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Abstract

Projects with negative expected value cannot obtain financing in competi-
tive capital markets if all potential investors are risk neutral and have
identical beliefs about the distribution of the project’s net revenue. We
present a series of examples with heterogenecus beliefs in which it is possible
for a project to obtain financing even though all investors in the project
believe, conditional on the project being undertaken, that the project has a
negative expected value. An important feature of the examples is that the
differences in beliefs are due only to differences in information, and are not

simply arbitrary unexplained differences in opinions.
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[. Introduction

Projects are financed in competitive capital markets by selling securities
to investors to raise capital. Because securities are claims on a project’s net
revenue, risk neutral investors will not buy the securities of projects that have
negative expected net revenue. This result--that projects with negative expected
value cannot obtain financing--holds only if all potential Iinvestors have
identical subjective distributions for the project’s net revenues. If investors
have different subjective distributioms for net revenues, then it is possible
for a project to obtain financing even though all investors in the project
believe, conditional on the project being undertaken, that the project has a
negative expected value.

In this paper we develop an information-theoretic model of project financ-
ing and present examples in which all investors believe that a project has a
negative expected value if undertaken, and yet the project is financed by these
investors. While it is crucial that investors have heterogeneous beliefs, it
is noteworthy that in this framework the differences in beliefs are due only to
differences in information and are not simply arbitrary unexpiained differences
in opinions. Investors receive different pieces of information and are sophis-
ticated in their use of this information to obtain Bayesian posteriors. If the
investors could credibly pool their information, they would agree on the distri-
bution of the project’s net revenues. However, in our model there is no mechan-
ism by which investors can pool their information, either directly or indirectly
through information-revealing behavior. Thus, the differences in beliefs persist
in the security market equilibrium, which makes it possible for projects with
negative expected value to obtain financing.

The model we develop is best viewed as a model of initial public offerings.

An entrepreneur has access to a project with uncertain net revenues and must
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obtain external financing. The entrepreneur offers a group of securities for
sale. The prices of these securities, as well as their payoff characteristics,
are set by the entrepreneur. Investors, who are each so small that the capital
market is competitive, decide which, if any, securities to subscribe to., If
investors believe that a security is priced too high, they will not subscribe
to the security, and the project does not proceed. If investors think that the
security is priced correctly, or even underpriced, then they will subscribe to
the security. Because the price of the security is set before investors act in
the capital market, the price of the securities cannot reveal information
possessed by investors.

Why will investors subscribe to securities of a project that they think
has a negative expected value? The answer is that although securities are claims
on a project’s net revenues, the value of subscribing to a security can differ
from the expected value of the project’s net revenue. We explore Ctwo sources
of a wedge between the expected value of a project and the expected value of
subscribing to its securities. First, if a security is oversubscribed, the
available securities are allocated to subscribers according to a random rationing
scheme. Because the probability of acquiring a security after subscribing to
it differs in different contingencies, there is a wedge between the expected
value of subscribing to a security and the expected value of the project’'s mnet
revenues, even if there is only one type of security. We present an example with
one type of security in which investors not only believe that the proiect has
negative value, but also know that all the other investors believe that the
project has a nmegative value. The rationing in this example (and in some of our
other examples) is perverse, in that securities with negative value are rationed

while securities with positive value are not.
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A second wedge arises if a project is financed by two or more different
types of securities. Although the bundie of all securities is a claim on the
project’s net revenues, different types of securities are different state-
contingent claims a project's net revenues. With heterogeneous beliefs, diff-
erent investors will subscribe to different securities and thus finance the
project even though no single investor would want to hold a bundle of all of the
project’s securities. In the example illustrating this wedge, only securities

with positive value are rationed.

1I. An Information Theoretic Model

A. The Project and the Securities

Consider a risk-neutral entrepreneur who wants to raise funds to finance
a project with a publicly known cost G and unknown (present value of) revenue
x = 0. We denote by & = {Fg:s=1,...,5) the finite set of possible distribution
functions of the project's revenue x. Let p(s) be the probability that the
project’'s revenue distributicn is Fg, so that p is the prior distribution on &.

The entrepreneur has no funds of his own to invest and therefore must raise
funds by selling securities.’ The entrepreneur offers N types of securities for
sale. Security 1 is a residual claim on the project’s net revenues and thus is
equity. The entrepreneur retains a fraction o of the firm’s equity, and the
remaining fraction (l-¢) is sold to external investors. The entrepreneur does
not hold any of the other securities; they are sold entirely to external

investors.

The entrepreneur offers securities through a (risk-neutral) investment
bank. Rather than study the relationship between the entrepreneur and his
investment bank, we will treat the entrepreneur and the investment bank as a
single unit with access to the same information.
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Each security is characterized by a price and a payoff function. A unit
(Lebesgue) measure of each security is offered for sale to extermnal ilnvestors.
The total amount of capital raised by selling security n to external investors
is p,. Since the entrepreneur retains a fraction ¢ of the project’s equity, p;
is the amount paid by external investors for (l-g) of the project’s equity
(security 1). Since all of the remaining securities are sold entirely to
external investors, p, is the total amount paid by external investors for all of
security n, nm = 2,...,N.

Each security specifies the aggregate payment to the owners of the security
as a function of revenue. In particular, y,(X}, n = 1,...,N, is the amount
received by the owners of security n when revenue is Xx. Because external
investors own only a fraction (l-o) of the first security, they pay p; for this
security and receive a payoff (l-o)y,(x). For the remaining securities, external
investors pay p, and receive y,(x).

In order for the project to be undertaken, the funds raised by the sale
of securities. ),p,, must be sufficient to cover the known cost of the project,
C. Letting ¢ be the amount of excess capital raised by the sale of securities,
the project will be undertaken only if
(L) 6 = 3,ps - C =z 0.

If excess capital is raised in the public offering, then the entrepreneur
can take m (as a supernormal salary, for instance) subject to the restriction
that
(2 0=nr =< o.

after the project’s revenue, x. is realized, the project has funds equal
to X + ),pn - C - 7. These funds are distributed to the ocwners cf the securities
according to the pavoff functions v,. Because all of the available funds are

distributed we have
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(3) To¥a(X) = X + Jppy - C - w20,

The amount of funds available on the right hand side of (3) is nonnegative
because x = 0 and because (1) and (2) imply that ),p, - C - 7 = 0. Since the
amount of funds available is nonnegative, it is feasible to require that the
payoff functions satisfy y,(x) = 0, for all x 2 0. n=1,...,N. This restriction
corresponds to limited liability: no security owner can be forced to pay an
additional amount after purchasing the securicy.

B. The valuation of securities

Because all investors are risk-neutral, the value of any security is the
expected value of its payoff minus the amount paid for the security. If the
distribution of revenue is known to be F,, then the expected payoff to external
owners of security 1l is (1—a)fyl(x)dFs(x). Since external investors pay pi in
aggregate for security 1 (equity), their valuation of this security is
(&) vi(s) = {1-0) [y (x)dF(x) - p;.

External investors receive all of the payoffs to securities 2,...,N,
because the entrepreneur does not retain any fraction of these securities. The
value of security n to external investors is
(5) va(s) = [ya(x)dF,(x) - py, n = 2.....N.

The entrepreneur’'s expected net benefits come from two sources. First,
the entrepreneur retains a fraction ¢ of security 1; second, the entrepreneur
may receive a supernormal salary = if excess capital is raised. Thus, if the
entrepreneur knows the distribution is F;, the expected value of the
entrepreneur’s net benefits, vg{s), is
(6) ve(s) = ofyi(x)dF (%) + m.

Equations (4)-(6) give the values of all of the claims on the project.
We can relate the values of these claims to the expected net revenue of the

project, which is [{x-C)dF.(x) if the distribution is F,. First, cbserve from
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(3) that x - C = 7 + )g[va(®)-pa], for all x. Integrating both sides with
respect to the distribution function F,, we obtain f(x—C)dFs(x) = T +
E;f[yn{x)—pn]dFs(x). Using equations (4)-(6) to simplify, we obtain

(73 J(x-C)dF (%) = va(s) + Jova(s).

Equation (7) states that the expected value of the project equals the total
valuation of all of the securities held by external investors plus the value of
the claims held by the entrepreneur.

C. Complete and incomplete subscription

When the entrepreneur offers securities for sale, each investor knows the
prices and payoff functions of the securities and, based on his/her subjective
distribution for %, decides which of the securities to subscribe to. An investor
may subscribe to no securities, one security, or many types of securities.
Incomplete subscription occurs when there is at least one security for which
there are insufficient subscribers. In case of incomplete subscription, funds
are not collected from investors and the project does not proceed. Complete
subscription occurs when all securities have sufficient subscribers. If a
security is oversubscribed, it must be rationed. We use a random rationing
scheme in which each subscriber to a security receives one unit of that security
with a probability equal to the reciprocal of the measure of investors subscrib-
ing to that security. That is, if the measure of subscribers to a security is
2, then each subscriber has a 50% chance of getting the security, because the

measure of that security offered for sale is 1.°

“An equivalent nonrandom rationing rule in our setting is that each
subscriber receives an amount equal to the reciprocal of the measure of
subscribers to that security. Since investors are risk-neutral, receiving one
unit of a security with some probability is equivalent to receiving that
proportion of ome unit with certainty. Note that if investors were allowed to
revise their subscription after observing how much of each security they were
able to buy, the two rationing schemes are not equivalent. The investor would
have more information under the alternative nonrandom scheme than under the
random rationing rule we use in the text.



D. Information structure

Assume that the investors can be assigned to M classes of equal size.
Specifically, a typical investor class, denoted by i, is a continuum of unit
(Lebesgue) measure of investors. All investors in a class are identical and have
identical information. To illustrate the role of the information possessed by
different classes, as well as to illustrate some of the definitions that follow,
we begin with an example. In the example, M = 2 so there are two classes of
investors denoted as class I and class II. There are S = 9 possible distribution
functions for x. The information structure is illustrated in Table 1. Investors
in class I only learn which row contains the true distribution and investors in
class II only learn which column contains the true distribution. Thus, for
instance, if the true distribution is Fg (row 2, column 3), class I investors
learn that the distribution is in row 2 and class II investors learn that the

distribution is in column 3.

Tablie 1

class 11 investors learn column

Fy Fa F;

class I
investors F. Fs Fs
learn row

F, | Fg | Fq

The information structure of investor class 1 is described formally as a
partition of &, written P,. In Table 1, the partition of investor class I has
three elements: P, = {[F,F;.F3)., {F,.F5,Fg}, (F; ,Fg,Fg}}; the partition of
investor class II also has three elements: P, = ({(F,,F,.F;}. (F; Fs,Fgl,
{F;,F:.Fg) ). Each investor receives a private signal that indicates which
element of the investor's partition contains the true probability distribution,

F_. For example, if the true distribution is Fg, investors in class I learn that
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the (index of the) true distribution is in {4,5,6}, and investors in class [I
learn that the {index of the) true distribution is in {3,6,9}.° Formally, we let
t;(s) be the element of partition P, that contains the distribution F,. Using
this formalism, we can describe the information structure when the true
distribution is Fg as: t;(6) = {4,5,6) and t,(6) = {3,6,9}.

We use the terms ex ante, interim, and ex post to describe different
information scenarios (not different times). Ex ante refers to the scenario in
which all investors know only the prior distribution p(s) over &. Interim refers
to the scenario in which each investor has received the signal that identifies
which element of his/her partition contains the true distribution. Ex post
refers to the scenario in which the true distribution, F,, is known. Investors
never see the distribution F,, although they eventually see the realization of
revenues X.

We have already discussed the ex ante scenario in which investors know the
prior distribution p(s) over ®, and we have discussed the ex post scenario in
which the distribution of revenue is known. The interim scenario requires
further elaboration. Suppose that each of the 9 distributions in Table 1 has
the same prior probability, so that p(s) = 1/9 for s = 1,...,9. Thus, if the
true distributien is Fy, investers in class I know the distribution has an index
in {4,5,6), and update their priors tc obtain an interim posterior that assigns
a probability of 1/3 to distributions F,, F:;, and Fg, and zero probability to the
other distributions. This interim posterior depends both on the investor class
and the true distribution. Formally, when the true distribution is F,.,
investors in class i know that the distribution is contained in t,(s’) and update

their priors to the interim posterior distribution p;{sit;(s’')), where

"We will use F_ and its index s interchangeably.
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p(5)/Yever syp(8™),  1f s € £,(s"),
(8) pis|ti(s)) = ;
0, if s & t.(s").

E. Investors decisions and equilibrium

In deciding whether to bid for security n, an investor takes account of
the rationing rule which specifies the investor’s probability of actually being
able to purchase a security for which he/she submits a bid. The probability of
obtaining a security depends on how many other investors bid for that security,
so the investor must take account of the equilibrium number of bids for security
n in deciding whether to submit a bid for that security. To formally describe
the role in the investor’s decision of the equilibrium number of bids, we
introduce three concepts: (1) the security demand correspondence: (2) the market
demand for each security; and (3) the set of distribution functions for which
there is complete subscription.

l, security demand correspondence

If the true distribution is F,, investors in class i receive a signal that
the (index of the) distributien is in t,(s). Based on this information,
investors in class i choose which, if any, securities to subscribe to. The
security demand correspondence, £({s,i), describes the set of securities that
investors in class 1 subscribe to when the true (but unknown) distribution is
F.. Formally, £:®xM - ®(N), where ®(N) is the power set of N.® We require that

the security demand correspondence respect the information structure in the sense

®The power set of N is the collection of all subsets of N, Strictly
speaking, since different investors in the same class may choose different
securities, it would be more accurate to represent security demands for a class
i and a distribution F_ by a vector {z(N'))y..y satisfying z(.) = 0 and ZNme(N')
= 1 (the proportien of investors choosing the set of securities N' is z(N')).
The security demand correspondence described in the text assumes that all
investors in a class choose the same set of securities. Note that a security
can only be subscribed to by some, but not all, investors in a class if that

security has a zero value. The more restrictive formulation in the text suffices
for our purposes.
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that if class i's partition pools F, with F,. (s'€t;(s)), then £(s’'.1) = £(s,1),

i.e., it is measurable with respect to the investors’ information partitions.

Table 2
A security demand correspondence for a security offer with one security
investor class I investor class II
£(s,I) £(s,II)
(1} {1) {1} 1 {1} {1} : @
{1) {1} {1) (1} (1} ]
J D ) {1} (1} a

Table 2 shows a security demand correspondence for a security offer with one
security for the example in Table 1. The matrix on the left shows the securities
that investors in class I subscribe to and the matrix on the right shows the
securities that investors in class II subseribe to. For example, if the true
distribution is F5, which is located in row 2, column 2, then investors in both
classes subscribe to security 1, while only investors in class I subscribe to
the security if the true distribution is F;.

2. the market demand function

The market demand function for security n, Qu(s,£), indicates the measure
of investors (i.e., the "number" of investors) that subscribe to security n.
The measure of investors that subscribe to security n depends on the signal
received by each investor class, which depends on the true distributicn, and on
the security demand correspondence, €. In equilibrium, all investors in a class
choose the same set of securities and Q.(s,¢) will be the number of investor
classes that subscribe to security n.

3, complete subscription

An investor’'s subscription to a security can be satisfied only in the case

of complete subscription. Thus, it is important for investors to know when
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there will be complete subscription and when there will be incomplete subscrip-
tion. Let D(&) be the subset of & in which there is complete subscription when
investor behavior is described by the security demand correspondence £. Form-
ally, D(£) = {s:¥n, 31 s.t. n€f(s,i)). We will often suppress the dependence
0of D on £ for notational convenience.

F. The value of subscribing to a security

When the true distribution is F,., investors in class i learn that the
distribution is in t;(s’'), and they know that the project will proceed only if
the distribution is in t;{s’)ND. The D-interim posterigr of investors in class
i is the posterior distribution over the set of distributions ¢, where the
posterior 1s based on t; and is conditional on the project proceeding. The
D-interim posterior distribution pi(s|ti(s')) is given by:
£(8)/Tsrer, (s roP (8", if set;(s')nD,

(9)  puls]ti(s’).D) = :
0, if se¢t {s’)nD.

The D-interim posterior is used by investors in class 1 to evaluate the
expected value of the project’s revenues x, conditional on the project being
financed. This conditional expected value will £figure importantly in our
definitions of efficiency.

What is the expected net value to an investor of subscribing to security
n, conditional on the information that the distribution is in t.(s')? The
probability that the distribution is F_,(x) is given by the interim posterior
pi(s|ti(s')) in (8). If s is not in D, the project is not financed and the
subscription has zere net value. However, if s is in D, an investor has a proba-
bility of 1/G,(s,£4) of obtaining security n. If the investor succeeds in obtain-
ing security n. it has a value of v_(s). Thus, if the true distribution F_ is

in D, the expected value of subscribing to security n is v (s)/Q.(s.£). Weight-
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ing the expected value of the subscription by the conditional probability that
Fs is the true distribution, the expected value of subscribing to security n is

(10) Va(ty(s').§) = Z (Va(s)/Qu(s.6))ps(s|ti(s")).

seti(s' nD

If the expected value of subscribing to security n is positive, then all
investors in class i subscribe to security n; if the expected value of sub-
scribing to security n is negative, none of the investors in class i subscribes
to security n. Note that the expected value of subscribing to security n depends
on the security demand correspondence; investors take account of the market
demand for a security in deciding whether to subscribe to the security.

G. Security Market Equilibrium
Having completed the discussion of investor behavior we can now define a

competitive security equilibrium.

Definition: A securicy offer, which specifies ®, 0, p,, and y,, n=1,...,N, and

4 security demand correspondence £ constitute a {(competitive) security

equjlibrium if
(a) Iapn = C,
(B)  Yeence,vels)p(s) = 0, and
{(c) if for all F,.e®, for n=1.,.,.N,
(1) V(t(s),£) >0 =>n & &(s,1) and

(11) V (£,(s),6) <0 =>n & £(s,1).

Condition (a) states that the funds raised by selling securities to external
investors are sufficient to cover the cost of the project. Condition (b) states
that the entrepreneur has a nonnegative expected value from the project and its

associated securities. Condition (c.i) states that if the expected value of



-13-
subscribing to security n is positive for investors in class i. they will
subscribe to security n. Condition (c.ii) states that if the expected value of
subscribing to security n is negative for investors in class 1, they wiil not
subscribe to security n.

We can illustrate a competitive security equilibrium for the example with
9 possible distributions, one security (equity), and two classes of investors.
The information structure is given by Table 1, with each F; occurring with equal
probability. We assume that the entrepreneur retains ne equity and does not earm
a supernormal salary so that ¢ = m# = 0. Under these assumptions, the expected
value of the project equals the expected value of equity (i.e., f(x-C)dFs(x) =
vi(s) for all s). The security demand correspondence in Table 2, along with the

security valuations in Table 3a, constitute a competitive security equilibrium.

Table 3a Table 3b Table 3c
value of security, market demand function value of subscribing,
[(%-C)dF, (%) = v,(s) from Table 2, Q,(s,£) vi(s)/Q(s.§)
8 2 -4 2| 2 1 4 1 -4
2 -6 3 2|2 1 1 -3 3
-4 3 10 1|1 1|0 -4 3 -

Note that if the distribution is Fs (row 2, column 2}, there will be
complete subscription and both investors will subscribe to the security, despite
the fact that it has a valuation of -6. Why do both investors subscribe to the
security in this case? The answer is that the rationing rule indicates that if
the distributioen is F5, a subscriber has only a 50% chance of obtaining the
security. The rationing is perverse in the sense that the security is rationed
when it has a negative value. but not necessarily when it has a positive value.
Table 3c lists the value of subscribing to the security, which takes into account

the rationing implied by the market demand in Table 3b. Note that the expected
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value of subscribing to the security is positive (1/3) for each class of investor
when the distribution is Fs. There is incomplete subscription in Fg, indicated

by the dash, and so the project is not undertaken in that case.

[1I. Notions of Efficiency

The general question motivating this research is whether a competitive
security equilibrium does an effective job of choosing the appropriate projects
to finance. Does it allow for projects with positive expected net revenues to
obtain financing, while at the same time preventing projects with negative net
expected values from obtaining financing?’ To pose this question more sharply,
we need to introduce varicus concepts of efficiency.

A project is said tec be g ost inefficient at F  if
(11) J(x—C)dFs(x} < 0.

Note that we determine whether a project is ex post inefficient (according
to our definition) before the revenue x is realized.

If the distribution function of revenue were common knowledge, then only
ex post efficient projects would be financed and undertaken. Because the
distributicn function is not common knowledge, we need to introduce alternative
definitions of inefficiency to incorporate the information structure of the
model. We will not be concerned with the inefficiency of the project per se,
but rather with the inefficiency of the security equilibrium. A security

equilibrium is said to be ex ante inefficient if, conditioning only on the fact

‘Our definitions of efficiency rely on the risk neutrality of the agents.
Projects with negative expected value will have some insurance value if the
payoffs to the project are negatively correlated with the market portfolio and
if some agents are risk averse.
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that the project is undertaken. the expected value of revenue minus cost is

negative. Formally, a security equilibrium is ex ante inefficient if

(123 E: a)[[(X-C)dFs(X)][P(S)/[stmP(S’)}] < 0.

Conversely, a security equilibrium is ex ante efficient if, conditioning
only on the fact that the project is undertaken, the expected value of revenue
minus cost is nonnegative. Formally, a security equilibrium is ex ante efficient

if

(13) E:EQ[J(X-C)dFs(X)][P(S)/[Zyenp(s’)]] z 0.

We can also evaluate the efficiency of a security equilibrium conditional
on information received by investors. A security equilibrium is said to be
D-interim inefficient at F,. according to investors in class i if the conditional
expected value of mnet revenue is negative. In forming the conditional
expectation, investors in class i use their information, t;(s’'), and condition
on the project being undertaken. Formally, a security equilibrium is D-interim

inefficient at F.. according to investors in c¢lass i if

(14) z I(x-C)dFs(X)pl(slti(s’),D) < 0.
ser.its'lnD

If investors in class i view the security equilibrium as D-interim
inefficient, then based on their available information, they think that when the
project is undertaken. it will on average incur losses.

The notions of ex ante inefficiency and ex post inefficiency are
unambiguous, in that all classes of investors agree on the questions of whether
a security equilibrium is ex ante inefficient and whether it 1is ex post
inefficient. By contrast, the notion of D-interim inefficiency is investor-

dependent and signal-dependent: for a given distribution F, some investors may
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view the security equilibrium as D-interim inefficient while other investors do
not: also a given investor may view a particular security equilibrium as
D-interim inefficient or not depending on the signal, t;(s), he or she receives.

The various definitions of inefficiency invelve f(x-C)dFs(x). However,
rather than calculating this integral directly, we can determine whether a
security equilibrium is inefficient by using the valuations vg(s), and vy(s), n
=1,...,n. Recall from equation (7) that f(x-C)dFs(x) = vg(s) + z;vn(s), so that
we can replace f(x—C)dFs(x) by vg(s) + Z;vh(s) in the definitions of inefficiency.

Before examining various security equilibria, we state the following

theorem, which is proved in the Appendix.

Theorem 1: Competitive security equilibria are ex ante efficient.

This theorem formalizes the notion that only projects with ex ante
nonnegative expected net revenue will be able to obtain financing from rational
investors.

However, as we now show using the example in Tables 2 and 3, rational
investors can provide financing in equilibria that are D-interim inefficient.
The equilibrium is D-interim inefficient according to both classes when the
distribution is Fs. Recall that the value of the project is equal to the value
of the security. Both classes are willing to subscribe to the security because,
due to rationing, the value of subscribing to the security (1/3 > 0 for each
class) is higher than the expected value of the security (-1/3 < O for each
class). The equilibrium is ex ante efficient, however, having an expected value
(conditional on financing) of 1/2.

Although the project is financed when the distribution is Fs;, we cannot

conclude that there is overinvestment. When the distribution is Fg, the project



-17-
has a positive expected value according to the interim posterior of both

investors and yet the project in that case is not financed.

IV. The Role of Rationing in D-Interim Inefficiency with 2 Classes

In this section we consider a version of the model with two securities and

two classes of investors which further illustrates the role of rationing.

Definition: A partition pair (P,,P,) is weakly multiplicative if, ¥Yt,,ti€P;,

Vt,, t4EP,, TNt * @, tinty = @, tint, # & implies t,Nt; = 2.

Table 4 shows two partition pairs--one weakly multiplicative and one nom-
multiplicative. Investors in class I learn the row and investers in class II
learn the column. An x in a cell denotes that there is a possible distribution
in that row and column; a blank cell indicates that there is no possible

distribution in that row and colummn.

Table 4
Partition Pairs
weakly multiplicative non-multiplicative
x| % x 1% | x
X | x ®x | x| ®
X | X x | %
x| = X | %

The definition of multiplicative is weak in the sense that a stronger

requirement that most of our examples (but not those in Table 4) satisfy 1is



-18-

Yt,€P,, Yr,€P,, tint, # 3.8 If each investor class receives an independent signal
on the true distribution, then the implied partition pair is strongly
multiplicative.

In the Appendix we prove:

Theorem 2: Suppose that there are two classes of potential investors and that
there are two securities in the security offer. If the partition pair is
weakly multiplicative and if the security equilibrium does not involve
rationing, then investors in the project do not believe the equilibrium

is D-interim inefficient.

Note that even though D-interim inefficiency is impossible under the
assumptions of Theorem 2, it is still possible that ex post inefficient projects
are financed.

The example in Table 3 and the example in Section V use perverse rationing
in a central way to generate D-interim inefficiencies. Recall that perverse
rationing occurs when a security is rationed when it has negative value and not
when it has positive value. Theorem 2 suggests that without perverse rationing,
examples of D-inefficiencies with two classes of investors and two securities
cannot arise. This is not true for the case of more than two classes of inves-
tors. We present an example in Section VI in which the information partitions
are strongly multiplicative, the ratiening is never perverse (only securities
with positive value are rationed and all securities with a positive value are
rationed), and yet there is a distribution for which all investors believe the

equilibrium is D-interim inefficient.

*This is implied by Vt,,t}e€P,, Vt,,tjeP,, t,Nt) # @, tint, = 0 implies t,Nt,
# @ and tinNti = 3.



V. An Equilibrium Known to be D-Interim Inefficient by All Investors

We have already shown that it is possible for a project to be completely
subscribed in a competitive security equilibrium even though all investors
believe the equilibrium is D-interim inefficient. In this section we present
an example that goes a step farther: a competitive security equilibrium in which
there is complete subscription when every investor believes the equilibrium is
D-interim inefficient, and every investor knows that every other investor also
believes the equilibrium is D-interim inefficient.

There are 6 equi-probable distribution functions, with indices
{1,2,3,4,5,6}. Investors in class 1 have the partition P, = {{6,1), {2,3},
{4,53}} and investors in class 2 have the partition P, = {{1,2}, {3,4), (3,6})}.
Note that the partition pair (P,,P;) is not multiplicative. There is only one
security (equity) and ¢ = n# = 0 so that vy(s) = f(x-C)dFs(x). The value of the
security (v;(s)), the amount subscribed by investor class 1 (£(s,1)), the amount
subscribed by investor class 2 (£(s,2)), and the market demand for the securlity

(Q;{s)) are shown in Table 3.

Table 5
Non-multiplicative partition pair with one security

Py R i P > L----
P, Cmm e oo a e D o Crma oo oo > Lmm e e - >
3 1 2 3 4 5 )
vi(s) 4 -6 4 -5 11 -5
&(s,1; 0 1 1 1 1 0
£(s,2) 1 1 0 G 1 1
Qi(s) 1 2 1 1 2 1
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It is straightforward to verify that the security demand correspondence
in Table 5 is part of a competitive security equilibrium.? To examine the
question of D-interim inefficiency suppose that the distribution is F, and
consider an investor in class 1. Despite the fact that E(wv;(s)|t;(2)) =
(L/2)(-6) + (1/2)(4) = -1 < 0, the expected value of subscribing to the security
is (1/2)(-6/2) + (1/2)(4) = 1/2 > 0 because the investor will be rationed if
the distribution is F, (note that Q;(2) = 2). Thus investors in class 1
subscribe to the security when the true (unknown) distribution is F, despite the
fact that they believe the equilibrium is D-interim inefficient. Similarly, for
an investor in c¢lass 2, E{vl(s)|t2(2}] = (1/2)(4) + (1/2)(-6) = -1 < 0. Thus,
both investors believe the equilibrium is D-interim inefficient.

Now let’s examine what investors think that other investors think. When
the distribution is F,;, an investor in class 1 knows that the index is either 2
or 3. If the index is 2, then (as we showed above) investors in class 2 believe
the equilibrium is D-interim inefficient. If the index is 3, then investors in
class 2 know that the index is either 3 or 4. In this case, E[vl(s)|t2(3)} =
E[vl(s)|s=3 or 4} = (1/23(4) + (1/2)(-5) = -1/2 < 0. Hence investors in class
1 know that investors in class 2 believe the equilibrium is D-interim ineffic-
ient. Similarly, it is easy to check that (again at F,) investors in class 2
know that investors in class 1 believe the equilibrium is D-interim inefficient.

However, it is not common knowledge that the equilibrium is D-interim

inefficient.!® When the distribution is F;, investors in class 1 cannot rule out

The equilibrium is not unique. Another equilibrium is given by class 1
investors only subscribing when s = 4 and 5, and class 2 investors only subscrib-
ing when s = 5 and 6.

UIntuitively, an event is common knowledge if everyone knows the event
occurred, everyone knows that everyone knows the event occurred, everyone knows
that everyone knows that everyone knows the event occurred and so on. Aumann
{1976] proves the result that agents cannot agree to disagree (l.e., agents
cannot have different posteriors that are common knowledge). The importance of
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the possibility that investors in class 2 think that investors in class 1 believe
the equilibrium in D-interim efficient. In particular, investors in class 1 know
that investors in class 2 may have observed (3,4} in P,, in which case investors
in class 2 cannot rule out class 1 having observed {4,5} from P,. I[f investors
in class 1 did observe (4,5}, they would value the project at E{vl(s)ls=a or 5)

=3 > 0.

VI. Three Classes of Investors

In this section, we present an example that avoids two undesirable features
of the previous examples: (1) The examples depended upon perverse rationing;
{2} The example in Table 5 depends on a nonmultiplicative information structure.
A common formulation of private (or asymmetric) information is to assume that
agents recelve independent signals, which is inconsistent with a nonmultiplic-
ative information strueture. The strongly multiplicative information structure
in the example below allows the natural interpretation that investors in
different classes receive independent signals,

There are 8 possible distributions with indices (1,2,3,4,5,6,7,8}). There

are two securities and three classes of investors. Investors in class 1 have
the partition P, = {{1,2,3,4}, (5,6,7,8)), investors in class 2 have the
partition P, = {{1,3,5,7}, {2,4,6,8)}, and investors in class 3 have the
partition P; = ({1,2,5,6}, (3,4,7,8}}. This information structure is strongly
multiplicative.

The entrepreneur receives a supernormal salary = = 1 and retains 0.5% of
the equity (security 1}, so that v = 0.005., External investors are offered 99.57%

of the equity for a total price of p, = 410. Security 2 is offered to external

common knowledge assumptions are surveved in Binmore and Brandenburger [1987]
and Geanakoplos [1988].
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investors at a total price of p, = 2600. The rest of the relevant data is given
in Table 6. In constructing this table we use vel(s) = o[vy(s) + pil/(l-a) + =,
which follows from (4) and (6): we also use f(x-C)dFs(x) = vg{s) + vi(s) + v,(s),

which follows from (7).,

Table 6
The valuation of securities and expected net revenues, given F,
s o(s) vi(s) vy ($) vg(s) J(x-C) F (dx)
1 0.2 -105 0 2.533 -102.467
2 0.1 -333 345 1.387 13.387
3 0.1 -300 270 1.553 -28.447
4 0.1 312 -303 4.628 13.628
5 0.1 -333 345 1.387 13.387
6 0.1 360 -330 4.869 34.869
7 0.1 312 -303 4.628 13.628
8 0.2 0 -105 3.060 -101.940

The hypothesized market demands for each security, Q,{(s), and the implied
values of v,(s)/Q.(s) are shown in Table 7. Since there is incompliete subscrip-
tion if the distribution is F; or F;, the entries for vo(s)/Qu(s) for s =1 and
8 are given by dashes.

Table 7
Hypothesized market demands and value of subscriptions

5 Qi(s) vi(s)/Q:(3) Qz(s) va(8)/Qz(8)
1 0 - 3 -

2 1 -333 2 172.5

3 1 -300 2 133

4 2 156 1 -303

3 1 -333 2 172.5

& 2 180 1 -330

7 2 156 1 -303

8 3 - 0 -

The value to each class of investor of subscribing to each security,

computed according to equation (10), is shown in Table 8.
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Table 8
Value of subscribing to each security

Investor class 1 Investor class 2 Investor class 3
s Va(ty, &) Valry,8) Vi(ty, £) Va(rg, ) Vi(ta,§) Va(ty,8)
1 -95.4 0.9 -95.4 0.9 -97.2 3
2 -95.4 0.9 0.6 -92.1 -97.2 3
3 -95.4 0.9 -95.4 4.9 2.4 -84 .2
4 -93.4 0.9 0.6 -92.1 2.4 -94.,2
5 Q.6 -92.1 -95.4 0.9 -97.2 3
6 0.6 -92.1 0.6 -92.1 -97.2 3
7 G.6 -92.1 -95.4 0.9 2.4 -94.2
8 0.6 -92.1 0.6 -92.1 2.4 -94.2

Each investor subscribes to security n oniy when the expected value of
subscribing to that security, V,(t,,&), is non-negative. The implied security
demand correspondence is given in Table 9.

Table 9
Security demand correspondence

securities securities securities

that investor 1 that investor 2 that investor 3
subscribes ro subscribes to subscribes to

$ £(s,1) £(s,2) £(s,3)

1 {2} {2) {2)

2 {2} {1} {2)

3 {2} {2) {1}

4 {2} {1} {1}

5 {1} {2} {2)

6 {1) {1} {2)

7 {1} {2} {1}

8 1) {1 {1)

The security demand correspondence in Table 9 is consistent with the
hypothesized market demands, ¢ (s), in Table 7. Thus, the security demand
correspondence is part of a competitive security equilibrium.

Three remarks are of interest at this point. First, there 1is one
distribution function, F;, for which there is complete subscription despite the
fact that all classes of investors believe the equilibrium is D-interim

inefficient. The D-interim inefficiency is not due to perverse rationing as in
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the example in Tables 1-3; in this example, a security is rationed only for
values of s for which the security has a positive value,

Second, the financing scheme in this equilibrium dominates single-security
(160% equity) financing. A single-security equilibrium will result in the
project being financed either when the distribution 1is F; or when it is F;
because F; and Fy; are in different elements of the partition for all investors.
If any investor class buys the sole security when the distribution is F_, then
either F;, or Fy is in the element of that investor's partition containing F,;
thus the investor will buy the security when the distribution is F, or when the
distribution is F;. Thus, the project will be completely subscribed for either
Fy or Fyg. But if the project is financed for F; or F3, the project will be ex
ante inefficient. Because Theorem 1 rules out financing of ex ante inefficient
projects, the project would never be financed by 100% equity.

Third, we have not ruled out the possibility of multiple competitive
security equilibria. However, if there are other competitive security they
cannot be ex post efficient. The only security demand correspondences consistent
with ex post efficiency (described in the Appendix) are not consistent with

equilibrium for this example.

VII. Stocks and Bonds

Up to this point we have examined security equilibria by specifying the
values of vg(s), and v (s) n =~ 1,...,N for all distributions in . Using the
relation in (7), we examined the expected value of revenue minus costs without
explicitly specifying the distributions F, or the payoff functions v,. In this
section. we interpret security 1 as equity and security 2 as debt, and we relate
the valuations v, (s) to the payoff functions y, and the underlying distributiocns

F

5+
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The entrepreneur raises capital equal to p; + p; by selling securities to
external investors. After the entrepreneur receives a supernormal salary x and
spends C to undertake the project, the available capital, denoted K, is
(15) K=p  +p, -7 - C.

After the project’s revenue is realized. the total available resources,
K + x, are distributed to the heclders of securities (including the entrepreneur
who holds a fraction o of the equity).

Bonds promise to pay an aggregate amount R provided that the available
funds, K + x, are sufficient to pay this amount. If the available funds are Less
than R. the bondholders take all that is available. Therefore, the payof¥f
functieon to bondholders is
(16) y2(x) = min{R, K+x].

The stockholders are the residual claimants. If the available resources
exceed the amount that must be paid to bondholders, then the stockholders receive
the excess, K + x - R. However, if the available funds are less than R, then
the stockholders receive nothing. Therefore,

(17) y.1(%X) = max[K+x-R, 0.

Suppose that all of the distributions in ® are members of the exponential
family. For each s, there is a pair of parameters « > 0 and 8 > 0 determining
the density function f(x:a.8) = (L/8)exp({-(x-a)/B] for x > a. The mean and
variance of revenues are E{x} = o + £ and Var{x} = 8°. We can calculate the
value of bonds to external investors by substituting (16) and the exponential
density function into (5). Similarly we can calculate the value of stock to
external investors and to the entrepreneur by substituting (17) and the
exponential density function into (4) and (6). These calculations. which are
straightforward but tedious, vield

(18) v, = (1-0)8 expi -(R-K-a)/8] - Pi.
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(19) vy = K+ a+ 8 - Bexp[-(R-K-a}/8] - p2.
and
(20) vg = of exp[-(R-K-a)/8] + .

In Table 10 we show the values of ¢ and g, that, when substituted into
equations (18) - (20), yield the values of v,(s}, v;(s) and vy(s) in Table 6.
The characteristics of the securities in this case are p;, = 410, p, = 2600, R =
3110, ¢ = 0.005 and n# = 1, and the cost of the project is C = 3000. Thus, the
security equilibrium that we presented earlier for the case with three classes
of investors is an equilibrium when securities have the characteristics in Table
10 and the parameters of the distributions F, are as given in Table 10.

Table 10

Underlying exponential distributions when
R = 3110; K = 9; p; = 410; p, = 2600; ¢ = 0.005; and = = 1,

S a B E{x}

1 1879.873 1017.660 2897.533
2 2727.370 285.817 3013.387
3 2559.,972 41%1.581 2971.553
4 955.623 2058.005 3013.628
5 2727.570 285,817 3013.387
6 866.142 2168.728 3034.869
7 955.623 2058.005 3013.628
8 1589.983 1308.077 28938.060

Table 11 presents, for each wvalue of s, the conditional expectation
E[xlti(s)mD} and conditional standard deviation JVar{x|ti(s)mD} of revenues for
each investor class i, i = 1,2,3. We also show which security investor i

subscribes to (each investor always subscribes to only one security).
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Table 11
Mean and standard deviation of X conditional on investors'’
information and complete subscription
Investor class 3

Investor class 1 Investor class 2

i 1
! 1
s mean s.d. security, mean s.d. security, mean s.d. security
1 2999.5 1223.1 bonds | 2999.5 1223.1 bonds }'3020.5 1273.7 bonds
2 2999.5 1223.1 bonds | 3020.6 1734.0 stock | 3020.5 1273.7 bonds
3 2999.5 1223.1 bonds | 2999.5 1223.1 bonds | 2999.6 1697.2 stock
4 2999.5 1223.1 bonds | 3020.6 1734.0 stock | 2999.6 1697.2 stock
5 3020.6 1734.0 stock | 2999.5 1223.1 bonds ! 3020.5 1273.7 bonds
6 3020.6 1734.0 stock | 3020.6 1734.0 stock ! 3020.5 1273.7 bonds
7 3020.6 1734.0 stock | 2999.5 1223.1 bonds | 2999.6 1697.2 stock
8 3020.6 1734.0 stock | 3020.6 1734.0 stock | 2999.6 1697.2 stock
As we explained in the previous section, all three investor classes believe
the equilibrium is D-interim inefficient when s = 3 (the conditional mean of

revenue E[x‘ti(S)ﬁD} is less than the project cost (3000) for all three investor
classes). When s = 3, all three investor classes have essentially the same
conditional mean of x, yet some of the investors subscribe to bonds while other
investors subscribe to stock. In particular, the investors with relatively low
conditional standard deviation (investor classes 1 and 2) subscribe to bonds
while investors with relatively high conditional standard deviation subscribe
to stocks. Why do investors with high conditional variance buy stocks and
investors with low conditional variance buy bonds? Stocks provide high payoffs
in the event of high revenues x, but the downside risk on stocks is limited.
Once x + K falls below the debt repayment R, it does not matter to the
stockholder how far it falls. Thus, investors who view the distribution as
having a high variance will buy stock if the reason for a low expected value of
x is that there is a lot of weight on very bad outcomes and some weight on very
good outcomes. By contrast, bondholders bear the risk of low values of x but
do not share in the good fortune if x turns out to be extremely high. Investors

who view the distribution as having a relatively small variance will buy bonds
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because their downside risk is limited and they do not care that there is limited

upside potential.

V1. Conclusion and Related Literature

We have shown that if investors have heterogeneous private information,
then competitive security equilibria will sometimes finance projects that every
investor thinks has negative expected net revenue. In this analysis, we have
treated the terms of the securities offered as exogenously given, and we have
simply asked whether these securities will be fully subscribed. In the example
with three classes of investors, the entrepreneur received a supernormal profit
and retained a small share of the equity, so that the entrepreneur profited from
this security offering. Investors also profited from the security offering (in
a D-interim conditional sense) because they willingly purchased the securities
after receiving their private information. The next step in this research
project is to study the design of the menu of offered securities and their
characteristics.

We conclude with a brief discussion of related literature. The closest
finance literature deals with the possibility that stock market prices need not
reflect fundamentals. Allen and Postlewaite [1989], using a similar information
structure to ours, have constructed examples in which the equilibrium time path
of prices in a dynamic trading model involves speculation (i.e., because of the
possibility of selling a security for a capital gain, traders are willing to pay
a higher price for the security than they would if they were obliged to held the
asset forever). In particular, it is possible that all traders know that the
price of a security will fall in the future and still be willing to hold or buy

the security.
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There are also several papers addressing the possibility of trades when

there is asymmetric information about the value of the trades (here the most
relevant paper is Sebenius and Geanakoplos [1983]). Sebenius and Geanakoplos
[1983] take as their starting point the observation that if two people have
different probability assessments about the realization of an uncertain event,
they can design a contingent agreement such as a gamble that offers each of them
a positive expected wvalue. They show that, for any possible contingent
agreement, it cannot be common knowledge that both sides wish to accept that
agreement. In contrast to that paper, as well as Geanakoplos and Polemarchakis
(1982], in our model it is not common knowledge that all investors wish to invest
and there is no repeated exchange of information on the willingness to enter an

agreement.
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Appendix
Proof of Theorem 1: Suppose ((m,0,{p,,v,)).§) is a comperitive security

equilibrium. Define S,, = (seD(£):V (t;(s),&) = 0}. Now,

o
1

< Yilie, o0, 41 Leet 0 Va(8)/Qu(s,€) 1o (s)
Vilses, (Va(8)/Quls,§)10(s)

= TeenLii:ses, ) [Va(8)/Quls,€) 1o (s)

= YeeoVn(8)p(3),
where the first equality follows from an investor’'s types t; being pairwise
disjoint, the second from the assumption that ((m,0,{Pn:¥n)).5) 1s a security
equilibrium (so that VseD, 3i s.t. s€S;), and the third from Q.(s,§) =
|(i:s€S,,)|. This concludes the proof, since Jepp(s)[(x-C)F,(dX) = Yep(s){vg(s)

+ Yova(s)t = 0, 1

Proof of Theorem 2: Since there are two classes of investors, two securities,

and no rationing, we can assume for any F_, that all investors in one class
subscribe to one security and all investors in the other class subscribe to the
other security (otherwise both of the securities have a zero expected value and
the equilibrium is not D-interim inefficient). Without loss of generality, we
can assume that Vs, t,(s)Nty(s) = {s}.1% We need a preliminary lemma. For se€D,
define I,(s) = t,(s)AD, S;(s) = (s"| Is'€l,(s) s.c. s"€l;(s')) and S,(s) = (s"|
Is'el(s) s.t. s"€l,(s')}.

Lemma: If the partition pair is multiplicative, then S;(s) = S,(s) VseD.

' %OLgt P = Zyetﬂswm (s,P{s"). Since the two investors, and so the
equilibrium, cannot distinguish between any two distribution functions in
t;(s)nt,(s), we <can treat the intersection as the single distribution
PﬂEs@tﬂswmzm)P(sr)Fy with prior probability P.
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Remark: This lemma asserts that both classes of investors agree on the
set of distributions that each class believes the other class believes
possible.
Proof of lemma: Suppose that t;nty < D, tint} c D, t£int, € D, and that for
s€t; investor 2 subscribes to, without loss of generality, security 2.
Because of full financing (and hence complete subscription) in tint},
investor 1 buys security 1 in £{. Full financing in t{nt, requires that
in t; investor 2 buy security 2. Similarly, full financing in t,nt}
requires that in t, investor 1 buys security 1. Thus, t,;nt, is contained
in D.

Suppose s" € 5i(s). Then 3s’et;(s)MD s.t. s"€t;(5')ND. Thus, s"&D
and since s’'€ty(s"), we have s'et,(s")ND. Hence, @ = t{s")Nty(s) c D,
Furthermore, since s and s" € D, we have that @ = ti(s)nty(s) C D and @ =
£(s")nty(s™) € D. Since the partitions are multiplicative, t,{s)nty{s")
# @, and from the previous paragraph, t;(s)nt,(s") < D. Thus,
3s"e(t (s)ND)N(t,(s")ND). Since this implies s"€t,(s")ND, s"&S,(s).

A symmetric argument shows that S,(s) is contained in §,(s). ]

Suppose investor 1 buys security 1 when F, is the distribution. Then
Eyelﬂs)p(s‘)vl(s') > 0 and zsﬁlﬂs)p(s'){Vl(s')-vz(s')] > 0. Investor 2 buys
security 2, so Esﬁlﬂs)p(s')vz(s') = 0 and Zye%(gp(s')[vl(s')—vz(s’)] = 0. Full
financing implies that investor 1 buys security 1 for all s"€I,(s) and so
Eyezﬁs")P(s')V1(S') = 0 and Zyellu")P(S'){VI(S')-VZ(S')] > 0. Summing the second
inequality over s" yields (since for s’eS;(s), 3 unique s" s.t. s"€Il,(s),

s'€l {s")):
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(21) Yares. P (s ) [vi(s)-va(s)] =

Loveryiksrer P (1) [Vals ) -va(s")] 2 0.

Similarly, investor 2 buys security 2 in s" € I;(s), so Zsﬁlfswp(s')vz(s’)
= 0 and Zyslzhn)p(s')[Vl(S')-VZ(S')] < 0. Summing the second inequality over s"

vields

(22) ES'ESZ(S].O(S‘)IV‘L(SJ)'VZ(S')I =

Zs"ezll(s.)Es'(-EIz(s”)ro(5J ) [Vl(sr)’VZ(S’)J = 0.

Since  Si(s) = Sp(s).  Levesep(s)[Vi(s)vals) ] = Foesep(s')X
[vi(s')-v,(s')], which equals 0 from the inequalities in (21) and (22).
Therefore, since Lu.ep (sp(s')(vi(s')-vy(s’)] 2 0 for any s" e Iys),
ZS.EIl(s)p(s'){vl(s*)-vz(s')] = 0. So investor 1 is indifferent between the two
securities. Since the project is divided between the two securities, the project
has a (D-interim from investor 1's viewpoint) conditional expected payoff greater

than or equal to its cost., A similar argument applies to investor 2. I

Proposition: Suppose & is a securiry demand correspondence such that D(£) =

{2,4,5,6,7}. Then £ is either given by

5 class 1 class 2 class 3
1 {2} {2} {2}
2 (2) {1} 12)
3 {2} {2} @
4 {2} {1} o}
3 {1} [2) {2}
6 {1} {1} (2)
7 {1} {2) o]
8 {1 {1} &

or the pattern obtained by switching securities 1 and 2.
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Proof of Proposition: Suppose there is an equilibrium in which there is complete

subscription for s € {2,4,5,6,7) only. Now. it is never the case that an
investor demands both securities in the same state. If an investor did demand
both securities there would be full financing for at least one of § = 1, 3, or
8.

We proceed through a series of claims.

Claim 1: Investors in class I or II subscribe to a security when s = 3.
Proof; Suppose neither class subscribed to either security when s = 3. Complete
subscription when s = 2 implies that class II subscribes to one of the securities
when s2{2,4,6,8), which we take toc be security 1 w.l.o.g., and class III
subscribes to 2 when s€{1,2,5,6}. But when s = 5, class II does not subscribe
to any security, so class I subscribes to security 1 when s€{5,6,7,8). Now, when
s = 4, II subscribes to 1 and I does not subscribe to any securities, so that
III subscribes to 2 when s€{3,4,7,8). But this implies that, when s = 8, I

subscribes to 1 and III subscribes to 2, yielding complete subscription, a

contradiction. ]

Claim 2: The same security (which, w.l.0.g., we will take as security 1
from here on) is unsubscribed when s = 1 and 3.
Proof: Since 1 and 3 are in the same elemenr of I's partition, class I investors
must subscribe to the same security when s = 1 and when s = 3. The same is true
of class II investors. By claim 1, I or II subscribes to some security when s
= 3 and so when s = 1. The other security is therefore unsubscribed when s =
1l and 3 (otherwise there would be complete subscription when s = 1 and 3). m
Claim 3: Class III investors never subscribe to security 1.
Proof: TFollows immediately from Claim 2, since that claim implies that class

IIT investors do not subscribe to security 1 when s={1,2,5.6) or s€(3,4,7,8) .8
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Claim 4: Investors in classes I and II subscribe to security 2 when s =

Eroof: Clearly if classes I and II subseribe to any security when s = 3, it must
be to the same one (otherwise we have complete subscription). So, suppose first
that class I does not subscribe to any security when s = 3 (and so also when s
=1, 2, and 4). Then, from claim 1, class II subscribes to security 2 when
se{l,3,5,7). Full financing when s = 7 impiies that I subscribes to security
1, since III never subscribes to security 1. Full financing when s = 4 requires
III to subscribe to security 2 (and II to subscribe to security 1). But then
there is complete subscription when s = 8, since I subscribes to 1 and IIT
subscribes to security 2, a contradiction.

Now suppose that class II does not subscribe to any security when
s€{1,3,5,7). Then I subscribes to security 2 for s€{1,2,3,4}, and IT subscribes
to security 1 when s€{2,4,6,8). Full financing when s = 7 requires I to
subscribe to security 1 when s&€(5,6,7,8) and III to subscribe to 2 when

s€{3,4,7,8}. But this is a contradiction, since it implies complete subscription

when s = 8§,

n
Now, since there is complete subscription when s = 2 and 4, class II
investors subseribe to security 1 when se{2,4,6,8). Also, since there is

complete subscription when s = 5 and 7, class I investors subscribe to security

1 when se({5,6,7,8). Complete subscription when s = 6 implies that class III
investors subscribe to security 2 when se(1,2,5.6). Because class I and II
investors subscribe to security 1 when s = 8, class III investors do net

subscribe to security 2 when s = 8 (or else there would be complete

subscription). Thus class III investors do not subscribe to any security when

s€(3,4,7.8). |
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