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Abstract

This work examines the relation between option prices and the true, as opposed to
risk-neutral, distribution of the underlying asset. If the underlying asset follows a diffusion
with an instantaneous expected return at least as large as the instantaneous risk-free rate,
observed option prices can be used to place bounds on the moments of the true distribu-
tion. An illustration of the paper’s results is provided by the analysis of the information

concerning the mean and standard deviation of market returns contained in the prices of

S&P 100 Index Options.



Although it seems natural that the prices of claims to various parts of the under-
lying asset’s distribution should contain information about the shape of that distribution,
Cox and Ross (1976) established that an option’s price equals its expected payoff discounted
at the risk-free rate where the expectation is taken over the ‘risk-neutral’, rather than the
true, distribution of the underlying asset. Linking the risk-neutral distribution implicit in
option prices to the true distribution remains a comparative mystery. A necessary condi-
tion for the risk-neutralized pricing methodology to be applicable is that the true and the
risk neutral distribution share a common support. The only information about the true
distribution that can be obtained from observed option prices alone is information about
that support. This paper demonstrates though that observed option prices when used in
conjunction with simple assumed restrictions on the true distribution do contain informa-
tion about the non-central moments of the true distribution not directly implied by those

assumed restrictions alone.!

The intuition for the result that option prices can be useful in placing bounds on
the moments of the true distribution is straightforward. First, we generalize the results
in Lo (1987) to show how the expected payoff to a call can be bounded above in terms of
any chosen set of the non-central moments of the return on the underlying asset. Second,
we establish restrictions on the true distribution under which the expected return on an
option over its life can be bounded below by the expected return on the underlying asset.
Then discounting the upper bound on the call’s expected payoff at a rate known to be
lower than the required return from purchasing the call, one obtains an upper bound on
the call’s value in terms of the non-central moments of the return on the underlying asset.
All those parameter values for the chosen set of moments that imply an upper bound on

the call price less than its observed price can then be ruled out.

The paper begins by showing how to use an observed European call price to place a
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lower bound on the range of the underlying asset’s value at the option’s maturity. The more
valuable an option, the larger is the minimum feasible range for the underlying asset. As an
example of the logic subsequently applied in the remainder of the paper, section Il examines
the familiar world of geometric brownian motion and non-stochastic interest rates in which
option prices are determined by the Black Scholes model. The geometric brownian motion
assumption places such a strong restriction on the true distribution that once one calculates
the volatility parameter implied from observed option prices, the coefficient of variation of
the true return distribution is known. All mean-standard deviation pairs implying some
other value for the coefficient of variation are ruled out. The paper then examines what can
be learned from option prices about the true distribution if it is known that the underlying
asset follows a diffusion with an instantaneous expected return that is always at least the
instantaneous risk-free rate. In developing the analysis two interim results are established.
First, sufficient conditions are established for the elasticity of a call to be at least one.
Equivalently, a bound is placed on the degree of concavity in the relation between the call
price and the asset’s value. Second, if the elasticity is at least one and the drift is at least
the risk-free rate, the expected return on a call over its life is shown to be at least that of

the underlying asset.

Section III shows how to place an upper bound on an option’s expected payoff
in terms of the non-central moments of the underlying asset’s return distribution, and
re-derives the Lo (1987) bound given knowledge of the mean and variance. Section v
examines conditions under which the required return on an option over its life is at least
as large as that on the underlying asset. Section V combines the results of sections III and
IV to show conditions under which observed option prices can constrain the feasible set of
mean-standard deviation pairs for the underlying asset. The paper’s results are illustrated

in section VI using observed prices of S&P 100 Index options. Conclusions and possible
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extensions of this line of research are contained in section VII.

I. Call Prices and the Range of the Underlying Asset

If agents strictly prefer more to less, the risk-neutral density associated with a
particular outcome for the underlying asset’s value at maturity is zero if and only if the
true density is also zero. One familiar implication is that if a call is valueless, there must be
no chance of it finishing in-the-money. Similarly, if a call trades for exactly the difference
between the asset’s price and the present value of the exercise price, there must be no
chance of it finishing out-of-the-money. A less familiar implication is that whenever a call
is trading for more than its intrinsic value, one can determine a minimum range for the

underlying asset’s distribution.

Assume that the underlying asset, worth S;, pays no dividends prior to the time T
maturity of the call. Today, at time ¢, the call is worth ¢(S:,¢, T, K). Let R denote the one
plus risk-free rate over the period ¢ through 7. Let L and U denote the respective lower

and upper bounds on S7.

Proposition 1:  If ¢(Sy,¢,T, K) > max{0,S; — R~1K), then L < R(S; — ¢(S41,T, K)) and
> KSt/(St - C(St,t,T,K)).

Proof: The validity of Proposition 1 is based on the absence of arbitrage oppor-
tunities. Since the call trades for more than its intrinsic value, we know immediately that
L<K<U.XL<UZ<K,one could make an arbitrage profit simply by writing calls. If
K < L < U, one can make an arbitrage profit by selling the call and buying the replicating

portfolio by going long one share and borrowing the R~1K.

Compare the time T payoffs of three alternate strategies: (i) Buy the call, (ii) Buy

the asset and borrow R~'L, and (iii) Buy 1 — K/U shares of the asset. The payoffs are
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shown in Figure 1. Since Pr(S7 < L) = 0, the payoff from strategy (ii) dominates the

payoff from the call and hence the relation between their current prices must be
(8,1, T,K) < §,— R™'L.
L < R(S; — (8,4, T, K)).
Since Pr(Sp > U) = 0, the payoff from strategy (iii) dominates the payoff from the call
and hence the relation between their current prices must be

(S0, t,T,K) < Se(1 - KJU).
KS,

U> 5 Tas T k)

Q.E.D.

Figure 1 About Here

The upper limit on L is strictly decreasing in the call price. The lower limit on U is
strictly increasing in the call price. Thus we have the intuitive result that, ceteris paribus,
the more valuable a call, the larger the minimum feasible range for the distribution of
returns on the underlying asset. Section [V will subsequently establish sufficient conditions
under which one can make an analogous claim concerning the standard deviation of returns
on the underlying asset: holding the expected return constant, the more valuable the call

the larger the minimum possible standard deviation of the underlying asset’s returns.

II. The True and Risk-Neutral Distributions Given Geometric Brownian Motion

Suppose the underlying asset makes no distributions prior to the time T maturity

of a call on the asset and its value, §;, follows the diffusion process

dSy = a(-)Sudt + o(Sp, £)Ssdz. (1)
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The moments of the true distribution depend on the functional forms of both the drift and
volatility parameters, a(-) and o(-,-). The mean and variance of the gross return on the

underlying asset over the option’s life can be expressed as

u= B{3} = Afa()o(-) @)
V=o' (3F) = BlaC)e). 9

When interest rates are non-stochastic the value of a call on the asset is given by
C(StstaTaK) :C(T('),O'(-,-)) (4)

—_ T d o
= e Jo T pa0, 5 — KD,
where the expectation is taken over the risk neutral distribution implied by the diffusion
d§t = T(t)gtdt + 0’(§g,t)§gdzt

with (#) equal to the instantaneous risk-free rate. The three equations (2), (3) and (4) are
linked by their common dependence on o(-,-). Thus, as will be shown, it can be the case
that the call price gives information about o(:,-} which in conjunction with assumptions

about af(-) places restrictions on the feasible space of u,V pairs.

In order to motivate the paper, this section provides a simple example of such a
restriction when the drift and volatility parameters are constants.
dSt = aStdt + O'Sgng.

§ = ea(T—t).

V= BZQ(T—t)(eaz(T—t) _ 1).
VV = pv/er®T-8 _ 1,
Using the Black Scholes model one can determine o from an observed option price. Given

knowledge of o the feasible mean-standard deviation space is reduced to a ray through the

origin with a slope of 1/ves*(T-1) _ 1,



1t should not be concluded from the geometric brownian motion example that
whenever one knows the functional form of the drift and volatility parameters one can
always use observed option prices to place restrictions on the feasible mean-standard space

of returns on the underlying asset. For example, suppose the diffusion in (1) takes the form
dS: = [0 - )\ln(Sf)]Sgdt + 08idzs.

The expiration date value of the underlying asset, St, is then lognormally distributed.

_ 1.2
) 14

(1 _ e—A(T—t)) f _ e—?A(T-t)))
5 .

St —MT~
in((5r) ~ ¥ (im0 - ¢ B

The standard deviation and the mean gross return on the underlying asset are linked by

VT = e )

If interest rates are non-stochastic then options will be priced by Black Scholes and ¢ can be
determined from an observed option price. But knowledge of ¢ alone places no restriction
on the feasible mean-standard deviation space. To do so would require information about
A; i.e., information which could not be determined from option prices. This example in
which the log of the underlying asset’s price follows an Ornstein-Uhlenback process provides
a simple illustration of the distinction between true and risk-neutral distributions. Even
when returns are lognormally distributed, the true variance of the continuously compounded
return on the asset over the option’s life is not necessarily equal to the risk-neutral variance.
Only when A = 0 are the two variances equal. Thus even in a world where returns are
lognormally distributed and options are priced by Black Scholes, it is not necessarily the
case that if otherwise identical options are written on two different assets each worth the

same amount, then the option on the asset with the higher true variance is more valuable.?

The remainder of the paper is devoted to the general case where the volatility

parameter is an unspecified function of the asset price and time and the instantaneous
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expected return on the underlying asset is restricted to be at least as large as the instanta-
neous risk-free rate. When the underlying asset is a market index, this type of restriction
on the drift parameter seems unobjectionable. The following section shows how knowledge

of the non-central moments of the return distribution place bounds on an option’s expected

payoff.

ITI. Semi-Parametric Bounds on a Call’s Expected Payoff

If one knew all the moments characterizing the underlying asset’s return distribu-
tion, one could determine exactly the expected payoff from an option. When one knows
a subset of the moments one can place bounds on the expected payoff. Lo (1987) derives
the upper bound on a call’s expected payoff when the expectation is taken over all return
distributions for the underlying asset with a given mean and variance. This section first
considers the general case where one knows the n’th moment of the gross return distribu-
tion, E{(Sr/S¢)"} = ¥, and then discusses the Lo bound. Throughout the paper the term

‘moments of a distribution’ always refers to the non-central moments.

A.  Bounds Given Knowledge Of The n’th Moment

Given knowledge of E{S}} = SV with n > 1 one can place an upper bound on
the call’s expected payoff. Let B(n, ¥, K') denote this upper bound. For 0 < n < 1 one can

place a lower bound on the call’s expected payoff.

Proposition 2:  For n > 1 consider B(n,¥, K), the upper bound on E{max([0,Sr — K]}
where the expectation is taken over all gross return distributions with an n’th moment of
V. IfK < Stﬂ—;—lll"}, the maximizing distribution is degenerate with all the mass at U,

IfK > Sg“—;l‘Ifi, the maximizing distribution is a two-point distribution with outcomes
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K n

. w1 \I, N
5 e with probability m, and 0 otherwise.

Proof:
E{max[0,St — K]} = Pr(87 > K) x (E{S7|ST > K} — K).

The distribution described in Proposition 2 involves a positive probability of finishing-in-
the-money. Hence the maximizing distribution cannot place a zero probability on values of
ST > K. Consider any non-two-point candidate distribution with the desired n’th moment
and a positive probability of finishing in-the-money. Consider also an alternate two-point
distribution with gross returns of # and d with probabilities p and 1 — p respectively.
The expected return from the call is determined completely by the probability of finishing
in-the-money, Pr(St > K), and the expected gross return conditional upon finishing in-

the-money, E{S7|S7 > K}/S;. If

p= Pr(St > K)

E{S7|S7 > K}
U=
St

and

_ E{S7|ST < K}

d
S¢ '

then the expected payoff from the call is the same under both the two-point and non-two-
point distributions, the expected payoff from the asset is the same under both distributions,
and under the two-point distribution E{S}} < S}¥ (since S is convex for n > 1). The

option’s expected payoff could be increased if the two-point distribution were altered by
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increasing u until the moment constraint became binding. Thus the distribution which

maximizes the call’s expected payoff has mass at no more than two points.

Setting d = 0 allows a further increase in u, and hence an increase in the call’s
expected payoff, without violating the constraint on the n’th moment. The maximizing
distribution is therefore given by the values for » and p that solve:

max p{uS; — K)
p.u
s.t. pu” = U
0<ps< L.

Q.E.D.

Since A > 0, the call’s expected payoff must be less than or equal to that of the
underlying asset. If the known moment happens to be the mean, B(n, ¥, K) achieves its
maximal value of 8(1,u, K) = E{S7}. This can be seen by taking the limit as n — 1.
In this case, the maximizing distribution has the intuitive property that the variance is

infinite.

As an illustration of Proposition 2 take n = 2.

E{S}} = SX(V + ).

Y F5 - K, K < 5Y02,

LV, K> PRAZTS

3 .

E(Q’V + P’Zslf) =

For completeness, we also consider the lower bound on a call’s expected payoff
given knowledge of the n’th moment of the underlying asset’s gross return distribution.
When n > 1, knowledge of the n’th moment does not provide a strictly positive lower
bound on the call’s expected payoff. For K > ¥1/"5,, the n’th moment constraint can be
satisfied without assigning any mass to values of S > K. For K < ¥/"§, the constraint

is satisfied by all two-point distributions with probability 1 — p of the outcome K and
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probability p of the outcome §T with §T > S¥~ and p= %;Q—_I—i—n The expected payoff
e

to the call is p(§T - K). As St — 0, both p and p(§1~ - K)—0.

When 0 < n < 1, knowledge of the n’th moment can provide a strictly positive

lower bound on the call’s expected payoff.

Proposition 3: For 0 < n < 1, consider the lower bound on E{max[0, ST — K]} where the
expectation is taken over all return distributions with an n’th moment of ¥. The lower

bound is equal to max[O,St\I!‘} — K] and is attained by a distribution with a mass point at

PR

B. The Bound Conditional On ¢ And V.

Knowledge of the mean gross return, y, provides the trivial upper bound that the
call’s expected payoff cannot exceed pS;. Knowledge of the second central moment, the
variance V', does not by itself place any upper bound on the call’s expected payoff. (The
mean return on the underlying asset could be infinite.) But together x and V provide
knowledge of the second moment of the gross return distribution, V + u?. The upper
bound on a call’s expected payoff conditional on knowing both the first and the second
non-central moment is tighter than the bound provided by knowledge of either one alone.
Let B(u,V, K) denote the upper bound on a call’s expected payoff given knowledge of the

mean and variance of the underlying asset’s gross return distribution.

Proposition 4: (Lo (1987)) Consider the upper bound on E{max[0, St — K]} where the
expectation is taken over all distributions with E{St} = uS: and E{S%} = S}(V+p?*). The

maximizing distribution is a two-point distribution: w with probability p, and d otherwise.
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V+u
For K <§ : P = dd=0.
or n = ot 2“ u u P V+uza.ﬂ

2 4 o 2 2
ForI(>S¢V+'u :“Ln'.zﬁ-+-\/[f1 154 +Stv,
2,& St
Sy
p= and
2[K ~ nSi)? + [K — pSiV[K — uS:? + S3V + SHV)
g 2K - pS + [K — uSAVIE — pS P+ SV + SIV) = (K + /[K — pS:* + SiV)SV

SEV + 2[K - puSi)? + [K — uSe)V[K ~ pS:]* + SFV)

2 - V+ 2.
ubi — K iz, K <555

t[use - K+ IR mS P+ 5V], K > 5,532

E(u,V,K)={

Proof: The proof follows that of Proposition 2. For any candidate non-two-point
distribution with the desired mean and variance of returns there exists an alternate distri-
bution with the same mean return, the same expected payoff from the option and a smaller
variance of returns. Applying a mean-preserving spread to that alternate two-distribution
allows an increase in the option’s expected payoff and satisfaction of the variance restriction.

Thus the maximizing distribution is given by the values for u, d and p that solve:
max p(uS; - K)
st put(l-pld=4p
pul +(1-p)d* =V + 4’
0<p<landd>0.
Q.E.D.
Relative to the case with a single constraint on the n’th moment, the twin con-
straints on the first and second moments change the problem in two straightforward ways.

First, provided the variance is positive the two-point distribution cannot be degenerate.
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- 2
Second, the optimizing two-point distribution may not involve d = 0. For K > St%"—,

the restriction that d > 0 will not be binding at the optimum.

Stock return distributions typically display positive skewness. The two-point dis-
tribution of Proposition 4 is negatively skewed for some parameter combinations. It is
interesting to examine the effect of assuming positive skewness as well as fixing g and V.
Imposing positive skewness does not tighten the upper bound on the call’s expected payoff
beyond B(u,V, K ). If the maximizing two-point distribution is negatively skewed consider
the alternate trinomial distribution for the gross return: d, u and z with d and u as in
Proposition 4. One can choose the probability associated with the outcome z, x(z), such
that as ¢ — oo, 7(z)z? — 0 while 7(z)z® remains finite. Allowing = to become arbitrarily
large produces a positively skewed distribution with mean and variance arbitrarily close to

# and V and an expected payoff from the call arbitrarily close to B(p,V,K).

Having determined B(y,V, K), one can obtain an upper bound on the value of a
call in terms of the mean and variance of returns provided one can obtain a lower bound
on the call’s expected return. Section IV examines conditions under which the expected

return on the call is bounded below by the expected return on the underlying asset.

IV. A Lower Bound on a Call’s Expected Return

It is well known that the payoff from a call can be replicated by the following
buy-and-hold strategy: purchase the asset and issue pure discount debt secured over the
asset with a promised payoff of K at time 7. One natural view is that since a call Is
in effect a levered claim on the underlying asset, whenever the asset is expected to earn
a risk premium the call will be expected to earn an even larger risk-premium. This is
certainty true if the call can be replicated by a buy-and-hold strategy of acquiring the asset

and issuing riskless debt. In such a case the buy-and-hold replicating strategy involves
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borrowing at the riskless rate and investing at a higher expected rate. But when the debt
issued as part of the buy-and-hold replication is risky, it can be the case that the borrowing
rate can exceed the expected return on the underlying asset. The expected return on the
call can be not only less than  but less than R. In the following binomial option pricing
example the underlying asset has an expected return in excess of the risk-free rate over

each interval, yet the expected return on a call on that asset is less than the risk-free rate.

Assume the risk-free rate is a constant 10% per period. The option matures in two
periods. In each period the return on the underlying asset has a two-point distribution.
The tree of prices and associated probabilities is set out in Figure 2(a). The expected
return on the underlying asset over the (two period) life of the option is 53.28125%, which
exceeds the 21% risk-free rate over the two periods. Ateach node the expected single period
return on the asset exceeds 10%: The expected return over the first period is 32.5%, and
conditional on a price increase (decline) during the first period, the asset’s second period

expected return is 12.5% (31.25%).

Figure 2(a) About Here

Now consider a two period call option with a exercise price of $25. Given the
two-point process for the underlying asset and the non-stochastic nature of interest rates,

the no-arbitrage tree of call prices follows immediately and is given in Figure 2(b).

Figure 2(b) About Here

The expected return on the call over its life is only 8.28125%. If one thinks of the
call as analogous to a long position in the asset and a short position in two-period risky
debt secured over that asset, that debt is so risky that its required return exceeds u. If

one thinks of the call as equivalent to a dynamic strategy involving a position in the asset
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and riskless one-period debt, the replicating strategy is initially short the asset and long
bonds. The call and the asset are perfectly negatively correlated during the first period.

The expected return on the call over this first period is in fact —17.5%.

If at each trading date the underlying asset’s expected return always exceeds the
risk-free rate and the dynamic strategy that replicates the call is always long the asset, then
the expected return on the call over its life will exceed R. If the dynamic strategy is not
only always long the asset but also always involves riskless borrowing, then the expected

return on the option over its life will exceed p.

Proposition 5: (a) If interest rates are non-stochastic and the underlying asset’s price
dynamics are given by (1), then the call price is an increasing function of the value of the
underlying asset. (b) If, in addition, o(-) > r(t) ¥ ¢, then the expected return on the call

over its life Is at least R.

Proof: Let s’ and s” denote two values for S; with s* > s”. The risk-neutral distri-
bution of §7 given S; = s' first-order stochastically dominates the risk-neutral distribution
of St given §; = s”. See Proposition 2.18 of Karatzas and Shreve (1987). Intuitively,
consider simultaneously starting the process at s’ and at s” with the two evolutions driven
by the same Weiner process. If the processes ever meet they become identical. The process

that starts at s" finishes at or below the process that starts at s’. Thus we have

- ff r(u)du

-~ T -~
e E{max[0,57 — K]|S; =5} > e~ ) r(u)duE{ma.x[O,ST - K|8; = "},

and part (a) is established. Now consider the true and risk-neutral distributions corre-

sponding to the diffusions
d.S't = Q’()Sgdt + U(St,t)Stdzi.
dS; = r(t)8dt + 0(8:,1)Sydz.
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When a(-) > r(t) Vt, it follows from a further application of Karatzas and Shreve’s Propo-
sition 2.18 that the distribution of Sy first-order stochastically dominates the distribution
of §T. The expected return on a call over its life is then
E{max[0, 57 - K]} _ FE{max[0,57 — K]}
oS0t T, K) e I (s p a0, S — K1}
> ELT rlujds _ p

Q.E.D.

Intuitively, the result in part (b) follows immediately from the properties of the
replicating portfolio. The option can be replicating by continually adjusting a portfolio
consisting of g—; units of the underlying asset and ¢(5;,¢,7T,K) — g—;-St worth of riskless

debt. Since 2% > 0 (part (a)), replication of the call’s payoff always involves a long position

in the underlying asset. The diffusion describing changes in the value of the call is given by

de(S5¢,t,T,K) = (T(t) + QS 1)) - r(t))) e(S8e,t, T, K)dt + g—;a(St, t)Sidz,,
36 St

where Q(St,t) = ﬁm > 0.

Provided a(-) > r(t) V¢, the instantaneous expected return on the call, r(t)+ (S, 1) (af-)—
r(t)), is always at least as large as the instantaneous risk-free rate. The expected return

on the option over its life is then at least R.

We now turn to the restriction necessary to ensure that the replicating strategy is

not only long the underlying asset, but is short the riskless bond.

Proposition 6: If interest rates are non-stochastic and the underlying asset’s price dynam-
ics are given by (1) with a(-) > r(f) V t and 9¢ <0, then (a) the elasticity of the call price
with respect to the value of the underlying asset always exceeds one and (b) the expected

return on a call over its life is at least p.
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Proof: The partial differential equation whose solution, subject to the appropriate

boundary conditions, gives ¢(Sy,t, T, K) is
1 8% , 2
55527 (8¢, 1)8¢ + r(t)e(Se, t, T, K)(Q(Sy,t) — 1)+ — = 0.

Suppose that for asset values in the region of zero, the call price is strictly concave in S;.

For values of Sy in this range, (5,t) < 1 and all three terms on the left-hand side of the

p.d.e are negative. But this would imply a violation of the p.d.e. and hence the option

price must be a convex function of 5; for §; in the region of zero. Throughout this convex

region, {3(S,t) > 1.
Figure 3 About Here

Now suppose that for some value of §;, say s’ as in Figure 3, Q(s',t) < 1. Then there must
exist a value s” < s' such that the call price is a concave function of the asset’s value in
the region of s” and Q{s"”,t) = 1. But this implies that the p.d.e. is violated for §; = s".

Thus Q(S,t) > 1V 5 and ¢, and part {a) is established.

Part {a) has established that Q(S¢,t) > 1V 5 and t. Provided a(-) > #(t) ¥V 5;
and t, the instantaneous expected return on the call, r(¢) + (S, t){(a(-) — r(¢)), is always
at least as large as the instantaneous expected return on the asset, a(-). Consider the gross
returns on the asset and on the option over the time interval of length 7 immediately prior
to maturity, 7 < T — t. Using iterated expectations, the time ¢ conditional expectation of

the gross return on the asset over this interval is

T
E{ [ a(-)S.du|Sr_.}
E{ S P G B ‘s
ST—T ST—T e

The corresponding expectation of the gross return on the option is

T
E{ f(r(u)+Q(Su,u)(a(-)—r(u)))c(,ﬁ'u,u,T,K)du|ST_T}

T—71

1+ E .
* { o(S7-1,T - 7, T, K) S‘}
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For an interval of length zero both expectations equal one. As the length of the interval
increases the call’s conditional expected return over the interval grows at least as fast as

the asset’s.

3E{ max|[0,57 - K |St}

(Sr_..T—7.K)
or

= E{r(T-7)+ QS7—r, T=7)(a(-) = o(T - 7))|5:}

E{1-|5}
or ’

For 7 = T'— 1 the expectations are just the mean gross returns on the asset and on the call

2 Ela(-)|5) =

over the option’s life. Thus the expected return on the call over its life must be at least as

large as the expected return on the underlying asset, z. Q.E.D.

The condition %f < 0 does not rule out, but does limit the degree of, concavity
in the relation between ¢(5y,t,T, K} and ;. Note that convexity of the call price in S; is
sufficient, but not necessary, for Q(S;,¢) > 1V $,,¢. Sufficient conditions for g—i < 0 are
that either o(Sy,t) = ¢(S$;) and 7(t) = r V ¢, or that o{St,t) = o(t) V t. If o(S,t) = a(Sy)
and r(t) = 7 V ¢, the call price depends only on the time difference T — t, and % = —g—;
which is nonpositive since an option with a longer time to maturity must be at least as
valuable as a shorter maturity option. If o(8¢,t) = o(t) ¥ {, the option can be priced by

Black Scholes and the call price is strictly convex in §;. Strict convexity implies Q(5¢,2) > 1

and the p.d.e. implies that 2 < 0.

Perrakis and Ryan (1984) develop an alternate sufficient condition for the expected
return on the option to be at least that on the underlying asset. Let g(-) and f(-) denote
the respective risk-neutral and true densities associated with the distribution of S7. For

9(s)/ f(s) non-increasing in s the following relation is satisfied.

< E{max[0,S7 - K} St

R< < ————(u— R). 5
=HE= efS,t, T K)  ~ R+ c(St,t,T,K)(” R) (%)
For g(s)/ f(s) non-decreasing in s,
E{max[0,S7 — K]} Sy
R>u> > —(u— R).
R AN Oy o R e o o ) 6

17



In the binomial option pricing example beginning this section, the expected return on the
underlying asset exceeds the risk-free rate yet the expected return on the call is less than the
risk-free rate. Neither (5) nor (6) are satisfied. In that example the ratio of the risk-neutral

to the true probability is non-monotonic in S7.

The Proposition 6 condition that a(-) > r(t) ¥V t does not imply the Perrakis-Ryan
condition that the ratio of the risk-neutral to the true density, g{-}/f(:), is non-increasing

in S7. But when both the drift and volatility parameters are non-stochastic we have

9(Sr) _ exp(ln(ST/St)ftT(r(u) — a(w))du + L({ [ r(w)du)” — (ftTa(u)du)z))

f(ST) [T o (u)du

and if a(t) > r(t) ¥ ¢, then g(-)/ f(-) is non-increasing in S7.3

Y53 _ [l - a(w)du g(Sr)
dSt St ftTaz(u)du f(St) =

Section III has developed the upper bound on a call’s expected payoff given the
mean and variance of the return on the underlying asset. This section has examined an
intuitive condition under which the expected return on the call is bounded below by the
expected return on the underlying asset. We turn next to the implications of combining

these two resuits.

V. The Feasible Set Of i,V Combinations Given An Observed Call Price

That the call price equals its expected payoff at maturity discounted at the expected
return on the call over its life is an identity. Knowledge of the non-central moments (with
n > 1) of the return distribution of the underlying asset places an upper bound on the call’s
expected payoff. One can then obtain an upper bound on the value of the call provided

one has a lower bound on the discount rate. The tighter the lower bound on the discount
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rate the tighter the upper bound on the call.

Expected Payoff < B(n,¥, K)
1 + Expected Return ~ 1+ Expected Return
B(n,¥,K)
~ Lower Bound on (1 + Expected Return)’

c=

Proposition 5 has established intuitive conditions under which the risk-free rate serves as
a lower bound on the expected return on the call. Under these conditions, one can use
Proposition 2 and an observed call price to place lower bounds on each of the non-central

moments of the underlying assets’ return distribution with n > 1.

A. Bounds On u And V.

Proposition 6 established conditions under which the mean return on the asset

provides a lower bound on the expected return on the call.

Proposition 7: If the expected return on a call is at least as large as the expected return

on the underlying asset and the call is trading at c, all feasible u, V' pairs satisfy

- Vgp?,
o< BV, E) |5 - Ky, R
S Hs- K+ JIE-sp+ 2K, K> 5¥El,

Equivalently, given p and V/, the call price is bounded above by Blu.V.K) “LV’K .

The upper bound on the call price has the following intuitive properties: As V —
00, the upper bound approaches ;. As V — 0 and 4 — R, the upper bound approaches
max[0, §; — K/R]. The maximum call price for which the pair i,V is consistent with an
expected return on the call at least as large as that on the asset is a decreasing, convex,
differentiable function of K. Figure 4 depicts the relation between —E—("—Lv’l{-l and K. The
figure is drawn assuming that the return on the underlying asset over the life of the option

has g4 — 1 = 20% and a standard deviation of 50%. At an exercise price of K = Stv—ﬂﬁ
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the upper bound on the call price is %St and the relation switches from linearity to strict

convexity.

Figure 4 About Here

Figure 5 portrays lower boundaries of the feasible sets of mean-standard deviation
pairs corresponding to observed call prices of 0.35;, 0.55; and 0.655, for an at-the-money
call; i.e., call value contours in mean-standard deviation space. Ior an at-the-money call
to be worth 0.35;, the mean and standard deviation of the underlying asset would have to

plot to the north-east of the contour portrayed with a solid line.

Figure 5 About Here

First consider varying V' while holding x constant. Suppose that u — 1 = 20%. If
the standard deviation of the underlying asset’s returns over the option’s life is only 30%,
the call will sell for less than 0.35,. For the call to be worth 0.35 ¢, the standard deviation
of returns would have to be at least 48%. Similarly, given p — 1 = 20% a call price greater
than 0.65.5, requires a standard deviation of returns in excess of 141%. For a given mean,
the upper bound on the call’s price is increasing in the standard deviation. This is logical
since the expected payoff to the call is increasing in V. Proposition 1 established that
the minimum feasible range for the underlying asset’s return distribution is an increasing
function of the call price. Proposition 7 establishes an analogous result: for a given u, the
minimum feasible standard deviation of returns consistent with an expected return on the

call of at least y is an increasing function of the call price.

Now consider varying p while holding the V constant. An increase in the mean
will both increase the upper bound on the call’s expected payoff and increase the lower

bound on the discount rate. For sufficiently high values of V relative to x the increase in
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the numerator of E”—‘:& is outweighed by the increase in the denominator, and the upper
bound on the call’s value actually declines with an increase in g. This effect can be seen
in the dashed contour in Figure 5. With a standard deviation of 141% and p — 1 = 20%,
a call price of 0.655; is feasible. Given the same standard deviation and u— 1= 40%, the

maximum feasible call price decreases slightly to 0.64545;.

B.  Consistency With Geometric Brownian Motion and Black Scholes Option Pricing

Suppose the diffusion describing changes in the asset’s value is given by (1) with
o(53,t) = a(t) VS,,t. Option prices will be determined by Black Scholes. Now suppose in
addition that the drift parameter in (1) is non-stochastic. When the drift and volatility

parameters are non-stochastic
T
/V = ef' o?(u)du ~1.

Suppose the price of an at-the-money call is 0.35,. The variance of the continuously com-
pounded return on the asset over the option’s life, | tTaz(u)du, implied from the call price
and the Black Scholes model (given B = 1.2) is 0.32796. Thus vV = p x 0.623 and all

feasible mean-standard deviation pairs plot along the ray (through the origin) in Figure 5.

Now add the further restriction that a(t) > r(f) ¥ ¢ and let the risk-free rate over
the option’s life be 20%. Points below the horizontal line in Figure 5 are infeasible: they
involve i — 1 < 20%. Thus the feasible set becomes those mean-standard deviation pairs
on the ray with values for u — 1 of at least 20%. Naturally this segment of the ray is a
subset of the set of mean-standard deviation combinations lying to the north-east of the

contour portrayed by the solid-line.

C. A Ratio Of Bounds Or A Bound On The Ratio
The ratio Eﬁ’:—Kl

== is just the ratio of an upper bound on the call’s expected payoff

to a lower bound on its expected gross return. The natural question to ask is whether
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there exists a distribution with mean gross return g and variance V' such that both bounds
are simultaneously satisfied and the call price attains its upper bound. The answer is yes
(almost). When the exercise price is sufficiently low there does exist a two-point distribution
with the desired mean and variance such that the call is worth EI%IQ Otherwise, there

exists a trinomial distribution with mean and variance arbitrarily close to x4 and V such

that %*‘Em is a feasible call price.

First, consider the case K < va—;#‘i. The expected payoft to the call over all
distributions with a mean and variance of u and V is maximized by the two-point gross
return distribution: ‘—/—‘Eﬁ with probability V‘f?v 0 otherwise (Proposition 4). For this
two-point distribution, ownership of a call on the asset is equivalent to ownership of the
fraction 1 — SE‘W_&J—) of the asset itself and the required return on the call equals the

required return on the asset. To prevent arbitrage, the call must sell for S, ~ Kﬁ which

is just &%ﬂl for K < StZiu&i.

Now consider the case K > Sti}'ﬁﬁ and the corresponding values for u, p and d
specified in Proposition 4. For the moment think of u and V as parameters used in defining
u, d and p. Suppose St has a trinomial distribution taking on the values uS;, dS; and 0
with probabilities p, (1 — p)(1 — €) and (1 — p)e respectively, with ¢ some arbitrarily small

%ﬁl and

L)

positive value. Assume that the associated risk-neutral probabilities are %2

1- L: respectively.

Provided K > S;V—;fi, the value of the call is equal to E(P:’—Kl The mean gross

return on the call is p. As ¢ = 0, E{St} — uS; and ¢*(S1) — S2V.

Section V has examined the implications for iz and V' of an observation on the price
of a single call option. Section VI shows how to optimaily combine the information implicit

in a set of observed option prices.
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VI. Feasible 4,V Combinations Given A Set Of Call Prices

Suppose one observed the prices of n options on the same underlying asset with
the options sharing a common maturity but differing in their exercise prices, K1,---, K.
Suppose also that the conditions of Proposition 6 are satisfied. The n option prices restrict
the feasible set of i,V combinations in two ways. First, and most obviously, the feasible
set contains only g,V pairs which are consistent with all of the observed options having
an expected return at least equal to y. Second, the n option prices place bounds on the
unobserved prices of options with exercise prices ¢ {K1,---,K.}. The feasible set of u, V'
pairs contains only those parameter values which, for all exercise prices, are consistent with
the ratio of each call’s maximum possible payoff to its minimum possible price being at

least p.

To illustrate these restrictions we examine the prices of four options on the S&P 100
Index. On September 7'th 1989 the index closed at $324.62. Call options on the index with
exercise prices of $290, $320, $340 and $345 and a common November 17°th maturity closed
at 841, $14, 34} and $212 respectively. The annualized yield on t-bills maturing November
16’th was 8.02%, equivalent to a 1.512% yield over the option’s life. The stock comprising
the index are assumed to be pay a continuous dividend, d, at an annual rate of 3.4%. These
four options are assumed to be priced as if they are effectively European in nature. It seems
not unreasonable to assume that the expected return on these index options exceeds the
expected return on the underlying index. Proposition 7 is then applicable with §;e=#T~19

replacing §,.°

A. The Information In The Observed Option Prices

Proposition 1 sets out the relation between call prices and the minimum feasible

range for the underlying asset. Proposition 1 extends naturally to the case where one
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observes a number of options with different exercise prices. One can conclude from the
observed S&P option prices that the minimum feasible range for the index on November
17'th was $240.65 to $356.19; i.e., over the period September 7 through November 17 there
was some chance of a capital loss on the market of 25.9% or more and some chance of a

capital gain of 9.7% or more.

If the expected return on each of the individual options is to be at least p, then

feasible u, V' combinations must satisfy

B(g, V, K) .
SV R) S YK e (K, Ko}
RN A J

For the four options on the S&P 100 Index, the feasible mean-standard deviation space
is portrayed in Figure 6.° The mean and standard deviation of returns refer to a Septem-
ber 7 through November 17 holding period.” Mean-standard deviation combinations in the
intersection of the four “feasible” sets determined from each option in isolation are consis-
tent with all four options having expected gross returns at least equal to the market’s. If,
say, the expected return on the market from September 9’th through November 17°th were
1.88%, then given the observed option prices the standard deviation of returns would have
to have been at least 7.2%. With instead a much higher expected return on the market of

7%, the standard deviation of returns need only have been 1.93%.

Figure 6 About Here

B. The Information In The Lower Bound On The Prices Of The Unobserved Options
The more observations on call prices one has, the more one can potentially restrict

the feasible u, V space. Given n observed option prices, the property that ¢(5,t,T, k) is a

convex function of K implies that relatively tight bounds can be placed on the prices of all

other options. Figure 7 depicts the situation with four observed prices. Let ¢(5;,¢, T, K)
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denote the minimum possible price of an option with exercise price K given the observed
prices of options with exercise prices Ky,---, K, and the absence of arbitrage.® Feasible

i,V combinations must satisly

B(p,V,K)
) . 7
g(statsTsﬁ,) Z#V A ( )

Figure 7 About Here

If when the expected payoff attains its upper bound given g and V and simul-
taneously the option sells for its minimum possible price consistent with the absence of
arbitrage, the expected gross return on the option is still less than g, then that particular

i,V pair can be ruled out.

Figure R illustrates such an occurrence. The upper bound on call prices depicted
by the curved line, Eﬁf—‘-&, is constructed for u — 1 = 20% and a 50% standard deviation.
Prices of two options with exercise prices K; and K, (marked with a O) are observed.
Although individually each observed price is consistent with x = 1.2 and V' = 0.25, the
price of the call with the lower exercise price is too low relative to the call with the higher
exercise price for that pu,V pair to be feasible. The minimum possible prices consistent

with the absence of arbitrage of options with exercise prices in the range K, to K3 exceed

the upper bound given by ﬂ“"’:—‘Kl. Thus the candidate u, V pair is ruled out.

Figure 8 About Here

The dashed-dotted line in Figure 6 shows the lower boundary of the feasible mean-
standard deviation space once the four observed prices are used to determine the minimum
possible prices of all unobserved options. The dashed-dotted line overlies the contours

determined from the four observed option prices for ¢ — 1 in the range 1.6% to 5.6%. But
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for 4 —1 less than 1.6% or greater than 5.6%, consideration of the minimum possible values

of all unobserved options does further restrict the feasible mean-standard deviation space.

VII. Concluding Remarks

This work explores a potential link between the moments of an asset’s return
distribution, determined by the diffusion dS; = a(-)$:dt + o(5¢,1)5:dz;, and the value of
call options on the asset, determined from the corresponding risk-neutral diffusion dS, =
r(t)gtdt + a(?t, t)gtdzt. Provided the instantaneous expected return on the asset is always
at least as large as the instantaneous risk-free rate, observing a call price places a bound
on the feasible space of mean-standard deviation pairs. Conversely, knowledge of the mean
and standard deviation of the returns on the underlying asset over the option’s life places
an upper bound on the call price. An illustration of the paper’s results is provided by the
analysis of the information concerning the mean and standard deviation of market returns

contained in the prices of S&P 100 Index options.

Although the bounds derived here are weak, so too is the restriction af-) > r(¢) ¥ t.
Two avenues for extending this work appear promising. The first involves imposing more
a priori restrictions on the return distributions; e.g., for some assets it may be reasonable
to assume that the return distribution is positively skewed with kurtosis bounded below
some level. The second involves extending the results to debt options. The no-arbitrage
bounds on debt options are interesting: Par value provides a natural upper bound on the
value of the underlying pure discount bond at the option’s expiration, and the price of a
debt option must be at least as large as the price of an otherwise equivalent option written
on a later maturing bond. The difficulty in extending the results to debt options lies in the
determination of a natural bound on a debt option’s expected return. Debt option pricing

inherently involves consideration of the equilibrium price of interest-rate risk. For a given

26



distribution of the expiration date value of the underlying bond, it will be interesting to
explore the bounds on debt option prices implied by various specifications of the sign and

functional form of the price of interest-rate risk.
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Footnotes

* The Wharton School of the University of Pennsylvania. I am grateful for the com-
ments of Avi Bick, Michael Brennan, Chi-fu Huang, Ravi Jagannathan, Peter Kempthorne,
Andy Lo, Francis Longstaff, Robert Whitelaw and seminar participants at the Australian

GSM, Melbourne GSM, MIT, Wharton, UBC and UCLA.

! Other work exploring the link between option prices and the underlying equilib-
rium includes Bailey and Stultz (1989), Bates (1991a) and (1991b), Bick (1985) and (1987),
Breeden and Litzenberger (1978), Brennan (1979), Jagannathan (1984), Perrakis and Ryan

(1984) and Rubinstein (1976).

2 The Ornstein-Uhlenback example should be thought of as an illustration of the
point first made in Jagannathan (1983, p.16). Jagannathan (1984) shows that the more
“risky” is the risk-neutral distribution of the underlying asset in the Rothschild-Stiglitz
sense, the more valuable an option on the asset and that this relation need not apply to

the true distribution.

? For a(t) = r(t) V t, the true and risk-neutral densitys are identical. For a(t) <

r(t) ¥ 1, the ratio of the risk-neutral to the true density is non-decreasing in St.

* For the outcomes 0, dS; and uS$,, the ratio of the risk-neutral to the true prob-
ability equals ﬁ, ETlﬁ—e_) and %. For ¢ sufficiently small, the ratio is decreasing in

Sr.

5 If the drift and/or volatility parameters in the diffusion describing changes in S

are stochastic then E{St} # Sie~¥*T)y, with u defined as the mean gross return over
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the option’s life from a long position in the stock with dividend re-investment. With only

71 days to maturity, the error involved in using this approximation is presumably trivial.

Note e~0-03435 — 0.9934,

6 It bears pointing out that all the issues associated with non-simultaneous obser-

vations and bid-ask spreads arise here.

7 Although annualized data are a more familiar metric, annualization would require
that one know the functional forms of the drift and volatility parameters of the diffusion

describing changes in the index.

8 With changes in S; described by (1), non-stochastic interest rates and a perfect
capital market, the introduction of additional options will not change the prices of the

existing options.
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Payoff at time T

Figure 1. Time T Payoffs from three alternate investment strategies.
The underlying asset is worth St at time T. Strategy (i): Long a call with an exercise
price of K. Strategy (ii): Long the underlying asset plus borrowing of R~'L. The one plus
risk-free rate over the investment horizon is R. Strategy (iii): Long 1 — K/U shares of the

underlying asset.
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Figure 2(a). Price and probability tree for an underlying asset. The
underlying asset is a firm which switches to holding relatively low risk investments if it
initially does well and switches to investing in deep-out-of-the-money options if it initially

does poorly.
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Figure 2(b). Tree of call prices. Prices of a two-period call with an exercise

price of $§25 written on the underlying asset portrayed in Figure 2(a). The risk-free rate is

10% per period.



Figure 3. A relation between C(S:,t,T,K) and V; that would imply the

existence of arbitrage opportunities if the option is a wasting asset. For Sy = 8",

m:.wzga =1 and Wmm_m.uu: < 0.
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o(8i,t, T, K)
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Call Price

Figure 4. Upper bound on the value of a call option as a function of the

EB. The bound

exercise price. The upper bound is portrayed by the convex curve,

is calculated assuming that the net return on the underlying asset over the option’s life has

a mean,  — 1, of 20% and a standard deviation, VV, of 25%.
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Figure 5. Feasible mean-standard deviation space given various prices
of an at-the-money call. If the call is selling for 0.35,, feasible mean-standard deviation
pairs consistent with an expected return on the option at least as large as that on the
underlying asset plot to the northeast of the solid contour. If the call is selling for 0.55,

(for 0.655), the feasible space is to the northeast of the dotted (dashed) contour.

! T T 1 1 1 ! ! ¥ 1 ! I ! 1

N n“.@rﬂw_

Ja
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

36



0.02 0.04 0.06 0.C08 0.10

0.00

Figure 6. Feasible mean-standard deviation space given prices observed
on 9/7/89 of S&P 100 Index options with a 11/17/90 maturity. The contours
corresponding to the four individual observed options are portrayed either with dots exclu-
sively or with dashes exclusively. Mean-standard deviation combinations consistent with
all options having expected returns at least as large as the underlying index (relation (7)

in the text) lie to the northeast of the contour portrayed with both dots and dashes.
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Figure 7. Upper and lower bounds on option prices implied from a set

of four observed prices. The symbol O is used to plot the assumed prices of options

with exercise prices of $5, $10, $15 and $20.
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Figure 8. Example where a particular mean-standard deviation pair is
inconsistent with all options having an expected return at least that of the
underlying asset given the observed prices of two options. The assumed prices
of options with exercise prices of K| and K, are plotted with the symbol 0. Given the

mean-standard pair used to calculate ﬂ-‘iﬂfi)—, the upper bound on the value of options

with K3 < K < K} is less than the lower bound on their value consistent with the assumed

values for (S, K1) and ¢(S:, K;) and the absence of arbitrage.
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