assume without loss of generality that the government
issues exactly J=M securities. This may be a convenient assumption for theoretical

analysis, because the optimal net supply of these securities will be uniquely

RIS (" security has a natural private sector issuer, “issuing” should be interpreted as selling
short. Negative values of dj should be interpreted as security holdings; they are not restricted.

12 The N+M constraints are equations (13) and equations (14) with Ry, (s)-b replaced by (17). It
should be reemphasized that degenecrate cases have been excluded. (They are discussed in the

appendix.) Note that (16) does not have to be imposed separately, because this constraint is
implied by (13), (14), and (17} if one takes the sum YseS q(s)g*(s).



determined.13 The “type” of securities is arbitrary, provided they have linearly
independent returns. Alternatively, one may assume that net supplies of J-M
securities (J-M20) are set arbitrarily and that the remaining M are supplied optimally.
Or one may optimize over more than M securities to gain degrees of freedom in
capital taxation.

For the special case of M=1, the result here reduces to the CCK-King-Zhu
result that the debt structure is completely indeterminate: The government may
issue any kind of security. For M>1, the “complexity” of optimal government debt
policy increases with the number of technologies M in the sense that the number of
different securities which have to be issued and be chosen optimally increases in M.
The minimum degree of complexity of capital income taxation also increases with
M, because even if there are many securities, optimal capital income tax rates will be
tied down in at least M dimensions.

Finally, consider a scenario with incomplete markets. If markets are
incomplete in the sense that only J securities (with given Vi(s) and J<N) can be
traded, the above result implies that the CCK solution to of the consumer allocation
problem is feasible only if J>M. The policy to support this allocation is unique, if
J=M. 1t is indeterminate, if J>M.

In practice, both ] and M are presumably rather large numbers. It is far from
obvious, which one is bigger. If one takes J as given, this suggests that a determinate
solution to the Ramsey problem should be viewed as a “knife-edge” case that will
only rarely be practically relevant. On the other hand, one might think of | as the
number of securities that the government wants to issue, assuming the government
could design a new security whenever needed. The indeterminacy result is then

equivalent to the observation that the government has the ability to create and issue

13 Optimal tax rates on capital income are then also uniquely determined.

10



mere securities than it has to on optimality grounds (more than M). Given that the
number of available technologies M is rather large so that the government’s
portfolio problem for J=M is already quite complex, one may wonder how important

this ability is in practice.

5. Conclusions

The paper shows that the indeterminacy results about capital taxation and debt
management obtained by Chari, Christiano, and Kehoe (1991a, 1991b), Zhu (1990),
and King (1990) depend critically on the menu of technologies available to private
agents. If there are many production technologies with different patterns of payoffs
in different states, differences in capital income tax rates in different states of nature
will create incentives to invest in those technologies that have high payoffs in states
with relatively low tax rates. Optimal state-contingent capital income tax rates are
therefore tied down by incentive constraints in many dimensions.

The assumption of a single aggregate production function is standard in real
business cycle models, but it ignores the choice of technologies. It will likely provide
a misleading impression about the government’s freedom to choose capital income
tax rates. One should keep this limitation in mind when one uses real business cycle
models for policy analysis.

The need to model production on a disaggregate level is clearly inconvenient
for macroeconomic policy analysis, in particular if one wants to move towards
calibration or estimation and one does not know much about the set of technologies.
Fortunately, there is a simplifying assumption that should be appropriate when
there are a “large” number of technologies: With many technologies, optimal state-
contingent capital tax rates are tied down in so many dimensions that there should
be little scope to use capital income taxation as budgetary shock absorber. For

macroeconomic purposes, one may then treat the relative pattern of capital income

11



tax rates across states of nature as exogenously given (up to a scale factor), namely as
determined by micro-level incentive issues that one wants to abstract from.
Budgetary considerations will then determine the optimal structure of government

debt.

12
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Appendix: Degenerate Cases

Throughout the paper, degenerate cases were excluded. This appendix will discuss
under what conditions the relevant rank conditions could be violated.

The key system of equations for the analysis in Section 3 is the system of
N+M equations {(13), (14)}. In matrix notation, it can be written as

F-Q- 08 =1y (A1)
-b*IN)-Rp + T- 8 =G (A2)
where Ry, is the 1xN vector with elements Rp(s), 8 is the 1xN vector with elements
8(s), F is the MxN matrix of marginal products Fy(kym*, 1;1*(s), s) (states in columns,
technologies in rows), Q the NxN diagonal matrix with prices q*(s) on the diagonal,
IN an identity matrix of dimension NxN, and T the NxN diagonal matrix with the
“tax bases” for capital income taxes T(s) = Zm [F(km*1n*(s),s)-1]km* on the
diagonal (for each state s), 1p a 1xM vector of ones, and G the 1xN vector of with
elements g*(s) - T*(s) - w*(s) - I*(s).

Equation (A2) shows that Ry is uniquely determined by 6. The number of
constraints on @ is determined by the rank of (A1). A sufficient condition for (A1) to
have rank M is that q*(s)#0 for all s (so that P has rank N) and that F has rank M, i.e.,
that the m vectors of marginal products (Fy(km*, 1m*(s1), $1),..., FO(kp*, Im*(sn),
sN)), m=1,...,. M, are linearly independent at the Ramsey solution.

In Section 4, the relevant system of constraints is

F-Q- 0 =1y (A3)

-V-d + T- 08 =G (A4)
where d is the 1x] vector of security supplies djand V is the NxJ matrix of promised
payoffs on security j in state s. Equation (A3) is the same as (A1) (and the same as

(13)). Equation (A4) is obtained from (14) and (17).



For the case J=M, sufficient conditions for rank N+M in this system are (a)
T(s)#0 for all s, (b) q*(s)#0 for all s, (¢) linear independence of the marginal
productivities of capital (i.e., F has rank M) and (d) linear independence of the
security returns (i.e, V has rank M). The proof is as follows. Because of (a), 0 is
uniquely determined as a function of d, 8 = T-1 [G + V - d]. Inserting this in (A3), d is
constrained by

(FQT1V)-d=1p -FQT1G. (A5)
To show that (A5) yields a unique solution for d, one has to show that the MxM
matrix F-Q-T-1.V has full rank M. But this is implied by assumptions (a)-(d), which
assure that each of the four components has full rank. For J>M (so that F-Q-T-1.V has
dimensions Mx]), one clearly has an indeterminacy in (A5).

Failure of the rank conditions has different implications depending on which
conditions fail. For J<M and for J2M with rank of V less than M, one will have
generic non-existence of a solution. That is, the CCK-solution can generally not be
supported with fewer than M securities. If F has rank f<M, only f securities will be
needed (because intuitively, there are only f relevant technologies). An
indéterminacy would also occur if q*(s)=0 for some state s, but then state s would
have p(s)=0 and should be excluded.

Finally, if T(s)=0 for some s, then the associated 6(s) variables drop out of (A4).
If the number of states n with T(s)=0 is less or equal to M, here is still a unique
solution in the case of J=M. The argument is (to save space, it is presented without
new notation) that N-n of the 6(s)-values are determined by M-n of the dj-values in
N-n of the equations in (A4), which are in turn determined by N-n equations in
(A3). The remaining n equations in (A4) determine the remaining n dj-values and
the remaining n equations in (A3) determine the 8(s)-values that do not appear in
(A4). New problems arise if n>M, i.e,, if the tax base for capital income taxes happens

to be zero in more than M states (which is obviously a very degenerate case). Then

A-2



variations capital tax rates cannot be used to satisfy revenue requirements in
“enough” states. One needs at least n securities to satisfy (14)—with uniquely
determined dj values—and there is an indeterminacy in capital tax rates in that

there are n-M degrees of freedom in setting 9 (s).



