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Tests of Asset Pricing Models with Changing Expectations

ABSTRACT

This paper studies predictable variation through time in the returns of
common stocks and bonds, using linear models with constant "beta®
coefficients. Both individual stocks and portfolios, formed on the basis of
firm size and industry, are examined. The methods of Gibbons and Fersom
{1985) are nested in a sequence of more general latent variables models.
This generalization allows the examination of the separate elements of their
joint hypothesis. The results indicate that more than a single premium is
needed to model expected returns. The number of latent variables in the
time-varying expected returns is similar for daily and monthly returns, and
is small. Two or three latent variables are indicated in all cases. There

is strong evidence that conditional expected risk premiums are nonzero in

months other than January.



In this paper we provide further evidence on the predictable behavior of
stock and bond portfolio returns using a framework consistent with muitiple
state variables in a "beta" pricing model. If several state variables
explain expected returns, then the identification of the state variables is
not unique in the usual formulations of financial valuation models. Yet the
models can still impose structure on the expected returns. Expected returns
differ across assets, according to a linear relation in the assets’
conditional beta coefficients. The betas measure the sensitivity to the
relevant state variables. Thus, it is useful to ask if the behavior of
expected returns is consistent with simple linear models, even if the exact
nature of the state variables is unknown. If the number of "latent
variables" required to capture the predictability of the returns is small,
the results are encouraging for the potential usefulness of conditional
linear asset pricing theories.

This paper examines time series regressions for returns, using
predetermined information variables, and conducts tests of the restrictions
that are implied by linear asset pricing models. The methodology follows
Gibbons and Ferson (GF, 19853). They do not reject a "single-beta" model of
the daily returns for the Dow Jones 30 common stocks. Subsequent studies
using stock portfolios and bond returns find evidence that more complicated
models are required.l We apply the GF methodology to obtain further
insights about the ability of simple models to capture the predictable
patterns in returms.

We first extend the GF design to include more data. We find that a

single-beta model can be rejected even for the Dow Jones 30 common stocks.

1 Examples include Campbell (1987), Chan (1988), Stambaugh (1988) and
Ferson (1989, 1990).
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By varying the econometric specification, we produce evidence about the
sensitivity of the tests to different elements of the joint hypothesis
examined by GF. Specifically, we examine the assumptions that expected
returns are linear and that the conditional covariance matrix is fixed over
time. We find evidence against the homoskedasticity assumption used by GF;
however, the failure of the single beta model to explain the Dow Jones 30 is
not attributed to the failure of their maintained assumptions.

Tests using common stock and bond portfolios provide further evidence
on the number of common factors in expected returns. Similar evidence is
found in an industry portfolio design and in a design based on size-ranked
portfolios. Two or three latent variables are indicated in each case. The
results for monthly and daily data are also similar, when we allow for
heteroskedasticity and nonlinearities in the returns generating process. A
by-product of the analysis is strong evidence that expected risk premiums
are non-zero and time-varying, and that the time-variation is not confined
to January.

In Section I we review the methodology. Section II examines the
sensitivity of inferences, in the context of the GF empirical example, to
the choice of instrumental variables and sample period. Section III
provides the analysis of monthly returns. Section IV summarizes and

concludes,

I. Methodology

The essence of the approach is to test restrictions that are imposed by an
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asset pricing model with the familiar form2
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ih risk measure ("beta") of security i relative to risk
factor h, conditional on the information Zt—l (The

beta is assumed to be a constant parameter); and
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U}

ot the return on a "zero-beta" security.

For any set of asset returns, there will almost always exist a mean-
variance efficient portfolio [Roll (1977)]. This means that equation (1)
will hold, with K=1, when Aht is the return of the efflcient portfolio. But
the betas (bih) of assets relative to the efficient portfolio will in
general be time-varying when (1) describes conditional expected returns.
Following much of the empirical work on the Capital Asset Pricing Model

(CAPM) and Arbitrage Pricing Theory (APT), equation (1) assumes the bi are

h
constant and specifies an asset pricing hypothesis of a given dimension, K.
We call the hypothesis that equation (1) holds with constant betas, for a

given K = 1, the "K Latent Variable Hodel."3 If a K latent variable model is

accepted, the results may be interpreted as indicating the number of

Examples of asset pricing models like equation (1) include those of

Sharpe (1964), Black (1972), Merton (1973), Long (1974), Ross (1976) and
Breeden (1979).

It is sufficient to assume that ratics of the conditional betas are
constant parameters. See Connor and Korajczyck (1989) for an equilibrium
model in which conditional betas are constant over time. See Lehmann (1990)

for conditions under which approximately constant factor betas are implied
in a conditional APT setting.
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"factors," or time-varying risk premiums in the expected returns. An
alternative interpretation is to view the tests as indicating the behavior
of conditional covariances of returns with a benchmark pricing variable.4

Given rational expectations in a K latent variable model, the GF
approach derives its power from the assumption that expected returns are
changing over time and are correlated with observable instruments zt—l'
Assume that conditional expected returns given Zt-l are linear with fixed

coefficients, so that returns obey the regression model:

Rig @820 T ¥y

. YA - 2
ECu, 12,4 =0, (2)
where Zt-l is an L-vector of predetermined variables, contained in the
market's information set at time t - 1, and which includes a constant term.
61 is the regression coefficient vector for asset 1. Equation (2) will ke
called the "Linear Expectations Assumption.” Given the linear expectations

assumption, then the following expression

E(Ritlzt-l) - 61 Zt—l 3

may be substituted into Equation (1). Gibbons and Ferson {(1985) show that

the following parameter restrictions on system (2) are implied:

4 See Gibbons and Ferson (1985), Campbell (1987), Ferson (1989) and
Wheatley (1989) for discussions.



6, , (4)

The 6j ; j =0, ..., K are the regression coefficients for K + 1 assets
5 c

chosen as "reference assets." The restriction (4) states that the
coefficients of all N + 1 assets may be replicated from only K + 1 assets if
the K-latent variable model characterizes expected returns. The ¢ may be
. ; . s . 6
interpreted as ratios of the betas for assets i and j in equation (l).
The restriction that they must sum to 1.0 for each asset follows from the

K

fact that {1- Ei=lbih] is the coefficient on the "zero-beta" factor in

equation (l). The information variables, Z should be correlated with

t-1'
changes in investor expectations and must be known when the market sets
prices at t - 1. The number of information variables L must equal at least
the number of latent variables, K.

GF implement their tests as a restricted multivariate regression model
for a system of regression equations like (2). They assume that the residual
covariance matrix is fixed over time and examine the likelihood ratio test
statistic (LRT). Thus, their tests examine a joint hypothesis which we

characterize as consisting of three parts. The first is the specification of

K, the dimension of the latent variable model (the K latent variable

The reference assets must be chosen so that the matrix of their betas
and a unit vector is nomsingular; that is, they must span all the relevant
risk factors and cannot have identical betas on any combination of risk
factors. Given these conditions, the tests are invariant to the choice of
reference assets [see Ferson (1990) or Ferson and Foerster (1990)].

This i{s strictly true if the unobserved risk factors are mutually
uncorrelated and the reference assets are mutually uncorrelated; otherwise,
the cij are related to the assets’ betas by a linear transformation.



6
hypothesis). The second is the linear expectations assumption. The third is
the fixed residual covariance matrix assumption. The GF tests can be

interpreted as examining:
HO: { K latent variables, linear expectations, fixed covariance }. (5)

We conduct experiments to assess the sensitivity to these three components

of the joint hypothesis. Accordingly, the following additional hypotheses

are examined:

Hl: { K latent variables, linear expectations }, (6)

and

H2: { K latent variables }. (7

To examine Hl’ we relax the fixed covariance matrix assumption by estimating
the restricted regression system (2), imposing the restrictions (4), by the
generalized method of moments [GMM, see Hansen (1982)]. We examine the
minimized value of the GMM objective function as a goodness-of-fit
statistic. This approach allows the residual covariance matrix to be
conditionally heteroskedastic, and thus vary over time as a function of Zt

1 The statistic is asymptotically distributed as a x2 variable. We call

this the "GMM1" test statistic.7

To examine H2 we use the GMM, but relax the assumption that expected

7 The GMM criterion function is the quadratic form Tg’Wg, where

g=vec(u’Z/T), u is the matrix of the error terms from system (2) with the
restrictions (3) imposed, Z is the matrix of the instruments, T is the

sample size, and W is the inverse of the covariance matrix of the
orthogonality conditions, g.



returns are formed by a linear regression on Zt_l. This is accomplished by

reformulating the restricted model as:

1 - z§=0 eyi EmKEl LN (8)
EC e, |2, =0.

Equation (8) is similar to, but less restrictive than tests of mean-variance
spanning [Huberman and Kandel (1987)] because the ci.'s are not restricted
to be the regression coefficients of the N-K test asset returns on the (K+1)
reference assets, as they are in tests of mean-variance spanning. The
regression coefficients Si do not appear in system (8), and there is no
assumption made about the functional relation of expected returns to the
lagged instruments. When our tests are based on system (8), we call the
test statistic the "GMM2" test statistic.8

The GMM tests for HO through H2 are tests against vague alternative
hypotheses. It should be possible to obtain more powerful tests using more
specific alternatives. Therefore we construct additional tests in which H0
is the null and Hl is the alternative hypothesis, for a given number of

latent variables., In these tests, we use a statistic described in

Eichenbaum, Hansen and Singleton (1988, appendix C), which is similar to a

Hansen (1982) shows that sufficient conditions to apply the GMM
include the assumption that the data are strictly stationary and ergodic. We
assume that the data satisfy the conditions needed to apply the GMM in all
of our tests. The matrix C is also assumed to be fixed over time. This is
implied by the asset pricing model (1} if the congitional betas are fixed
parameters, since the matrix of the c¢..'s is C=§ ﬁz, where B, is the K+l

square matrix of the reference asset Bitas and 52 is"the (K+1)X(N-K) matrix
of the remaining asset betas.
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likelihood ratio test statistic but is more general. The GMM criterion

funection is first minimized under H imposing homoskedasticity through a

O‘
set of auxiliary moment conditions. The moment conditions are of the form:
.2 2 2 . ‘s -
e =1 - g”, E(e|2)=0, where ¢~ is a vector of the conditional variances of

the individual asset returns, which are hypothesized te be constant, and
{.2) denotes the element by element squares. Then, the system is estimated
under the alternactive, Hl' Under Hl the subset of the moment conditions
impiied by homoskedasticity are not imposed. The difference of the two
quadratic forms is asymptotically distributed as a chi-squared variable,
with degrees of freedom equal to the number of additional restrictions
imposed under HO’ compared with Hl’ less the number of additional
parameters. We call this test statistic the AJ statistic.9

It is more difficult to form similar tests for Hl against HZ’ because
there is no readily identifiable subset of moment conditions which hold
under Hl in equation (2) and are relaxed under H2 in equation (8). Given the
empirical results reported below for the tests against vague alternatives
however, the motivation for constructing such tests seems limited, and we do
not do so.

Of course, it can be hazardous tec draw strong inferences from a
comparison of p-values for different test statistics. The power of the

tests may differ and there could be finite sample problems which distort the

results. Our results do suggest that the GMM2 test statistic, which requires

In the AJ statistic the weighting matrix under H, is fixed at the
inverse of the corresponding partition of the covariance matrix of the
orthogonality conditions under H, [see Eichenbaum, Hansen and Singleton
(1988), appendix C]. To keep the size of the system manageable, we introduce
additional orthogonality conditions only for the individual assets’
conditional variances under HO' excluding the moment conditions for the off-
diagonal terms of the covariance matrix.
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fewer asset return equations, may be more powerful than the GMM1 test
statistic. Finite sample problems should not be important in our large
samples of daily data, but could be important in monthly sample sizes.

Foerster (1987) provides simulation evidence on the finite sample
properties of the LRT and of the Lagrange multiplier (LMT) tests for HO
which we use to help interpret our results. Ferson and Foerster (1990)
provide simulation evidence on the finite sample properties of the GMM]1
tests. Their evidence suggests that the size of the GMMl tests should be
well-specified, using the asymptotic distribution, for monthly samples only
half the size of ours. They found that a two-stage GMM approach, as
described in Hansen and Singleton (1982), tends to reject a correct null
hypothesis too often while an iterated GMM approach provides more accurate
test statistics and has higher power in finite samples. Following Fersen

and Foerster (1990), we use an iterated GMM approach in our tests.10

IT. The Gibbons-Ferson Empirical Application
This section explores the sensitivity of GF's empirical results for the
daily returns of the Dow Jones 30 common stocks. GF chose the Dow Jones 30
stocks to avoid predictable patterns in the daily returns which arise
spuriously because of infrequent trading. They used a lagged stock index
return and a dummy indicator for Mondays as instruments. We extend this

design to include additional time series observations and a dummy variable

Specifically, we construct the weighting matrix W using the
parameter estimates from the n-th stage minimization, use this matrix to
find parameters for stage n+l which minimize the criterion function, and
then use the new parameters to update the weighting matrix. The iterations

continue until either a minimum value is obtained or the objective function
converges,
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for the month of January. In addition to the LRT examined by GF, we conduct

tests using the IMT, GMM1l, AJ, and GMMZ test statistics.

A. The Daily Dow Jones 30 Data

The data consist of returns for the thirty stocks in the Dow Jomnes
Industrial Index (DJ30) for the period January 2, 1963 to December 31,
1985.ll These are obtained from the Center for Research in Security Prices
{CRSP) daily files. To highlight the patterns evident in the DJ30 returns,
panel A of table I presents the mean daily rates of return and standard
errors of the mean for an equal-weighted portfolio of the DJ30 stocks for
four subperiods. Averages over all months, January only, February-December,
Mondays, and Fridays are reported.

Panel A of table 1 illustrates the day-of-the-week patterns in returns,
including the "Monday effect” exploited by GF in their tests. In each
subperiod, average Monday returns are negative. Also, Friday returns are
greater than average daily returns. Mean daily returns are larger in

January than in non-January months, excepting the second subperiod (1969 to

1973), which exhibits a negative average return in January.

Securities are included if they are in the Dow Jones Index at the
beginning of the period. There is one exception. General Foods was
acquired by Phillip Morris on November 2, 1985, Phillip Morris is used
instead of General Foods during our fourth subperiod.
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B. Test Results

GF specialize equation (2) as

m
Rie =850 * 85100 + 855

i=1, ..., 30, £t =1, ..., T;

b

RVM_ | +u, (9)

where D: is equal to one if day t is Monday and zero otherwise, and RVMt_l
is the lagged return on the CRSP value-weighted index. A multivariate
regression system is formed by combining the 30 equations. The number of
restrictions on the regression system that are implied by equation (4) is
(N-K-1)(L-K) where N is the number of assets (N = 30), K is the number of
latent variables and L is the number of predetermined variables including
the intercept (L = 3). The LRT and LMT statistics used to examine HO have
an asymptotic chi-square distribution with degrees of freedom equal to the
number of restrictions. The GMM goodness-of-fit statistics are
asymptotically chi-square with degrees of freedom equal to the number of
orthogonality conditions less the number of parameters. For the GMM1 (GMM2)
statistic with 30 assets and L instruments, there are 30xL {[30-K-1]xL)
orthogonality conditions. There are [(K+1)xL + (N-K-1)] parameters for the
GMM1 case, based on equations (2) and (4), and KX(N-K-1) parameters in the
GMM2 case, based on equation (8). The AJ statistic, used to test HO against
Hl, has degrees of freedom equal to the number of additional orthogonality
conditions under HO’ less the number of additional parameters under HO' With
L instruments and 30 assets, the degrees of freedom in this case is 30x(L-

L.

An examination of the unrestricted regressions confirms GF's
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observation that equation (9) appears to be a reasonably well-specified
model for the Dow Jones 30. We examine the individual regressions, but we
summarize the regressions in panel B of Table I using an equally-weighted
portfolio of the Dow Jones 30 stocks.12 Like GF, we find that the
regressions can detect predictable variation in the returns in the first
three subperiods, covering January 1963 to December 1979. (This corresponds
roughly to the overall period of GF: August 1962 to December 1980.)
However, in the fourth subperiod, the R-squares are smaller and the standard
F-test for the regression produces right-tail p-values smaller thanm .05 in
only twelve of the thirty cases. For every regression in each subperiod,
the absolute value of the first-order autocorrelation of the residuals is
less than .12, although 22% of these were greater than two standard errors
from zero. Chow tests indicate that the hypothesis of constant regression
parameters within a subperiod is rejected at the .0l level (.03) in only
five (fifteen) of the 120 regressions and these rejections occur uniformly
across all subperiods. Finally, White's (1980) test shows little evidence
of heteroskedasticity in the residuals of (9).13

Table II reports the test results for the latent variables models. In
subperiods one through three, the LRT does not reject the joint hypothesis
HO' with a single latent variable (K=1). The p-values range frem .13 to .65.

Aggregating the statistics over 1963 to 1979 by summing across the first

Foerster (1987) presents diagnostics for regression models of the Dow

Jones 30 daily expected returns, and presents a more detailed analysis of
their expected return behavior.

13 .
Of course, these diagnostics may be of low power. For example,
White's (1980) test only detects heteroskedasticity that is related to the
instruments, and the significance of the first order autocorrelation

coefficient is not the most powerful test for detecting persistence in
regression residuals.
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three subperiods yields a p-value of .211. These are very similar to the
results obtained by GF. We also compute the Lagrange multiplier test (LMT)
statistic. The LRT and the LMT produce virtually identical inferences about
HO’ which is consistent with the assumption that the daily sample sizes are
large enough for inferences based on the asymptotic distributions.14 The
CMM1 and GMM2 statistics confirm these results, producing no evidence
against the single latent variable model in the first three subperiods.

Given that a single latent variable model is not rejected under Hl in
the first three subperiods, the AJ statistic is used to test the hypothesis
of homoskedasticity in the individual error terms for the DJ30, against the
alternative hypothesis of a heteroskedastic single latent variable model
(K=1, with linear expectations). The tests provide some evidence against
homoskedasticity in the second and third subperiods, and the aggregate
statistic for the first three subperiods implies a p-value of less than
0.002. Thus, there is evidence against the homoskedasticity assumption used
by GF, but the LRT and IMT do not detect the heteroskedasticity.

Very different results are observed in the fourth subperiod (1980 to
1985). 1In this subperiod the LRT statistic testing HO is 82.3 (p-value =
.013). As a result of the large statistics in the fourth subperiod, the
aggregate (1963 to 1985) LRT and IMT strongly reject the single latent
variable under HO. Additionally, both the GMM1 and the GMM2 test statistics
reject (at the 0.05 level) a single latent variable in the fourth subperiod.
Thus, the rejections of a single latent variable model in the fourth

subperiod are not attributable to the assumption that the residual

Asymptotically the IMT and LRT statistics are equivalent, but the
IMT statistic is smaller (produces a larger p-value) in any finite sample.
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covariance matrix is fixed or the assumption that the expected returns,
conditional on the instruments, are linear regressions with constant
coefficients.

The results of the tests in the first panel of Table II which examine
the joint hypothesis HD’ with a two latent variable model (K=2), conform
very closely to the results of GF. The p-values of the LRT, LMT, GMMl and
the GMM? test statistics are in excess of .62 in every subperiod and in the
combined samples. There is no evidence that more than two-latent variables
are necessary to describe the expected returns. The AJ statistic produces
evidence against homoskedasticity, given a two-latent variable model, which
is similar to the evidence that it produces when a single latent variable is
assumed. Thus, there is evidence of conditional heteroskedasticity which is
not controlled simply by moving from a single latent variable to a two
latent variable model of the conditional means.

We extend the GF example, adding to equation (9) a dummy variable to
capture the January seasonal in returns:

m

R, =968..+6.,D_ + 61

e i0 :1P¢ RVMt_ + 6 DJANt + u,

2 1 i3 ic !
i=1, ..., 30, t =1, ..., T;

(10)

where DJANt equals 1 if date t is in January and zero otherwise. We include
the January dummy to check the sensitivity of GF's results to the choice of
instruments for the daily DJ30 returns. The regressions for an equally-
weighted portfolio of the DJ30 stocks are summarized in panel C of Table I.
The regressions (10) show a small increase in the adjusted R-squares

relative to the regressions (9). The average adjusted R-square in equation
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(9) across the four subperiods is 4.96%. For equation (10), containing the
January dummy, it increases to 5.0l%. White's specification test and the
other diagnostics suggest a well-specified regression model.

The lower panel of Table II reports tests of the K=1 and K-2 models
using equation (10). The LRT and LMT tests now reject the K=l model in each
subperiod except the second, and in the overail sample. The GMM1 and GMM2
tests reject the K=l model in the fourth subperiod, using a .10 significance
level. It is interesting that when a January dummy is included as an
instrument the LRT and IMT statistics strongly reject the single latent
variablg model under HO’ which imposes homoskedasticity, while the GMM1 and
GMM2 statistics do not provide such strong evidence against a single latent
variable under H1 and H2. This suggests that the predictable, seasonal
variation in the returns that is uncovered by the January dummy may be
related to seasonal changes in the conditional covariance matrix.l5 The AJ
statistic provides further evidence for this interpretation. The test
rejects the homoskedasticity hypothesis in nearly every case that we
examine.

Given that other studies have rejected single-beta models using

different predictive variables and portfolio returns, it is interesting to

find that GF's failure to reject such a model for the individual common

1 . . : :
> Only in the second subperiod is the increment to the R-square due to

the January dummy not statistically significant. Only in this subperiod is
the single latent variable model not rejected under H.. Observations at the
turn of the year do not seem to be particularly influeéntial for the
rejections indicated in the fourth subperiod, but they are influential in
the first and third subperiods. Omitting the observations for the last
trading day of the year and the first five trading days of the subsequent
year from the tests and using equation (9) we obtain a p-value, using the
LRT for the single latent variable model, of .00l in the fourth subperiod.
P-values in excess of .185 are observed in the other three subperiods.
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stocks of the DJ30 is reversed by expanding the sample. Thus, the evidence
against a single latent variable model is fortified. It is also interesting
that the evidence for more than two latent variables is weak. This suggests
that the structure of time-varying, conditional expected returns may be

captured using relatively simple, linear models,

ITI. Tests with FPortfolio Returns

One might question the generality of tests of asset pricing models
using 30 "blue chip" securities. To draw vaiid inferences about the number
of latent variables in the expected returns, the test-assets’ risk
sensitivities must span all of the relevant risks. GF (p. 231) suggest that
"expected returns on the Dow Jones 30 stocks may be better explained by a
single-factor model than would the returns on a broader sample of assets,"
In this section, therefore, we conduct tests using portfolios constructed
from a broader sample of assets. Our common stock portfolios are formed on
the basis of two common grouping methods: firm size and industry
affiliation,

Several studies document biases in the daily portfolio returns of
common stocks, especially for portfolios of small stocks. For example, Blume
and Stambaugh (1983) document a bid-ask related bias in the returns of
equal-weighted portfolios. Keim (1989) and Porter (1990) find that seasonal
patterns in returns (e.g. turn of the year, day of the week) are related to
systematic concentrations of closing trades at bid and ask prices. Also,
spurious cross-correlation of daily portfolio returns at various lags
[Reinganum (1982), Lo and MacKinlay (1990a)] may influence regression

models, like equations (9) and (10), that contain lagged market returns. In
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each of these cases, the incidence of the bias is especially important for
low-price, thinly-traded stocks that are concentrated in portfolios of small
stocks.l6

We examine both daily and monthly returns for size-based and industry-
grouped common stock portfolios. Results for each are summarized below, but
we focus on the results for monthly returns. Monthly returns are less
susceptible to the biases from bid-ask effects and thin trading.
Furthermore, monthly returns should be influenced less by short term,
predictable patterns that result from specialist behavior and other
"microstructure" effects, than are daily returns.

Market microstructure models typically assume that any predictable
patterns due to expected risk premiums are trivial enough to be safely
ignored at the short time intervals involved. Studies do this, for example,
by assuming that traders are risk neutral. A common setting posits exogenous
(e.g. uninformed "liquidity") demand shocks in order to focus on specialist
behavior in the presence of asymmetric information, strategic trading and

other such issues. The microstructure literature is still in an early stage

16 There is of course, a chance that the DJ30 stocks are susceptible to

such biases that might contaminate the inferences drawn from the tests in
section II. To explore a possible connection between the seasonal patterns
in the DJ30, documented in Table I, and the trading pattern bias discussed
in Keim (1989), we examine the DJ30 stocks in the ten days surrounding the
turn of the year. The average daily return for the DJ30 stocks over this
period was 0.24 percent in 1988-89 and the average daily proportional bid-
ask spread (i.e., (ask-bid)/bid prices) for these stocks at the end of 1988
was 0.48 percent. In constrast, for the smallest decile of NYSE stocks, the
mean proportional bid-ask spread reported by Keim (1989) is 6.6%.
Furthermore, we find no systematic movement of DJ30 closing prices within
the spread (i.e. from the bid toward the ask) at the turn of the year. The
average "bias," measured as the difference between returns computed with
transaction prices and returns computed with bid prices, is a small negative
number (-0.006 percent) during this period, and it displays none of the
systematic patterns found by Keim (1989) for smaller stocks.



18
of development. The "exogenous" demands must ultimately come from some
endogenous source. Possibly, they are the result of risk averse investors'
optimization, and therefore driven by the same underlying factors that
determine demands in equilibrium models of expected returns. We find it
interesting, therefore, that our tests for the number of latent variables

produce broadly similar results for both the daily and the monthly returns.

A. The Portfolio Return Data

The sample of monthly returns consists of common stocks of NYSE firms,
beginning in 1928:1 and ending in 1987:12, a total of 720 monthly
observations. We conduct the monthly analysis over 240-month subperiods. Ten
common stock portfolios are formed according to size deciles, based on the
market value of equity outstanding at the beginning of each year. The ten
"size" portfolios are value-weighted averages of the firms. (Value-weighing
approximates a "buy-and-hold" investment strategy.) The daily size portfolio
sample is similar, but the daily data are only available beginning in 1963.
When we form portfolios using daily data, we rank the firms by size each
year and we weight the individual returns using the previous day'’'s gross

. 17
relative returns.

We also examine 12 portfolios of NYSE firms grouped by 2-digit SIC

17 When we use daily data, the portfolio returns are computed as the

weighted average of the individual gross daily returns, where the weights
are the gross relative returns for the previous day. Blume and Stambaugh
{1983) and Roll (1983) show that equal weighted portfolio returns are
subject to a statistical bias related to bid-ask spreads. The use of a buy-
and-hold portfolioc reduces the bias; using the lagged gross relative return
is an approximation to a buy-and-hold strategy. Foerster and Porter (1990)
study the effectiveness of such an approach in reducing the bias in measured

portfolio returns and conclude that the approximation to buy-and-hold is
accurate enough for our purposes.
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industry code. Unlike the size portfolies, the number of firms in each
industry portfolio is not (approximately) the same.18 We include a firm in
the portfolio for its industry, in every month for which a return, a price
per common share, and the number of shares ocutstanding is recorded by CRSP.
The monthly industry portfolios are value-weighted each month. The daily
industry portfolios are from Foerster (1987), and are weighted within each
industry by the lagged gross return relatives.

In the monthly size and industry portfolio samples, we also include a
long-term government bond and a long-term, low-grade corporate bond (i.e.
"junk" bond) portfolio. The junk bond portfolio returns are provided by
Ibbotson Associates for 1928-1976 and by Blume, Keim and Patel (1989) for

1977 to 1987. The government bond returns are from CRSP.

B. Selection of Predetermined Variables

With monthly data, an expanded set of predetermined instrumental
variables is available. The instruments used below consist of a constant,
the lagged return of the CRSP equally-weighted stock index (denoted EW), the
detrended average price level of the Standard and Poors 500 stock index
(PLEV), the level of the nominal one-month treasury bill rate (TB), the
lagged spread between three-month and one-month treasury bills (HB3), and a
dummy variable for the month of January (DJAN) . We include the January dummy

variable to capture seasonal patterns in the returns [Keim (1983)] and for

18 The industry classification follows Sharpe (1982), Breeden, Gibbons

and Litzenberger (1989), and others. The number of firms in a portfoelio
varies from a low of 8 (Services industry before September, 1960) to a high
of 300 (Finance/Real Estate in October, 1986). The mean number of firms over
the 1959-1987 sample period varies across the industries from 33.6
(Services) to 213.7 (Basic Industries).
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further analysis of possible seasonal changes in risk, as suggested by our
results for the DJ30 stocks. The motivation for including the other
variables and a brief description of each follows.

EW is the one month lagged return of the equal-weighted NYSE index from
CRSP. Such a variable may capture a common factor in the autocorrelations
of returns, related to mean-reverting behavior in the stock market. Results
of Fama and French (1988a) suggest that a common factor explains much of the
autocorrelation of stock portfolio returns.

HB3 is the one-month return of a three-month Treasury bill less the
one-monith return of a one-month bill. Campbell (1987) finds that such
measures of the short-maturity term structure can predict monthly returns in
both the bond and the stock markets,

PLEV is the inverse of a detrended price level of common stocks, a
variable studied by Keim and Stambaugh (1986). Such a variable is highly
correlated with the aggregate dividend yield, a variable studied by Fama and
French (1988b), Poterba and Summers (1988) and others. Fama and French
{1989) argue that dividend yields and related variables may capture cyclical
patterns in expected returns related to business conditions.

TB is the nominal, one-month Treasury bill rate. The ability of short-
term bills to predict monthly returns of bonds and stocks is documented by
Fama and Schwert (1977), Ferson (1989) and others.

The predetermined variables used in the monthly regressions follow

: o s . 19 :
previous empirical work on predicting portfolio returns. There is a

19 . . : :
When we examine daily portfolio returns, the instruments are a

constant, dummy variables for Friday, Monday, and January, the return of the
CRSP equally-weighted stock index lagged once and thrice, and the return of
the equally-weighted index of the Dow Jones 30 stocks lagged twice. This

predictive model is examined by Ferson and Keim (1984) over a shorter sample
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natural concern about predictability uncovered through collective "data
snooping” by a series of researchers.20 However, some evidence to support
the view that the predictability is not spurious is available from studies
using internatiocnal data.21 Furthermore, Ferson and Harvey (1990) found that
beta pricing models using a set of five specific economic risk factors could
"explain" much of the predictability in monthly U.S. data. Some theoretical
support for the predictability is also available, For example, Grossman
(1981) argued that the parameters of the CAPM should be conditional on the
prices of assets. Bossaerts and Green (1989) developed a model in which
conditional expected returns are inversely-related to the price of an asset.
Kandel and Stambaugh (1990) developed a model economy in which a default-

related yield spread and a measure of the term structure slope, track time-

varying expected risk premiums.22

period. Our results for more recent data therefore provide some out-of-
sample evidence on the specification.

20 Such concerns are raised by Merton (1985) and Lakonishok and Smidt

(1988), and analyzed by Lo and MacKinlay (1990b).

21 Cutler, Poterba and Summers (1988) found that dividend yields have
predictive power for future stock returns in many countries. Campbell and
Hamao (1989) found that predictable components of bond and stock returns
were highly correlated between the U.S. and Japan. Harvey (1990) found that

a related set of lagged instruments for the U.S. had predictive power for
stock returns in many countries.

22 X . : .
We have replicated many of our tests using alternative choices for

the monthly instruments. We replaced the price level variable PLEV with a

dividend yield variable, following Fama and French (1988b) and others. We

also examined a default-related yield spread similar to Keim and Stambaugh
(1986). None of the broad features of the monthly results are affected by

these alternative choices of instruments.
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C, Regression Estimates and Dlagnostics

Our monthly regression model takes the following form:

R =a + 68 EW . +6 HB3 . +3§

ot o p1%¥e o1 02 PLEVt_ + & ,Th + & DJANt + U‘it’ {(11)

p3 1 pa4 Tt-1 pS

where DJANt equals one if month t is January and zero otherwise.

Table III reports OLS estimates for regression (ll), with
heteroskedasticity-consistent t-statistics, for selected size-based and each
industry-grouped stock portfolio, the government bond and the junk bond
portfolio for the 1968-1987 subperiod. (To conserve space, we report
estimates only for the most recent subperiod.) The adjusted R-squares of
the regressions range from less than 1% to over l4% across the portfolios.
The coefficients of the regressions are similar to the findings of other
studies over similar periods. For example, the inverse of the price level,
PLEV, enters with a positive coefficient and TB enters with a negative
coefficient in all of the regressions for 1968-1987. The January dummy is
prominent in the regressions for the smaller firms and the Junk bond, but is
less important for most of the industry portfolios. The other variables have
more complex patterns across the portfolios.

Recall that the restrictions of the latent variable models under H0 and
Hl [equation (4)] imply that the regression coefficients, including the
intercept, for all of the test assets are linear combinations of the
coefficients for the reference assets. The rich patterns in the coefficient
estimates and the R-squares in Table III suggest that the sample design
should provide some power. We conduct tests of various linear hypotheses on

these coefficients, which confirm this impression. The tests reject, for
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most of the instruments and subperiods, the hypotheses that the coefficients
are zero or are equal across the portfolios.

Tinic and West (1984), following earlier observations of Rozeff and
Kinney (1976), suggest that the expected market risk premium is not
different from zero in months other than January. Their tests are based on
sample average returns (i.e., estimates of unconditional expected returns)
and a specific market proxy. If expected risk premiums are zero in months
other than January, then the difference between the expected returns on two
portfolios should be zero and the regression coefficients for each portfolio
on the predetermined instruments should be the same, given that the January
dummy variable DJANt = 0. Such a test is not dependent on a specific market
proxy, and it should be more powerful to detect nonzero risk premiums if
conditional expected returns move over time.

We conduct tests of the hypothesis of zero expected risk premiums
outside of January. The tests are constructed by forming the differences
between the returns of each portfolio and a reference portfolio, which is
the first asset. The return differences are regressed on a constant and the
predetermined variables TB, HB3, EW and PLEV, and these instruments
muitiplied by a dummy variable for January. The hypothesis is that the
coefficients on the variables without the dummy are jointly equal to zero.
The hypothesis is examined using a standard, heteroskedasticity-consistent
Wald test. The tests strongly reject the hypothesis for each sample of

assets in every subperiod, both in the daily and the monthly data. The

23 Similar results were found in the daily data. Examining the

coefficients of the predictive regressions in the daily data revealed a more
complex pattern of the coefficients across the industry portfoliocs than in

the size portfolios, where many of the coefficients vary smoothly across the
size spectrum.
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evidence shows that the Dow Jones 30 common stocks, the size and the
industry portfolios all display cross-sectional dispersion in expected
returns and nonzero expected risk premiums, both in January and in

non-January months,

B. Tests of Asset Pricing Models

Table IV summarizes the tests of the latent variable models using
monthly data for the size and industry portfolios. In contrast tc the case
of the DJ30 stocks, the single latent variable model (K=1) is strongly
rejected under HO’ in each of the 240-month subperiocds, using both the LRT
and the IMT. Rejections of the K=2 latent variables models are also
indicated, under HO’ and the test results are similar for the size and the
industry portfolio samples.za There is also evidence against HO, even when
K=3. The LRT and the IMT reject the K=3 model at standard significance
levels, although the industry portfolio design provides the stronger
evidence. Using daily returns of the size and industry portfolios, we found
similar results.25

Foerster's (1987) Monte Carlo experiments indicate some tendency for
both the LRT and the LMT to reject HO too often using samples as large as
480 monthly observations. Adjusting for small sample bias on the order of

that suggested by Foerster, the rejections of K=1 latent variable under Ho

24 To assess how Influential the junk bond return is for these

rejections, we replaced the junk bond portfolio with the high grade

corporate bond return series from Ibbotson Associates, as provided by CRSP,
and we obtained similar results.

25 X . . .
In the daily data there was little evidence against H,, K=3 using

the size portfoliec design, but K~3 was rejected at standard significance
levels using the industry portfolios.
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reported in Table III are not reversed.

1 and H2’

using the GMM]1 and GMM2 test statistics respectively. Recall that these

The right-hand columns of Table IV summarize the tests for H

tests examine latent variable models, with K=1,2 and 3 factors, while

relaxing the assumptions that the conditional covariance matrix of the

returns is fixed (under both H1 and HZ) and that the conditional expected

returns are given by linear regressions with fixed coefficients (under HZ)'

The tests reject a single latent variable (K=1) under both Hl and H2 at

standard significance levels. The rejections are not as dramatic as the

rejections under HO' and they occur only in certain subperiods. There is no

strong evidence that more than two or three latent variables are required,

under H1'27

The GMM2 test statistic, under H2' produces smaller p-values in every

case than does the GMM1 test statistic, despite the weaker assumptions of H2

compared with Hl' This suggests that the GMM2 test statistic has higher

& Foerster (1987) studies a system with K=1, L=7, and N=10 size-based
portfolios. With 500 simulations of this system under the null hypothesis
H,, he finds that the largest differences between the asymptotic and the
simulated p-values occur near the 0.250 tail area of the asymptotic
distribution, where the LMT (LRT) overrejects with tail area of 0.314
(0.322). Using a critical value from the asymptotic distribution for a size
of 0.050, the IMT (LRT) produce simulated rejection rates of 0.068 (0.084).
When the size of the test is nominally set at 0.010, the simulations reveal
no bias in the rejection frequencies. Adjusting the test statisties in Table
IV according to Foerster’s simulation results does not change our
inferences. In our daily data samples, the large numbers of observations
imply that the distributions of the test statistics should be
well-approximated by the asymptotic distributions.

Given the strong rejections of H, against a vague alternative and

the evidence against the alternative Hl’ we do not report the AJ statistics
in Table IV.
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power.28 The rejections of K=2 and K=3 implied by the GMM2 test statistics
are driven by especially large values of the statistic in the second
subperiod (the smallest p-value in the first and third subperieds is 0.09),

The evidence confirms the rejection of a single latent variable model,
and shows that the evidence against the model is robust to both conditional
heteroskedasticity and to any assumption about the functional form of the
conditional expectations. Furthermore, the evidence suggests that when the
statistical methods allow for conditional heteroskedasticity in the returns,
then a small numbex of latent variables may be able to capture the
predictable variation in the asset returns. This is encouraging for the
potential usefulness of simple, linear asset pricing models. However, there
is some evidence of more complex patterns in the expected returns,
especially in the industry portfolios, and the rejections of the two- and
three-iatent variable models under H., which imposes homoskedasticity, begs

0!

further explanation.

C. Extensions of the Tests29

We examine several modifications of the latent variable models’

restrictions in an attempt to learn more about what is driving the

28 .  ed .
Recall that the GMM1l test examines restrictions on the regressions

of the assets’' returns on a set of predetermined variables. Since the
explanatory power of these regressions is low (see Table III), the error
variances are similar in magnitude to the variances of the asset returns.
Higher power is expected under the GMM2 test because the test asset returns
are "regressed" in this test on the contemporanocus values of the reference
asset returns, and the error variance is therefore substantially smaller
than the error variance of the GMM1 test. A smaller number of equations are

also involved for a given asset sample and number of latent variables in the
GMM2 test.

29 . . . . .
The resuits discussed in this section are available upon request to
the authors.
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rejections of the single latent variable models and the higher order models
under HO. We first allow the regression intercepts to be unrestricted in
each equation. If the model can be rejected with unrestricted intercepts,
we conclude that differences across assets in the predictable component of
returns is important. If a rejection is not observed when the intercepts
are unrestricted, it suggests that the cross-section of unconditional mean
returns is important. The results using both the size and industry
portfolios with unrestricted intercepts are similar to the
restricted-intercept results. This is the case in both the daily and in the
monthly data. Differences between the structure of unconditional and
conditional return variation do not appear to be a driving factor in the
rejections.

A second extension of the tests allows for the possibility that the
size portfolios’' conditional betas have seasonal shifts. Rogalski and Tinic
(1986) and Keim and Stambaugh (1986) suggest that betas may shift in
January. Such a model can be examined by a simple modification of the
cross-equation restrictions. Assume that the "true” beta coefficients
follow a simple switching model: Betas in January (bij), are possibly
different from betas during the rest of the year (bij). We modify the
predictive regressions in the same way that we did to test for nonzero
expected risk premiums in months other than January. Specifically, the
regressions now include the original instruments and additional interactive
terms that result from mulitplying each of the original instruments by the

January dummy, The restrictions on the coefficients of these regressions

30 Campbell (1987, table 4) also finds little difference in tests with

the intercept restricted or unrestricted, using a different sample of
monthly returns and instruments.
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[equation (4)] are modified. We estimate, possibly different, relative beta
coefficients (chj) in January and for the other months (cNJij). In tests
using either daily or monthly data, we find that the models with more than
one latent variable (K=2 and K=3) are no longer rejected under HO when betas
are allowed to be different in January.3l Thus, the rejections of models
with more than a single latent variable for the size portfolios, under HO'

can be explained by allowing for seasonal shifts in the conditional betas.

IV. Concluding Remarks

This paper examines the behavior of conditional expected returns over
time on common stocks and bonds, extending the methods of Gibbons and Ferson
(1985). We include an expanded sample of daily returns, monthly returns and
instrumental variables for the market’'s predetermined conditioning
information. We generalize the test methodology to examine the separate
elements of the joint hypothesis, in order to determine the source of
rejections. Gibbons and Ferson (1985) did not reject a single latent
variable model, but we find that a single latent variable model can be
rejected for the same sample of assets studied by Gibbons and Ferson (the
Dow Jones 30 common stocks), when the time period is extended. The
rejections are robust to conditional heteroskedasticity and to any
assumption about the functicnal form of conditional expected returns.

The evidence suggests that two time-varying premiums are needed to
"explain" the expected returns of the Dow Jones 30 common stocks, in a

constant-beta model. In tests using size and industry portfolies, with

31 The only exception to this is the 1963-68 subperiod for the DJ30,

where a two-latent variable model is rejected at standard significance
levels,
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either monthly or daily data, we find similar results. The tests indicate
that more than a singie premium is needed to model expected returns, but
there is no evidence of more than two or three latent variables in the time-
varying expected returns. If the conditional betas of the size portfolios
are aliowed to display a January seasonal, we reject a single-premium model
but do not reject a two premium model. Finally, there is evidence that
expected risk premiums are nonzero and differ across portfolios, even in
months other than January.

We interpret our results as optimistic for the potential usefulness of
simple, linear asset pricing theories to capture the predictable variation
of security returns over time. A small number of sources of predictable

variation seems to be indicated, and interestingly, the results for monthly

and daily returns are broadly similar.
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TABLE I

Ssummary statistics and predictive regression results for daily rates of return
for an equally-weighted portfolio of the Dow Jones 30 Common Stocks, including

overall, January, February-December, Monday and Friday averages for each of four
subperiods.

Panel A: Mean Daily Return X 104 (standard error X 10A)

Time Period 1963 to 1968 1969 to 1973 1974 to 1979 1980 to 1985
All days 4,75 (1.49) 0.99 (2.46) 3.48 (2.47) 6.58 (2.42)
January 13.46 (4.52) -3.16 (6.46) 22.47 (9.38) 13.34 (9.49)
Feb-Dec 3.93 (1.58) 1.37 (2.62) 1.71 (2.53) 5.95 (2.50)
Monday -10.02  (3.%54) -23.09 (6.04) -0.36 (6.05) -2.70 (6.27)
Friday 9.35 (2.78) 13.10 (5.21) 9.23 (5.23) 11.27 (4.82)
Panel B: Regression Results for the regression model:b
Rit - 610 + 6, lDt + EiZRVMt_l U, t=1, ..., T. (%)
Time Period 1963 to 1968 1969 to 1973 1974 to 1979 1980 to 1985
Adjusted R-squared .0438 .1068 .0414 .0064
2 .009 .050 -.001 -.009
Panel C: Regression Results for the regression model:°
m

Rit - 610 + ailDt + sizRVHt_l + SiSDJANt tu, bt i,..., T. (10)
Time Period 1963 to 1968 1969 to 1973 1974 to 1979 1980 to 1985
Adjusted R-squared 0446 .1062 .0434 .0060
2 .010 .050 -.001 -.009

g Tge subperiods have 1484, 1258, 1514 and 1504 observations,respectively.

D. is equal to one if day t is Monday and zero otherwise, and RVM is the
lagged return on the CRSP value-weighted index. Py is the first ordér
autocorelation of the regression residual.

DJAN is a dummy variable equal to one if day t is in January and zero otherwise.



TABLE II1
Tests of Asset Pricing Models with K=l and E=2 Larent Veriables.

Daily Data for the Dow Jones 30 Common Stecks are used. The model is:

T, - 261 + £y
r2 - Zﬁlc + 52,
'C =2,

where r=(r.,r.} is a vector of monthly returns, Z ls a vector of predetermined
instrumental Variables, and 2 is a vector of ones. 51 and C are parameters. The
number of cbservations for the subpericds are:

1963-68 1487
1969-73 1262
1974-79 1518
1980-85 1519

The IRT and IMT statistics assume that the covariance matrix of the error cerms
is fixed. The GMMl statistic is the minimized value of the Generalized method of
moments criterion funccion for the system. based on the implication of the model
that the error term u=~(e,,e,) has conditional mean zero given the instruments Z,
The orthogonaiity condition tested is E(u’Z)=0. The AJ statistic examines the
null hypothesis of the LRT and LMT tests, against the alternative hypothesis, H
by appending additionai moment conditions to the,system. The moment conditicns
are of the form: ¢ = u'~ - g", E(e|2)=0, where ¢° is a vecror of the conditional
variances of the individual asset returns, which are hypothesized to be consctant,
and (.2) denotes the element by element squares. The GMM2 statistic is the value
of GMM criterion function for the reformulated model:

n = r2 -, C,

1
2'C = 2.

In the first panel, the instruments are a constant, the lagged return on a value
weighted stock index and a dummy variable for Monday. In the second panel, za
dummy variable for the month of January is included as an additional instrument.

The right-tail probability values for the test statistiecs are reported in the
tabie.

No. latent IRT IMT aj GMM1 GHMM2

Yars Subperiod
1 1963-68 0,125 0.143 0.586 0,362 0,291
1 1969-73 0.645 0.666 0.069 0.675 0.268
1 1974-79 0.254 0.273 0.000 0.565 0.350
1 1980-85 0.013 0.017 na 0.036 0.030
1 1963-852 0.000 $.000 0.001° 0.221 0.048
2 1963-68 0.977 0.978 0.455 0.987 0.987
2 1969-73 0.863 0.869 0.088 0.940 0.907
2 1974-79 0.621 0.631 0.000 0.802 0.724
2 1980-85 0.903 0.907 0,020 0.980 0.972
2 1963-852 0.992 0.993 0.000 0.999 0.999

Tests including a January Dummy Variable in the Instrument Sec:

No. Latent IRT LMT aJ GMM1 GMM2

Vars, Subperiod
1 1963-68 0.000 0.000 0.018 0.497 0.436
1 1969-73 0,846 0.861 0.023 0.703 0.344
1 1974-79 0.002 0.003 0.001 0.329 0.077
1 1980-85 0.022 0.030 na 0.096 0.005
1 1963-85° 0.000 0.000 0.000° 0.281 0.011
2 1963-68 0.001 0.002 0.009 0.976 0.614
2 1969-73 0.926 0.931 0.000 0.890 0.839
2 1974-79 0.268 0.288 0.000 0.681 0.257
i 1980-85 0.944 0.948 0.000 0.991 0.862
2 1963-852 0.999 0.999 0.000 0.999 0.814

a ] .
5 The aggregate test scatistic sums the chi-square values across the subperiods.

The &J statistic 1s not applicable when the alrernacive hypothesis is rejected
Ey the GMM1 test statistic.

The aggregate test statistic is based on the first three subperiods only.



TARLE III

Predictive regression results for monthly rates of return for size- and induscry-
grouped common stock portfolios. The data are for 1968-1987 (240 observations).
Ordinary Least Squares regression coefficients are shown, with
heteroskedasticity-consistent t-statistics in parentheses.

Regression Results for the regression model:?

Rpt - c'p * SplTBt-l * spZHB3t-1 * 693Ewt-l * SpAPLEv:-l * SPSDJANE M e (11}

Por:foliob ) HB3 EW PLEV DJAN adj. R2 £y

Decile 1 -3.350 -3.17 0.16 0.04 0.10 l4a.0x -0.04
(-2.18) (-0.20) ( 1.67) ( 2.14) ( 3.01)

Decile 2 -0.51 0.46 0.13 0.05 0.07 12.4 -0.00
(-2.36) { 0.59) { 1.84) ( 2.65) (2.79

Decile 5 -0.48 0.57 0.11 0.04 0.04 7.5 0.01
(-2.67) ( 0.79) ( 1.89) ( 2.58) { 2.04)

Decile 10 -0.36 0.95 0.04 0.02 0.01 2.7 -0.07
(-2.33% { 1.42) { 0.72) (1.8 ( 0.0%)

Petroleum -0.43 0.58 0.02 0.02 -0.01 Q.7 -0.03
(-1.8) ( 0.58) ( 0.27) { 1.66) (-0.49)

Fin/RE -0.33 0.49 0.01 0.03 0.01 0.7 0.05
(-1.90) { 0.75) { 0.22) ( 1.79) ( 0.27)

Cons. Dur. -0.54 1,51 0.11 0.04 Q.01 6.9 -0.01
(-31.0M ( 1.82) (1.97) { 2.53) ( 0.60)

Basic Ind. -0.36 1.01 0.06 0.02 0.01 2.0 -0.08
(-2.17) { 1.51) ( 0.96) ( 1.39) ( 0.39)

Food/Tob. -0.23 1.35 0.03 0.02 0.00 2.3 0.04
(-1.50) ( 2.37) ( 0.42) ( 1.50) ( 0.34)

Constr. -0.61 0.91 0.13 0.04 0.02 5.9 -0,00
(-3.28) ( 1.15) ( 2.28) ( 2.32) { 0.85)

Cap. Goods -3.50 1,20 0.12 0.03 0.01 5.6 -0.03
(-3.10) ( 1.59) (1.7 (1.96) ( 0.45)

Trans . -0.51 1.52 0.12 0.03 a.02 5.4 -0.01
(-2.55) { 1.80) (1.67) ( 2.05) { 1.04)

Utilities -0.19 0.19 -0.05 0.02 0.02 2.9 4,05
(-1.52) (0.43) (-0.95) (2.2 ( 1.69)

Textiles -0.29 1.19 0.08 0.02 0,02 2.0 0.11

/Trade (-1.66) ( 1.58) ( 1.17) ( 1.5&) (0.77

Services -0.50 1.89 0.11 0.04 0.02 5.3 0.05
(-2.17) (2.12) ( 1.47) ( 2.19) ( 0.79)

Leisure -0.54 1.76 0.17 0.04 ¢.01 6.3 0.07
(-2.57) ( 2.14%) (2.2 ( 2.19) ( 0.26)

Govt. Bond -0.04 0.05 -0,07 0.01 -0.01 1.1 0.03
(-0.26) { 0.98) (-1.8) ( 1.67) (-1.18)

Junk Bond -0.12 -0.40 0.01 0.02 0.02 5.0 0.13

-1.18)  (-1.12) € 0.39) ¢ 3.24) ¢ 3.47)

* is the one month lagged return of the equal-weighted NYSE index from CRSP,
HBl is the one-month return of A three-month Treasury bill less the one-monch
return of a one-monch bill. PLEV {s the inverse of a detrended price level of the
S&P 500 stock index. TB is the nominal, one-month Treasury bill rate. DJAN isza
dumey variable equal to one if day t 1s in January and zero otherwise. adj. R is
the adjusted R-square and 2% is the first order autocorrelation of the regressgsion
esidual.

Decile 1 is the smallest common stock portfolio and Decile 10 {s the largest
stack portfolio; a subset of the ten decile portfolios are shown.



TABLE IV

Tests of Asset Pricing Models with K=1, 2 and 3 Latent Variables.

The model is:
L 261 + £
r2 - zalc + 52‘
2'C = £,

where r=(r. ,r.) is a vector of monthly returns, Z is a vector of predetermined
instrumental variables, and 2 Is a vector of ones. §, and C are parameters. Each
twenty-year subperiod has 240 monthly observations. e LRT and IMT statistics
assume that the covariance mactrix of the error terms is fixed. The GMM1 statistic
is the minimized value of the Generalized method of moments criterion function
for the system, based on the implication of the model that the error term

Um{ g ,cz) has conditional mean zero given the instruments Z. The orthogomality
cond%tion tested is E{u’Z)=0. The GMM2 statistic is the value of GMM c¢riterion
function for the reformulated model:

n = r2 -, G,

1
2'C = 1.

The instruments are a constant, the detrended price level of the Standard and
Poors stock index, the level of the one-month treasury bill, the lagged spread of
a three-month over a one-month bill, the lagged return of the CRSP equally-
weighted stock index, and a dummy variable for the month of January. The righe-
tail probability values for the test statistics are reported in the table.

No. Latent LRT IMT GMM1 GMM2
Varis Subperiod Agsets
1 1928-47 10 Size, GB, G, 000 a,000 0.058 0.049
1 1948-67 Junkret 0,000 0.000 0.053 0.032
1 1968-87 0.001 06.003 0.252 0.198
1 1928-87% 0.000 0.000 0.0Ls 0,007
1 1928-47 12 Industry, 0.000 0.000 0.301 0.252
1 1948-67 GB, Junkret 0.000 0.000 0.063 0.004
1 1968-87 0.009 G.024 3.369 0.227
1 1928-872 0.000 0.0Q0 0.091 0.009
2 1928-87% 10 Size, 0.000 0.000 0.208 0.033
a GB, Junkret
2 1928-87 12 Induscry, 0.9500 0.000 0.667 0,013
GB, Junkret
3 1928-87% 10 Size, 0.019 0.031 0.567 0.069
a GB, Junkret
1 1928-87 12 Industry, 0.001 0.001 0.241 0.017

GBR, Junkret

? The aggregate test statistic sums the chi-square values across the subperiods.
Only the aggregate statistic is shown for the K=2 and K=3 models.



