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Abstract

This paper provides an asymptotically most powerful test for a particular class
of statistics which test the hypothesis of no serial correlation. This class includes
many of the statistics employed in the recent finance and macroeconomics litera-
ture. Furthermore, with respect to a popular mean reversion alternative model, we
show that the asymptotically most powerful test is quite robust to distributional
specifications.
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1 Introduction

Researchers in economics and finance have become very proficient at calculating the

asymptotic distributions of statistics under fairly weak assumptions. Nowhere is this
more apparent than in the recent literature on tests for serial correlation. As a case in
point, the asymptotic distribution of multiperiod autocorrelations, variance ratios, regres-
sions of one period on multiperiod past values, and other statistics, have been derived.
These distributions are easy to interpret since under the random walk null hypothesis
they depend only on the multiperiod length. Moreover, these distributions tend to have
asymptotic normal distributions, making formal inference straightforward to calculate.
Small sample considerations aside, we, therefore, have a very good idea of the size of
these tests.

Under these same fairly weak assumptions, what has been said about the other side of
the coin — the power properties of these statistics? The common practice is to perform
a Monte Carlo simulation under a specific distributional assumption and evaluate power
that way. For example, Lo and MacKinlay (1989) and Poterba and Summers (1988)
investigate the power of the variance-ratio statistic via Monte Carlo simulation. There
are a number of disadvantages to analyzing the serial dependence tests within a Monte
Carlo setting.

The first problem with the Monte Carlo procedure is that, without some theoretical
justification, we have no way of knowing whether it is robust to alternative parametric
assumptions. Alternative theories to the random walk model have usually been discussed
in general terms; for example, the mixture of a permanent and transitory component
of stock prices in Poterba and Summers (1988) and Fama and French (1988). These
alternatives, however, place very little structure on the innovations in the stock price
components other than mean zero and no serial correlation. Monte Carlo simulations,
however, impose considerable structure by completely specifying and parameterizing the
distribution of these innovations.

The second disadvantage is that the Monte Carlo results are difficult to interpret.
The Monte Carlo results presented in the serial correlation literature clearly have practi-
cal value. For example, the small sample power of commonly used statistics under various
distributional assumptions, sample sizes and alternatives have been documented. If these
criteria are met for our particular problem, we have some idea of the usefulness of the hy-

pothesis testing. These analyses, however, have trouble explaining why different decision



rules are reached by different tests. (See, for example, the test statistic discussions and
resulting conclusions given in Fama and French (1988), Lo and MacKinlay (1989) and
Jegadeesh (1989)). The question, therefore, of why particular serial correlation tests get

different power under various scenarios remains unanswered.

A notable exception to the Monte Carlo approach is given by Faust (1989). Under
the assumption that returns are normally distributed, Faust (1989) derives the finite
sample power properties of variance-ratio statistics against mean-reverting alternatives.
In particular, for a given variance-ratio statistic, he finds the serial dependence alternative
it is optimal against. Of special interest, Faust (1989) provides an intuitive feel for how
close the variance ratio test is to the most powerful test against economically meaningful
alternatives. There are some drawbacks to this approach. The first is that considerable
structure (i.e. normally distributed stock returns) is placed on the null and alternative
models. The second is that a number of the statistics currently used (e.g. the multiperiod
autocorrelations, among others) do not fall into the variance ratio class. Comparisons,
across these statistics are, therefore, more problematic.

The goal of this paper is to provide a new approach to analyzing the properties of the
serial correlation statistics under interesting alternatives. In particular, using a procedure
developed by Bahadur (1960) and Geweke (1981), we make asymptotic power comparisons
and quantify the relative benefit of using a particular test for serial correlation.! This

approach has a number of advantages:

e the optimal test is derived within a general class of statistics which captures recent

test statistics for serial correlation in stock returns.

e the asymptotic power results are robust to parameterized distributions — in particu-
lar, the results depend only on the length of the multiperiod and the autocorrelation

structure governing the alterantive.

¢ the results are intuitive, pointing to reasons why particular tests have power and

quantifying how much power relative to other tests.

Whereas our approach provides more intuition and relies on weaker assumptions than the

standard Monte Carlo approach, its major disadvantage is that the results are large sample

'Richardson and Smith {1989) introduce Gewke’s (1981) approximate slope procedure to some re-
cent tests for serial correlation. They explicitly quantify the benefits to overlapping data and compare
the relative asymptotic power of j-period autocorrelations versus j-period variance ratics under various
alternatives. Jegadeesh (1989) extends their discussion to regressions of j-periods on k-period returns.
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based. This problem, however, is true of all asymptotic theory. We provide simulations

and show that the intuition provided by the large sample analysis carries through to small
samples.

The paper is organized as follows. Section 2 reviews the approximate slope procedure
and discusses its application to tests for serial dependence. Section 3 derives the asymptoic
distribution of a broad class of test statistics and shows how to apply the approximate
slope procedure to this class. Of special interest, the asymptotically most powerful test

is derived. Section 4 applies these results to an example of recent interest to financial
economists, namely the mixture of a permanent and transitory component model of stock

prices. Section 3 discusses some extensions. Section 6 concludes the paper.

2 Review of the Approximate Slope

Bahadur (1960) defines the approximate slope of the test to be the rate at which the
logarithm of the asymptotic marginal significance level of the test decreases as sample
size increases, under a given alternative. Consider some test i. If power against a given

alternative is held constant,

=2in[ex'(8 a.8. § )
ﬁ[jg*_(_ll 25, 04(9) (1)
where 6 = vector of parameters
o = marginal significance level of ith test statistic
c(#) = approximate slope of ith test statistic .

Geweke (1981) shows that if the test statistic’s limiting distribution under the null hy-
pothesis is x?, then ¢'() equals the probability limit (i.e. plim) of the statistic divided
by T.

For example, consider the sample autocorrelation of a continuously compounded j
holding period return for a sample size T. Let P; be the logarithm of price at time 7.
Then the sample autocorrelation can be written, |

Sis (P = Py = ji)(Pey = Pros; — jij1)
T (P = Py = i) ’

5(j) =

where 4 = LTL, (P, - P_,).



Suppose we wish to test whether continuously compounded returns are uncorrelated,
i.e. J; = 0. Under the assumption that P, — P,_, is stationary and ergodic, and under
assumptions restricting conditional heteroskedasticity, Richardson and Smith (1989) show
that the asymptotic variance of the autocorrelation is

2% +

Var(f(5)] = T

Using this result and Geweke (1981), the approximate slope of this statistic has a simple

form:

e(8) = plim (( 2},5’1 1 )Bf) .

Given a level of power and number of observations T, the interpretation of ¢(#) is that the
higher plim(@j) is, the lower is «, the marginal significance level of the test. Intuitively,
the greater the approximate slope the more incredible the null hypothesis becomes.

Of special interest, Geweke (1981) also provides formal justification for comparing the
approximate slopes of different tests, subscripted by i and 7. Specifically, let A, equal the
largest nonrejection region possible in a sample size of T given that the probability of not
rejecting the null hypothesis is not to exceed a value v € [0,1]. Similarly, define T. equal
to the minimum number of observations required to insure that the probability that the

statistic exceeds the nonrejection region A is 1 — 7. Then for any ith and jth test statistic
with the same limiting x? distribution,

T ¢
Result 1. lim =% = —
A—co Tj ct
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Either of the above results may be intrepreted in the following way. A test with greater
approximate slope may be expected to reject the null hypothesis more frequently under
that alternative than one with smaller approximate slope. That is, for given power fewer
observations are needed to reject (see result 1) or a larger nonrejection region is allowable
(see result 2). |

For example, consider two particular autocorrelation statistics, Bj and BJ-: where j # 5.

Result 1 states that the ratio of their approximate slopes,
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.has a special interpretation. If §'plim(8,)* = 2 x ; plim([’]j:)?, then, if we employ the
estimator 63 instead of Bj, we will need twice as many observations to reject the null
hypothesis of no serial dependence. In practice, we might expect for small asymptotic

marginal levels of significance that employing ﬁj with say 720 observations will achieve

roughly the same power as éjf with 1440 observations. Alternatively, for a large given
" number of observations, the nonrejection region would be about twice as large with [J’,
This type of comparison provides the researcher with a simple way to evaluate the relative
power of different statistics.

Geweke (1981), however, points out two caveats with respect to this procedure. First,
the approximate slope comparisons are only strictly valid asymptotically. It may, there-
fore, be inappropriate in small samples — this is true, however, of all asymptotic theory.
Second, comparisons are made using the same critical points for both tests, which are
known only asymptotically. For example, in this paper, all the test statistics have asymp-
totic x* representations. In small samples, however, their distributions may look quite
different.

3 The Optimal Test Statistic: Theory

More generally, if changes in a series P, are uncorrelated, then the following restrictions

hold:

i
var(d_ Riyi) = j x var(Ry)
=1

cov(Ry, Re—x) =0 Vk#0
Where Rt = Pt -_ Pt—l'

These restrictions in turn imply a corresponding set of sample moment conditions:
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Let B, = R, — . Then under the assumptions that the R, are stationary and ergodic and

satisfy
1. ERR_}= 0
2. E[RIRi_;R._]= 0
3. ERRL_]= o' WLVj#k

and given results in Hansen (1982), it is possible to show that the asymptotic distribution

of p(j) = (px(j) --. Als)) is given by

VTH(j)EN(Q, 1)
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Note that this derivation required some restrictions on conditional heteroskedasticity

where 4i(;)

of the series R,. While this may be a reasonable assumption in many applications, recent
evidence with respect to stock returns suggests violation of assumption 3 (see, for example,
Schwert (1989)). It is possible, however, to derive the asymptotic distribution of ()
with this assumption relaxed. Under this scenario, the asymptotic distribution for typical

elements j(7) and py(j) is

\/T(ﬁ"(j)) SN0, ] + Cu)

px(7)
cov(ﬁ?,&f_! ) 0
where Cu = ( g COV(AE”A?_;)) .
ot

The variance of the autocorrelation (under heteroskedasticity) is equal to the variance
under no heteroskedasticity plus an adjustment factor which represents the persistence
in the conditional variance. The prevailing evidence suggests that for stock returns
cov(RE, R?_,) > 0, which means that in practice the autocorrelation estimators will be

less precise.



3.1 Class of Test Statistics

In order to avoid specifying this autocorrelation structure of the variance, however, we
maintain the conditional heteroskedasticity restriction of assumption 3 throughout the
rest of the paper. Note that since any linear combination of normals is normal, a more

general result for 4(j) is available:

VT jli)~ N,

Nxl Nxl NXx

= VT.L )~ N 0D
MxNle Mx1 MxM

= Jr=T(Dp(j)) (DD (DH(1)) ~ X (2)
e, st opuns, pptenirerns? s, b’
1xM MxM Mx1

{~
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=

Equation (2) represents a general class of statistics for testing the null hypothesis of no
serial correlation — namely, particular linear combinations of sample autocovariances,
cov{ Ry, R._x), weighted by some measure of the variance of R;. Under the null hypothe-
sis, this class contains all linear combinations of consistent estimators of autocorrelations
of the series R,. As such, equation (2) contains either exact or approximate representa-
tions of many of the recent statistics used in the literature to test for serial correlation.
For example, the multiperiod sample autocorrelation, the commonly used variance ratio
statistic, and the Box-Pierce statistic, among others, fall into this class. Table 1 provides

some examples of the weights D and the corresponding statistics.?

3.2 An Asymptotically Most Powerful Test

Equation (2) is a formula for a general class of test statistics which place different weights
on consistent autocorrelation estimators over various multiperiod sums. As a special case,
it captures many of the recent statistics employed in the finance and macroeconomics
literature. Which statistic — that is, which weights D — should the econometrician
choose?

Given that they all admit asymptotic x? distributions, one criteria might be to choose
the statistic based on power against a particular alternative. In the context of this discus-

sion, choose [ and j in order to maximize the approximate slope of the statistic. Under

2Gee also Cochrane (1988), Lo and MacKinlay (1989) and Poterba and Summers (1988) for represen-
tations of variance ratios in terms of autocorrelation estimators.



a given alternative and for a fixed number of restrictions M in equation (1), it is straight-
forward to apply Geweke'’s (1981) approximate slope procedure. In this case, choose D

and j to maximize

¢(D) = {Dlphim(p(i))]} {DD'} " Dlplim(4())]} 3)
In order to solve the maximization of (3), all we need are the probability limits of

the autocorrelation estimators p(7). Given a particular alternative, these can be readily

calculated. One particular model which has received considerable attention in the recent
literature is the mixture of permanent and stationary components of stock prices proposed
by Fama and French (1988) and Poterba and Summers (1988). Below, we apply the

approximate slope analysis to this alternative.

4 Mean-reversion in Stock Prices

To see the approximate slope procedure in practice, consider fixing the number of re-
strictions, M, equal to one and consider the alternative hypothesis proposed by Poterba-
Summers (1988) and Fama-French (1988):

Po= pt+a+tzn
where ¢ = gq1+¢€, Ele)=Elee,_;}=0
2 = Azt Elp] = Elgene;] =0, [A <L

This model contains a stationary component, 2;, and a permanent component, ¢;. In
this system, prices mean-revert and the speed of this reversion depends on the size of the
autocorrelation parameter, A, and the share of the variance captured by the stationary
component (denote a?). '

Under the assumptions of the model, the probability limit of 5¢(j) can be written as

plim{jy(j)] Lt
7N = 1
‘ 21— 7)1 — A) + 2902
where ¥ = share of variance captured by mean-reverting component z,
20?

n

(14 A)o? + 202




Substituting this formula for plim[gi(7)] into equation (3), we can then maximize over D

and j, given values for A and v. Specifically, for the single restriction case (i.e. M =1),

we want to
2 .
{Dx--Dihy [ 2(1 — +)(1 — /\) + 270_‘%l Zie(Dk--.Dx) D?
Y g B

This maximization problem involves two separate parts. First, which value of j; maximizes
A? It is clear from the above equation that A reaches its maximum as j gets large.

The intuition for this result is straightforward. Since pi(j) converges in probability to

cou( s Ay}
var(} 1 Reti)/s’

. . > ) Rii
that as j — oo the variance measure ard = i) approaches ¢? from above. The null

and all the covariances are negative under this alternative, it is apparent

theory above holds for 7 fixed and letting T' — oo; hence, the choice of j cannot approach
infinity.

However, small sample considerations aside, the fixed value of ;j should be “large”.
The question of how large is “large” presents a potential problem. The difficulty arises
because once we have fixed a j, say j*, we could always achieve greater asymptotic power
by choosing 7* + 1. With respect to this particular mean-reversion example, it turns out
that, although we increase the approximate slope as we increase j, the marginal gain
to increasing j declines. Therefore, at some value of j, the efficiency gain is essentially
zero. Moreover, how quickly this occurs depends only on two parameters governing the
stationary component, that is, v and A.

With respect to part B, the maximization problem can be reduced to choosing the

elements of ) which maximize the sum of the covariances or in this particular case:

Tie(D,..0y Did ™!

max ' ”
(Dg...D}) m

Qur choice of D depends only on A, the mean-reversion parameter. It does not depend

on any parameters governing the distribution of ¢, or 7, (other than recognizing that the
null hypothesis includes the assumptions given in Section 3).

The effect on the approximate slope as we add additional weights D; € D is ambiguous.
The reason for this is straightforward: as we add elements to D, we apparently pick-up

more mean-Teversion in the series (i.e. the numerator in (5)) but also more variation due



to estimation of additional parameters (i.e. the denominator in (5)). The choice of D,
therefore, is a tradeoff between gaining more information at the cost of that information

being noisy. The exact choice of D will depend on the magnitude of A — that is, on
how quickly prices mean revert. In general, this method can be used to compare the
relative asymptotic power of any linear combination of p;s. This procedure, therefore, has
widespread applicability.

For a given value of ), it is possible to solve the maximization problem (5) to find

the optimal number and values of the elements D, in D. After working through the

maximization problem, the solution is
Dr=x"1 v,

The intuition behind this result is that although there is useful information in each au-
tocorrelation the econometrician needs to put less weight on the longer autocorrelations
as they contain less information. The values of these weights are determined by how fast

the autocorrelations approach zero, that is, by A'=!.

4.1 Example

In this subsection, we find the asymptotically most powerful test against the alternative
given in Section 4. Specifically, to coincide with the finance literature, we choose values
of A and v from (.90,.95,.98) and (3,1, 2) respectively.® These values suggest a large, but
relatively slow, mean-reverting component to stock prices. The practical implications of
such a model is that these low frequencies can only be picked up by multiperiod data —
for example, by looking at sums of autocorrelations..

Substituting the parameter values for A and ~ into the solution for the optimal test
given above, we calculate the test statistic with the maximal approximate slope. Table 2
compares the approximate slope of this optimal test to some of the existing tests in the
literature. For low values of 7 (i.e. for alternatives close to the random walk), the optimal
test’s approximate slope is almost twice the slope of these other tests. For high values
of v (in which mean-reversion plays a dominant role), the approximate slope is over six
times that of the other tests. For example, consider the results for A = .95 and v = %
One of the most popular test statistics in the literature, the variance ratio, is only 24.2%

3These values coincide with those given in Poterba and Summers (1988) and implied in the Fama and
French (1988) analysis.
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of the optimal test’s approximate slope value of .00641.* The interpretation, therefore,
is that approximately 4 times as many observations are needed by the variance ratio to
achieve the same power.

For A = .95, Figure | plots the number of D; € D and their respective values for
various test statistics; including the optimal test, the optimal variance ratio statistic, the
optimal multiperiod autocorrelation and the optimal J-statistic.” The optimal weights

most resemble those of the variance-ratio statistic. In contrast, the J-statistic places too

much weight on higher order autocorrelations relative to low order ones. The multiperiod
autocorrelation fares even worse by placing relatively little weight on the informative low
order autocorrelations. For example, it places over 10 times more weight on py4 than on
p1 while the optimal statistic places only 1th as much weight on p;4 than on p;.

Note though that the approximate slope results in Table 2 do not correspond exactly
with the optimal weights given in Figure 1 — for example, in Table 2 the variance-
ratio statistic has less asymptotic power than the J-statistic. The reason for this is that
the approximate slope in (4) has two components, 4 and B. While the variance-ratio
statistic’s weights are declining and therefore close to optimal with respect to B, the
choice of j = 1 in A is far from optimal. In contrast, the J-statistic chooses large ;
in A, but fails to capture the declining weights required by optimization of B. As an
illustration, for A = 95 and v = %, about %th of the loss in efficiency for the variance
ratio comes from component A, while only about %th comes from component A for the
J-statistic.

This analysis also helps explain the different conclusions of various authors regarding
the bower of statistics against mean-reversion. For example, consider the J-statistic and
the variance ratio statistic (see, for example, Lo and MacKinlay (1989) and Jegadeesh
(1989)). The somewhat similar power of these tests is due to different reasons, namely
either the optimal declining weights in A (i.e. as with the variance ratio statistic) or the
large j multiperiod variance dividor in B (i.e. as with the J-statistic). Of course, the
optimal statistic captures both the declining weights and the large choice of j, leading to

a much higher approximate slope and as we shall see below higher power.

*Note that we chose the optimal variance ratio (i.e. the j-period variance ratio with maximum
approximate slope over all j) for comparison with the optimal test. For example, for A = .95 and ¥ = %,
j =42

>The J-statistic is the t-statistic from a regression of one period on multiperiod past values given in
Jegadeesh (1989). See Table 2 for its exact form.
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4.1.1 Simulation results

Since the approximate slope is a large sample theory, the results in Table 2 are valid only
asymptotically. It is of some interest, therefore, to study the small sample behavior of
the statistics via Monte Carlo simulation. The simulation consists of 5000 replications
with A = .95, v = ] and ¢ and n, drawn from i.i.d. normal distributions. Table 3 reports
the small sample power of the statistics given in Figure 1 and the size of the nonrejection

region A* (under fixed 90% power) for values of T = 360, 720, 1440, 2880 and 5760.°
As the approximate slope theory suggests, the optimal test has higher power than

the other statistics. The most comparable statistic in terms of power is the J-statistic
which interestingly enough is also the most comparable in terms of approximate slope. Of
particular interest, the ratio of the nonrejection regions A* are of similar magnitude to the
ratio of approximate slopes. For example, at T = 1440, the ratio of the J-statistic’s A* to
the optimal statistic’s is .417 while the ratio of their approximate slopes is .359. Hence,
even in light of the well-documented small sample problems of multiperiod autocorrelation
statistics, the approximate slope results provide a fairly accurate assessment of the relative

power of these statistics.

5 Extensions

5.1 Alternative Models

It is straightforward to calculate the approximate slopes of the statistics in (3) under most
interesting alternatives. All that the econometrician requires is the plim(5(5)).

For example, there is recent evidence suggesting that stock returns are positively auto-
correlated at short-horizons (see, for example, Lo and MacKinlay (1989)). One suggested

model has been a first-order autoregressive process in returns:
PB—Poa=p+p(Py—P3)+e, Ele] =0 Elee—i]=0, p<l.

Choosing 7 and D to maximize (3), it is possible to show that the optimal statistic

picks j = 1 and the weights D; = p'. While this process is nonstationary in prices,

®With respect to the optimal test statistic, we let j = 120 and let the last weight equal D,4o. While
these values were chosen somewhat arbitrarily, they should capture most of the optimal statistic’s implied
power. However, since we limit j = 120 we shouid not expect the ratio of the nonrejection region A* to

exactly equal the ratio of approximate slopes.
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the optimal weights are still declining in the autocorrelations. The primary difference is
that the econometrician uses the single-period sample variance (rather than the sample
multiperiod variance) as the estimator for the variance of returns. This analysis suggests
that the standard variance ratio statistic should be close to the optimal test statistic. The
variance ratio captures both the declining weights (although not the exact ones) and the

choice of j = 1.

5.2 Alternative Classes of Statistics

The class of statistics studied in this paper are linear combinations of consistent estimators
of autocorrelations. As special cases, this class captures many of the statistics studied in
the recent finance and macroeconomics literature. These statistics are especially suited
to testing no serial correlation against vague alternatives.

If we imposed the alternative model directly, more powerful tests may be available.
For example, one could impose the Fama-French/Poterba-Summers mean-reversion alter-
native, estimate v and A, and test for no serial correlation in this framework. Conceivably,
the approximate slope analysis could also be conducted for these alternative test statis-
tics. With respect to finite sample results, Faust (1989) finds that under the assumption of
normality the most powerful statistics against mean-reversion resemble filtered variance-
ratios (i.e. weighted squared multiperiod variances). Note that filtered variance-ratios fall
into the class of statistics analyzed in this paper. There is some reason to suspect, there-
fore, that the optimal statistic will have comparable power to statistics designed against

specific alternatives. Nevertheless, this remains an open question for further research.

6 Conclusion

One way to evaluate the merits of a test statistic is to consider its power against “inter-
esting” alternatives. When evaluating power via Monte Carlo simulation, the econome-
trician faces an identification problem. By having to specify the complete structure of
the alternative, he cannot determine whether the statistic’s power is due to “essential”
parameters or simply nuisance parameters governing the alternative specification. For ex-
ample, consider the stock price mean reversion literature and specifically the alternative
model proposed by Fama and French (1988), among others. It is arguable that we have

information concerning only a few parameters governing this model’s stock price distribu-

13



tion {e.g. perhaps the mean, variance and mean-reversion parameter); other assumptions
like normally distributed innovations go beyond the theory, yet are commonly made in
Monte Carlo simulations.

This paper proposes an alternative method for evaluating power based on Geweke's
(1981) approximate slope procedure. Consistent with the theory behind the proposed
alternative models, it places weak assumptions on the alternative’s specification. In addi-
tion, as well as being robust to various parameterizations, the procedure is simple to use in

practice. With respect to tests for serial correlation, all that the econometrician needs to
calculate are the true autocorrelations of the series under the alternative model. Of spe-
cial interest to the resent finance and macroeconomics literature, the relative asymptotic

power of statistics within a general class is explicitly quantified.

14



TABLE 1

Table 1 provides examples of a general class of statistics for testing whether a series P, — Py is uncor-

related. Specifically, this class can be represented as linear combinations of consistent autocorrelation
estimators:

Di(j) = 3. Dips)
ie(Dy...Dy)
T Y a
where p;(7) = Z_f;l(Pf_Pt—l—!‘)(Pt--'-P:-.’-L—,u)

ST (o= Py = i)
T

po= Z - P-1)

i=1

This class includes many of the statistics currently employed in the finance and macroeconomics literature;

including the variance-ratio statistic and multiperiod autocorrelation, among others.

Statistic p; Representation Typical Weights
Dp(j) DieD
Autocorrelation
3y = Lus e e e ) SH1 min(i,2) - )pi(i)/5 | Di = min(i,2j - i)/
t= [—]“
Variance Ratio
Pt Pt-— - z —_t) - . . .
= Byttt 2T ) | D=2
J Statistic
P —-F_ Py —F_ - i . e g, .
B(1, ) = sl tZ ’(P‘“)fpz_f_m L 1 A3 Di=1/j
Box-Pierce
2
Pi—P,_ P, =P, . )
0, = piot { Rt h| TSI A1) D=1 (ineq2)
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TABLE 2

Table 2 presents approximate slope calculations for various statistics under the null hypothesis that stock

prices have a slowly mean reverting component. Specifically, the null and alternative hypotheses are given
by.

Null : P, = u+4g
Alternative : P, = pu+4¢+2
where ¢ = q-1+e, Ele]= Elge-j)=0
= Aa-r+m, Eln] = Elgm-;) =0, A < L.

The approximate slope measures the relative asymptotic power of the statistics when testing the null
(under a particular alternative). The table provides calculations for different values of A and v, where «
measures the share of the variance captured by the mean-reverting component z;. Note that the optimal
test is the test statistic with the highest approximate slope, I/_', is the optimal variance ratio, Bj is the
optimal multiperiod autocorrelation, B(l, 7) is the optimal coefficient from a regression of one-period on

past j-period values, and 3 is the single period autocorrelation.

Slope | Relative % of Optimal Test

~

Parameters Optimal | V] B; B(1,7) B

00253 | 24.2% | 19.2% | 36.2% | 1.0%
02273 6.1% | 5.8% | 15.9% | 0.2%

A=.90  y=4| 00146 |54.5% |39.5% | 57.8% | 10.7%
v=7%| 01316 |24.2% |20.0% | 35.4% | 4.7%
T 11842 | 6.1% | 5.9% | 15.3% | 1.2%
A=.95 1| 00071 | 54.6% | 38.3% | 58.3% | 5.5%
v=3| 00641 |24.2% | 19.5% | 35.9% | 2.4%
y=13] .05769 | 6.1% | 5.8% | 15.7% | 0.6%
A=.99 i| 00028 | 54.6% |37.5% | 58.5% | 2.2%
:
3
4
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TABLE 3
Table 3 compares the small sample power of the statistics in Table 2 under Table 2’s alternative with
A=95v= % and ¢ and 7 drawn from normal distributions. The statistics have the form:

[Z;‘e(o,...o,) Dipi(3)|
Lie(Dy..00) D

Using empirical 5% cut-off levels, power is evaluated for different values of T. In addition, for a fixed

Jr=T

power of 00% and given T, the size of the nonrejection region A* over 5000 replications is calculated. Note
that the optimal test is the test statistic with the highest approximate slope, VJ is the optimal variance

ratio, ,B_, is the optimal multiperiod autocorrelation, B(l, J) is the optimal coefficient from a regression of

one-period on past j-period values, and 3, is the single period autocorrelation.

# Observations - | Optimal | f/] ﬁj A(1,5) A
T = 360 Emp. Power | 28.26% 5.82% | 11.50% | 13.30% | 6.28%
5 A;=.16 | 438 | .188 | 430 | .125
T =720 Emp. Power | 34.26% | 14.72% | 17.66% | 23.34% | 6.14%
i AT=27 | 481 | .18 | .519 | .074
T = 1440 Emp. Power | 58.16% | 31.94% | 26.96% | 45.56% | 6.90%
= A7=112 | 473 | .134 | .438 | .018
T = 2880 Emp. Power | 84.64% | 65.02% | 48.38% | 71.94% | 9.40%
& A7=369 | 455 | .176 | .455 | .005
T = 5760 Emp. Power | 98.68% | 94.48% | 79.40% | 94.76% | 16.82%
A A;=11.24| 426 | 228 | .495 | .003
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