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Abstract

We develop and test a model of intraday price formation based on an explicit description
of a representative market maker whose beliefs evolve according to Bayes’ rule. We derive
an estimating equation where the weight the market maker places on the order flow as an
information signal can be recovered from the parameter estimates. This weight is a natural
measure of information asymmetry since is the ratio of the quality of private information to
the quality of public information. The model is interesting for other reasons as well. First,
the model encompasses several other models of intraday price formation. Second, the error
term arises endogenously and possesses a natural economic interpretation. Third, the model
permits us to partially distinguish the price effects of information asymmetry and inventory
control by market makers. Fourth, the model provides a method to assess the implicit costs
of trading. We show that there are substantial non-linearities in pricing that may reflect the
way 1n which large blocks are traded in the upstairs market. We estimate the model with a
new data set obtained from a NYSE specialist. The data set comprises almost 75,000 records
for most of the year 1987 and is of independent interest given the paucity of inventory data.
The results provide strong support of information asymmetries, as perceived by the market.



1 Introduction

This paper examines the determinants of intraday security price movements. Prices change
when new information reaches the market. Prices also respond to trading activity. The
growing literature on market microstructure has identified three major influences of trading
on prices. First, transaction costs give rise to ‘bid-ask bounce’ as orders randomly arrive.
Second, inventory carrying costs give market makers incentives to alter prices as trading
causes their inventory positions to diverge from desired levels. This prediction also arises if
market makers are risk averse. Papers by Amihud and Mendelson (1980), Zabel (1981), Ho
and Stoll (1983), and O’Hara and Oldfield (1986)) formally model the effect of market maker
inventory control on prices. Third, traders with private information about the value of the
security induce market makers to revise prices in the direction of order flow, since it provides
a noisy signal as to the information of informed traders. Papers by Kyle (1985}, Glosten and
Milgrom (1985), Easley and O'Hara (1987), Admati and Pfleiderer (1989), among others)
have addressed this issue. Both the inventory and information theoretic models predict that
prices move in the direction of order flow, but the two theories have not been integrated in
a single empirical model.

We develop a model of price formation that incorporates these trade related factors, as
well as the effect of unanticipated news shocks. The model is tested with a new data set
that provides a record of a New York Stock Exchange (NYSE) specialist’s intraday inventory
position for almost a year.! In the model, we explicitly describe the process by which market
makers learn from order flow. In doing so, we provide a natural summary measure of the
information structure of the market.

The idea underlying our metric for information asymmetry is simple. Consider the learn-

ing process of a representative market maker who uses Bayesian rules to update his beliefs.

10n the NYSE, each listed stock is assigned to one market maker, the specialist. Stoll (1985) provides a
detailed description and analysis of the specialist’s activities.



is evidence that the price impact of large trades is non-linear, a finding attributable to the
institutional features of the market. We discuss two possibilities: constraints imposed on the
specialist in the form of price continuity-depth requirements and the pricing of large block
trades in the ‘upstairs’ market.

The model is tested with a new data set drawn from a NYSE specialist’s trading records,
together with data from the Institute for the Study of Securities Markets (ISSM). The data
set is of independent interest since it contains almost 75,000 specialist trading records for
most of the year 1987, including the October crash. With these data, we can construct
one of the largest and most detailed time-series of inventory and signed transaction volume
currently available.

The paper proceeds as follows. In section 2, we develop a model of price formation that
incorporates transaction costs, inventory effects, and the effect of public and private infor-
mation. We show that the Bayesian weight can be inferred from the estimated parameters of
the model. In section 3, we describe our data and the procedures used to verify its accuracy.
Section 4 describes the model estimation technique and the results. In section 5, we modify
the model to incorporate certain institutional features of the market and then apply the

model to compute the implicit costs of trading. Finally, section 6 summarizes the paper.
2 A Bayesian Model of Intraday Price Formation

In this section, we develop a theoretical model based on the recent literature in market
microstructure. Consider a multi-period model with two assets, a riskless bond (the nu-
meraire) and a stock with a stochastic liquidation value. The risky security is traded at times
t=1,2,...,T, and its full information price at time T is denoted by ©. The full information
value is composed of a series of increments or ‘dividends’ and we write & = d0+Z,T=1 J,-, where
do is a positive constant. The increments are independently and identically distributed with

zero mean. The increment d, is realized immediately after trading in period ¢. In our model,



prices that straddle the value of the asset. In the face of stochastic demand and supply the
market maker’s inventory will follow a random walk. Consequently, if the market maker’s
capital is finite, eventual bankruptey is certain, as shown by Garman (1976). Consequently,
the market maker adopts a non-stationary pricing policy that depends on the current level of
inventory. Formally, bid and ask prices are the controls while inventory is the state variable.
If market makers are long (short) relative to their desired inventory level they try to attract
buy (sell) orders by lowering (increasing) the price. This gives rise to a negative relationship
between price and the market maker’s current inventory position, as derived by Amihud and
Mendelson (1980).

The price p, consists of the expected value of the security conditional upon all information
available to the market maker at time ¢ plus the ‘contamination’ by microstructure elements
such as transaction costs and inventory effects. In the prototypical inventory control model,

price is linearly related to the market maker’s current share inventory:

pe=pe— (I — L) + ¥ Dy, (1)

In equation (1), g is the expectation of ¥; conditional upon the market maker’s information
at time ¢, I; is the long-run desired inventory level (assumed constant), I; is the market
maker’s current share inventory, D, is an indicator variable where D; = +1 for a buy order
and —1 for a sell order, and 1 > 0 and 4 > 0 are constants. Note that in the absence of any
market imperfections, ¥ = % = 0, and the model reduces to p; = g;.* The basic property of
conditional expectations implies that prices, in this case, follow a random walk.

Equation (1) is a reduced form expression for a number of inventory control models. The
linearity is not particularly stringent; linear decision rules are optimal in a number of formal

inventory models including Zabel (1981) among others. The spread element %, is interpreted

4There are strong theoretical reasons to believe 3 > 0. Otherwise, if ¢ = 0, the market maker would
have negative expected profits, assuming buy (sell) orders are more likely when he is long (short) and sets
prices below (above) the equilibrium price.



magnitude of the order flow which is a noisy signal of the private information of informed
traders. Since both g and D, are functions of order quantity, g, equation (1) cannot be
estimated directly without formally specifying the market maker’s learning process.

We assume that just before time {, all agents observe the realization of a noisy public
information signal concerning the value of the increment d, at time t.° Since v;_; is public
information at time t, a signal about d; can be expressed as a signal, denoted by i, of the
form:

G = v + & . (3)
In equation (3), & is an independently normally distributed error term with mean zero a.nd-
variance o2. The market maker’s prior mean is the realization of 7, denoted by ;- In
addition to public information, the trader at time ¢ receives a private (noisy) information
signal, i, about the value of v,. The private signal has similar structure to the common
signal, i.e., W; = vy +.(.:Jt, where @, is independently and identically normally distributed
with zero mean and constant variance, denoted o2. Let w, be the realization of ;. As the
trader’s prior distribution of &, at time ¢ is normal and the private signal is drawn from a
normal distribution, we can apply a fundamental theorem in statistical decision theory to

compute the trader’s posterior mean.!® This mean is denoted m,, and is given by:
my = 6w, + (1 — Oy, (4)

where 8 = 02 /(0? + 02).
The trader’s demand depends on the functional form of the price schedule quoted by the

market maker. We assume the order quantity, ¢;, can be expressed in the form:

¢ = a(my — pt) — (5)

where o is a positive constant, m, is the trader’s expectation of 9; at time ¢ (given the

SEquivalently, all market participants share a common prior distribution over the value of the increment.
10Gee, for example, DeGroot (1970), page 169.



where 7 = ((+0—1)/8. From the definitions of ¢ and @ it can be shown that = € (0, 1). From
equation (4), the market maker’s minimum variance estimate of m; given g, is (p; + g1/ a), 50
that equation (7) shows that the posterior mean is a weighted average of prior information
and the information revealed by the trade. The parameter 7 is the weight (corrected for
the statistical dependence of m; on ;) placed on prior beliefs. In a market with significant
volume of liquidity-based trading, (i.e., o5 is relatively large), accurate public information
(i.e., o, is relatively small) and imprecise private information (o is relatively large), 7 is
high, indicating the market maker relies heavily upon prior beliefs. So, 7 is inversely related
to the degree of information asymmetry in the market. We will derive an equation where
+ can be recovered from the estimates directly. This estimate will yield the market maker’s
perception of the degree of information asymmetry in the market.

Substituting equation (7) into equation (1), We obtain:
pr=wy 4+ (1 —m)pe+ o q] — v — Ia) + ¥ Dy (9)

Since y;, the market maker’s prior mean at time ¢, is unobservable, we cannot estimate (9)
directly. Our solution is to find a proxy for this unobservable variable. This proxy is based
on the previous price after adjusting for ‘contamination’ by transaction costs and inventory

effects. Accordingly, let us use equation (1) to write y, in the form:

Yt = P11+ 7(It-1 - Id) - ¢Dt—1 + 7 (10)

where 1, = y; — pe—1 is the difference between the prior mean at time ¢ and the posterior
mean at time t — 1. The prior and posterior differ because of public information signals,
specifically the revelation of the increment d,. Thus, 7, represents the innovation in the
market maker’s conditional expectations of the security’s value. This innovation cannot be

predicted by an econometrician, and gives rise to the error term in our model.



2.1 Error Structure

From equation (6), we see that w(g—1) = viy +wi—1 ~ (@) 'z;_;. So, using the definition

of y and the definition of y; given in (6), we see that:

T = (v — vem1) + & = Ceem1 — (1 = ()wimy — (a0) 7 zy_y). (12)
Define u; by:
uy = (v — ve1) — (1 = Ofwimy — ()7 1z,_4] (13)
Then, it follows that:
M= — (Er1 + Uy (14)
Under our assumptions about the stochastic process {d,}, it follows that E[d|vi_i] = v;_;.
Our assumptions about signal structure and the martingale property of {%,} imply that
El#] = 0 and Elii,—;) = 0.** Taking expectations in (14), and using the martingale
property, we obtain:
Elij] =0 (15)
and
Elfiiia] = —¢a? <0 (16)
From (14), the error term 5 follows a MA(1) process with parameter ¢, where ( is inversely
related to the degree of information asymmetry in the market. Using the definition of ¢,

write { = 0;2/{(0;2 4+ ¢7?). So, { € (0,1), with lower values of ¢ corresponding to greater
asymmetries between public and private information. If information asymmetries were less
severe for actively traded stocks than for thinly traded stocks, we would expect ¢ to rise
with trading volume or market value. Unfortunately, since we cannot distinguish the model
errors due to public information shocks from specification or measurement errors, we cannot

use the estimates of { to draw conclusions about the information structure in the market.

Accordingly, we restrict our attention to .

'*This follows from our assumption that E[£Zy] = E[0&,] = 0 for t # t'.
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Equation (18) represents Roll’s (1984) model, with the additional assumption that D is
serially independent and has mean zero. The first-order serial covariance of successive price
changes given by equation (18) is Cov(Aps, Ape—1) = E[ApApi_q] = —%*. Since the bid-ask

spread, denoted by s, is simply 2¢, an unbiased estimator of the spread given by:

s = 2y/~Cov(Api, Api-y)- (19)

The advantage of Roll’s model is that a bid-ask spread estimate can be obtained using only
transaction prices.!®

Observe that the absolute size of the coefficients of D, and D,_; are the same in (18). This
restriction is implicitly imposed by Ho and Macris (1984) and Glosten and Harris (1988).
By contrast, the key to estimating the information parameter 7 in our model is the absence
of this restriction in equation (11). To understand this, consider a simple variant of Roll’s

model where some traders possess private information concerning the {unknown) value of

the security. Using equation (1), we obtain:

pr— Pr-i = YD1 — YD1 + e (20)

where 7; = p; — 11—, 1epresents the innovation in the market maker’s beliefs. The market
maker's innovation 7 is positively correlated with the current trade because order flow partly
originates from informed traders. Suppose, for example, that trade size is fixed at one round
lot and that n; = €D, where £ > 0 is a constant. If the trader buys, the market maker’s
conditional value increases by &; if the trader sells, the conditional value falls by £. Equation
(18) can be written as:

po— Py = (P +E)De — D (21)

We can use equation (21) to obtain estimates of 1) and £ using only transaction prices. Under

Roll’s assumptions, we have 02(Ap,) = (¥ +£)? +9* and Cov(Apy, Api—1) = —(¢+ )¢, and

16However, Harris {1990) demonstrates that estimates from Roll's model are very noisy if the underlying
value is subject to random innovations.

13



2.3.3 The Glosten-Harris (1988) Model

Glosten and Harris (1988) assume a linear price adjustment rule to capture the information
effect and assume a fixed cost of executing a trade. Their model, expressed in our notation,
resembles (11):

Ap = A+ ¥ Dy —y¥Diy + 10 (23)

Note that in (23), the coefficients of D, and D,_, are restricted to be the same. As discussed
earlier, this restriction is important if there are information asymmetries. For this reason,
the Glosten-Harris model is not equivalent to our model without an inventory effect. To see

this, with 4 = 0 equation (11) reduces to:

APt =K+ /\Qt + %th - ( )Dt-l (24)

A e

which resembles the Glosten-Harris model except in the difference in the coefficients of the
signed variables. This is also the restriction implicit in Roll’s model, and the remérks made
n section 2.3.1 apply here as well. In particular, only if both v = 0 and = = 1 does (11)
reduce to the Glosten-Harris model, but this corresponds to a case with no inventory effects
and perfect public information. Glosten and Harris estimate (23} for a sample of NYSE
stocks in the period 1981-1983. They then analyze the cross-sectional determinants of the
estimated time-series parameters, concluding that a significant portion of the bid-ask spread

may be attributable to information asymmetry.

2.3.4 . Hasbrouck’s (1990) Model

A recent paper by Hasbrouck (1990a) uses an elegant approach to assess the effect of mi-
crostructure effects on stock prices. Hasbrouck models the observed transaction price, p;, as
the sum of a random-walk component, denoted m; and a stationary component, denoted by
Se:

Dy =My + 8 . (25)
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special mention. First, since the data are taken directly from the computerized records
maintained by the specialist for operational purposes, those fields in the records that are
important to the specialist are of very high quality. These include the price per share and
quantity of shares purchased or sold. Second, as we explain below, the data structure allows
us to perform several cross-checks and verify the accuracy of some of the fields in the trading
record.'® Finally, the nearly 75,000 transactions covered in the data set, comprising all
transactions by the firm in its specialty stocks for nearly an entire calendar year, makes it
the largest time-series presently available on specialist transactions.

The original data set consisted of two types of records, trading records and settlement
records. The trading records are analogous to business invoices. They represent the specialist
firms’s contemporaneous record of transactions in which the firm believed that it bought or
sold stock. Settlement records are analogous to canceled checks. They indicate that the other
party to the transaction confirms that the transaction took place and that the specialist firm
has paid for the stock (in the case of the purchase) or been paid (in the case of a sale). A

trading or settlement record includes the following fields:
& CUSIP number of the stock.

¢ Trade time and date: separate fields identify the settlement date.

Amount: The dollar amount paid or received by the specialist as a result of the

transaction.!®

Price: The transaction price, recorded in eighths.

Quantity: The signed volume of shares traded; a separate buy-sell indicator provides

a check on the accuracy of the sign.

13This is especially important since the data cover the period of the crash in October, 1987.

19In the case of a stock purchase it is equal to the price times the quantity; in the case of a stock sale it is
the price times the quantity less a small SEC fee paid by the seller. A separate code indicates whether the
amount is a cash inflow or an outflow.

17



Next, we performed internal checks for consistency using the fact that some fields within
a settlement record are redundant. For example, the amount, for purchase transactions, is
simply the price times the quantity. Further, given signed quantities, the buy-sell field 1s

unnecessary. Consequently, omitted variables rarely present a problem with these data.”

3.1.2 Corrections and Additions

Given the nature of the data, there were very few problems in determining the price, the
quantity involved, and whether the specialist bought or sold. On the other hand there were
considerable problems in determining the precise time at which the transaction took place.
For some of our analyses we sought to match the transactions reported in the specialist’s
file with the transactions reported in the Institute for the ISSM file. For this purpose, an
accurate trade time data would have been extremely helpful.

While a time code is included on the specialist’s trading and settlement records, the time
field format allows for time to be recorded only in terms of hours and minutes and the time
field entry is missing for some round lot transactions. During periods of active trading there
may be more than one transaction per minute. In the settlement process, the time field
is used when there is a problem matching buyer and seller records; but when there is no
problem matching buyer and seller, settlement can take place even if the times recorded on
the buyer and seller records differ.

In addition, there were two problems in ordering the transaction records: some records
are missing time stamps and sometimes two or more records corresponding to different
transactions have the same time stamp. Specialist odd-lot purchases (sales) through the

day in each stock are reported as a single trade with no price or time fields entries in the

21Gpecial treatment was necessary for odd-lot transactions. NYSE specialists act as odd-lot dealers in
their specialty stocks. Odd-lot transactions are not reported on the NYSE ticker or in the ISSM trade and
quote file. The specialist transaction file contained daily summaries of the specialist’s odd-lot transactions
for each stock. These records are described in more detail in section 3.1.2.
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the identity of the firm, we report only data for the 16 stocks for which a complete sequence of
transactions was available from February 1 to December 31, 1987 and which had an average

of at least 4 transactions per day on the NYSE.
3.2 ISSM data

The data on transactions and quotes used in this study was obtained from the ISSM “Trades
and Quotes” transaction files. This database includes all information distributed by the
Securities Industry Automation Corporation (SIAC) over their high speed line. The version
of the tape we used was missing data for certain days because that data had not been supplied
to ISSM by SIAC at the time we obtained the trades and quotes file.? These dates were

omitted from our study, and for practical purposes our data set covers 199 trading days.

3.2.1 Classification of Active Trades

Although the specialist data allows us to sign volume, the ISSM files do not indicate whether
a transaction was initiated by a buyer or seller. However, we can determine this from
information contained in these files. The traditional method of making that determination
is the tick test, which is based on the sign of the price change. Specifically the current trade
price is compared with the most recent different price. Trades with positive {(negative) price
changes are assumed to be initiated by buyers (sellers). |

We used an alternative methodology developed by Lee and Ready (1989) that classifies
trades by comparing the trade price with the prevailing quote whenever one is available. Lee

and Ready consider quotes that are eligible for inclusion in the National Market System and

NASD Best Bid and Offer calculations, so called BBO quotes.?

23The 33 missing days are February 25, April 7, April 16, May 1, May 13, June 17, July 6-8, August 3-7,
10-14, 17-21, 24-28, November 23-25 and 27.

24For a description of the BBO eriteria, see “Preliminary Documentation for NYSE and AMEX Trades
and Quotes File,” Institute for the Study of Securities Markets, October, 1989, pp.13-16. The ISSM quote
records include associated condition codes which allow users to identify BBO eligible quotes.
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all stocks, we had 74,360 specialist settlement records in our files. Of these, 61,961 had time
stamps. Of the time stamped records, 5,721 occurred on days for which ISSM data was
missing. Therefore, there were 56,240 settlement records that were eligible to be matched.
Using the criteria described above, we found matches for 44,164 records, or 78.5% of those
eligible to be matched.?®

In running the model, we used a matched data set that contained all ISSM transactions
with the record fields for each transaction augmented to include information about the
specialist’s inventory level at the time of the transaction (for all transactions) and the number
of shares the specialist bought or sold if it was a matched transaction. If inventory level
information had been computed using only matched transactions, failures to match would
have induced errors in the estimated inventory levels on subsequent transactions. To avoid
this problem, the inventory level information in the matched file was taken from the specialist
transaction file.

We adjusted the data for stock splits and dividends. An additional correction was ne-
cessitated by NYSE opening procedures. The NYSE opens with an auction characterized
by a set of multilateral transactions at a single price. Transactions during the day, however,
take place in a dealer market with bilateral transactions over time. Amihud and Mendelson
(1987) and Stoll and Whaley (1990) provide evidence that these differences in market proto-
cols have a significant impact on the observed return distribution. Accordingly, we dropped
the overnight price change from our study, so that all price changes reflect’ only changes

during trading hours.

250ur high success rate in identifying and matching transactions relative to other researchers may be
at‘ributable to the fact that the problematic transactions, from an econometrician’s point of view, are those
that occur within the quoted bid-ask spread. Since the specialist is often involved in such transactions,
signing these trades presented no difficulty.

23



cross-sectional regression of the medians of the matched specialist transaction values on the
median total value of trading has a slope of 0.303 (t-ratio = 9.57) and a constant term that 1s
insignificantly different from zero. Thus there is no evidence that this specialist participates
more heavily in thinly traded stocks. Adjusting for unmatched transactions, we estimate
that the specialist takes the other side of about 39 percent (0.303/0.785) of the value of the
trades taking place in his stocks.

Since all trades are classified as either buyer initiated or seller initiated, we calculated
a measure of trading imbalance as the absolute difference between the dollar value of the
purchases and sales. Median trading imbalances are highly correlated with the median dollar
value of trading. A natural question concerns the correlation of specialist inventory changes
with order imbalances. The NYSE argues that specialists perform a valuable service of price
stabilization by ‘leaning against the wind,” i.e., standing ready to absorb transitory order
imbalances. Critics counter that the specialist’s actions may in fact exacerbate temporary
price swings, at the expense of limit orders. The resolution of this issue is essentially an
empiricall question. To address this, we estimated a cross-sectional regression of the medians
of the specialist’s dollar imbalance (i.e., the absolute value of the difference between the
dollar values of his purchases and sales) on the median New York dollar imbalance. The
slope coefficient is 0.297 (t-ratio = 9.88) and the constant term is insignificantly different
from zero. If the specialist were always on the opposite side of the New York imbalance,
this could be interpreted as indicating fhat the specialist absorbed an average of 38 percent
(i.e., 0.297/0.785) of the market imbalance, a figure almost identical to the specialist’s share
of total transaction value. This computation suggests the specialist’s participation rate is
relatively insensitive to the prevailing market conditions, i.e., there is no evidence that his

trading activity is altered by market stress.
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inventory level is weak. Similarly, the coefficient of the lagged inventory variable should be
positive, and the results are analogous to the current inventory variable. These weak results
may reflect multicollinearity between current and lagged inventory. While multicollinearity
increases the estimated standard errors the coefficient estimates are unbiased and consis-
tent. The estimates of  suggest that inventory effects have a small impact on intradaily
pricing. Further, the fact that ) is lower than expected, together with the strong evidence
of information asymmetries as measured by 7 suggest that current inventory carrying costs
not captured by 7 have little economic significance.

Turning now to the sign variables, both variables are highly significant and of the correct
sign. The estimated spread element ¥ is simply the negative of the coefficient of Dyy.
Price discreteness implies that the minimum tick is $0.125, so we would expect the spread
element to be at least 0.0625. The mean value of the estimated coefficient 1 is 0.089, and
is fairly tightly distributed around this value. The high significance values and closeness of
the estimates (for 8 stocks, the estimates lie in the range 0.05-0.07) suggest that the spread
element is very important. Our restrictions imply that the absolute value of the coefficient of
D,_; should be less than that of D, to ensure that 7 € {0,1). This condition is also satisfied
in all 16 cases. The average coefficient estimate (weighted by transaction frequency) of
the weight on prior information 7 is 0.76. Again, this finding provides strong evidence of
information asymmetries. Finally, there is strong evidence that the error structure does
indeed follow a MA(1) process. The moving average parameter, {, with the exception of the
least traded stock, is of the correct sign. All but 3 are significant at the 5 percent level, with
the significance levels rising with the trading activity. It can be seen {rom the table that {
is, as hypothesized, positively related to trading activity.

To check the sensitivity of the parameter estimates to the estimation technique, we
also estimated the reduced-form model using a high-order autoregressive error structure to

approximate the MA(1) term. The coefficient estimates produced by this technique were
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works well. The significance levels confirm our earlier findings that there is considerable

information asymmetry, as perceived by the specialist. Overall, the goodness-of-fit is good,

even in October, and the R? is generally high.?

4.1 The Specialist’s Participation Rate

Before turning to some applications of the model, we will briefly discuss the determinants
of the specialist’s trading activity. Let r; denote the specialist’s participation rate, i.e., the
ratio of the specialist’s trading volume to NYSE trading volume for the period February-
December, for stock ¢ = 1,...,16. In our sample, the participation rate ranges from 14
percent for stock 10 to 64 percent for stock 1. In this section, we examine empirically the
influence of the specialist’s perception of information asymmetry on his participation rate
across securities. The relationship is unclear from a theoretical viewpoint. If the specialist,
seeking to avoid losses to traders with private information, participates more “actively in
stocks where his information disadvantage is smaller there will be a positive relationship
between 7 and r across securities. Alternatively, if the specialist provides a service of price
stabilization by ‘leaning into the wind’ to absorb order imbalances, he will be more active
in thinner markets and there will be a negative relationship between r and 7.

Since r is constrained to lie in the interval [0,1], we used a logit model given by:

1

T T efompim

(29)

where 8y and 3, are the coefficients and 7; is the value of 7 for stock 7 fro.n the estimated

time-series model. The estimated coefficients are:

Po B
1.299 —2.834

(2.34) (—3.66)

30From table 2, half the stocks had R?s above (.50, the lowest being 0.24. The results for October are
comparable. This fit is relatively good considering the dependent variable is the transaction-to-transaction
price change.
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5.1 Block Trades

The estimates of A, although significant and correct in sign, are lower than expected.

The institutional structure of the NYSE provides one possible explanation. The NYS5E
evaluates specialists according to certain criteria that are primarily related to the degree
of price stability they provide by absorbing temporary order imbalances. The New York
Stock Exchange’s Rule 104 requires that the specialist maintain a ‘fair and orderly market’
as part of his affirmative obligation to provide liquidity. This term has never been explicitly
defined by the NYSE, but in practice, the NYSE provides specialists with price continuity-
depth guidelines. These guidelines place limits on the transaction to transaction price change
permissible for a given volume of trade. For example, for a stock trading between $20 and
$29 I with average daily share volume in the previous month {excluding trades of 25,000
or more) of 10,000-24,999, the maximum price change for 3,000 share volume is § 1.3% The
NYSE reports that in 1988, 92.1% of all transactions of 1,000 shares or less traded with a
price change of 0 or 1 from the immediately preceding trade.

These guidelines are not strictly binding and there exist provisions to allow more rapid
price movements in times of market stress. Nevertheless, the NYSE market surveillance
unit evaluates specialists in real time according to these criteria, and specialists who fail
to comply with the continuity-depth guidelines risk having their stocks reassigned to others
or not being assigned more profitable stocks in the future. The effect of these formal and
informal price continuity requirements is to limit the price impact for a given volume of
trade. This implies lower values of A than theoretically predicted for all order size ranges.

An alternative theory focuses on the trading mechanism in use for large blocks of stock.
In 1988, 55% of all shares traded on the NYSE were traded in blocks of 10,000 shares or

more, most of this accounted for by institutions.*

32Gee, e.g., Floor Official Manual, Market Surveillance, New York Stock Exchange, June 1989.
33Traditionally, a block trade is defined as a trade of 10,000 shares or more. This definition is not
meaningful from an economic viewpoint since in active stocks, an order of this magnitude may be quite
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block buys from block sells. The existence of a reputation based alternative to the dealer
market implies that dealers will refuse to make markets for block trades because the fact
that a trader wishes to trade a block anonymously means that he or she could not obtain a
favorable execution price upstairs. Thus, the existence of a reputation based block trading
mechanism worsens the lemons problem in the downstairs market, implying that specialists
will place absolute limits on the size of trades choose to accommodate.

The institutional features of block trading imply the price change for a large trade pre-
dicted by our model overstates the true impact of the trade. Large trades do have a greater
price impact than small trades, but the relationship is not proportional to volume; on a per
share basis, the price impact of a block trade may be less than that of a single round lot.
By contrast, the effect of price continuity restrictions is to reduce X uniformly for all trade
sizes. To correct for the effect of these factors on our coeflicient estimates, we extended
the econometric model to allow the price change to be a piecewise linear function of order
quantity. This procedure allows us to partly distinguish the effect of these two institutional
features of the market.

Formally, we estimated the following MA(1) model based on (27):

Ap, = Bo+ b+ __: Snxnlg — an) + Boly + Baley + BaDy + Bs Dy + 1 (30)

h=1
m = & — (&1t U (31)
where (64,6, 83,8,) are coefficients to be estimated and 1,...,xs4 are dummy variables
defined by xi = 1 if ¢; € A, and 0 otherwise. The sets A, are defined as A; = (—o0, 1),
Az = (—OO,(:Q], A3 = [(13,00) and A4 = [64,00) s where 61 < qz <0< q;; < (?4 are stock

specific definitions of ‘large’ trades, based on the observed daily trading volume.?® Table 4

36The procedure is as follows: for each stock, we computed the distribution of order sizes after excluding the
smallest 50% of transaction sizes. The cutofls are the 1%, 5% 95" and 99t percentiles of this distribution.
By eliminating the smallest transactions, the natural breaks for large blocks are mor¢ -~adily identified. This
procedure also lets the definition of a block trade vary by security, and si:- the di: ition of order size is
right-skewed, our approach also corrects for differences between block purchases an.  des.
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positive for 14 of the 16 stocks. This suggests that large block buys do have a price impact,
but since the significance levels are weak, this result should be viewed with caution. Along
these lines, note that the value of &; is generally greater than the value of &, implying that
a block buy has a greater price impact than the corresponding block sale. This occurs even
though the cutoffs in shares for block buys are smaller than the cutoffs in shares for block
sells.

For most stocks, a large block trade has almost the same price impact as a mid-sized
trade, and the impact is much lower on a per share basis. Consider, for example, the price
impact of a 5,000 share sell order in stock 15. From table 5, the price impact of this trade is
-$0.0273, i.e., a drop of 2.73 cents. For a 10,000 share sell order, the price impact is -30.0369
while for a 100,000 share sell, the impact is -$0.0828. While the absolute price impact is
increasing in trade size, it is decreasing on a per share basis. Another application of the
model is to assess the implicit costs of trading in the dealer market. We address this issue
below, where we define a measure of the implicit spread that takes into account the price

impact of the trade.®®

5.2 Implied Bid-Ask Spreads

We define by s(q) the effective bid-ask spread for an order of size q. Formally, the effective
spread is the difference between the price if the order were to buy and the price if the order

were to sell, i.e., s(q) = p(|q)) — p(—lg]). For ¢ € (q1,32), equation (11) yields:
s(g) =2(¢+Agl) . (32)

This definition implies the bid-ask spread is not a constant, but varies by the size of the

order.?®

38We also estimated the piecewise linear model using a break points that provide a narrower definition of
a block, and obtained similar results. Presumably, stronger results could be obtained if a better procedure
for approximating the break points could be found. This is a topic for further research.

39losten and Harris (1988) make this point in their concluding remarks where they state: “Since an
important part of liquidity is the ability to make large trades without affecting price, price- liquidity studies
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but may understate the implicit transaction costs of large investors created by their market

impact and conversely overstate the costs of trading for small orders.

6 Conclusion

In this paper, we developed and estimated a model of intraday price formation. The model
incorporates the effects of transaction costs, specialist inventory control, and asymmetric
information, and encompasses a number of recent microstructure models. We test the model
using data obtained from a NYSE specialist firm. These data, not previously available to
empirical researchers, are of extremely high quality. We combined these data with data
obtained from the Institute for the Study of Securities Markets (ISSM) to create a complete
time-series of transactions and associated specialist inventories.

The estimated parameters of the model provide a natural measure of the degree of in-
formation asymmetry present in the market, the weight on the information content of trade
placed by a representative market maker who uses Bayes’ rule to update his beliefs. The
estimated model provides strong support for the existence of information asymmetries, as
perceived by the market_rna.ker. This perception suggests that transitory order imbalances
can cause relatively large intraday price movements because they are viewed as potentially
originating from informed traders, providing a possible explanation for rhigher price volatil-
ity during trading hours. The results suggest that perceived information asymmetries were
significantly higher after the crash because either the ratio of public to private information
decreased or the amount of noise trading fell. Tn addition to significant information effects,
there is strong evidence of a fixed spread element in intradaily price changes. However, the
inventory effect does not appear to be strong, possibly because of multicollinearity problems.
Overall, the model performs very well in explaining intraday price changes.

We show that the specialist participation rate is directly related to the degree of informa-

tion asymmetry, possibly because there is less competition to the specialist in markets where
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Appendix

Derivation of the Demand Function:

We show here that the demand function (5) used to construct the price functional (11) can be
derived from a mean-variance utility maximization problem. Let p(q) denote the quoted price of
the risky security as a function of order size. Using equation (11), the transaction price can be
expressed in the form:

p(q) = &o + Ysign(q) + Mg (A.1)

where £y represents the lagged price plus the inventory effects which is regarded as a constant by
the trader. Suppose the trader has a mean-variance utility function of the form:

w(W) = E[W] - (g) Var[W] (A.2)

where p > 0 is the coefficient of absolute risk aversion and W is the trader’s risky wealth. Wealth
is given by: _
W =g+ X) - plg)g + C (A.3)

where X represents the trader’s initial endowment of the risky asset and ' the initial holdings of
cash. Using (A.2), investor’s quantity ¢ solves:

m;LX{m(HX)—p(QJHC— pziz(HX)z} (A4)

where m and o? are (respectively) the expectation and variance of the asset’s value given the
trader’s information. If there is an interior solution where the trader chooses to trade (the presence
of a fixed cost element implies that for some traders the optimal action is not to trade), the first
order conditions yield:

m — {p — yPsign(q) — po*X

pol 42X

Note that the optimal demand is a function of the slope and intercept of the price functional. Since
sign(q) = sign[m — & — ysign(q) - po?X], it follows that ¢ = 0 and there is no trade if:

g= (A.5)

Im — & — po®X| < 4. (A.6)

If there is an interior solution, the transaction price is p(q) = & + y¥sign(q) + Ag and substituting
this into equation (A.5) and rearranging, we obtain:

m—p-—poX

7= po? 4+ A

(A7)

Define z = apo?X where a = 1/(po? + A). Then, we can write (AT)as: g = a(m - p)—z, as
conjectured in (5). This demand function in turn supports the price equation (11) used to derive
it initially.
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TABLE 2

Reduced-Form Coefficient Estimates
February*December, 1987

This table reports the estimated coefficients (with t-valyes in parentheses) for the reduced-form model for the
period February-December, 1987, using Box-Jenkins methods. The model to be estimated is:

Ape = Bo + Brge + Balo + Baliy + BuDe + 85Dy + & — CEimy + iy,

Inventory and volume are scaled by 107%, and the coefficients 81,82, and A3 should be interpreted accordingly.

Number of
2
Stock Bo B 32 Bs B Bs ¢ Observations R
1 0.000 32.873 7.830 -8.075 0.132 —0.062 -0.026 770 0.654
(0.07) (4.43) (L26)  (-130)  (26.58) (-14.38) (—0.70)
2 —0.016 0.275 —0.01% 0.108 0.103 —0.663 0.046 1,179 0.525
(-0.74) (0.29)  (—0.03) (0.20)  (32.66)  (—20.80) (1.58)
3 0.004 2.650 —2.464 2.408 0.116 —=0.065 0.095 2,782 0.487
(0.75) (5.44)  (-2.17) (2.12)  (46.32)  (=26.37) (4.92)
4 —0.006 0.639 2.592 -—2.559 0.120 -0.063 0.165 1,484 0.463
(—2.10) (0.05) (0.95)  (~0.93)  (33.41) (—17.77) (6.34)
5 —0.006 1.171 0.864 —-0.636 0.089 =0.059 0.130 3,461 0.568
(=351)  (531)  (0.98) (-072)  (59.40) (-39.42) (7.51)
6 ~-0.007 1.211 -0.127 0.162 0.072 -0.059 6.200 5,260 0.627
(-2.35)  (12.37)  (~0.60) (0.77)  (79.17)  (-66.39)  (14.68)
ki (.005 4.152 -1.504 1.420 0.229 -0.144 0.244 5,637 0.469
(0.92) (5.23)  (-1.27) (120)  (63.64) (-40.92)  (18.38)
8 —0.010 3.394 —1.125 1.355 0.261 —-0.172 0.319 7,137 (.482
(—3.31) (5.13)  (~0.54) (065)  (76.83) (~51.20)  (28.29)
9 —0.010 3.278 0.690 —0.670 0.126 —0.089 0.299 7,616 0.493
© (-2.15) (5.14) (0.55)  (—0.53)  (75.81) (-54.91)  (27.16) _
10 0.004 0.852 —0.513 0.512 0.070 —-0.058 0.515 7,755 0.24]1
(473)  (460) (-108)  (L08) (4246) (-36.77) (52.72)
11 0.001 0.710 0.658 —0.665 0.083 —0.068 0,289 7,925 0.601
(0.96) (3.99) (115)  (-116)  (96.05) (-~79.63)  (26.73)
12 - 0.004 1.360 —0.714 0.711 0.139 ~0.093 0.211 3,190 0.513
(240)  (749) (-144)  (149)  (89.28) (—60.25) (20.55)
13 —-0.003 2.867 —0.864 0.874 0.099 —0.085 0.465 9,983 G.660
(—3.60) (6.01)  (~0.91) (0.92)  (11641) (-104.65)  (52.05)
14 —0.001 0.205 —1.640 1.627 0.120 —0.103 0.410 11,441 0.641
(=042)  (257)  (-245)  (243) (12425) (—107.64) (47.82)
15 —0.001 0.898 —1.G08 1.014 0.145 —=0.102 0.487 20,039 0.319
(=060)  (410) (~2.11)  (212)  (9141) (—65.06) (78.72)
16 —0.001 0.402 -1.031 1.051 0.085 —0.076 0.877 27,553 0.441

(-4.71) (4.74)  (-3.29) (3.35)  (42.89) (~38.54) (303.92)




TABLE 4
Break Points

This table reports the break points (in shares) for the piecewise linear
regression presented in tables 5 and 6. The break points are selected
from the 1st, 5th, 95th and 99th percentiles of the sample distribution
for order size after excluding the smallest 50% of transactions.

Stock 1 G2 g3 4
1 ~2 931 —1,400 1,295 2 459
2 —16,802 —5,000 2,500 10,000
3 —17,480 —4,860 95, 000 19,236
4 —13,920 —3,200 4,890 20,000
3 —25,000 —7,260 6,500 30,000
6 —28,320 -8,800 6,500 17,260
7 —16,102 —4,695 3,000 9,406
8 —20,615 —7,500 7,150 - 17,940
9 —8,000 -2,000 2,000 5,931
10 —30,000 —13,000 16,000 42,988
11 —12,182 —3,200 3,800 15,052
12 —42,886 —9,000 8,000 25,000
13- —6,880 —2,400 2,000 4,860
14 —23, 860 —-3,700 3,600 20,000
15 —25,000 —6,000 5,000 19,126

16 —37,124 —6,300 9,955 29,655




Table 6

Effective Bid-Ask Spreads

This table reports the effective bid-ask spread estimates for the period February-
December, 1987, and for October, 1987. Roll’s effective spread 1s:

sr = 2¢/—Cov(Ap;, Ap,_,) .

The bid-ask spread is defined as:

s(q) = 24 + A]q))

where ¢ is the trade size and X and ¥ are the estimated coefficients of the
reduced-form model. Here s, is the spread for a 100 share trade and 5 is the
spread corresponding to average trade size. The average (weighted by number of
transactions} is reported at the bottom of each column. Note: The serial price
covariance is positive for stock 1 so Roll’s formula inapplicable.

February-December, 1987 QOctober, 1987
Stock - -
Sy 5 5 Sy 51 E;

1 0.112 0.130 0.150 - 0.101 0.153
2 £.495 0.126 0.127 0.239 0.176 0.249
3 0.131 0.130 0.136 0.173 0.149 0.189
4 0.150 0.126 0.126 0.252 0.155 0.163
5 0.128 0.118 0.122 0.167 0.157 0.158
6 0.120 0.119 0.124 0.165 0.146 0.148
7 0.152 0.289 0.299 0.315 0.473 0.528
8 0.216 0.344 0.359 0.351 0.525 0.599
9 0.152 0.179 0.184 0.261 0.265 0.297
10 0.210 0.115 0.121 0.475 0.226 0.237
11 0.140 0.136 0.137 0.224 0.194 0.196
12 0.205 0.187 0.192 0.304 0.287 0.299
13 0.189 0.171 0.174 0.297 0.236 0.237
14 0.177 0.206 0.207 0.255 0.290 0.290
15 0.306 0.204 0.207 0.619 0.307 0.315
16 0.142 0.153 0.154 0.270 0.209 0.212
0.191 0.179 0.183 0.381 0.284 0.300




