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EFFECTS OF BID-ASK SPREADS AND
PRICE DISCRETENESS ON STOCK RETURNS

Abstract

This paper shows that the effects of bid-ask spreads and price discrete-
ness on observed stock returns are related to stock price level, properties
of the bid-ask spread and the nature of the rounding process. Using a
model similar to Harris (1990), we derive robust Taylor series approxi-
mations relating the moments of observed stock returns to the underly-
ing true return moments. Previous results from the literature are shown
to be simple special cases of our results. We suggest explanations for
seemingly anomalous empirical results such as the average non-January
size effect, changes in post-split stock return volatility and the serial

correlation of stock returns.



Effects of Bid-Ask Spreads and

Price Discreteness on Stock Returns

I. Introduction

Much of the early financial economics literature assumed that capital markets are per-
fect and that prices of securities in these markets are discovered through a trading process
closely resembling the classical Walrasian auction. Frictions such as trading costs, decision
and information costs, and other institutional factors that affect the trading process, were
not modeled explicitly.! More recently, the “microstructure” of security markets has been
receiving considerable attention. Cohen, Maier, Schwartz and Whitcomb (1986) point out
that this is the result of major structural changes in markets, as well as recent empirical
evidence that measured security returns are affected by institutional and other factors. In
support of their position, they cite serial correlation in security and index returns, biases
in OLS beta estimates, and several unresolved anomalies in the behavior of the returns on

small firms.

The market microstructure literature recognizes explicitly that prices (and hence re-
turns) observed in security markets differ from what can be thought of as their “true un-
derlying values.” Two broad types of studies exist. Garman (1976), Glosten and Milgrom
(1985) and Easley and O’Hara (1987) are examples of theoretical models. These studies
model the process by which transaction prices of securities are discovered, by making as-
sumptions about the structure of the market, trading systems, information asymmetries,
types of traders (such as liquidity trading versus informed trading) and the behavior of
market makers. The second type are econometric models, which examine relations be-
tween true and observed security prices without formal behavioral assumptions. Examples

of these include Blume and Stambaugh (1983), Roll (1984), Harris (1990) and this paper.

! Some notable exceptions include Stigler (1964), Demsetz (1968), Garman (1976) and
Stoll (1978). The interested reader is referred to Cohen, Maier, Schwartz and Whitcomb
(1986) for a detailed survey of the issues and literature.
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These studies address the issue from the perspective of the econometrician who uses ob-
served security prices and returns in empirical testing. If the theory or model being tested
rests on assumptions of perfect and frictionless markets, then deviations between observed
and true prices should be viewed as measurement errors that may influence inferences

drawn from the tests.?

In this paper, we present a simple econometric model of the impact of two types of in-
stitutional factors — bid-ask spreads and price discreteness — on observed stock returns.®
Our approach is similar to that of Cohen, Hawawini, Maier, Schwartz and Whitcomb
(1980), who demonstrate that a series of “true returns” generated in a frictionless world
behaves differently from the series of “observed” returns obtained when there is friction
in the trading process. In Section II, we motivate our research by some examples of stock
return histograms that illustrate the nature and magnitude of these effects. When stocks
trade at low prices, their observed returns exhibit higher expected values and variances,
and negative serial correlation. Departures from normality are found to be particularly
striking. All these effects become much more severe at progressively lower prices as the
relative importance of the spread and price discreteness increases. We discuss our model
in Section III. While the basic model is very similar to that of Harris (1990), our approach
is quite different. Using Taylor series expansions, we derive approximate analytical results
relating the moments of observed returns and the underlying true returns. These results
are quite robust, since they do not depend on distributional assumptions regarding the
underlying returns. We also show that the analytical results obtained by Harris and other
authors can be viewed as special cases of our results. In Section IV, we turn our atten-
tion to stock price changes, which are easier to analyze than stock returns. In Section V,

by assigning reasonable numerical values to the bid-ask spread and other parameters, we

2 An analogy from the physical sciences may be helpful: the laws of Newtonian me-
chanics are based on the concept of point masses moving in a perfect vacuum. If we were
to test them in the real world and ignore the fact that our experimental data is affected
by friction, air resistance, etc., we would reject those laws.

3 Although we use the term “stock returns” almost exclusively, it must be emphasized
that our results are applicable to any security market in which bid-ask spreads exist, and
where prices are restricted to be multiples of some minimum tick size.
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evaluate numerically the analytical results from previous sections. We show that some
anomalous results previously reported in the literature — such as the “size” effect (Banz
(1981), Keim (1983) and others) and changes in the post-split volatility of stock returns
(Ohlson and Penman (1985), Dravid (1987) and others) — can largely be explained by our
model. Section VI concludes the paper. Details of derivations and simulation results are

presented in the Appendices.

II. Motivation: Previous Studies and an Example

In this section, we discuss some previous studies dealing with bid-ask spreads and
price discreteness. We also provide motivation for our model with the help of an example

that illustrates the impact of these institutional factors on observed stock returns.

A. Previous Studies

Our analysis considers the effects of bid-ask spreads and price discreteness on observed
stock returns. It should be emphasized at the outset that we use a simple transaction-cost
model of the observed or effective bid-ask spread. Several authors have proposed theories of
market-maker inventory control and information asymmetry to model the quoted spread.*
In our model, it is the market spread that affects observed returns, as a result of transaction
prices bouncing between the highest bid and lowest ask prices. The implications of the

existence of the bid-ask bounce have been the subject of a number of previous studies;

* See, for example, Bagehot {1971), Copeland and Galai (1983), Glosten and Milgrom
(1985) and others. Most of these models assume that the specialist is the major or sole
provider of liquidity to the market and sets the bid-ask spread. The difference between
the bid and ask prices quoted by such a market maker can be termed as the “quoted”
spread. In contrast to this quoted spread, we are concerned here with the “market” {or
“effective”) spread, which does not typically reflect the quotes of the specialist or any other
single dealer: it is the difference between the highest bid and lowest ask prices across all
limit orders and dealer quotes. For more details about institutional aspects of the trading
process and the market spread, the reader is referred to Pessin (1985, pp. 218-269) and
Cohen, Maier, Schwartz and Whitcomb (1986, Chapter 5.} Roll (1984) and Stoll (1989)
also provide insightful discussions of the effective versus quoted spread.
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Blume and Stambaugh (1983), Stoll and Whaley (1983), Roll (1984), French and Roli
(1986) and Harris (1990) are of particular relevance to this paper.

A second institutional factor that affects observed stock prices and returns is price
discreteness: the restriction that quotes and transaction prices be multiples of some spec-
ified minimum “tick size.” On major U.S. exchanges, this is usually $1/8.°> This issue of
price discreteness or rounding was recognized by Schwartz and Whitcomb (1977, p. 301).
They note that as a result of NYSE prices being quoted in minimum units of $1/8, “what
would be a smooth price series is in effect rounded and becomes a lumpy series.” Gottlieb
and Kalay (1985) show that discreteness results in an upward bias in the estimation of
the variance and higher moments of stock returns. Harris (1990) re-examines many of
these issues and provides support for the results of Gottlieb and Kalay (1985). Hausman,
Lo and MacKinlay (1991) use an ordered probit model to analyze transaction stock price
changes. They conclude that price discreteness does matter, although they do not address
directly its effects on the moments of observed stock price changes or returns. Closely re-
lated to price discreteness is the issue of stock price clustering discussed by Harris (1989):
the empirical observation that stock prices of whole or half dollars occur much more fre-
quently than do quarters and odd eighths of dollars. Clustering is found to increase at
higher stock price levels, indicating that the “natural” tick size may be greater than §1 /8

at higher prices. Clearly, this will also affect measured means and variances of returns.

The case that both these institutional factors affect moments of observed stock returns

has been made quite convincingly in previous studies. Blume and Stambaugh (1983)

demonstrate that bid-ask spreads affect observed mean returns. Roll (1984) and French

and Roll (1986) show that serial correlation and variance of observed price changes are

5 Certain foreign exchanges have adopted more flexible rules. For example, on the
Toronto Stock Exchange, the minimum allowable price fluctuation ranges are as follows:
one half-cent for stocks selling below 50 cents, 1 cent for stocks trading between 50 cents
and $3, 5 cents for stocks in the $3-85 range, and $1/8 thereafter. Further, unlike the
NYSE, where a round lot consists of 100 shares, round lots on the Toronto exchange range
from 10 shares for stocks selling over $100 to 1000 and 500 shares for those below 10 cents
and $1 respectively. Even on the NYSE, the tick size is $1/16 for a stock price below §1,
and tick sizes as low as $1/32 are permitted for some other types of securities.
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both affected by spreads. Price discreteness is not addressed by these authors. Gottlieb
and Kalay (1985) examine the effects of price discreteness (but not bid-ask spreads) on the
variance and higher moments of price changes. They do not consider its influence on mean
returns or serial correlation. Harris (1990) is closest to this study. Harris analyzes the
effects of both spreads and discreteness on the serial correlation and variance of observed

stock price changes (rather than returns).

This paper synthesizes and extends the studies of all the authors cited above. We
derive robust approximations for the effects of bid-ask spreads and price discreteness on
the moments of observed stock returns. The analysis is carried out in the context of a
simple model, very similar to that of Harris (1990). In order to motivate this model, we
first present some graphic examples of the effects of institutional factors on the distributions

of observed stock returns, particularly for low-priced stocks.

B. An Illustration

We analyze an AMEX firm, National Health Enterprises, over the six year period
between April 1974 and March 1980. Figure 1 shows the histogram of daily returns on this
stock for the subperiod from April 1977 to March 1980. Although zero returns predomi-
nate, the distribution appears to be continuous and approximately normal or bell-shaped.

In Figure 2, we present the histogram for the April 1974 to March 1977 subperiod.

Insert Figures 1 and 2 here

Differences between the two figures are immediately apparent. Overall, we find that
any semblance of normality has disappeared. Figure 2 shows a higher frequency of zero re-
turns as well as some discontinuities: for example, there are no (non-zero) returns between
—2% and +3%. Returns of large (absolute) magnitude are much more frequent, so that
the distribution has fatter tails. In order to quantify these differences between the returns
for the two subperiods, we compare some sample moments. We find that the returns in

Figure 2 are characterized by a higher mean, standard deviation and negative first-order

6



autocorrelation. After the reverse split, the annualized mean return and standard devia-
tion are 42.5% and 41% respectively, in contrast to pre-split values of 67.5% and 123%.
Pre-split returns exhibit fairly strong negative first-order autocorrelation (-0.26), while
the autocorrelation coefficient for post-split returns is 0.05. Recall that we are compar-
ing distributions of returns on the same security during contiguous three-year subperiods.
Their divergence may suggest that the firm experienced some major change between the

two subperiods, which significantly altered its operating and risk characteristics.

In fact, April 1, 1977 was the ex-date of a 5-for-1 reverse split.® Figures 1 and
2 exhibit the distributions of returns before and after the ex-date of this reverse split.
According to financial theory, the ex-date for a split (or reverse split) should be a “non-
event:” an increase (decrease) in the total number of shares outstanding should be offset
by a proportional decrease (increase) in the price per share so that the market value of
the equity and shareholders’ claims remain unchanged. There are at least three possible
explanations for our results. First, investors may have interpreted the reverse split as a
signal by the firm’s managers about some private information.” However, any such reaction
should have been observed at the announcement date of the split rather than at the ex-
date, which is known to investors when the split is declared. Nor is it clear what type of
investor reaction would cause the observed changes in the return distribution. This leads
to a second possible explanation: market inefficiency or investor irrationality. Clearly,
this is an unacceptable alternative to most financial economists, since these factors could
be used to “explain” virtually any empirical result. Finally, and perhaps most plausibly,
differences between the two distributions may simply be a result of the large change in
the trading price level of the stock at the ex-date of the reverse split. Institutional factors
such as bid-ask spreads and price discreteness are obviously much less important at higher

prices and their differential effects could well explain the findings.®

& We confirmed from the Wall Street Journal that no other significant announcement
or event took place on or around this date.

7 Signalling models of this type are discussed by Grinblatt, Masulis and Titman (1984},
Brennan and Copeland (1988a) McNichols and Dravid (1990) and others.

8 We repeated this experiment for other stocks that reverse-split, and obtained very
similar results. Somewhat weaker results were obtained for some large stock splits, for two
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Figures 1 and 2 represent stock returns for a firm that actually declared a reverse
split. In Appendix A, we describe an experiment in which we simulate splits for a high-
priced stock in an attempt to replicate these results. As we increase the size of the split,
thereby lowering the trading price level, we find that the stock return histograms follow a
pattern similar to that in Figures 1 and 2. Departures from any resemblance to normality
become quite striking. The frequency of zero returns increases, as does the frequency of
large absolute returns. In addition, the distributions begin to look more discontinuous. In
terms of moments, we see the same pattern as before: the mean, standard deviation and

negative serial correlation all increase as the price level falls.®

Based on the evidence cited above, we claim that distributions of returns on stocks
that trade at low price levels are generally discontinuous and leptokurtic. Further, returns
will exhibit negative serial correlation. When such a low-priced stock undergoes a reverse
split (actual or simulated) and trades at higher price levels, its return distribution begins
to resemble a normal distribution more closely. The new distribution of returns has a
lower mean and standard deviation, and returns tend to be less negatively correlated than
before. Conversely, when a stock that trades at high price levels undergoes a split (actual
or simulated}, the distribution of returns follows the reverse pattern. These differences in
return distributions are clearly a function of the price level of the stock, and our simulations

show that they can be attributed to the effects of the bid-ask spread and price discreteness.

reasons: even the largest stock splits have smaller {(absolute) split factors (up to 3—for-1)
relative to typical reverse split factors of 1-for-5 or 1-for-10. Further, post-split trading
price levels are generally much higher for splits than for reverse splits, which mitigates the
differential pre- and post-split effects of institutional factors.

® The fact that we can generate simulated plots that resemble the actual distributions
of returns on low-priced stocks is very interesting. Of course, in the real world, it is not
at all obvious that prices at which transactions actually take place are in fact related to
“frictionless” prices in the simplistic way that we have modeled them. Because investors
are aware of the existence of price discreteness and bid-ask spreads, it is likely that they
factor these institutional frictions into their trading decisions. The examples provided
and our results in subsequent sections indicate that our naive model performs well in
describing observed return distributions. The marginal benefits from more sophisticated
market microstructure models may be small, at least in this limited context.
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We now offer more formal evidence to support these claims.?®

I11. The Model

Using a simple econometric model that takes into account both the bid-ask spread
and price discreteness, we now derive relations between the moments of observed returns
and true underlying returns. The approach we take is similar in many respects to Harris
(1990), where discrete bid-ask prices are modeled explicitly. Harris assumes that true
stock prices follow a random walk. He uses maximum likelihood techniques to estimate
the variance of true stock price changes (rather than returns) and the bid-ask spread.
Harris does not analyze the effects of the spread and discreteness on expected values of
returns. He obtains limiting results that are very close to the approximate results that
we derive directly. Since we do not make any distributional assumptions about prices or
returns, our results are more robust. Unlike Harris, we work with stock returns rather
than price changes, since returns are usually of greater interest to most econometricians
for reasons of stationarity. Our model also accommodates serially correlated true returns.
Further, we model the bid-ask spread and price discreteness in a very general way that
allows serial correlation in the spread term, as well as correlation between the spread and
rounding terms. Finally, it is possible to extend our model heuristically to account for

stock price clustering.'t

A. Assumptions

We assume that true stock returns, defined in terms of the underlying true stock prices

as

10 We emphasize once again that most of these results can be found in the existing

literature. Our contribution here has been mainly to synthesize these studies and to
illustrate graphically the dramatic effects of spreads and discreteness on the entire return
distribution for low-priced stocks.

't Harris {(1990) discusses stock price clustering. A possible implication of clustering is
that rounding may not always take place to the nearest $1/8, particularly at high prices.
This can be approximated in our model by modifying the distribution of the rounding
error term.



on p, and ¢,, and given the exact nature of the rounding process, u, is known with certainty.

Unconditionally, it is distributed uniformly on the interval (— - 1

16 16 s if we assume rounding

to the nearest $1/8.1* In this case, ¢. and u, are independent, and each is independent of
p:. Further, our assumption that returns r: are drawn exogenously implies that e; and r,

are also independent and this fact is used in the subsequent analysis. Notationally, it is

convenient to rewrite (2) as
(3) Pe =p + e,

where e, is the “error” term representing the combined effects of the bid-ask spread and
the rounding. Let p(5) = covie./p,_1,e._;/py_ 1) represent the serial covariance of e /p 1

at lag 7 > 0. Using this notation, £(0) represents the variance of the (percent) errors.

B. Results

We now derive approximate relations between the moments of observed returns, de-
noted by 7, = 5, /p,_, — 1 and the moments of true returns 7, defined in (1). Tt is more
convenient to work with the price relatives 1 + r, and 1 + #,. The following results are

obtained (see Appendix B for details}:

(4a) EQ+7)=E(L+r)1 +p(0)] - p(1),

(4b) var(f,) & var(r.) +p(0) (14 [£(1 +7)]?) - 20(1)€(1 + ),

'Y This result has been proved rigorously by Gottlieb and Kalay (1985) for the case of
a lognormal diffusion process for stock prices. Their result is asymptotic (¢ — oo), but
simulations show that departures from a uniform distribution are of no practical signifi-
cance, even for very small values of t. For other reasonable rounding assumptions, such
as discussed in the previous footnote, the rounding term is still uniform. Again, this can
be verified by simple simulation experiments. The support of the distribution and the
correlation between ¢, and u, will depend on the assumption made about the rounding
process.
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and

cov(fi,fioy) = $(1) ~ p(0)[€ (1 +r,)]?
+p(D)EM+r) (14 (var(r,) + [E(L +7,)]?))
(4c) — p(2) (var(r,) + [E(1 + r)?) .

Similar results obtained by other authors are now shown to be special cases of the above.
First, some comments are in order. In (4a)-(4c), moments of observed returns are ex-
pressed as functions of the moments of true returns and the error terms. The importance
of the stock price level is immediately obvious: as price increases, terms such as p(7) be-
come smaller, and so does the difference between true and observed moments. Next, it
is possible to derive expressions for higher order moments and autocovariances at higher
lags. However, the difference between these higher moments of true and observed returns
is negligible, even at moderate price levels. Finally, while the Taylor series approximations
are necessary when considering returns, it is possible to replicate the entire analysis much

more easily for price changes. This is done in Section IV.

1. Expected Value of Returns

Let us ignore price discreteness and assume that the observed price at time ¢ is equally
likely to be a bid or an ask, independent of past transactions. Then, p(1) = 0 and relation

(4a) can be written as
(4d) E(7) = E(r.) + p(0) + p(0)€ (r,).

Ignoring the last term, which is negligible in magnitude compared to the first two, this

reduces to {6) from Blume and Stambaugh (1983):

(4d) a:(ﬁ)ze(n)Jrvar(‘-’*”s).

Pi-1
Since var(g._,s/p,_1) > 0, (4d) implies that the expected value of observed returns will be
greater than the true expected value. This is the “bid-ask bias” of Blume and Stambaugh
(1983) that will be discussed at greater length in Section V.B.
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2. Serial Covariance of Returns

Roll (1984) shows that observed returns will exhibit negative first-order autocorrela-
tion if observed prices bounce between bids and asks. Under the same assumptions as in
the previous subsection, and the fact that £(r,) = 0 and ¢(1) = 0 in Roll’s model, our

relation (4c) becomes

cov(fy,fi_1) &~ ¢(1) — p(0)[E (1 + r,)]?

(4f) 22 —var (M) ,

Pi-a
which is Roll’s result. Roll finds that his simple expression for imputing the spread from
the first-order autocovariance of observed returns fails almost half the time since it involves
the square root of a negative number whenever the observed autocovariance is positive.
Our relation (4c) shows that the first-order autocovariance of observed returns can be
positive, for example, when $(1) is positive and bigger than p(0){& (1 + r,)]*. Further, as
we show in Section IV below, our model can explain non-zero higher-order autocovariances

of observed returns, which Roll’s model cannot.

3. Variance of Returns

French and Roll (1986) demonstrate that the variance of observed returns is affected
by bid-ask spreads. Under the same assumptions as in the previous subsection, relation

(4b) reduces to

var(?,) = var(r,) + 2p(0)

(4e) ~ var(r,) — 2cov(fe, Fio1),

which is the French and Roll result. The variance of observed returns is greater than the
variance of true returns, a natural consequence of adding noise (in the form of the bid-ask
spread and price discreteness) to the price process.

Gottlieb and Kalay (1985) study the implications of price discreteness for estimating

the variance and higher order moments of returns. They conclude that observed moments
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are biased upward relative to the moments of true returns. If we ignore bid-ask spreads,

as they do, the predictions of our equation (4b} for the variance are very close to theirs.

IV. Price Changes Versus Returns

The preceding analysis established relations between the moments of true and observed
returns. As shown by Roll (1984), Harris (1990) and others, it is much more tractable to
work with stock price changes rather than returns. We show next that relations between
true and observed price changes can be obtained quite easily, and can be viewed as minor

modifications of results (4a)—(4c).

A. A General Model of Price Changes

We begin with the same model as before:
(3) ﬁt =Db + €,

where e, is the error term consisting of the bid-ask spread and rounding. Instead of returns

or price relatives, we now examine observed price changes defined by
(5) Ap, = P, — Poo1 = Apy T Aey,

where Ap, and Ae, are defined analogously. First, we note that the expected observed
price change will be equal to the expected true price change provided Ae, = 0. The

following expression for the covariance of the observed price changes is easily obtained:
cov{Ap,, Ap,_;) = cov(Ap, + Aey, Ap,_; + Aey_ ;)
= 45(.7) + Cov(et —Ei_15€—; €, 1)
(6) =¢(j) — o7 ~ 1) +20(j) —p(4 + 1),
where ¢(7) and p(y) are now appropriately redefined in terms of price changes. The
following expressions for the variance and first-order autocovariance are special cases of

14



equation (6):

(7) var(Ap,) = var(Ap,) + 2p(0) - 2p(1),

(8) cov(Ap,, Ape-1) = ¢(1) — p(0) -+ 2p(1) - p(2).

Note that these expressions for observed price changes are very similar to equations
(4b) and (4c) for observed returns. For transactions data or for daily data over short
periods, the price level of the stock generally changes very little. When returns are mea-
sured over such intervals, it is more convenient to use the simpler expressions for price
changes and then simply divide through by the {(approximately constant) stock price level
to obtain approximate results for returns. Evidence from simulations indicates that such

approximations are quite accurate for practical purposes.

B. Special Cases

In order to obtain more concrete predictions of our model, we need to make some
assumptions about the transaction price process. Let us assume that the conditional
probability of a bid (ask) price being observed at time ¢ depends on the price observed at

time t — 1 as follows:
(g) P(Qt - 1|‘1t—1 - 1) = P(tIt = —1|qt_1 = —1) =7,

that is, the probability of a continuation is # while the probability of a reversal is 1 — .
The unconditional probabilities of observing a bid or an ask price at any time ¢ are assumed

to be equal. In this framework, it can be shown that
(10) p(J) = covie,,e._;) = (2m — 1)? p(0) Yj > 0.
Substituting (10) in {6) results in a general expression for the autocovariance at lag j:'°

(11) cov(Ap,, Ap,_ ;) = ¢(5) — 4(1 — m)* (27 — 1)? p(0).

1% Equation (11) does not hold when m = 0.5, the standard assumption that g, is serially
uncorrelated. In that case, equations (7) and (8) can be used with p(j) = 0 V7 > 1. These
are just the well-known French and Roll (1986) and Roll (1984) expressions.
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Substituting (10} in (7) and (8), we get

(12) var{Ap,) = var(Ap,) + 4p(0)(1 — )

(13) cov(Apy, Ap._1) = ¢(1) — 4(1 — 7)? (27 — 1)p(0).

As discussed earlier, the assumption of Roll (1984), Harris (1990) and others that the
bid-ask indicator variable ¢, is serially uncorrelated implies that observed price changes or
returns will exhibit negative first-order autocorrelation, but will be uncorrelated at higher
lags. Empirically, this prediction is not borne out, and French and Roll (1986) and others
have reported non-zero higher-order autocovariances. Let us assume that true returns
are serially uncorrelated at all lags (¢(y) = 0 V5 > 1). From equation (11), we see that
autocovariances at all lags will be negative if continuations are more likely than reversals

(m > 0.5). If reversals are more likely, autocovariances will alternate in sign.

V. Numerical Results and Implications

We have obtained approximate analytical relations for differences between the mo-
ments of observed and true returns and price changes. It is of some interest to assess
the practical and economic significance of these deviations, and their dependence on the
stock price level, magnitude of the bid-ask spread and the exact nature of the rounding
process. By establishing these, we shall also show that some anomalous results reported

in the literature can be explained at least partially by our model.

A. Numerical Results

In Panel A of Table 1, we compute the difference between true and observed moments
at various stock price levels, based on reasonable numerical values assigned to the spread.
Spreads range between 3 cents (3%) for a stock trading at $1 and 30 cents (0.6%) for a

$50 stock. These estimates are generally close to observed spreads (for example, Stoll and
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Whaley (1983)). We assume that rounding is always to the nearest $1/8, and that bid and
ask prices are always equally likely so that p(5) = 0 Vj > 1. True returns are assumed to
be serially uncorrelated. The expected value and standard deviation of true (daily) returns
are set at 0.05% and 0.025% respectively.'® The table shows the effects of the spread and
rounding to be extremely large at low price levels. For example, at a stock price of $1,
the expected value of observed returns is 0.203%, which is four times higher than the true
value. As stated earlier, similar results were first proved by Blume and Stambaugh (1983)
and proposed as an explanation for the non-January ‘size’ effect. This is discussed in the
next subsection. The standard deviation of observed returns is also much higher than
the true standard deviation: even for a stock price as high as $10, the observed standard
deviation is 12% higher. This suggests an explanation for the Ohlson and Penman (1985)
results, which will also be discussed in the next subsection. Finally, although true returns
are serially uncorrelated, the first-order autocorrelation of observed returns is found to be

negative, ranging from —0.41 to —0.01.%7

In Panel B of Table 1, we examine the implications of an alternative rounding speci-
fication. We assume now that true prices are rounded down for bids and rounded up for
asks. The consequence of this assumption is perfect correlation between ¢, and u,, and a
change in the support of the distribution of u, from (—$1/16,$1/16] to (—$1/8,$1/8]. As

a result, deviations between true and observed moments become much more significant.!?

'® These translate into annualized values of 12.5% and 40% respectively.

'" In all these calculations, p(0) = var(e,/p,_.) = var[(g:s + w.)/p:_1] is computed as
the sum of the variance of the spread term (s?) and the variance of u,, which is distributed
uniformly (—$1/16,$1/16], divided by the squared price.

'®* The assumptions in Panels A and B represent two extreme cases: prices are always
rounded either to the nearest tick (Panel A), or in favor of the market-maker (Panel B),
respectively. In fact, what we observe empirically may lie between these two extremes.
It is possible to extend our model by assigning a probability to each type of rounding
specification.
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of returns at the announcement date. They investigate several potential explanations for
these anomalous findings, but are unable to provide a satisfactory answer.?®* More recently,
several authors including Lamoureux and Poon (1987), Brennan and Copeland (1988b),
Sheikh (1989) and Conroy, Harris and Benet (1990) have proposed explanations for this
post-split volatility change. Conroy, Harris and Benet provide evidence that relative bid-
ask spreads increase after splits, and propose this as an explanation for changes in post-split
volatility.?! The bid-ask spread and price discreteness, which are obviously more important
at low prices, result in an increase in the variance of returns after the ex-date, at which
there is a large change in the price level of the stock. The increase in standard deviations
of returns shown in Table 1 are of about the same order of magnitude as those reported

by Ohlson and Penman.

Our explanation that post-split volatility changes are at least partly spurious is con-
sistent with financial theory, which views the ex-date of a stock split as a “non-event:” the
increase in the number of shares outstanding is offset by a corresponding price decrease,
resulting in no real change. Even in the context of signalling models for stock splits, we
should expect a change in the variance of returns, if any, to take place at the announce-
ment date of the split rather than at the ex-date. Ohlson and Penman do not detect any
permanent increase subsequent to the announcement date. This finding is consistent with
our model, since there is no permanent and large change in the stock price level at the
announcement date as there is at the ex-date. Our model also suggests that reverse splits
should exhibit the opposite effect — the variance of returns should fall at the ex-date —

and this finding was reported by Dravid (1987).22

2% QOhlson and Penman themselves suggest (see their Section 4.7 and footnote 13) that
discreteness and changes in relative spreads may be at least partially responsible for their
findings. Amihud and Mendelson (1987) make the same suggestion.

“! Some of their results appeared in an earlier version of this paper (Dravid (1989)),
which provides evidence on this issue using simulations as well as empirical tests using
transaction data.

2 However, Dravid’s result for stock dividends, where a decrease in variance is observed
subsequent to the ex-date, cannot be explained by our model and remains an unresolved
finding that warrants further investigation.
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V1. Conclusion

This paper examines the effects of institutional factors on observed stock returns.
Using a framework similar to Harris (1990), we show that bid-ask spreads and price dis-
creteness can and should be analyzed simultaneously. We synthesize and extend the results
of Blume and Stambaugh (1983), Roll (1984), Gottlieb and Kalay (1985), French and Roll
(1986) and Harris (1990). Our results largely explain the “anomalous” findings of Ohlson
and Penman (1985) and Dravid (1987). We confirm Blume and Stambaugh’s (1983) sug-
gestion that most of the average nen-January “size” effect is attributable to the effects
of bid-ask spreads (and price discreteness) on returns measured at low price levels. By
incorporating serial correlation in true returns and in the spread term, we can account
for two empirical facts that simpler models such as Roll’s cannot: positive first-order
autocorrelation and non-zero higher order autocorrelations in observed returns.

Our study raises some concerns about the use of intraday stock price data. The
availability of these databases has created new areas for research. For example, event
studies can now be conducted using the exact time of the event during the trading day.
However, problems such as the “bid-ask bounce” are clearly more severe when dealing with
transaction data, and must be taken into consideration. The implications of stock price
discreteness in the context of intraday data have not yet been fully explored. Hausman,
Lo and MacKinlay (1991) examine some issues related to price discreteness that are not
addressed here, and suggest areas for future research. The related issue of stock price

clustering discussed by Harris (1989) also needs to be investigated in much more detail.
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Appendix A: Simulation of Stock Splits

Here, we describe the simulation experiment discussed in Section IL.B, designed to
demonstrate the effects of the bid-ask spread and price discreteness on stock returns mea-
sured at low trading prices. Consider Figure 3, which shows the histogram of daily returns
on an NYSE stock (Du Pont) over a three-year period during which the stock traded in
the $40-$80 range. First, we demonstrate that the effect of the bid-ask spread on returns
is negligible at such high price levels. We transform each price to a simulated bid or ask
price by randomly (with equal probability) adding or subiracting $0.125, which is half the
assumed bid-ask spread.?® Returns are calculated using these simulated prices, and their
histogram is plotted in Figure 4. We find that there is no appreciable difference between
the two figures: both distributions appear continuous and (approximately) normal. The

moments of the two sets of returns are also found to be virtually identical.

Insert Figures 3 and 4 here

Next, we simulate a 2-for-1 split of this stock by dividing each observation in the
original price series by a factor of 2. We assume that the bid-ask spread is $0.25 both
before and after the split.?* Each post-split price is again transformed into a simulated
bid or ask price as described earlier. Finally, the resulting price is rounded to the nearest
$1/8, and returns are calculated from this series of simulated post-split prices. In Figure
5, we present the histogram of these returns. Figures 6 and 7 show the corresponding

distributions after 5-for-1 and 10-for-1 splits respectively,

Insert Figures 5, 6, 7 and 8 here

2* For the purpose of this illustration, we are ignoring the fact that these are already bid

or ask prices, rounded to the nearest $1 /8, and have assumed that the observed prices are in
fact true prices. Since the stock price level is very high, this is a reasonable approximation.

2% This assumption is not entirely realistic, since the post-split spread is likely to be
lower than $0.25. However, our results remain qualitatively the same, as long as there is
a change in the percent spread.
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and

OOF | verl) o EGOP L e(x)
(43) 5( ) E@F T Em)E g T 1o Y s

The following assumptions, which have been discussed in Section IIILA, are used fre-

quently in the subsequent derivations:

(A4) 5(8‘)=0 Vi >0,
pt—j
(A5) r. and are independent Vs < t, Vi > 1.
ps—j

Equation (A4) reflects the fact that the rounding error is distributed uniformly on
(—$1/16,81/16] and the assumption that the underlying value of the stock is the average
of the unrounded bid and ask prices. (A5) is simply the assumption that true returns
are drawn exogenously so that the bid-ask and rounding error terms at any time are
independent of the true return. Recall from Section III.A that we defined:

¢(j) ECOV( pt , pt—f ) ij 1,
Pec1 Py

p(k) = cov (——et—,e‘_k) Vk > 0.
Py Py

We now derive results (4a)-(4c¢) relating the moments of e and r,. It is convenient to

work with the price relatives r, = pe/pe—1 and 7, = p, /Pi—1. For the expected return, we

have from (3):

N Pt e
E(L+7)=¢ (——_)
( t) Py t €y

.y (P:/Pt—l +et/pt—1)
1+et—1/pt—1

1+, et/pt—l )
=&l —* o LTS il S
(1+et—1/pt-1)+ (1+et—1/ptﬁ1
:u£(l+rt)+€(1+rt)var(et_l)—!—cov( & ,et_l)
Pi-1 Py P
(4a) = E(L+7,)[14p(0)] — p(1),
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where we have used results (A2), (A4) and (A5).

In order to derive result (4b) for the variance of #,, we use results (A3)—(A5) to obtain:

E(1+7,)) =€ ( (P + &,)? )

(pt—l +et—1)2
_ (Pe/pe-1 +"-’t/Pt—1)2
=t ( (L+e—i/py)? )
(As6) ~ [E(1+n)]* + var(r,) + p(0) + 3p(0)[E (1 +r)]> —4p(1)E(1 +7,).

Taking squares on both sides of (4a), we get:27

[EQ+7)P = (£ + )1+ p(0)))* - 21+ p(0)]p(1)€ (14 r.) + [p(1))?

(A7) ~ [1+20(0)][£(1+ 7)) - 20(1)€(1 + ).
Using (A6) and (A7), we obtain the following expression for the variance:

var(#,) = var(1 + 7y)
=l +AP] - [e@+7)P

(48) 2 var(r) +p(0) (1 + [E(1 4 7)]?) - 20(1)€ (1 + ).
To derive a relation between covariances, we first need the expressions:

E(P2) % $(1) +[E(L + )P [1 + p(0)(var(ry) + [E(1 + r)?),

P2
(48) = p(2)(var(r,) + [E(1 +r,)]?),
and
B2 m €+ r)1 + p(O)vartr) + €1+ 7))
(A9) — p(1)(var(r,) + [£(1 + r,)]?).

" In obtaining (A7), we ignore second and higher order terms in p(0) and p(1). For a
stock with a price level of $2.00 and bid-ask spread $0.125, p(0) is equal to 1.3 x 1073, while
p(0)* = 1.7 x 10~%, which is small enough to ignore. For the same reason, we ignore terms
involving higher powers of p(1) as well as products of p(0) and p(1). If var(r,) = 0.001,
the value of var(7,) from the final approximation (4b) below is 0.003604, while the more
precise expression, which accounts for p(0)2, gives a value of 0.003603.
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The derivation of the above expressions is similar to that of {4a). Using (A8) and (A9),
the expression we obtain for the covariance is:

~ ~

A A — cov P: P
COV(TUTFI) B (ﬁt—l ’PAt—Z
_ Py Pt Pt
=G GG
~ $(1) — p(O)[E(L + 7)1 + p(1)[E(L + 7)) (1 + (var(r,) + [E(1 + r)]*))
(4c) — p(2) (var(r)) + [E(1 +n)]) .
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TABLE 1

Comparison between moments of true returns and moments of observed returns

Panel A: Rounding to nearest $1/8

Stock Bid-Ask 2(0}) Expected Standard Auto-
Price Spread Value (%) Dev. (%)  correlation
$ 1.00 $0.03 0.001527 0.203 0.061 -0.41
$ 2.00 $0.05 0.000481 0.098 0.040 -0.30
$ 5.00 $0.10 0.000152 0.065 0.031 -0.16
$10.00 $0.15 0.000069 0.057 0.028 -0.09
$20.00 $0.20 0.000028 0.053 0.027 -0.04
$50.00 $0.30 0.000009 0.051 0.026 -0.01
True moments 0.050 0.025 0.00

Panel B: Rounding bid prices down, ask prices up

Stock Bid-Ask 2(0) Expected Standard  Auto-
Price Spread Value (%) Dev. (%)  correlation
$ 1.00 $0.03 0.007598 0.810 0.126 -0.48
$ 2.00 $0.05 0.002360 0.286 0.073 -0.44
$ 5.00 $0.10 0.000597 0.110 0.043 -0.33
$10.00 $0.15 0.000216 0.072 0.033 -0.20
$20.00 $0.20 0.000074 0.057 0.028 ~0.09
$50.00 $0.30 0.000019 0.052 0.026 -0.03
True moments 0.050 0.025 0.00

Notes: Expected value and standard deviation of true (daily) returns are set at 0.05%
and 0.025% respectively, and true returns are assumed to be serially uncorrelated (¢(7) =
0 ¥4). Moments of observed returns are computed from the assumed true moments, using
equations (4a)-{4c). Bid and ask prices are assumed to be equally likely at all times, so
that p(j) =0Vj5 > 1.
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Figure 1. Frequency distribution of daily returns during three year
period subsequent to 5-for-1 reverse split. (Firm: National Health

Enterprises)
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Figure 2. Frequency distribution of daily returns during three year
period prior to 5-for-1 reverse split. (Firm: National Health Enter-

prises)
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Figure 3. Frequency distribution of daily returns during three year
period when stock traded in the $40-$80 range. (Firm: Du Pont)}
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Figure 4. Frequency distribution of daily returns using simulated bid-

ask prices. (Firm: Du Pont)
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Figure 5. Frequency distribution of daily returns using simulated 2-

for-1 post-split rounded bid-ask prices. (Firm: Du Pont)
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Figure 6. Frequency distribution of daily returns using simulated 5-

for-1 post-split rounded bid-ask prices. (Firm: Du Pont)
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Figure 7. Frequency distribution of daily returns using simulated 10-

for-1 post-split rounded bid-ask prices. (Firm: Du Pont)
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Figure 8. Frequency distribution of daily returns during three year

period when stock traded below $5. (Firm: Ensource)
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